Top Banner

of 10

UniMasr.com 13d8f87b6634ac55bb12ebae44fdaf54

Jul 06, 2018

Download

Documents

HFdzAl
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/17/2019 UniMasr.com 13d8f87b6634ac55bb12ebae44fdaf54

    1/10

    1

    Electrical Boundary Conditions

    2

    3an2 is a unit vector normal to the interface from region 2 to region1

    4

    Electric Field Boundary Conditions:

    5

    Magnetic Field Boundary Conditions:

    6

    K=Js

    K=Js

  • 8/17/2019 UniMasr.com 13d8f87b6634ac55bb12ebae44fdaf54

    2/10

    7

    Dielectric- dielectric boundary conditions

    Dielectric materials are dominated by “bound” rather than “free’’charges  (E-fields causes +ve and – ve charges of molecules to separateand form dipoles  throughout the material interior 

    Therefore, the free charge density sand the surface current density Jsare zero

    1En1= 2En2

    •The normal component of B is

    continuous across the interface while the

    tangential component of E is continuous

    across the interface

    2

    2

    1

    1

      

    t t    B B

    8

    Conductor-dielectric boundary conditions

     sn Dn       1

    9

    Conductor-free space boundary conditions

    011   0     t t   E  D    

     snn   E  D          101

    10

    11 12

  • 8/17/2019 UniMasr.com 13d8f87b6634ac55bb12ebae44fdaf54

    3/10

    13

    (Not Yet)

    14

    Electrodynamics

    • Electrostatic charges electrostatic fields

    • Steady currents (motion of electric charges with uniform velocity

    magnetostatic fields

    • Time varying currents electromagnetic fields

    15

    Changing Magnetic Field Current and

    Voltage

    Current

    N S

    B, H

    16

    In summary: Faraday’s Law- Integral Form

    17

    Faraday’s Law-Differential Form

    18

  • 8/17/2019 UniMasr.com 13d8f87b6634ac55bb12ebae44fdaf54

    4/10

    19

    Time Harmonic fields and their phasor

    representation

    20

    • In general, a phasor could be a scalar or vector.

    • If a vector E (x, y, z, t) is a time-harmonic field, the phasor form of

    E is Es (x, y, z); the two quantities are related as E = Re (Es e jt)

    If E = Eocos(t -x)ay, we can write E as: E = Re (Eoe-j x ay e

     jt )

    Es = Eo e-j x ay  phasor form

     Notice that

     

     

     

          

     j

     E t  E 

     E  jt 

     E 

    e E  je E t t 

     E    t  j s

    t  j

     s   )Re()Re(

    21

    • Maxwell’s equations in terms of vector field phasors (E, H) and source phasors (, J) in a simple linea r, isotropic and homogeneous medium are:

    00  

    dS  H  H 

    dvdS  E  E 

    dS  E  jdS  J dl  H  E  j J  H 

    dS  H  jdl  E  H  j E 

     s s

    v

    vs

     svs

     s

     L s s

     s s s s s s

     L s

     s s s s

     

      

     

      

       

       

    From the table, note that the time factor e  jt disappears because it is

    associated with every term and therefore factors out, resulting in time

    independent equations22

    23

    Plane Wave Equations

    24

    Electromagnetic wave equation in free

    space (coupling between E and H)

  • 8/17/2019 UniMasr.com 13d8f87b6634ac55bb12ebae44fdaf54

    5/10

    25 26

    Waves in General

    • A wave is a function in both space and time.

    • The variation of E with both time and space variable z, we  may plot E as a function of t by keeping z constant and vice versa.

    27

    The possible solution in free space is of the form:

    )cos()cos(

    ]Re[

    )Re(),(

    )()(

     z t  E  z t  E 

    e E e E 

    e E t  z  E 

    omom

     z t  j

    m

     z t  j

    m

    t  j

     x x

    oo

          

          

     

    A negative sign in (t oz) is associated with a wave

     propagating in the +z direction (forward traveling or

     positive going wave) whereas a positive sign indicates that

    a wave is traveling in the – z direction (backward travelingor negative going wave)

    28

    29

    A plane wave traveling in the positive zdirection

    )cos(

    ]Re[

    ])(Re[),(

    0

    )(0

     z t  E or 

    e E or 

    e z  E t  z  E 

    o x

     z t  j

     x

    t  j

     x x

    o

       

       

     

    30

    What do Faraday and Ampere mean?

    . .t 

     

     dlE s

    Bd

    . .C t 

    sH

    Ddl J d

     “a changing magnetic field causes an electric field” 

     “a changing electric field/flux causes an magnetic field” 

    Question : If we put these together, can we get electric andmagnetic fields that, once created, sustain one another?

  • 8/17/2019 UniMasr.com 13d8f87b6634ac55bb12ebae44fdaf54

    6/10

    31

    Cross-breed Ampere and Faraday!

    C t 

    t t 

    t  

     

     

     ... all in terms of E and H

    ... all in terms of

    D

    E

    EH J

     aB H

    E

    E nd H

    dt d    t 

     

      

     

     

     

    ... differentiate both sides

     ... curl of both

    EH E

    HE

     

    sides

    2

    2

    d d 

    dt dt  

     

     

     

    H E

    HE

    E

    2

    2

    dt 

    dt          

    EE

    E

    32

    Cross-breed Ampere and Faraday!

    C t 

    t t 

    t  

     

     

     ... all in terms of E and H

    ... all in terms of

    D

    E

    EH J

     aB H

    E

    E nd H

      t 

    t   

     

     

     

      ... curl of b

    HE

    oth sid sE

    E E eE

    H

    2

    2t    t   

     

    H HH

    33

     Now some simplifications …

    E = (0,EY,0) only

    x

    y

    z

    EY = EY0sin(ωt-βx)

    Align y-axis with electric field and the x-axis with the direction of(wave) propagation (a travelling wave propagating in the x-direction, with only a y-component of E-field)

    34

    Travelling Waves

    EY = EY0sin(ωt)

    EY = EY0sin(ωt)

    EY = EY0sin(ωt-)

    EY = EY0sin(ωt-βx)

    Take a time-varying electric field,E, at a point …

    Add a second one with a smallphase difference, nearby …

    Now let’s have a lot of them,with a sinusoidal variationof phase with direction x.

    35

    Plane WaveWe will also look for a plane wave solution – where the field EYis the same (at an instant in time) across the entire zy plane.

    Here is an animation to seewhat this means - looking at theyz plane, down the direction oftravel

    Lookdownhere

    E = (0,EY,0) only

    x

    y

    z

    EY = EY0sin(ωt-βx)

    36

    Cross-breed Ampere and Faraday!

    ,0 ,

    0 0

    y y 

    dE dE  d d d 

    dx dy dz dz dx  

    i j k

    E

      2 2 2 2

    2 2, ,

    0

    y y y y  

    y y 

    d E d E d E d E  d d d 

    dx dy dz dxdy dzdy  dz dx  

    dE dE  

    dz dx  

    i j k

    E

    And, as we have simplified down to E=(0,Ey,0), with |EY| constantin the zy plane, this reduces to …

    2

    2y 

    y  d E dx 

    E

  • 8/17/2019 UniMasr.com 13d8f87b6634ac55bb12ebae44fdaf54

    7/10

    37

    Cross-breed Ampere and Faraday!

    • Plane wave equation for E –  describes the variation in time and space of an electric plane wave

    • With a y-component only (we have aligned the y-axis with E)•  propagating in the x-direction.

    • There is an exactly equivalent equation for H –  Eliminate E, not H, from the combination of Ampere and Faraday.

    • rather a waste of our time.• We can, however, infer that whatever behaviour we get for Ey will apply to

    H, although we do not yet know the direction of H.

    2 2

    2 2

    y y y d E dE d E  

    dt dx dt    

    Becomes the 1D equation

    2

    2

    d d 

    dt   dt 

      E E

    ESo (in 3D)

    38

    What have we here?

    2 2

    2 2

    y y y d E dE d E  

    dt dx dt    

    Variation of Ey in space(x=direction of propagation)

    Variation of Ey with time

    Magnetic permeability(4px107 in vacuum, larger in a magnet)

    Conductivity(0 in an insulator, much larger in a conductor)

    Dielectric constant(8.85x10-12 in a vacuum, larger in a dielectric)

    39

    Start with an insulator to make life easy (=0)

    2 2

    2 2

    y y d E d E  

    dx dt   

    ( )0

     j t x y y E E e

       Look for a solution of the form

    Where and depend upon and … the characteristics of the insulator

    2 2

    2 2

    y y y d E dE d E  

    dt dx dt     becomes

    2 2   22 2

    2 2 2

    1

    ,y y 

    y y 

    d E d E  

    E E dx dt  

     

         

    2

    2 1

     

     

       , what does this mean??

    ,2  2

    2  2

    Remember, = =waveleng

    f t

    requency dh

    an=  f    v f p 

     p 

      p     p   

    40

    Still don’t know what it means …

    • Travelling wave ofthe form

    ( )0 0 cos j t x 

    y y y E E e E t x      

    2

    12It travels with a velocity f v 

      p  

      

     

       p 

     

      

     

    In a vacuum, =0=4px10-7, =0=8.85x10

    -12

    8

    0 0

    1 3 10 /  ... a familiar speed?v m s  

    In (eg) glass, =0=4px10-7, =r0=5x8.85x10

    -12

    8

    0 0

    11.43 10 /  ... light slows down in glass

    v m s  

    41

    This is why lenses work …

    V=3x108m/s V=1.43x108m/s V=3x108m/s

    42

    What is H up to?( )(0, ,0) j t x y E e

       E

    ( )00,0 , 0,0, ,   j t x y y dE 

    d  j 

     x E 

    t e         

     

    HFaraday says E E

      0   0(0,0, ) , 0,0,H

    H  j t    j  x 

    z z z t x 

    z H H H et 

     j H e      

             

    So and if

      ( )0 0

     j t x    j t x z y H e E e

           

     

    H E time-phaand are in in a non-conduse ctor 

    0 0 0 0

    1 1 Also, z y y y  H E E E  

        

     

    (0, 0, ) (0, , 0)So and are at 90 to one another ... andz y H E H E

    i Z  

      , the intrinsic impedance ( )of t realhe medium, is for an insulator 

  • 8/17/2019 UniMasr.com 13d8f87b6634ac55bb12ebae44fdaf54

    8/10

    43

    Summary so far : Insulator 

    • H and E both obey e j(t-x)

    • H and E are in time-phase• |E|=Zi|H| is the characteristic impedance

     – Zi is real in an insulator  – Zi = 377Ω in free space (air!) – Zi ≈ 150Ω in glass

    • Wave travels at a velocity v =1/√ – 3x108 m/s in free space

    44

     Now a conductor …

    • Fields lead to currents

    • Currents cause “Joule heating” (I2R)• Leads to loss of energy

    • Fields still oscillate, but they decay

    • Multiply the solution we have already by a term e-ax?

    e-ax e-ax sin(ωt-βx)HEAT!

    HEAT!

    HEAT!

    45

     Now a conductor …

    • In general: the electric field in a conductor may beexpressed in the form:

    )cos()cos(

    ))(Re(),(

               a a 

     

     xt e E  xt e E 

    e x E t  x E 

     x

    m

     x

    m

    t  j

     y y

    Wheremm   E and  E  were replaced in terms of their mag. and phases

    46

     Now a conductor … >0

    2 2

    2 2

    y y y d E dE d E  

    dt dx dt     

    ( )0

     j t x y y 

     x E E e   e     a    Look for a solution of the form

    0

     j x  j t y y E E e e

      a     

    2   2 2

    0 0 0 0y y y y   j E E j E E a  

    . j      a   For tidiness, write is called the propagation constant

    2 , j j j j   

    0 x j t 

    y y E E e e  

    47

    Example : Good Conductor 

      f    a   v

    6x107 (S/m) 100MHz 6.28x108 8.85x10-12 1.26x10-6 1.54x105 1.54x105 4x103m/s

    0   , x j t 

    y y E E e e j j    

     

    3 3 5790 6 10 0.006 790 6 10 1.54 10 (1 ) j x j x j x j   

    Comments : a= , so E and H are 45° out of (time) phase v>1 … rapid attenuation via e-ax

    Let’s have a look at e-ax

    48

    Example : Good Conductor 

    e-ax

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0μm   10μm   20μm   30μm

    0.36=1/e

    Amplitude falls by 0.36=1/e in 6m i.e. the wave doesn’t get far incopper!

    Skin Depth : the depth of penetration into a good conductor (the wave will

     be attenuated by a factor

      p a   

      f  

    e

    11

    368.01

  • 8/17/2019 UniMasr.com 13d8f87b6634ac55bb12ebae44fdaf54

    9/10

    49

    Example : Good Conductor,

    E=ZiH …. Intrinsic Impedance

      0   0(0,0, ) , 0,0,             

    So and if j t    j t x 

    z  x 

    z z z    j H eH H H et 

    HH

    00,0 , 0 ,, ,0H

    Faraday says E E  y    j t x 

    d e

    E E 

    dx t 

       

     

     

    0 0 0y z i z  

     j E H Z H  

     j j j Z 

     j  j j 

     

     

     

       

    50

    Example : Good Conductor,

    E=Zi H…. Intrinsic Impedance

    40 0 0 0 0

     j 

    y i z z z z  

     j j E Z H H H e H   j 

    p   

     

    0

    0

    4

    H Ey 

    z  j 

    E H 

    e

    p  

     

    So relates the magnitudes of and

    0 04

    y z E H   p 

    and leads by

    51

    Similarities and differences between the propagation of

    uniform plane waves in free space and conductive

    medium

    Similarities:

    • In both cases, the electric and magnetic fields areuniform in the plane perpendicular to the direction

    of propagation.

    • The electric and magnetic fields are perpendicular toeach other, and to the direction of propagation i.e.nocomponent of either the electric or the magnetic

    field is in the direction of propagation.

    52

    Differences:

    Free Space Conductive Medium

    • E, H vectors are in phase, the E, H vectors are not in phase, the

    intrinsic wave impedance ois a real intrinsic wave impedance is a com-

    number. plex number.

    • The phase velocity = c (speed of The phase velocity is less than the

    light. speed of light.

    • For a plane wave of a given freq., o The =2p/ is shorter than o

    is longer than in the material medium.• Does not attenuate in magnitude as it It exponentially attenuates, with

     propagates. the skin depth by = 1/a

    53

    Polarization of plane waves

    • For a wave propagating along the z axis, the electric field may be expressed ashaving two components in the x and y direction:

    E = (A ax + B ay) e-jz

    where the amplitudes A and B may be complex.

    1. If A and B have the same phase angle (a = b). In this case, the x and y

    components of the electric field will be in phase

      jb  ja e B Be A A     ,

    )cos()(

    )(   )(

    a z t a Ba A E 

    ea Ba A E 

     y x

    a z  j

     y x

     

       

      

    The tip of the E vector follows a line Linear polarization

    54

    2. If A and B have different phase angles. In this case, E will no

    longer remain in one plane:

    The locus of the end point of the electric field vector will trace out

    an ellipse once each cycle Elliptical polarization

    3. If A and B are equal in magnitude and differ in phase angle by

    p/2, the ellipse becomes a circle Circular Polarization

    )cos(

    )cos(

     z bt  B E 

     z at  A E 

     y

     x

       

       

  • 8/17/2019 UniMasr.com 13d8f87b6634ac55bb12ebae44fdaf54

    10/10

    55

    - If one takes a snapshot of a circularly polarized wave at any

    instant then he will see the picture below.

    - The E-field vector does not change in magnitude but its

    direction “twists” in space.

    - An observer sitting in the path of the wave will see the E-

    field vector rotate in a circular trajectory at his location as the

    wave passes by.

    56

    57 58

    59