Top Banner
niv Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1. Introduction 2. Angle resolved photoemission (Hasan) 3. Tentative transport signatures 4. Giant fingerprint signal 5. Insulator and Superconductor
34

Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.

Dec 20, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.

Univ Toronto, Nov 4, 2009

Topological Insulators

J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O.Princeton University

1. Introduction 2. Angle resolved photoemission (Hasan)3. Tentative transport signatures 4. Giant fingerprint signal5. Insulator and Superconductor

Page 2: Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.

cond. band

valence band

cond. band

Top Bottom

Conventional insulator Topological insulator

ks

s

Surface states are helical (spin locked to k)Large spin-orbit interactn

Surface state hasDirac dispersion

kxky

Fu, Kane ’06Zhang et al. ’06Moore Balents ‘06Xi, Hughes, Zhang ‘09

crystal

s

Surface statesmay cross gap

A new class of insulators

cond. band

valence band

cond. band

valence band

Page 3: Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.

1. Time-reversal invariance prevents gap formation at crossing

cond. band

?

Violates TRI

cond. band

2. Suppression of 2kF scattering

Spinor product kills matrix elementLarge surface conductance?

2D Fermisurface

Under time reversal(k↑) (-k↓)

sk

Protection of helical states

Kane, Mele, PRL ‘05valence band valence band

Page 4: Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.

Helicity and large spin-orbit coupling

• Spin-orbit interaction and surface E field effectv B = v E in rest frame

• spin locked to B

• Rashba-like Hamiltonian

Like LH and RH neutrinos indifferent universes

vE

B

vE

B

spin aligned with B inrest frame of moving electron

s

s

k

k

Helical, massless Dirac states with opposite chirality on opp.surfaces of crystal

skn̂ FvH

Page 5: Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.

A twist of the mass (gap)

Doped polyacetylene (Su, Schrieffer, Heeger ‘79)

xe /2Domain wall (soliton)traps ½ charge

Mobius strip

1. Gap-twist produces domain wall2. Domain wall traps fractional charge3. Topological (immune to disorder)

Mobius strip like

H

H H

pvx

xpvH

)(

)(*

Page 6: Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.

m(x)

Jackiw Rebbi, PRD ‘76Goldstone Wilczek, PRL ‘81Callan Harvey, Nuc Phys B ‘85Fradkin, Nuc Phys B ‘87D. Kaplan, Phys Lett B ’92

)(

)(

xmp

pxmH

Dirac modes on domain walls of mass field

Chiral zero-energy modeDomain-wall fermion

vacuumTopologicalinsulator

Chiral surface states?

Dirac fermions as domain wall excitation

z

k

QFT with background mass-twist field

x

Callan-Harvey: Domain walls exchange chiral current to solve anomaly problm

Page 7: Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.

Bi SbBi1-xSbx

Fu Kane prediction of topological insulator

z

kMass twist

Mass twist traps surfaceWeyl fermions

Fu, Kane, PRB ‘06

ARPES confirmationHsieh, Hasan, Cava et al.Nature ‘08

Confirm 5 surf states in BiSb

Page 8: Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.

20 eV photons

+-

Angle-resolved photoemission spectroscopy (ARPES)

velocity selector

E

k||

Inte

nsity

E

quasiparticlepeak

Page 9: Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.

Hsieh, Hasan, Cava et al. Nature 2008

ARPES of surface states in Bi1-x Sbx

Page 10: Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.

ARPES results on Bi2Se3 (Hasan group)

Se defect chemistry difficult to control for small DOS

Xia, Hasan et al. Nature Phys ‘09

Large gap ~ 300meV

As grown, Fermi level in conduction band

Page 11: Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.

Photoemission evidence for Topological Insulators

Why spin polarized?

Rashba term on surface

What prevents a gap?

Time Reversal Symmetry

What is expected from transport?

•No 2 kF scattering

•SdH

•Surface QHE (like graphene except ¼)

•Weak anti-localization

Hsieh, Hasan et al., Nature ‘09

Page 12: Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.

Bi2Se3: Typical Transport

Roughly spherical Fermi surface (period changes by ~ 30%)

Metallic electron pocket with mobility ~ 500-5000 cm2/Vs

Carrier density ~ 1019 e-/cm3

Page 13: Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.

Quantum oscillations of Nernst in metallic Bi2Se3

Major problem confrontg transport investigationAs-grown xtals are always excellent conductors,lies in conduction band (Se vacancies).

(1 K) ~ 0.1-0.5 mcm, n ~ 1 x 1018 cm-3

m* ~ 0.2, kF ~ 0.1 Å-1

Page 14: Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.

Fall into the gap

Decreaseelectron density

Solution:Tune by Ca doping

cond. band

valence band

electrondoped

holedoped

targetHor et al., PRB ‘09Checkelsky et al., arXiv/09

Page 15: Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.

Resistivity vs. Temperature : In and out of the gap

Onset of non-metallic behavior ~ 130 K

SdH oscillations seen in both n-type and p-type samples

Non-metallic samples show no discernable SdH

Checkelsky et al., arXiv:0909.1840

Page 16: Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.
Page 17: Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.

Magnetoresistance of gapped Bi2Se3

Logarithmicanomaly

Conductancefluctuations

Giant, quasi-periodic, retraceable conductance fluctuations

Checkelsky et al., arXiv:0909.1840

Page 18: Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.

Magneto-fingerprints

Giant amplitude(200-500 X too large)

Retraceable(fingerprints)

Spin degreesInvolved in fluctuations

Fluctuations retraceableCheckelsky et al., arXiv:0909.1840

Page 19: Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.

Angular Dependence of R(H) profile Cont.

For δG, 29% spin term

For ln H, 39% spin term (~200 e2/h total)

Theory predicts both to be ~ 1/2π

(Lee & Ramakrishnan), (Hikami, Larkin, Nagaoka)

Page 20: Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.

Conductance -- sum over Feynman paths

ji

i

jii

iji

jijieAAAAAG

,

)(

,

* ||||2

Universal conductance fluctuations (UCF)

G = e2/h

Universal Conductance Fluctuations

in a coherent volume defined by thermal length LT = hD/kT

At 1 K, LT ~ 1 m

For large samples size L, 212 /

L

L

h

eG T

H

LT

Stone, Lee, Fukuyama (PRB 1987)

LT

L = 2 mm“Central-limit theorem”

UCF should be unobservable in a 2-mm crystal!

Quantum diffusion

our xtal

Page 21: Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.

Taking typical 2D LT = 1 µm at 1 K,

For systems size L > LT, consider (L/LT)d systems of size LT, UCF suppressed as

For AB oscillation, assuming 60 nm rings, N-1/2

~ 10-8

Size Scales

2/2)/( dT LL

TkDL

DL

BT

in

/

heGmeasured /~ 2

Page 22: Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.

Quasi-periodic fluctuations vs T

Fluctuation falls off quickly with temperature

For UCF, expect slow power law decay ~T-1/4 or T-1/2

AB, AAS effect exponential in LT/P

Doesn’t match!

Page 23: Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.

Non-Metallic Samples in High Field

Fluctuation does not change character significantly in enhanced field

Page 24: Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.

Next Approach: Micro Samples

Page 25: Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.

Micro Samples Cont.

Sample is gate-able

SdH signal not seen in 10 nm thick metallic sample

Exploring Callan-Harvey effect in a cleaved crystal

x

Page 26: Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.

(b)

(c)

(a)

Page 27: Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.

Desperately seeking Majorana bound state

SC1 SC2

(x)Majorana bound state

= 0 =

Open at byProximity effect

Surface topological states Fu and Kane, PRL 08

bound state wfelectron creation oper.

Neutral fermion that is its own anti-particle

Majorana oper.

Gap “twist” trapsMajorana)]()()()([ 2,1

2/*2,1

2/2,1 xcxexcxedx ii

Page 28: Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.

Cu Doping: Intercalation between Layers

Hor et al., arXiv 0909.2890

Intercalation of Cu between layers

Confirmed by c-axis lattice parameter increase and STM data

Crystal quality checked by X-ray diffraction and electron diffraction

Page 29: Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.

Diamagnetic Response at low T

Typical M for type II: -1000 A / m

From M(H), κ ~ 50

χ ~ -0.2

Impurity phases not SC above 1.8 K (Cu2Se, CuBi3Se5, Cu1.6Bi4.8Se8....)

Small deviations from Se stoichiometry suppress SC

Page 30: Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.

Cu Doping: Transport Properties

Not complete resistive transition

Up to 80% transition has been seen

Carrier density relatively high

Page 31: Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.

Upper Critical Field HC2

HC2 anisotropy moderate

ξc = 52 Å , ξab = 140 Å

HC2 estimate by extrapolation

Similar shape for H||ab

Page 32: Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.

Ca Doping: Conclusions

Ca doping can bring samples from n-type to p-type

Non-metallic samples at threshold between the two reveal new transport properties

G ~ ln(H) at low H

δG ~ e2/h, quasiperiodic

Hard to fit with mesoscopic interpretation

No LL quantization seen up to 32 T

Metallic nanoscale samples show no LL

Page 33: Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.

Summary

Doping of Bi2Se3 creates surprising effects

Ca doping: Quantum Corrections to Transport become strong

Cu Doping: Superconductivity

Next stage:

1.nm-thick gated, cleaved crystals

2.Proximity effect and Josephson current expt

Page 34: Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.

END