Top Banner
Unidirectional Pulse Propagation Eqn (UPPE) General Philosophy: 1. Retain the rigor of Maxwell ( carrier resolved) but enable propagation over macroscopic distances 2. Provides a unifying theoretical framework for seamlessly deriving the many nonllinear propagation equations in the literature Two Implementations: 1. Z-propagated UPPE – connects to envelope description 2. T-propagated UPPE – links directly to Maxwell equations
67

Unidirectional Pulse Propagation Eqn (UPPE)

Mar 26, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Unidirectional Pulse Propagation Eqn (UPPE)

Unidirectional Pulse Propagation Eqn (UPPE)

General Philosophy:

1. Retain the rigor of Maxwell ( carrier resolved) but enable propagation over macroscopic distances

2. Provides a unifying theoretical framework for seamlesslyderiving the many nonllinear propagation equations in the literature

Two Implementations:

1. Z-propagated UPPE – connects to envelope description2. T-propagated UPPE – links directly to Maxwell equations

Page 2: Unidirectional Pulse Propagation Eqn (UPPE)

Maxwell Equations

Non-magnetic medium (µ=µ0) with linear permittivity ε(ω,x,y).

0

0

t t

t

j P E H

H E

ε ε

µ

+ ∂ + ∂ ∗ = ∇×

− ∂ = ∇×where

( ) ( )0

( )P t E E t dε ε τ τ τ∞

= ∗ ≡ −∫is the linear optical response.

Note: We return to the nonlinear optical response later.

Page 3: Unidirectional Pulse Propagation Eqn (UPPE)

ACMS Photonics Supercomputing Laboratory

Dual Opteron Workstations

Infiniband

2 TB GFS Home1 TB XFS Home

46 CPU AMD Opteron Cluster 32 CPU Itanium 2 Altix 3700

Graphic Head

Dual Graphic Headto Prism Graphics

Gigabit Network

2 TB PVFS Scratch Directory

Page 4: Unidirectional Pulse Propagation Eqn (UPPE)

Maxwell Numerical Solvers

Vector Maxwell Simulators

Maxwell’s Equations:

0,0

;

=•∇=•∇∂

∂=×∇

∂∂

−=×∇

→→

→→

BDtDH

tBE

Constitutive relations:→→→→

+== PEDHB 00 , εµ

FDTD Method Yee scheme

Simulation size grows as N3 making memory and CPU prohibitive!

Note: Evolve the solution in time!

Page 5: Unidirectional Pulse Propagation Eqn (UPPE)

Example of AMR FDTD discretization for TM-mode in two space dimensions

- A.R.Zakharian, M. Brio

, yx z z

y xz

HH E Et y t x

H HEt x y

∂∂ ∂ ∂= − =

∂ ∂ ∂ ∂∂ ∂∂

= −∂ ∂ ∂

( )

( )

1/ 2 1/ 2, 1/ 2, , 1/ 2, , 1/ 2, 1/ 2 , 1/ 2, 1/ 2

1/ 2 1/ 2, 1/ 2, , 1/ 2, , 1/ 2, 1/ 2 , 1/ 2, 1/ 2

n n n nx i j x i j z i j z i j

n n n ny i j y i j z i j z i j

tH H E EytH H E Ex

+ −+ + + + + −

+ −+ + + + − +

∆− = − −

∆∆

− = −∆

AMR refines the computational domain locally using nested rectangular grid patches. A standard FDTD update is applied to each patch.

At the coarse/fine grid interfacesthe solution is interpolated. Dashed lines denote boundaries of the ghost cells around the fine region. Arrows show a sample interpolation from coarse to fine values of the electric field.

Page 6: Unidirectional Pulse Propagation Eqn (UPPE)

Object-Oriented Implementation

• AMR object coordinates the recursive time-stepping of each refinement level• Level object performs memory management for a collection of subregions • Interlevel objects handle interpolation, averaging and circulation consistency• Material objects encapsulate an algorithm for a particular material model.

Page 7: Unidirectional Pulse Propagation Eqn (UPPE)

Nested Grids on a 3D PBG Structure- A. Zakharian, C. Dineen

- confined defect mode of a 3D PBG lattice

Page 8: Unidirectional Pulse Propagation Eqn (UPPE)

Resolving a QD in a PBG Lattice4-20 nm

-Jens Foerstner - experiment Gibbs et al.

QD Wavefunction

AMR Mesh

230 240 250 260 270 280 290 300

emis

sion

frequency [THz]

Coupling QD to High Q Defect Mode

Energy level splitting

Page 9: Unidirectional Pulse Propagation Eqn (UPPE)

Scattering from a metal Nanosphere – 3 nested AMR Levels

Page 10: Unidirectional Pulse Propagation Eqn (UPPE)

Maxwell Solvers are too Expensive!!

Need EM pulse propagators that bridge the considerablegap between Maxwell FDTD and slowly-varying envelope

For extreme NLO studies, such propagators must resolvethe underlying optical carrier wave while propagating overmacroscopic distances.

Carrier-wave shocking can occur for extreme electric fields

R.G. Flesch, A. Pushkarev and J.V. Moloney, “Carrier wave shocking of femtosecond optical pulses,” Phys. Rev. Let., 76(14), 2488-2491 (1996).

Page 11: Unidirectional Pulse Propagation Eqn (UPPE)

z-Propagated UPPE I- more suitable for long propagation distances and waveguides

Standard Textbook Approach

Expand transverse fields in terms of modes (free space or waveguide)

( )

,

( )

,

( , , , ) ( , ) ( , , )

( , , , ) ( , ) ( , , )

m

m

i z i tm m

m

i z i tm m

m

E x y z t A z E x y e

H x y z t A z H x y e

β ω ω

ω

β ω ω

ω

ω ω

ω ω

=

=

∑Shorthand notation:

( )

( )

( , , )

( , , )

m

m

i z i tm m

i z i tm m

E E x y e

H H x y e

β ω ω

β ω ω

ω

ω

Page 12: Unidirectional Pulse Propagation Eqn (UPPE)

z-Propagated UPPE II

Scalar multiply Maxwell eqns by complex conjugate modal fields

*0

*0

( ) ( )m t m t m

m t m

E j P E E E H

H H H E

ε ε

µ

∗ ∗

• + ∂ + • ∂ ∗ = • ∇ ×

− • ∂ = • ∇×

( ) ( ) ( )b a a b a b• ∇ × = ∇ • × + • ∇ ×Use formula

( )( )

0

*0

( ) ( )m t m t m m

m t m m

E j P E E H E H E

H H E H E H

ε ε

µ

∗ ∗ ∗ ∗

∗ ∗

• + ∂ + • ∂ ∗ = ∇ • × + • ∇×

− • ∂ = ∇ • × + • ∇ ×

Page 13: Unidirectional Pulse Propagation Eqn (UPPE)

z-Propagated UPPE IIISince modal fields themselves satisy Maxwell’s eqns

0

0

m t m

m t m

E H

H E

µ

ε ε

∗ ∗

∗ ∗

∇× = − ∂

∇× = − ∂ ∗

Substitute in previous eqns:

( )( )

0 0

*0 0

( ) ( )m t m t m t m

m t m t m

E j P E E H E H H

H H E H E E

ε ε µ

µ ε ε

∗ ∗ ∗ ∗

∗ ∗

• + ∂ + • ∂ ∗ = ∇ • × − • ∂

− • ∂ = ∇ • × + • ∂ ∗

Subtract two equations and collect terms involving full time derivatives

( )( )

0

*0

( ) [ ]

[ ]

m t t m m

t m m

E j P E E H E

H H E H

ε ε

µ

∗ ∗ ∗

• + ∂ + ∂ • ∗ = ∇ • ×

−∂ • − ∇ • ×

Page 14: Unidirectional Pulse Propagation Eqn (UPPE)

z-Propagated UPPE IVNow integrate over whole xyt domain – Note that all terms except the first and ∂z (implicit in ∇) are derivatives that give rise to surface terms that vanish for localized pulses

( ) [ ] [ ]m t z m z mE j P dxdydt z H E dxdydt z E H dxdydt∗ ∗ ∗• + ∂ = ∂ • × −∂ • ×∫ ∫ ∫

Because only transverse fields enter above eqns, we use modal expansions

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ),

,

[ , ]

[ , ]

n m

n m

m t

i z i t i z i tz n n mn

i z i t i z i tz n n mn

E j P dxdydt

z A z H E e e dxdydt

z A z E H e e dxdydt

β β ω ω

β β ω ω

ω

ω

Ω − Ω − +∗Ω

Ω − Ω − +∗Ω

• + ∂ =

∂ • Ω Ω × −

∂ • Ω Ω ×

∫∑∫∑∫

Integration over time reduces to Kronecker delta between angular frequencies, removing sum over Ω

Page 15: Unidirectional Pulse Propagation Eqn (UPPE)

z-Propagated UPPE VCollecting like terms in the previous equation

( ) ( ) ( ) ( )

( ) ( ) ( )

,

[ , , , , ( , , ) , , ]

n mi z i zm t z nn

n m n m

E j P dxdydt A z e e

z H x y E x y E x y H x y dxdy

β ω β ω

ω ω ω ω

−∗

∗ ∗

• + ∂ = ∂ Ω ×

• × − ×

∑∫∫

This equation can be reduced further by using the general orthogonality relation:

( ),[ ] 2m n m n m n mz E H H E dxdy Nδ ω∗ ∗• × − × =∫To yield

( ) ( ) ( ) ( ) ( ),, 2n mi z i zm t z n m n mn

E j P dxdydt A z e e Nβ ω β ω δ ω−∗ • + ∂ = −∂ Ω∑∫Evolution equation for the expansion coefficients follows immediately

Page 16: Unidirectional Pulse Propagation Eqn (UPPE)

z-Propagated UPPE VI

( ) ( )

( ) ( )

2 2 2

2 2 2

1,2

, ,

m

T Y X

i z i tz m

T Y Xm

m t

A z dt dy dx eN XYT

E x y j P

β ω ωω

ω

+ + +

− +

− − −

∂ = − ×

• + ∂

∫ ∫ ∫

Specializing to a homogeneous medium (plane waves), the frequency and wavenumber propagation constant is

( ) ( ) ( )2 2 2 2, , , , , /

x yk k s z x y x yk k k c k kβ ω ω ω ε ω± ≡ = − −

( ), , ,

, , , , , ,0

exp , ,

1x y

x y x y

k k s s x y z x y

k k s k k s

E e ik x ik y k k k

H k E

ω

µ ω

±

± ±

= + ±

= ×

where es=1,2 are unit polarization vectors normal to , ,x y zk k k k=

and the modal field amplitudes are

Page 17: Unidirectional Pulse Propagation Eqn (UPPE)

z-Propagated UPPE VIIFor this plane wave basis, the normalization constant is easily calculated to be

( ), , ,

0

, ,x y

z x yk k s

k k kN

ω

µ ω± = ±

Substituting this expression into eqn …

( )

( )( )

2 2 2( )0

2 2 2

,2

, , , ( , , , )

x yz

T Y X

i t k x k yik zz m

T Y Xz

s t

A z e dt dy dx ek XYT

e j x y z t P x y z t

ωωµω+ + +

− −−

− − −

∂ = − ×

• + ∂

∫ ∫ ∫

Above integral is nothing other than the spatial and temporal Fourier integral transform and can be written in the spectral domain as

Page 18: Unidirectional Pulse Propagation Eqn (UPPE)

z-Propagated UPPE VIII

( ) ( )( ), ,20

, ( , ) ,2

z

x y x y

ik zz m s k k k k

z

A z e e i P z j zc kωω ω ω ω

ε−∂ = − • −

This version is implemented numerically in the spectral domain!

For completeness, we give the spectral representation for evolving the total transverse field:

( ) ( ) ( ), ,, , , ,

1,2

, , z x y

x y x y

ik k k zk k s k k s

s

E z e A z e ωω ω⊥ ⊥+

=

= ∑

( ) ( )

( )

, ,

2

, ,2 20 0

, ,

( , ) ,2 2

x y x y

x y x y

z k k z k k

s s k k k kz z

E z ik E z

ie e P z j zc k c k

ω ω

ω ωω ωε ε

⊥ ⊥

∂ = +

• −

Page 19: Unidirectional Pulse Propagation Eqn (UPPE)

NumericsExample: Scalar version of z-UPPE

( ) ( )

( )

, ,

2

, ,2 20 0

, ,

( , ) ,2 2

x y x y

x y x y

z k k z k k

k k k kz z

E z ik E z

i P z j zc k c k

ω ω

ω ωω ωε ε

⊥ ⊥∂ = +

Actually solve for “plane-wave/waveguide” expansion coefficients

( ) ( )( ), ,20

, ( , ) ,2

z

x y x y

ik zz m k k k k

z

A z e i P z j zc kωω ω ω ω

ε−∂ = − −

Large system of coupled ode’s. Linear propagator part in spectral domain is trivially parallelizable. However, nonlinearpolarization results in global coupling of all field variables!- require shared memory machine

Page 20: Unidirectional Pulse Propagation Eqn (UPPE)

t-Propagated UPPE I

This version of UPPE is most closely aligned with Maxwell eqns.Starting point is different from previous case.Based on a projection operator technique – Kolesik,Moloney and MlejnekPRL, 89, p283902, (2002); Kolesik and Moloney, PRE, 70, 036604 (2004).

Involves derivation of a unidirectional propagation for the electric displacementvector ( ),D r t

Let denote the spatial Fourier transforms of the fields e.g

( ) ( ) ( ), ,E k H k D k

( ) ( ) ( ) ( ) ( ) ( )1D k D r k D r D k r−= ℑ = ℑ

Page 21: Unidirectional Pulse Propagation Eqn (UPPE)

t-Propagated UPPE IIDefine the following projection operations

( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )2

1sgn12

sgn

z

z

D k k k H kD k kP

kH k H k k k D kk

ω

ω±

× = ± ×

These operators provide a unity decomposition

1P P+ −+ =

They behave as projectors as long as they act over divergence-free subspaces i.e

2P P± ±=

Page 22: Unidirectional Pulse Propagation Eqn (UPPE)

t-Propagated UPPE IIIP+ leaves invariant any plane wave solution to Maxwell’s equations that propagate with kz component > 0 i.e it annihilates all plane wave components propagating in the negative z-direction. To show this use

( )( )

( ) ( )( ) ( )2

1 k H kD k k

kH k k D kk

ω

ω

− × = ×

To obtain

( )( )

( ) ( )( ) ( )

( ) ( )( )

2

11 sgn( )12

1 sgn( )

1 sgn2

z

z

z

k k H kD k kP

kH kk k D k

k

D kk

H k

ω

ω±

− ×

= ± × + ± =

Page 23: Unidirectional Pulse Propagation Eqn (UPPE)

t-Propagated UPPE IVKey steps in the derivation:

Constitutive Relation ( ) ( ) ( ) ( )0, , , ,NLD r t r t E r t P r tε ε= ∗ +

( ) ( )( ) ( ) ( )0 NLD k k E k P kε ε ω= +Fourier Representation:

where implicitly defines ( ) ( )( ) 2k k kω ε = ω2

( )kω

Introduce compact notation:

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )0 0

1 1;L NL L NLE k D k E k E k E k P kk kε ε ω ε ε ω

= = − =

Page 24: Unidirectional Pulse Propagation Eqn (UPPE)

t-Propagated UPPE VUse this formal splitting in Maxwell’s equations written in Fourier (plane wave basis)

( )( )

( )( )

( )( ) ( )

00 0

0

tNLL

ik H k ik H kD kii i k E kk E k k E kH k µµ µ

× × ∂ = ≡ + − × − × − ×

Acting on this equation with P+, projects out forward propagating component.

( )( )

( )( )

( )( )

( )( ) ( )

0

00

0

f

t t

f

NLL

ik H kD k D kP P i k E kH k H k

ik H kP P ii k E kk E k

µ

µµ

+ +

+ +

× ∂ ≡ ∂ = − × × ≡ + − ×− ×

Page 25: Unidirectional Pulse Propagation Eqn (UPPE)

t-Propagated UPPE VIBecause the projector is diagonal in the plane wave basis

( )( ) ( ) ( )

( )0

f

L f

ik H k D kP i ki k E k H k

ω

µ

+

× = − − ×

Second term on RHS is evaluated using definition of projector

( )( ) ( )

( )

( ) ( )

( )( ) ( )

( ) ( ) ( ) ( )

( )( ) ( )

0

00

22

22

0 2

2

2 22

22

NL

NLNL

NL NLNL

NLNL

i k k E kk

P i k E k i k E k

k i i kkk P k k P ki k k P k kkcc i k P ki k P k

kk

µ ω

µµ

ωω ω

ε ωε ω

+

× × = − × − ×

− • × × = =

− × − ×

Page 26: Unidirectional Pulse Propagation Eqn (UPPE)

Unidirectional Pulse Propagation Equation Unidirectional Pulse Propagation Equation

tt--propagated UPPEpropagated UPPE

Equation written in spectral domain.Not a PDE in real-space representation

Linear propagation,Contains space-time focusing “terms”

Nonlinear response couplingContribution from self-steepening

div .E - related termNonzero due to gradients.

Nonlinear polarization of medium calculatedfrom material equation (Kerr effect,plasma,...)

Arizo

na C

enter

for M

athem

atica

l Scie

nces

This equation is exact as long as D is full field

To close the system of equations for numerical simulations, we approximate:

Page 27: Unidirectional Pulse Propagation Eqn (UPPE)

Horizontal scale equal to shortest integration stepduring the whole simulation

Arizo

na C

enter

for M

athem

atica

l Scie

nces

Only eight points per wavelength, still correctdispersion properties

Page 28: Unidirectional Pulse Propagation Eqn (UPPE)

Shock regularization in femtosecond pulse propagation

Continuum generation starts in the steep trailing edge of the pulse.Situation after 0.55 m propagation.

Arizo

na C

enter

for M

athem

atica

l Scie

nces

Continuum generation “regularizes” the shock.Situation after 0.57 m propagation. The high-frequencytrailing part of the pulse carries the continuum light.

Page 29: Unidirectional Pulse Propagation Eqn (UPPE)

Supercontinuum generation•White light continuum is generated in the back of the pulse over a

short propagation distance of a few centimeters.

•After explosive spectral broadening and “shock” regularization the

spectral content of the pulse remains essentially unchanged

•Off-axis directions exhibit relatively higher supercontinuum intensities

Arizo

na C

enter

for M

athem

atica

l Scie

nces

Page 30: Unidirectional Pulse Propagation Eqn (UPPE)

What measures extent and BandgapDependence of supercontinuum?

• Interplay between optical Kerr effect, plasma generation and chromatic dispersion

Calculation for Water

M. Kolesik, J.V. Moloney, G. Katona and E.M. Wright , “Physical Factors Limiting the Spectral Extent and Band Gap Dependence of Supercontinuum Generation”, Physical Review Letters, 91, No. 4, (2003)

Page 31: Unidirectional Pulse Propagation Eqn (UPPE)

Conventional wisdom: Interplay between self-focusing and mechanismthat arrests collapse i.e plasma generation – chromatic dispersion not a player

Carrier frequency

real water dispersion

Artificial medium dispersion

Conclusion: chromatic dispersion controls bandwidth of generated supercontinuum

Page 32: Unidirectional Pulse Propagation Eqn (UPPE)

Transition from UPPE to Various Envelope Models

Write z-propagated scalar version of UPPE in compact form

( ) ( ) ( ), , ,, , ,x y x y x yz k k k k k kE z iKE z iQP zω ω ω∂ = +

( ) ( )2 2 2 2, , /x y x yK k k c k kω ω ε ω= − −where

is the linear propagator in the spectral representation, and

( )( )

2

2 2 2 2 20

, ,2 /

x y

x y

Q k kc c k k

ωωε ω ε ω

=− −

will be called the nonlinear coupling term

Idea: Replace K and Q by suitable Taylor approximations!

Page 33: Unidirectional Pulse Propagation Eqn (UPPE)

Transition from UPPE … II

To obtain envelope equations, we need to express the total field interms of an envelope function and a reference carrier frequency ωRwith corresponding wavenumber kR = K(0,0, ωR).

( ) ( ) ( ), , , , , , R Ri k z tE x y z t A x y z t e ω−=

Similar factorization applied to P(x,y,z,t)

Key Identifications:

( ) ( )( )R t x x y y R z zi ik ik i k kω ω ω− ↔ ∂ ↔ ∂ ↔ ∂ − ↔ ∂

Using these convert from spectral domain to real space variables.

Page 34: Unidirectional Pulse Propagation Eqn (UPPE)

Derivation of Nonlinear Schrödinger Equation

Taylor expand linear spectral propagator (paraxial approximation)

( ) ( )

( ) ( ) ( )

2 2 2 2

21 2 2

, , /

'' 12 2

x y x y

R g R R x yR

K k k c k k

kk v k kk

ω ω ε ω

ω ω ω ω−

= − −

≈ + − + − − +

In nonlinear coupling term ignore all variable dependence and set ω = ωR

( )( ) ( )

2

2 2 2 2 200

, ,22 /

Rx y

Rx y

Q k kn cc c k kωωω

ε ωε ω ε ω= ≈

− −

Substitute these truncated expressions into z-UPPE

Page 35: Unidirectional Pulse Propagation Eqn (UPPE)

Nonlinear Schrödinger Equation (NLSE)

For simplicity assume an instantaneous Kerr effect

( ) 20 22 | |RP n n A Aε ω=

Inserting the above into z-UPPE

( ) ( ) ( )21 2 2 22

'' | |2 2

Rz g R R x y

R

k iA iv A i A k k A i n A Ak c

ωω ω ω ω−∂ = − + − − + +

Final step – use Fourier –real space identities above

( )1 2 22

'' | |2 2

Rz g t T tt

R

i kv A A i A i n A Ak c

ω−∂ + ∂ = ∇ − ∂ +

This derivation shows explicitly the approximations made in deriving NLSE in a physically self-consistent manner!

Page 36: Unidirectional Pulse Propagation Eqn (UPPE)

Nonlinear Envelope Equation (NEE)Brabec and Krausz, PRL (1997)

Now Taylor expand the linear spectral propagator in wavenumber (paraxial approx) but retain exact frequencydispersion.

( ) ( )

( ) ( ) ( )

2 2 2 2

2 2

, , /

2

x y x y

x yR

K k k c k k

ck k kn

ω ω ε ω

ωω ω

= − −

≈ − +

where k(ω) is the full frequency dispersion and can be written

( ) ( ) ( ) ( )1R g R Rk k v Dω ω ω ω ω ω−= + − + −

and

( ) ( )2 !

R

nnR

R nn

kDnω ω

ω ωω ω

ω

= =

− ∂− = ∂

Page 37: Unidirectional Pulse Propagation Eqn (UPPE)

Nonlinear Envelope Equation (NEE) IIUnlike the NLSE case, we partially retain the frequency dependencein the nonlinear coupling term but neglect transverse wavenumberdependence

( )( ) ( )

2

2 2 2 2 200

( ), ,22 /

R Rx y

Rx y

Q k kn cc c k k

ω ω ωωωε ωε ω ε ω

− += ≈

− −

Inserting these approximations into z-UPPE

( ) ( )

( )( ) ( )

( )( )

1

1

2 2

0

12

12

z g R R

Rx y

R R R

RR

R R

A iv A iD A

ic k k An

i Pcn

ω ω ω ω

ω ωω ω ω

ω ωωε ω ω

∂ = − + −

−− + +

+ +

Page 38: Unidirectional Pulse Propagation Eqn (UPPE)

Nonlinear Envelope Equation (NEE)

The final step is to convert from spectral to real space using previous identities to yield NEE

( ) ( )

11 2

20

1 12 2

Rz g t t t T t

R R b R R

iki i iv A iD i A A Pk nω ε ω ω

− ∂ + ∂ = ∂ + + ∂ ∇ + + ∂

This equation was originally derived in a rather ad hoc fashionby Brabec and Krausz (1997).

Here approximations are explicit.

Practically, the dispersion operator D should be evaluated exactlyin the spectral domain!

Page 39: Unidirectional Pulse Propagation Eqn (UPPE)

Partially Corrected NLS (PC-NLS)This equation is essentially a further but dangerous approximationto NEE!!Essentially, the inverse frequency term in the free propagator isapproximated as: 1

1 1R R

R R

ω ω ω ωω ω

− − −

+ ≈ −

The only potential justification of this is that the generated spectralbandwidth during propagation is much less in magnitude thanthe carrier reference frequency – yet used in supercontinuum studies!

PC-NLS Model

( ) ( )1 2

20

1 12 2

Rz g t t t T t

R R b R R

iki i iv A iD i A A Pk nω ε ω ω

− ∂ + ∂ = ∂ + − ∂ ∇ + + ∂

Page 40: Unidirectional Pulse Propagation Eqn (UPPE)

Relation to envelope equations Relation to envelope equations –– summary:summary:

identifying physical meaning of underlying approximationsidentifying physical meaning of underlying approximations

UPPE (exact): Almost always very small deviationsfrom exact relation

Brabec&Krausz:NEE

Paraxial (NLSE):

Partially corrected

Arizo

na C

enter

for M

athem

atica

l Scie

nces

Locally better than in NLSE,but globally this partial correction is worse than none correction at all!

Page 41: Unidirectional Pulse Propagation Eqn (UPPE)

Truncated Envelope Models Yield Spurious Artifacts in SC

• Graphs of coefficient of transverse wavenumber for various approximations to UPPE.

Coefficient of k⊥ for different equationsSupercontinuum for different models

Arizo

na C

enter

for M

athem

atica

l Scie

nces

extremely dangerous pcNLS

Page 42: Unidirectional Pulse Propagation Eqn (UPPE)

Spatial power spectrum comparison: UPPE vs. partially corrected NLSAr

izona

Cen

ter fo

r Math

emati

cal S

cienc

es

UPPE pcNLS

Page 43: Unidirectional Pulse Propagation Eqn (UPPE)

First Order Propagation Equation (FOP)Geissler et al. Phys.Rev. Letts, 83, p2930 (1999)

While this equation resolves the carrier wave (non-envelope), it neglects entirely linear chromatic dispersion i.e approximate K by

( ) ( ) ( )2 2 2 2 2 2, , /2x y x y x ycK k k c k k k k

cωω ω ε ω

ω= − − ≈ − +

Similarly for Q

( )( )

2

2 2 2 2 200

, ,22 /

x y

x y

Q k kcc c k k

ω ωωεε ω ε ω

= ≈− −

i.e same as NEE except with vacuum in role of linear medium!

Here we retain the total field rather than an envelope.

Page 44: Unidirectional Pulse Propagation Eqn (UPPE)

First Order Propagation Equation (FOP)Substituting the approximations for K and Q into the scalar z-UPPE

( ) ( ) ( ), , ,, , ,x y x y x yz k k k k k kE z iKE z iQP zω ω ω∂ = +

we obtain

( ) ( ) ( ) ( )

( )

2 2, , ,

,0

, , ,2

,2

x y x y x y

x y

z k k k k x y k k

k k

cE z i E z i k k E zc

i P zc

ωω ω ωω

ω ωε

∂ = − +

+

When transforming to real space the term ω-1 gives rise to an integralover time.FOP Equation

( ) ( ) ( )2

0

1( ) , , ,2 2

t

z t T tc iE r t d E r P r

c cτ τ τ

ε⊥ ⊥ ⊥−∞

∂ + ∂ = ∇ − ∂∫

Page 45: Unidirectional Pulse Propagation Eqn (UPPE)

Forward Maxwell Equation (FME)Hasakou and Hermann, Phys. Rev. Letts, 87, p203901 (2001)

Another non-envelope equation – although written in vector form, individual components decouple due to neglect of ∇∇•ELinear propagator and nonlinear coupling closely parallel NEE

( ) ( )

( ) ( ) ( )

2 2 2 2

2 2

, , /

2

x y x y

x yR

K k k c k k

ck k kn

ω ω ε ω

ωω ω

= − −

≈ − +

( )( ) ( )

2

2 2 2 2 200

, ,22 /

x ybx y

Q k kn cc c k k

ω ωωε ωε ω ε ω

= ≈− −

Only difference with NEE is that the chromatic dispersion ofthe index of refraction is preserved!

Page 46: Unidirectional Pulse Propagation Eqn (UPPE)

Forward Maxwell Equation (FME) II

Substituting previous approximations for K and Q into z-UPPE

( ) ( ) ( ), , ,, , ,x y x y x yz k k k k k kE z iKE z iQP zω ω ω∂ = +

yields

( ) ( ) ( ) ( ) ( )

( ) ( )

2

0

, , , , , , , , ,2

, , ,2

z T

b

iE x y z ik E x y z E x y zk

ci P x y zn

ω ω ω ωω

µ ω ωω

∂ = + ∇

+

This is essentially FME except that we have not transformed to aframe moving with the vacuum light velocity. The reason that wedo not do this here is that, in a strongly dispersive medium, weneed a reference frame moving with the group velocity.

Page 47: Unidirectional Pulse Propagation Eqn (UPPE)

Extreme Focusing - ∇•Ε≠0

Initial tightly focused 170 fs pulse with 2 µm initial waist simulated with full UPPE model

Radial Symmetry

Equivalent “Paraxial” scalar NLSE description: Stops criticalfocusing

Page 48: Unidirectional Pulse Propagation Eqn (UPPE)

Summary of Propagation Equations

1. The many propagation equations are mostly easily derived from UPPE

2. Both NEE and FME are very closely related. The most efficient way to solve NEE/FME is via a split-operatormethod where the dispersion operator is computed exactlyin the spectral domain.

3. It is necessary to define a reference carrier frequency/wavenumber pair ( ωR,kR). In principle, these can be chosenarbitrarily although the best choice is at then central pulse wavelength. Envelope models are in general sensitive to thechoice of this pair and care has to be exercised in numerics.

Page 49: Unidirectional Pulse Propagation Eqn (UPPE)

Atmospheric Femtosecond ProbeWöste et al., Laser und Optoelektronik, Vol. 29, p51 1997.

White Light Continuum

The Physics

• White light continuum spectroscopic probe

• Optical breakdown creates narrow plasma filaments - RF emission/lightning control.

New Scientist, February 19, 2000Arizo

na C

enter

for M

athem

atica

l Scie

nces

Page 50: Unidirectional Pulse Propagation Eqn (UPPE)

Light String Physics

• Nonlinear self-focusing in air – Pth=3 GW

• Extreme self-phase modulation - remote white light supercontinuum spectroscopic source.

• Dilute plasma channel generation – THz source,remote LIBS spectroscopy.

• Light string diameters below inner turbulence scale – obscurant penetration

Page 51: Unidirectional Pulse Propagation Eqn (UPPE)

Energy Fluence – 3D + 1 Simulation- Turbulent Atmospheric Light strings - M. Mlejnek et al. PRL 83, 2938 (1999)

- 6 meter light string propagation distance- 5 mm x 5 mm patch in center of pulse

Page 52: Unidirectional Pulse Propagation Eqn (UPPE)

Missing Physics?O2 and N2 are key constituents of air – other species H2O, Ar

Collaboration with A. Becker Dresden

• Saturation of MPI rates

• Saturation and delay of nonlinear self-focusing

• Nonequilibrium carriers in “hot” plasma

• Explanation for explosive filamentation followed by quiescent regime?

Page 53: Unidirectional Pulse Propagation Eqn (UPPE)

Supercontinuum generation in air• White light continuum is generated in the back of the pulse over a

short propagation distance of few centimeters.

• After explosive spectral broadening and “shock” regularization the

spectral content of the pulse remains essentially unchanged

• Off-axis directions exhibit relatively higher supercontinuum intensities

Page 54: Unidirectional Pulse Propagation Eqn (UPPE)

Femtosecond White Light Lidar- Remote ultra-broadband spectroscopic source - from Teramobile group

Water Spectrum

828 829 830 831 832

0.4

0.5

0.6

0.7

0.8

0.9

1.0

m easurem ent

wavelength [nm ]

calculation(after HITRAN)

920 nm

680 nm

Page 55: Unidirectional Pulse Propagation Eqn (UPPE)

Remote LIBS Spectroscopy-Teramobile group – K. Stelmaszczyk et al. APL, 85, 3977 (2004)- Potential to extend to Kilometer ranges.- 250 mJ 80 fs chirped pulses at 800nm. Beam diameter - 3 cm

Page 56: Unidirectional Pulse Propagation Eqn (UPPE)

Penetration through Obscurants- femtosecond light string self-healing

Measured Energy in Finite Aperture- Courvoisier et al, APL (2003)

Energy loses are minimal even for large (100 micron) droplets

- opaque screen (droplet) insensitive to location of pulse during nonlinear replenishment cycle – background dynamically restores pulse

Page 57: Unidirectional Pulse Propagation Eqn (UPPE)

propagation distance

Self-focusing filament

Screen modeling a dropletFilament recovers

Before droplet After hitting droplet 10cm after droplet

Page 58: Unidirectional Pulse Propagation Eqn (UPPE)

All filament’s evolution stages are robust: timing of the collision is unimportant

M. Kolesik et al., Optics Letters, 29, 590 (2004)

Page 59: Unidirectional Pulse Propagation Eqn (UPPE)

Incoherent THz Emission from Light Strings

- fully microscopic theory – Hoyer et al. PRL, 94, p115004, (2005)

ω-independent

T = 3000 K

T = 2000 K

Emission Spectrum THz Polarization Dependence

Experiment Tzortzakis et al.OL 27, 1944 ‘02

String Axis

ω < ω PL

ω ≥ ω PL

Calculation:Microscopic Theory String Axis

Page 60: Unidirectional Pulse Propagation Eqn (UPPE)

Nonlinear X-Waves- normal GVD + collapseResearch Highlighted in Physics Today, October 2004

M. Kolesik et al., PRL, 92, 253901-2 (2004)M. Kolesik et al., PRL, 91, 043905 (2003)

Lake Como Billboard

Page 61: Unidirectional Pulse Propagation Eqn (UPPE)

Induced Nonlinear Dynamical Grating- dynamical 3 wave interaction

Page 62: Unidirectional Pulse Propagation Eqn (UPPE)

Supercontinuum Generation in Sub-Micron Diameter Tapered Fibers

• Unidirectional Pulse Propagation Equation (UPPE)GOAL: Generate spectrally flat SC

• Sub-micron core or microstructured fiber design is critical to generating flat SC.

Page 63: Unidirectional Pulse Propagation Eqn (UPPE)

Evolution of Pulse and SC in Sub-Micron Diameter fiber

• Application of z-UPPE using waveguide modal basis- M.Kolesik, E.M.Wright, J.V. Moloney, Simulation of femtosecond pulse propagation in sub-micron diameter tapered fibers, Apply. Phys. B 79,293 (2004).

Page 64: Unidirectional Pulse Propagation Eqn (UPPE)

Extreme Focusing - ∇•Ε≠0

Equivalent “Paraxial” scalar NLSE description:

Initial tightly focused 170 fs pulse with 2 µm initial waist simulated with full UPPE model

Radial Symmetry

Stops criticalfocusing

Page 65: Unidirectional Pulse Propagation Eqn (UPPE)

Extreme SC Spectral Shift

• Pancake pulse 5 mm x 5 mm patch

• Input peak intensity = 4x1016 W m-2

• Pulse duration = 7 fs

• λ = 800 nm

Implication: Nonlinear dispersion of Kerr and MPI crucial!

Page 66: Unidirectional Pulse Propagation Eqn (UPPE)

Single Focused 5 Fs Filament

770 nm

900 nm

Approach to Self-focusing collapse After collapse – onset of red-shift

Red-shift of central carrier wavelength

Page 67: Unidirectional Pulse Propagation Eqn (UPPE)

Summary• UPPE equation rigorously describes ultrashort pulse propagation

under extreme conditions.

• Critical need to understand nonlinear dispersion of n2 and MPI cross-sectionby careful low power diagnostic experiments of air constituents.

• Applications include:

- Atmospheric light string propagation – fs LIDAR

- Penetration through obscurants

- Remote LIBs spectroscopy over multi-Km distances

- THz generation by collapsing light strings

- Supercontinuum shaping in sub-micron core and photonic crystal fibers