Top Banner
1  Undressing the emperor: A critical review of IEA’s WEO Klaus Mohn University of Stavanger Business School Norwegian School of Economics 1 Abstract Since the turn of the century The International Energy Agency (IEA) has assumed a gradually more important role in defining the agenda and outlook for energy and climate policies. This essay reviews the methodology and methods behind IEA’s World Energy Outlook, and then offers a critical review of assumptions and projections, focusing in particular on the outlook for economic growth, technological change, and investment in new renewable energy. The analysis suggests that important aspects of IEA’s scenarios are driven by critical exogenous assumptions. Moreover, vast resources and a competent research organization offer limited mitigation for outlook uncertainty, and IEA’s outlook should therefore be approached with the same caution as other global energy projections. Keywords: Energy economics, macroeconomics, modelling JEL classification: Q41, Q43, Q47                                                            1 Valuable comments from Oluf Langhelle, Ottar Skagen og Eirik Wærness are highly appreciated.
26

Undressing the emperor: A critical review of IEA’s WEO€¦ · dynamic development of renewable energy (e.g., Metayer et al, 2015). IEA’s projections have fallen particularly

Aug 04, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Undressing the emperor: A critical review of IEA’s WEO€¦ · dynamic development of renewable energy (e.g., Metayer et al, 2015). IEA’s projections have fallen particularly

1  

Undressingtheemperor:AcriticalreviewofIEA’sWEO

KlausMohn

UniversityofStavangerBusinessSchoolNorwegianSchoolofEconomics1

Abstract

SincetheturnofthecenturyTheInternationalEnergyAgency(IEA)hasassumedagraduallymoreimportantroleindefiningtheagendaandoutlookforenergyandclimatepolicies.ThisessayreviewsthemethodologyandmethodsbehindIEA’sWorldEnergyOutlook,andthenoffersacriticalreviewofassumptionsandprojections,focusingin

particularontheoutlookforeconomicgrowth,technologicalchange,andinvestmentinnewrenewableenergy.TheanalysissuggeststhatimportantaspectsofIEA’sscenariosaredrivenbycriticalexogenousassumptions.Moreover,vastresourcesandacompetent

researchorganizationofferlimitedmitigationforoutlookuncertainty,andIEA’soutlookshouldthereforebeapproachedwiththesamecautionasotherglobalenergyprojections.

Keywords:Energyeconomics,macroeconomics,modellingJELclassification:Q41,Q43,Q47

                                                            1ValuablecommentsfromOlufLanghelle,OttarSkagenogEirikWærnessarehighlyappreciated.

Page 2: Undressing the emperor: A critical review of IEA’s WEO€¦ · dynamic development of renewable energy (e.g., Metayer et al, 2015). IEA’s projections have fallen particularly

2  

Introduction

InNovembereveryyearTheInternationalEnergyAgency(IEA)releaseanewissueoftheir700‐pageflagshippublicationWorldEnergyOutlook(WEO;IEA,2105a)atapackedpressconferenceinLondon.Thiscomprehensivelong‐termenergyoutlookenjoyssignificantattentionacrosstheentireoilandenergyindustry,andhasestablisheditselfasareferencedocumentforenergyandclimatepoliciesacrosslargepartsoftheworld(VandeGraaf,2012;HeubaumogBierman,2015).

Atthesametime,IEA’sWorldEnergyOutlookhasattractedincreasingcriticismfromseveralcamps.Forexample,theIEAhasbeencriticizedforunder‐estimatingthedynamicdevelopmentofrenewableenergy(e.g.,Metayeretal,2015).IEA’sprojectionshavefallenparticularlyshortoftherealiseddevelopmentofsolarenergyandwindpower.

IEA’sWorldEnergyOutlookisbasedonacomprehensiveandverydetailedsystemofmodels,drawingoninsightsfromgeology,technology,economics,andpoliticalscience.AcommonargumentagainstthemethodologyandmodelsoftheIEAisthattheflexibilityofeconomicbehaviouriseffectivelycontained,andthattherelationsofthemodellingsystemarenotsufficientlyresponsivetoshiftsandshocksintechnology,preferences,policies,andprices.CriticsalsoarguethatIEA’sWorldEnergyOutlooklargelyisaproductofhistoricaltrendsanddevelopments,combinedwitharichsetofexogenousassumptionsandcoefficientsfortheevolutionoftechnology,prices,andpolicies.Aspecificexamplerelatestotheoutlookforeconomicgrowth,whichisassumedidenticalacrossthreescenarioswhichspansubstantialvariationinarangeofareasoftheworldeconomy,includingoilandgasprices.

ThepurposeofthisessayistoshedlightonthequestionifIEA’sWEOhasdeservedtheroleaskeyreferencedocumentforglobalenergy‐relateddevelopmentsandcorrespondingpolicydesign.AreviewofthemethodologyandmodelsbehindIEA’senergyprojectionsisfollowedbyacriticaldiscussionofthreeareasoftheoutlook.ThefirstrelatestoIEA’streatmentoftheinteractionbetweenenergydevelopmentsandgeneralmacroeconomicdevelopments.WethentakeacloserlookatIEA’sapproachtogeneralandenergy‐specifictechnologydevelopments,beforewediscussimplicationsrelatedtonewrenewableenergysources,ormorespecificallyinvestmentsinsolarenergyandwindpowercapacity.

Methodologyandmodel

Overmorethan20yearstheIEAhaspresentedlong‐termmodel‐basedprojectionsofenergydemand,supplyandpriceformationatthegloballevelandineachofIEA’smembercountries.AcomprehensivesimulationmodelcalledtheWorldEnergyModelhasgraduallybeenforthepurpose.Whatfollowsisageneralintroductiontothisverydetailedsimulationtool,toillustratetheprinciples,methodsandmodellingstrategies

Page 3: Undressing the emperor: A critical review of IEA’s WEO€¦ · dynamic development of renewable energy (e.g., Metayer et al, 2015). IEA’s projections have fallen particularly

3  

thatformthebasisforIEA’slong‐termenergyprojections.Notethatarangeofdetailsandnuanceswillescapesuchabriefintroduction.ForacloserlookattheWorldEnergyModel,seeIEA’sownintroductiontothemodel(IEA,2015b).

Figure1.OverviewofIEA’sWorldEnergyModel

Source:IEA(2015b).

Figure1givesanoverallstylisedoverviewofIEA’sWorldEnergyModel(WEM).Themodelisbasedonannualdata,2andhavethreemainmodelblocksfor1)energysupply,2)conversion,and3)energydemand,respectively.ThemostimportantexogenousassumptionsrelatetocostsofCO2‐emissions,plansandmeasuresforenergyandclimatepolicies,technologicalprogressbyindustryandregion,andassumptionsformacroeconomicdevelopments(i.e.,economicgrowth).Reflectingthisbroadsetofexogenousassumptions,Figure1illustratesthatfinaldemandfromdifferentsectorsineachcountryisaresultofeconomicactivityinthesesectors.Finaldemandisdirectedatarangeofconversionprocesses,andprimarydemandisdeterminedbytheenergyrequiredfortheseprocesses.Production,trade,andpriceformationforenergycommoditieslikecoal,oil,andnaturalgas,naturalgasandbiomassisthendeterminedbytheinteractionwithprimaryenergydemandindifferentindustriesandregions.

WEMdividestheworldin25regions,12ofwhicharecountries,andtheremaining13aregroupsofcountries.Thehorizonofprojectionsistypically25‐30years,andexogenousassumptionsincludeforecastsforeconomicgrowth,populationgrowth,technologicalprogress,andpolicydevelopments.Technicallyspeaking,crudeoilandnaturalgaspricesarealsoexogenous,whereasend‐userpricesforarangeofenergy

                                                            2EnergydataformodelinputisretrievedfromIEA’sowndatabases(http://www.iea.org/statistics),

Page 4: Undressing the emperor: A critical review of IEA’s WEO€¦ · dynamic development of renewable energy (e.g., Metayer et al, 2015). IEA’s projections have fallen particularly

4  

productsisdeterminedbythemodel.3Outputfromthemodeltypicallyincludessupplyanddemandfordifferentenergycarriers,costsandinvestments,end‐userpricesandenergy‐relatedgreenhousegasemissions.

Figure2.StylisedillustrationofthemodellingofenergydemandinWEM

Kjelde:IEA(2015b).

DemandFigure2illustratesthegeneralmodellingapproachtoenergydemandinWEM.Themodelsplitsdemandbyfivedifferentmainsectors(industry,transport,households,services,andagriculture).4Inadditioncomesdemandforenergyproductsasfeedstockforthepetrochemicalindustryandotherindustries.Foreachofthesesectorsandsub‐sectors,WEMspecifiescalibratedrelationshipsbetweenenergydemand(Et)andasuitableproxyforeconomicactivity(Yt)

. (1)

Thechoiceanddefinitionofactivityvariablewillvaryacrosssectors.Value‐addedisatypicalcandidatefortheindustrialsectors,whereeconometricequationsarefittedtoexplainenergydemandasaresultofhistoricalproduction,GDP,populationsize,andenergyprices.Correspondingrelationshipsforhouseholdenergydemandarebasedondwellingsize,numberofhouseholds,andaccesstoelectricalappliances,andservices,5

Foreachsector,thenextstepinvolveseconometricdiscretechoicemodelstoallocatetotaldemandforenergyservicesbetweendifferenttechnologiesandenergycarriers.In

                                                            3 Themodelcomputesanindexforend‐userpricesineachsectorwhichisbasedonenergycommodityprices,costsandmarginsofconversionand/orrefining,transportationcosts,taxesandduties.Energyproductsincludethreetypesofcoal(cokingcoal,steamcoal,andlignite),naturalgas,morethan10productsfromoilrefining(LPG,naphta,gasoline,kerosene,diesel,bunkeroil,petroleumcoke,refinerygas,asphalt,solvents,wax,etc;IEA(2015b),p.30).Inaddition,WEMprovidesend‐userpricesforelectricity,varioustypeofbioenergy,andheatproduction.4Eachofthesemainsectorsaresplitin5‐7subsectors.Asanexample,the«industry»sectorwillincludesubsectorslike‘aluminium’,‘ironandsteel’,‘chemicalandpetrochemical’,‘cement’,‘pulpandpaper’og‘othermanufacturingindustries’.The«transportation»sectorincludes‘roadtransport’,‘aviation’,‘railwaytransport’,‘shipping’and‘othertransport’,whereasenegydemandfromthehouseholdsectorismadeupby‘heating’,‘cooling’,‘waterheating’,‘cooking’,and‘lighting’.5‘Passengerkilometer’and‘tonnekilometer’formthebasisforenergydemandfrompersonandgoodstransportation,respectively.

Page 5: Undressing the emperor: A critical review of IEA’s WEO€¦ · dynamic development of renewable energy (e.g., Metayer et al, 2015). IEA’s projections have fallen particularly

5  

thisstepofdemanddecision‐making,thechoicebetweenvariouscategoriesisguidedbycost‐minimisation,implyingthatdemandovertimewilldrifttowardsthemostcost‐efficientalternatives.Morespecifically,thepointofdepartureforeachenergycarrier(i)isthespecificationandestimationoflinearindirectutilityfunctions(Vit)foreachareaofapplication:

, (2)

wherepiisthepriceofenergycarriericomparedtoaverageenergyprices,tisatrendterm,iogiareparameters,andiisanexogenousadjustmentparametertoaccountforinfluencefromvariablesbeyondpricesandthetimetrend(e.g.,specificpolicymeasures).Inaccordancewithstandardmultinomiallogitmodelling,thelikelihoodofaspecificchoiceofenergycarrierineachapplication(it)isnowdeterminedbytheoddsfactor:6

. (3)

Totranslatethischoicetofinalenergydemand,theaboveequationiscombinedwithanexogenoustrajectoryfortechnicalenergyefficiency.ThesecoefficientsforenergyefficiencyaredeterminedbyIEA’sprofessionaljudgentforeachofthesectorsinallthreregions,andwillideallyreflectplausibleassumptionsforenergyprices,technologydevelopmentandenergypolicies.Atthisstageofmodelling,adjustmentparametersarealsocalibratedtomimicsluggishnessandgradualadjustmentofenergydemandovertime,whichagainmaystemfromvintagemechanismsinhouseholdandbusinesscapitalformation.

With25countries/regions,18applicationareasforenergy,andpotentiallysevendifferentenergytypesforeachapplication,theresultisindeedadetailedmodellingscheme.

PowergenerationProductionofelectricityisdeterminedbydemandfromvarioussectorsandregion.AspecificblockoftheWEMcomputesestimatesforcapacityrequirements,allocationofproductionoverdifferenttechnologies,demandforenergyfromthepowergenerationsector,infrastructureinvestment,andproduceandend‐userpricesforelectricitybysectorandregion.

Installedproductioncapacityineachregionisrequiredtomeetpeakdemandwithasafetymargion.Ifcapacityfallsshortofthisrequirement,themodelwilladdnew

                                                            6Atthispointthemodellingstrategyimpliesthatimprovedpropertiesforaspecificenergycarrierwillreducethechoiceprobabilityforallotheralternativesbythesamepercentage.Thispatternofproportionalsubstitutionimposesastrait‐jacketonpreferencesandproductiontechnologythatlimitstheflexibilityofenergydemand(e.g.Train,2009).

Page 6: Undressing the emperor: A critical review of IEA’s WEO€¦ · dynamic development of renewable energy (e.g., Metayer et al, 2015). IEA’s projections have fallen particularly

6  

productioncapacityfortheregion.Thechoiceoftechnologyinthesecapacityinvestmentsisguidedbylong‐termmarginalcost.7

Themodellingofelectricitymarketsfollowthetextbookstandard(e.g.,Bhattacharyya,2011).Demandfromhourtohourissortedinavarietyofcategoriesfrombaseloadtopeakload.Generatorsarethensortedaccordingtoflexibilityandshort‐termmarginalcost(meritorder).Inconsequence,baseloadismetbygeneratorscharacterisedbylowmarginalcostandlimitedflexibility,whereasgeneratorswithhighermarginalcostsandmoreflexibilityarehookedupasdemandapproaches‘peakload’intheafternooneveryday.

Powerproductionfromsolarenergywillnormallycorreatewithdailydemandfluctuations,withpotentiallysignificantcontributionsduringthemiddleoftheday.Thesituationisslightlydiffentforwindpower,asthevariationsinwindarelesssystematicthroughtheday.However,windturbinesmaybemoreexposedtoseasonalvariationinwindstrength.Whatsoever,theelectricitysystemwillabsorbtheproductionfrombothsolarenergyandwindpoweraslongastheirmarketsharesaremoderate.

Moresubstantialcontributionsfromsolarpowerandwindenergywillraisearequirementforreservecapacitytomeettheinherentintermittencyofnewrenewablesinpowergeneration.Achallengeforthesetechnologiesisthattheirmarginalvalueandcompetitivenessisgraduallyweakenedthehighertheirmarketshare.8

Figure3.TradeincrudeoilandoilprocutsintheWorldEnergyModel

Source:IEA(2015b).

                                                            7Newrenewablesintroduceasignificantstochasticelementinelectricitysupply.Solarenergyandwindpowerarethereforeattributedwithacapacitydiscounttoreflecttheshareofinstalledcapacitythatcanbeexpectedtodeliveratdaily‘peakdemand’.8Transportofelectricityinspaceandtimewouldalleviatethischallenge,Flyttingavelektriskkraftiromogtidvilavhjelpedenneproblemstillinga,oghersereinkorforframvekstenavnyfornybarenergiharstimulertinteressafornyeløysingarformagasineringoglagringavelektriskkraft.

Page 7: Undressing the emperor: A critical review of IEA’s WEO€¦ · dynamic development of renewable energy (e.g., Metayer et al, 2015). IEA’s projections have fallen particularly

7  

OilrefiningandtradeAspecificmodelblockofIEAs’WEMisassignedfortheconnectionofoildemandandsupplythroughoilrefiningandtradingactivities.Overtheshorttomediumterm,refineryactivityisdeterminedbydemandforoilproducts,anddevelopmentofnewcapacityisgivenbyidentifiedprojectsandplans.Inthelongerterm,theevolutionofrefinerycapacityisinfluencedbytheregionalmarketbalanceforoilproductsontheonehand,andbytheaccesstocrudeoilontheother.

Notethatsomeoilproductsaresuppliedbyothersectorsthanoilrefining,andthatthedemandforoilproductsiscorrectedforbiofuels,liquefiedpetroleumgas(LPG),ethaneandnaphta(NGL),andalsobysyntheticfuelsfromalternativeupgradingprocesseslikecoal‐to‐liquids(CTL),andgas‐to‐liquids(GTL).Atthecrudeendofthevaluechain,refineriesmakeuseofalltypesofcrudeoilwithrefinerypotentialinlinewithconventionaloil.

Consequently,oilproductdemand,refinerycapacity,andcrudeoilproductionismodelledseparatelyforeachofthe25regionsofIEA’sWEM.Theresultisregionalmarketbalancesandunbalancesforbothcrudeandoilproducts,whichinturnareequilibratedthroughinventorychangeandtradebetweentheregions.Morespecificinformationonhowthesetradeflowsaredeterminedinthemodelisnotofferedbythemodeldocumentation(IEA,2015b).

EnergysupplyThesupplysideofIEA’sWEMsplitsenergycommoditiesintofourgroups.Thosearecoal(32percentoftheglobalprimaryenergymixin2013),oil(34percent),naturalgas(23percent),andbiomass(11percent).Oilisblessedwiththemostambitiousmodellingstrategy,withasomewhatmoresimplifiedprocedurefornaturalgas,andinparticularforcoal.Finally,thereisaspecificmodelblockforbioenergy,separatingenergyproductsfromprocesseswheretheyareamainproductontheonehand,frombioenergyasaby‐productofforestryandagricultureontheother.

Figure4.OilsupplyinIEA’sWorldEnergyModel

Source:IEA(2015b).

Page 8: Undressing the emperor: A critical review of IEA’s WEO€¦ · dynamic development of renewable energy (e.g., Metayer et al, 2015). IEA’s projections have fallen particularly

8  

ThemindsetofsupplymodellinginIEA’sWEMwillbeillustratedthroughtheirapproachtooilproduction,whichisalsothemostambitiousmoduleofproducerbehaviourinthemodel.Foramorespecificanddetailedintroduction,includingotherenergyproducts,seeIEA(2015b).

Thepointofdepartureforoilsupplyisacomprehensivesetofhistoricalfield‐specificresourcedata,whichisobtainedfromabroadrangeofsources,includingtheUnitedStatesGeologicaSurvey(USGS,2012)andGermanBundesanstaltfürGeowissenschaftenundRohstoffe(BGR,2014).Moreover,dataonreservesandproductiondrawonBP’sAnnualStatisticalReviewofEnergy(BP,2015),supplementedwithIEA’sownstudiesofglobaldeclineratesofproducingfields.ThisdataformsthebasisfortheestimationoffutureproductionprofilesforeachofthecountriesinIEA’sWEM.

Abroadsetofinformationonfieldsunderdevelopmentisexploitedtoenrichtheshort‐tomedium‐termoutlookforoilsupply,bothforOPECcountriesandfornon‐OPECcountries.Moreover,rankingsofnetpresentvalues(NPV)ofallknownprojectsandprospectsisfinallyappliedforthecalibrationofalong‐termoilsupplycurve,whichaganformsthebasisfortheallocationofoilfutureproductionbetweencountriesandregionsinthelongerterm.

Followingstandardpracticeofresourceaccounting,futureproductionprofilesforconventionalcrudeoilaresplitinfourdifferentcategories:Producingfields,fieldsunderdevelopment,fieldswherefinalinvestmentdecision(FID)isstillpending,andresourcesthatareyettobediscovered.Ontopofconventionalcrudeoil,theIEAthenaddsnaturalgasliquids(NGL)andproductionfromunconventionalresourceslikeoilsandsandshale/tightoil.

Oilsupplyintheshort‐tomedium‐termislargelybasedonidentifiedprojectsandplans,wheresurveydatafromalargenumberofoilcompaniesisappliedtoscaleinvestmentandcapacityupordownoverthefirst3‐4yearsoftheprojectionperiod.TheseplansalsoincludeOPECcountries,andthemodellingapproachdoesnotreflectanyenactmentofmarketpoweronOPEC’sbehalf.9Intheirmodellingoflong‐termcapacityadditionsintheupstreamoilindustry,IEA(2015b)lendssupportfromsomemethodthatlinksinvestmenttocapacityrequirementsandcashflows.However,thespecificsonhowthistranslatestomodellingremaininthedark.10

                                                            9 Atthispoint,IEA’smodeldocumentationislongonambiguity,andshortonaccountability.AccordingtoIEA(2015,p33),«…OPECisnottreatedastheswingproducer,thoughconstraintsthoughttorepresentOPECpoliciesareincorporateintheWEMoilsupplymodule.»Withoutfurtherdetail,theIEAleavesuswithnopossibilitytoevaluatetheirmodellingstrategyonaveryimportantaspectofoilpriceformation.10NotethatHotelling‐stylebehaviorplaysnoroleinIEA’sWEM,andthatoilproducersintheirmodelseemoblivioustoanyformofdynamicoptimization,bothinsideandoutsideOPEC.Still,exogenousassumptionsareapplied,wherebyincreasingresourcescarcity(i.e.,oil)contributestoagradualescalationinbothcostsandpricesovertime.However,thedocumentationofthesemechanismsmakesmakesnoreferencetocapitalmarketreturnsorinterestrates.

Page 9: Undressing the emperor: A critical review of IEA’s WEO€¦ · dynamic development of renewable energy (e.g., Metayer et al, 2015). IEA’s projections have fallen particularly

9  

Emphasizingvariationintechnologyandextractioncostsbetweencountriesandregions,IEA’smodellingstrategydoesimplyacompetitiveadvantageforcountrieswithlargereservesandlowcostsofextraction.AreflectionofthismechanismisevidentintheNewPoliciesscenarioofIEA(2015a),whereOPEC’sglobalmarketshareissettoincreasefrom41percentin2014to49percentin2040.

Themodellingofgasproductionfollowsasimilarpatternasforoilproduction.However,thegassupplymoduleislessrichindataandgranularity,andwithmorerestrictionsontradebetweenthecountriesandregionsofthemodel.Evensimpleristhemodellingofthecoalmarket,wheretheoutlookcombinesprojectionsofdemandandpriceswithcurrentresourceendowmentstodistributefutureproductionofcoalbetweenproductcategoriesandregions.

PriceformationTechnicallyspeaking,pricesofcoal,crudeoil,andnaturalgasareexogenoustoIEA’sWEM.Inpractice,however,crudeoilpricesaredeterminedthroughaniterativeadhocprocedure,tosecurethatinvestmentsandproductionwillmeettherequirementsimpliedbythedemandoutlook.Whenrunningthemodel,theIEAstartsoutwithaninitialsetofpriceassumptions,whichformsthebasisforafirst‐roundprojectionofinvestmentandproduction.Demandisthencomputedbasedonthesamesetofpriceassumptions.Ifsupplyanddemanddoesnotbalance,demandandsupplyarerecalculatedatahigher/loweroilpriceuntilmarketbalanceisestablished.Correspondingmechanismsarearguablyimposedforcoalandnaturalgasprices,butlessdetailleavestheimpressionthattheapproachissomewhatsimplifiedcomparedtotheiterativeprocesforthecrudeoilprice.

CO2pricesarereflectedinIEA’sWEMthroughadetailedsetofexogenousassumptionstocapturecostsofemissionsinhouseholdsandindustriesimposedthroughenergyandclimatepoliciesineachcountryandregionofthemodel.Thisapproachtakesaccountofcurrentpoliciesandcommunicatedplanstomakepolluterspay.However,anyspecificquotaregime,withourwithouttrade,isnotapartofthemodel.

End‐userpricesarecomputedfossilfuelsineachsectorandregion,reflectingregionalvariationinenergymixantaxpolicies.Correspondingly,end‐userpricesofelectricityarecomputedonthebasisofregionalmarginalcostsofproduction,systemoperation,distribution,localsupply,taxesandsubsidies.

Energyandthemacroeconomy

Theannuallong‐termprojectionsforIEA’sWorldEnergyOutlookarebasedonascenarioapproach.OverthelastyearsthreespecificscenarioshaveformedthecoreofIEA’sanalysisoffutureenergyprospects,withdifferencesdrivenbyassumptionsregardingenergyandclimatepolicies,technologicalchange,energiefficiencyimprovements,andenergyprices.

Page 10: Undressing the emperor: A critical review of IEA’s WEO€¦ · dynamic development of renewable energy (e.g., Metayer et al, 2015). IEA’s projections have fallen particularly

10  

TheCurrentPoliciesscenariocanbasicallybereadasaprojectionof‘business‐as‐usual’,whereenergypoliciesoftodayarecontinuedwithoutanyfurthertighteningtoimproveenergyefficiencyand/orinresponsetoglobalwarming.Inthisscenarioprojectedtrendsoftechnologyarelargelyanexptrapolationofhistoricaldevelopments.Consequently,futureenergydemandgrowthturnsoutonthehighside,withlimitedchangesintheenergymix,limitedgrowthinthedevelopmentofrenewableenergy,andcontinuedhighgrowthinglobalemissionsofgreenhousegases.

NewPoliciesispresentedasIEA’scentralscenario,andisbasedonasetofassumptionswherebyenergyandclimatepoliciesevolveaccordingtoannouncefuturemeasures,plansandintentionsindifferentcountriesandregionsacrosstheworld.Thisscenarioaccountfornationalandregionalambitionsforrenewableenergygrowth,substitionoffossilfuelsinthetransportsector,fossilsubsidyreforms,andpricingofCO2emissions,Theresultisamoremoderatregrowthinenergydemandandgreenhousegasemissions,butnotbyfarsufficienttolimitglobalwarmingto2°C.

The450‐scenarioisthereforedesignedtoilustratewhatitwouldtaketocontaintheconcentrationofCO2intheathmosphereto450ppm(partspermillion),whichisthemaximumlevelthatcanbeallowedifglobalwarmingistobelimitedto2°C.Thisscenarioisbasedonasetofaggressiveplansandpoliciestoreduceemissionsofgreenhousegases,withambitionsfortechnologicaldevelopmentandenergyefficiencyimprovemtnetwhichreallyisachallengetothecredibilityandrealismoftheentireexercise.

Figur5.IEA’soutlookforglobalGDPandprimaryenergydemand

Source:IEA(2015a).

Arelevantandreasonableassertionwouldbethatthesubstantialvariationinenergypolicies,technologicaldevelopment,energyefficiencyimprovement,andenergypricesacrossthescenarioswouldhaveimplicationsformacroeconomicdevelopments.

0%

1%

2%

CurrentPolicies

New Policies 450 Scenario

Primary energy demandCAGR (per cent)

2013-2020

2021-2040

2013-2040

0%

2%

4%

6%

CurrentPolicies

New Policies 450 Scenario

World GDPCAGR (per cent)

2013-2020

2021-2040

2013-2040

Page 11: Undressing the emperor: A critical review of IEA’s WEO€¦ · dynamic development of renewable energy (e.g., Metayer et al, 2015). IEA’s projections have fallen particularly

11  

Moreover,therearegoodreasonstoarguethatthesignificantvariationbetweenthescenariosinenergyandclimatepoliciesforeachregionandcountryshouldreflectuponthemacroeconomicdevelopmentsinthesameregionsandcountries.

However,thisisnotthecaseinIEA’sWorldEnergyOutlook.AssumptionsforGDPgrowthareexogenoustothemodel,andaretypicallyretrievedfromthemostrecentforecastsfromtheOECD(shorttomediumterm)andtheIMF(longerterm).AweaknessIEA’smethodologyandmodelisthereforethatmacroeconomicdevelopmentsarebynoaccountaresultofthemodelprojections.Whatmakesthisevenworseisthefactthatnovariationisallowedforeconomicgrowthbetweenthethreescenariosoftheoutlook.AnypotentiallybilateralinteractionbetweenenergyandmacroeconomicdevelopmentthereforeremainsablindspotinIEA’sworkonenergyprojections.

Atthesametime,theIEAdoappreciatetheroleofeconomicactivityasanimportantdriverofenergydemand,statingthat«TheprojectionsinthisOutlookare,therefore,highlysensitivetotheunderlyingassumptionsabouttherateandpatternofgrowthingrossdomesticproduct(GDP)».Howeveranysortoffeedbackeffectsfromenergypolicies,technologicalchangeandenergybackoneconomicactivity(growth)istotallyneglected.

Aroleforenergypricesasadeterminantforeconomicactivityandeconomicgrowthisfirmlysupportedbycontemporaryacademicresearchactivity,wheretheroleoftheoilpricehasbeensubjecttoparticularlyclosescrutiny.Forcountriesthatarelargelyimportersandconsumersofoil,Jimenez‐RodriguezandSanchez(2005)andHamilton(2008,2012)arguethatoilpriceshocksisanimportantfactorbehindmacroeconomicrecessions.Recentresearchdoessuggestthattheconnectionbetweenoilpriceshocksandbusinesscycleshasfadedovertime.AliteraturesurveybyKillian(2008)alsoarguesthatthebusinesscycleimpactofanoilpriceshockwilldependonthesourceoftheshock,withdemand‐drivenshocksbeingmoreinfluentialthanshocksdrivenbysupply.Nonetheless,Schwark(2014)studiesthemacroeconomicimpactofoilpriceshocksinaDSGEmodelforoil‐consumingcountries,andfindssignificanteffectsoninvestment,productivityandeconomicgrowthoverahorizonof8‐50years.Theconclusionthereforeisthatthesimultaneityofenergypriceformationandmacroeconomicdevelopmentintherealworldshouldbereflectedinmodellingstrategiesandprojections.

Thelinkbetweenenergypricesandmacroeconomicdevelopmentisevenmoreobviousforcountrieswhoarelargeproducersofenergycommodities.Economicgrowthinresource‐richcountriescannotpossiblybeseenasisolatedfromenergy‐relatedshocksinpolicies,technologyorenergyprices.Foranexampleoftheimpactofoilpriceshocksonasmall,openpetroleumecnomy,seeBjørnlandandThorsrud’s(2016)studyoftheoil‐fireboomintheNorwegianeconomyoverthelast15years.NotealsothatthestudybytheInternationalMonetaryFund(IMF,2015)oftheoutlookforcommodity‐exportingcountriesintheaftermathofthelateplungeinoilprices,withclearindicationsthata

Page 12: Undressing the emperor: A critical review of IEA’s WEO€¦ · dynamic development of renewable energy (e.g., Metayer et al, 2015). IEA’s projections have fallen particularly

12  

setbackincommoditypriceswilldampenbothactualandpotentialGDPinthesecountries.Theimplicationisthatpermanentenergy‐relatedshockswillhavelong‐termconsequencesforeconomicactivityincountriesthatarerichinenergy‐relatedcommodities.

Turningnowtolonger‐termgrowthinpotentialGDP,awell‐establihedperceptionisthatglobaleconomicgrowthfromtheindustrialrevolutionandonwardshasbeensupportedbyaccesstocheapenergy.(e.g.,Stern,2011;SternogKander,2012).Still,theempirialresearchliteratureisstillshortonstudiesofthelong‐termimplicationsofshocksandfluctuationsinenergy‐relatedvariables,includingenergyprices.OneexceptionisBerkandYetkiner(2014),whoapplycointegrationtechniquesforgrowthregressionsonapaneldatasetfor15OECDcountriesovertheperiod1997‐2011,concludingthatanincreaseinenergypriceswilldampenthegrowthratesofproductionandconsumptionalsointhelongerterm.Inarelatedstudy,SternandEnflo(2013)establishGrangercausalitybetweenenergyconsumptionandeconomicactivitybasedon150yearsoftimeseriesdatafortheSwedisheconomy.11

ThedifferencesbetweenscenariosofIEA’sWorldEnergyOutlookarelargelydrivenbyvariationinenergyprices,energyandclimatepolicies.Thisshouldattracttheinterestofanypossibleinfluencefromthisgroupofvariablesonoverallmacroeconomicdevelopment.However,theIEAmethodologyimpliesthateconomicgrowthisinsensitivetoanyvariationinenergy‐relatedvariables.Moreseriously,thisalsomeansthattheIEAoffersanopportunityforindustryleadersandpoliticianstoarguethatenergyandclimatepolicieswillhavenoconsequenceforeconomicactivityoremployment.Conclusionslikethisaregenerallyembracedbypoliticianswhowouldhatetodissapointtheirelectorate(sjåtd.Stern,2007;Tol,2009;NewClimateEconomy,2015).However,thisisnoguaranteeforthevalidityoftheseresults.

Theriskisthatdemandamongindustryleadersandpoliticansmaygiverisetoabiasinanalyses,messaging,andpolicydesignintheenergyandclimatedomain.Itthereforebecomesespeciallyimportanttoremindthatrecentresearchleavesafarmorediversifiedimpression(e.g.,Bretschgeretal.,2011;MohammadiandParvaresh,2014;Hartleyetal.,2016;).Anincreasinglycommonperspectiveistoviewclimatepolicyeffortsasalong‐terminvestment,withlong‐termreturnscomparedtosomereferencescenario,butonlyin30‐100yearstime.Duringtheinterimperiod,policieswillhavetoprovideforhighercostofenergyandreducedenergyconsumption.Inotherwords,whatsuchadevelopmentwouldrequireisanupheavalofthecurrentenergysystem,includingacrowd‐outoffossilfuelsatthebenefitofrenewableenergysolutions.Thistransitionislikelytohaveadampeningeffectonproductionandconsumptionthroughouttherelativelylengthyinvestmentperiod(Hartleymfl.,2016),whichonlypartlycanbeoffsetbyhigherinvestmentinnewtechnology,improvedenergyefficiencyandthedevelopmentofnewrenewableenergysolutions.

                                                            11OtherstudieswithsimilarresultsincludeStern(2000),Ayresetal(2013)andThompson(2014).

Page 13: Undressing the emperor: A critical review of IEA’s WEO€¦ · dynamic development of renewable energy (e.g., Metayer et al, 2015). IEA’s projections have fallen particularly

13  

ThisdiscussionleadsinevitablytotheconclusionthattheIEAshouldallowforvariationineconomicgrowthbetweenthethreescenariosoftheWorldEnergyOutlook(IEA,2015).EndogenisationofeconomicactivitycouldthenimplythattheCurrentPoliciesscenariowouldbeassociatedwithhighereconomicgrowthoverthefirst10‐30years,whichwouldthenfallsignificantlybeyondthishorizonduetolong‐termcostsofglobalwarming.Correspondingly,onecouldreadilyimaginethatthe450scenariowouldbecharacterisedbysomewhatlowereconomicgrowthoverthefirst10‐30years,withreturnsintermsofapositivegrowthdifferentialtotheothertwoscenarios,asinvestmentsinclimatepoliciesstarttopayoff.UnlessthemethodologyandmodelsoftheIEAopenforthiskindofmindset,itishardtoseethattheirresearchandoutlookcanfullyinformtheinteractionbetweeneconomicactivity,energy,andclimatepolicies.

Developmentofenergytechnology

Energysaving,energyefficiencyimprovement,andnewenergysolutionsarecriticalfactorstosuccedeinbringingdowntheglobalgreenhousegasemissionsanddampentheprocessofglobalwarming.Relevantmeasurestochangecorporateandhouseholdbehaviourincludequantitativepoliticalregulation(e.g.,standardsandrequirements)andmanipulationofpricesandcosts.TheveryhighambitionsofclimatepoliciesagreeduponinParislastyearwillremainfarbeyonreachwithoutdevelopmentofnewcompetenceandwidespreadimplementationofnewenergytechnology.Adoptionofnewtechnologyleavesapotentialforsignificantreductioninenergyconsumptionbyallsectorsintheeconomy.Moreover,applicationofnewtechnologieswillpotentiallysupportthecontinueddevelopmentofnewenergysolutions.Finally,thecost‐savingimpliedbytechnologicalprogressmayreleaseresourcesforadditionalinvestmentinmeasurestoreducegreenhousegasemissions.

ThepotentialofnewtechnologytobringaboutthedesiredchangeintheglobalenergysystemisheavilystressedbyIEA(2015a,c,d),whoalsounderlinesthattheproectionsoftheWorldEnergyOutlookaresensitivetothechoiceoftechnologyassumptions,andhowtheseassumptionswillinfluenceonenergyefficiency.Inlinewithstandardpracticeofeconomicmodelling,technologicalchangeisapproachedthroughagradualandcontinuousprocessinIEA’sanalyses,withexogenousincrementsimposedforeachsectorandregionofthemodel.Anytechnologyshockorsuddenbreak‐throughisthereforeruledoutofIEA’sscenarioapprach.

Still,implicationsofvariationintechnologyassumptionsbetweenIEA’sscenariosarestillvisibleattheaggregatelevel.Asanexample,IEA(2015a)informthattheglobalenergyintensityisforeseentofallby45percentovertheperiod2014‐2040intheCurrentPoliciesscenario,byapproximately50percentintheNewPoliciesscenario,andbysome55percentinthe450scenario.

MorespecificexamplesareofferedinFigure6,withillustrationsofcumulatedchangesinunitcostfordifferenttechnologiesovertheperiod2014‐2040intheNewPolicies

Page 14: Undressing the emperor: A critical review of IEA’s WEO€¦ · dynamic development of renewable energy (e.g., Metayer et al, 2015). IEA’s projections have fallen particularly

14  

scenario(IEA,2014a).WeseefromFigure6thatthecentralNewPoliciesscenarioimpliescontinuedconsiderablereductioninthecostsofrenewableenergy,andinparticularforsolarenergy.Windpowerisofferedasomewhatmoremodestpotentialintermsofcostimprovement,becausethesetechnologiesaremoremature,andbecausewindpowerismorelikelytomeetchallengesrelatingtolandaccessanddecliningresourcequality.

Figure6.UnitcostdevelopmentfordifferenttechnologiesPercentagechangeovertheperiod2014‐2040(NewPoliciesScenari 

Source:IEA(2015a).

Abreak‐throughforcarboncaptureandstorage(CCS)iscriticalforIEA’s450‐scenario,andtheembeddedambitionsareindeedhigh.IftheworldfailsindevelopingtechnologiestosinkCO2,anambitiontolimitwarmingto2°CwilllimittheroomleftforoilandnaturalgasinthefutureenergymixsignificantlymorethanimpliedbytheIEA’s450scenario.Thisalsomeanthatthespeedoftherequiredfossilfuelphase‐outwilldependonthethedevelopmentofcarbonsinktechnologies.ThisisanimportantexplanationfortheinterestinCCSfromindustrialised(oil‐consuming)nationsandfromtheoilandgasindustry,bothofwhichareamongthemostimportantstakeholdergroupsfortheIEA.

By2040,IEA’s450scenariowillrequireacapacityforannualcaptureandstorageof5.1billiontonnesofCO2,3billiontonnesofwhichareforeseeninthepowergenerationsector,andtherestinmanufacturingindustries.Projectsthataredevelopedsofartypicallyhaveanannualcapacityof1milliontonnes,andaninvestmentrequirementof1‐3billiondollars.12TomeettheambitionsofIEA’s450scenario,onewouldtherefore

                                                            12 Notethatcostsaresignificantlylowerfornew‐buildsthanforprojectsimplyingretro‐fittingofCCStechnologyonproducingplants.ThereisnochancethattheCCSambitionsofIEA’s450scenariocanbemetbynew‐buildsonly,andtherelevanceofsuchcostestimatesisthereforelimited.

-60

-40

-20

0

20

40

60

Solar energy(PV)

Onshore wind Carboncapture and

storage

Vehiclebatteries

Efficientlighting

Upstream oiland gas

Page 15: Undressing the emperor: A critical review of IEA’s WEO€¦ · dynamic development of renewable energy (e.g., Metayer et al, 2015). IEA’s projections have fallen particularly

15  

havetodevelopsome5,000CCSprojects.Withadecentstartby2020,thiswouldimplytheopeningoffivenewCCSprojectseveryweekover20years.AsseenfromFigure6,theIEAassumesthatdynamicscaleeconomiesandlearning‐by‐doingwillreducethecostsofCCSintheNewPoliciesscenariobyapproximately40percentovertheperiod.13Acorrespondingestimateforthe450scenarioisnotavailable,butthelogicofthescenarioapproachwouldsuggestanevenlargerpotentialforcostreductionthanintheNewPoliciesscenario.

EvenwithveryoptimistictechnologyassumptionsforCCS,annualinvestmentsofmorethanUSD110bnarerequiredeveryyearthroughthe2030stomeettheambitionsofIEA’s450scenario.Fortheseinvestmenttoprovidereasonablereturns,IEA’sassumptionspointtowardsasharpincreaseinunitcostsofCO2emissionstowards2040,to140USD/tonneintheOECDareaand125USD/tonneoutsidetheOECD.Forcomparison,thecurrentETSpriceis9USD/tonne,andCCSinvestmentiscurrentlythereforeoflimitedinterestamongprivateinvestorsandcompanies(EmhjellenandOsmundsen,2015).ForCCStechnologies,assumptionsandambitionsoftheIEAseemtobestretchedbeyondrealism.Their450scenariorequiresatechnologyoptimismthatsofarispoorlysupportedbyboththeoryandempiricalresearch.14

Importantaspectsofcontemporaryenergyandclimatepoliciesaimatareductioninfossilfuelconsumption.Thesepolicieswillhavetoincludethetransportsector,whereoilsofarvirtuallyhasenjoyedafuelmonopoly.Eventhoughshalegasandprogressforfuelcelltechnologyopenapotentialfornaturalgasandhydrogenastransportfuels,electricalvehicles(EV)seemtobeattractingmostoftheinterestfrompoliticiansandtheautomobileindustrythesedays.Electricalvehiclesstillfacechallengesandrestrictionsintermsofpowerstorage,drivinglength,chargingtime,andinfrastructur,continuedprogressforbatterytechnologyiskeytoabreak‐throughofEVsinthetransportsector.

IEA’sNewPoliciesscenarioisbasedonareductioninEVbatterytechnologyof10‐35percentby2040.Beyoundrathergeneralstatementsaroundrelativeprices,politicalmeasuresandacceleratedratesofinnovation,thereislimitedinformationonthe

                                                            13SeeAl‐JuaiedandWhitmore(2009)andLohwasserogMadlener(2012)fordeeperanalysesofthecost,technology,anddevelopmentpotentialforCCS.1413largeCCSprojectsarecurrentlyoperatingaroundtheworld(IEA,2015c),andtheycaptureatotalof27milliontonnesofCO2everyyear.However,only5.6milliontonnesaresubjecttoformalsurveillanceandverification.Projectsthathavebeendevelopedsofararerelativelysimple(‘low‐hangingfruits’),astheyaretypicallyfittedtonewindustrialprojectsintheoilrefineryandgasprocessingbusiness.Notealsothatthedevelopmentcostissignificantlylowerfornew‐buildsthanifCCStechnologyisretro‐fittedonalreadyproducingplants.Asanexample,capitalexpenditureestimatesfortheNorwegianMongstadprojectwereapproachingUSD4bnatthetimethattheprojectwasstopped,foraprojectwithaannualcapacityof1‐1.5milliontonnesCO2.WhatwasleftwasatestpilotfacilityatacostofUSD800M.Similarfull‐scaleCCSfacilitieshavebeenbuiltelsewhereintheworldforUSD1bnpermilliontonneofannualcapturingcapacity(e.g.,theBoundaryDamandQuestprojectsinCanada,seeGlobalCCSInstitute,2015).IftheCCSambitionsofIEA’s450scenarioaretobemet,thereisnoescapefromwide‐spreadandlarge‐scaleretro‐fittingofCCStechnologyinpowerplantsandindustrialfacilitiesduringoperation.

Page 16: Undressing the emperor: A critical review of IEA’s WEO€¦ · dynamic development of renewable energy (e.g., Metayer et al, 2015). IEA’s projections have fallen particularly

16  

specificdriversofsuchadevelopment,howtheimpliedcostreductionwillplayout,andhowthistechnologywillspreadacrosssectorsandregions.

Improvedenergyefficiencyisundoubtedlyanimportantareaofanypolicyplantocontainenergydemand,andthisisalsoreflectedinIEA’sWorldEnergyOutlook.Asanexample,Figure6illustratesapotentialforanother50percentreductionintheglobalcostoflighting.ContinuedinnovationinLEDtechnologyisforeseentosupportfurtherpenetrationbothinestablishedandnewmarkets.However,lightingdoesstillnotrepresentmorethan20‐25percentofglobalelectricitydemand.AnIEA(2015c)analysistargeteddirectlyatthedelegatesatlastyear’sclimatesummitinParis(COP21)concludesthathalfthereductioninenergy‐relatedCO2emissionswillhavetocomefromeffortstoimproveenergyefficiencyifa2‐degreetargetistobemet.15Consequently,progressontechnologyandcostisrequiredwaybeyondlighting.Thequestionthenarisesifothersectorsandappliancesexistwithanenergyimprovementpotentialaslargeasforthelightingsector.

IEA’sanalysesanddiscussionsofenergyefficiencyimprovementsalsoseemtodownplaytheroleofbehaviouralresponseinhouseholdsandcompanies.Economistswillknowthatainput‐specifictechnologyshockisequivalenttoareductioninthepriceofthesameinput(e.g.,Allenetal.,2011;Sorrell,2011;Saunders,2014).Theimplicationisthatainput‐specifictechnologyshockwillinvolveasubstitutionofdemandinfavourofthemoreefficientinput,andanincomeeffectthatwillliftboththeoutputlevelanddemandforallinputs.Theimplicationthatimprovementsinenergyefficiencyareoffsetthroughbehaviouradjustment.Thisiswhatisreferredtoasthereboundeffect.

Consequently,empiricalevaluationsshowthatpoliciestoimproveenergyefficiencyregularlyfallshortoforiginalpromises(e.g.,ChitnisogSorrell,2015).HowbehaviouralresponsestoenergyefficiencypoliciesisapproachedbytheIEAremainsunclear.ThediscussionsofpoliciestoimproveenergyandreduceemissionsofgreenhousegasesbyIEA(2014a,b,c)leavefewtracesofpotentialreboundeffects.16ThissupportsageneralsuspicionthatIEA’smethodologyandmodellingstrategyputstoolittleemphasisontheflexibilityineconomicbehaviour.

Finally,Figure6illustratesawidelydisperseddevelopmentinunitcostsofupstreamoilandgasactivities.Theconstantracebetweentechnologyandscarcity/declineisfundamentaltothecostofoilandgasextraction(Lindholt,2013).Casualinspectionofunconventionalresourcesinjuvenileprovincesclearlyindicatethatunitcostintheearlyphaseofdevelopmentwillbenefitfromtheaccumulationofgeneralcompetenceandindustry‐specificlearning‐by‐doinginexplorationandfielddevelopmentactivities.Asanoilandgasprovincematures,thepotentialoflearning‐by‐doingandtechnological

                                                            15ThisreferencegoestoIEA’s(2015)specificrecommendationonhowtomovetheworldfromathepathofdevelopmentimpliedbytheINDCsagreeduponinParislastyear(COP21;INDCscenario)andontoadevelopmentpathwhichisconsistentwithtargettolimitglobalwarmingto2C(Bridgescenario).16Theexogeneityofeconomicandgrowthwillalsolimitthetheappreciationoffeedbackeffectsonenergydemandviaaggregateeconomicactivity.

Page 17: Undressing the emperor: A critical review of IEA’s WEO€¦ · dynamic development of renewable energy (e.g., Metayer et al, 2015). IEA’s projections have fallen particularly

17  

progresswillgraduallybeexhausted,whereasmechanismsrelatedtoscarcityanddepletionexertagradualyincreasingupwardpushonunitcost.

Forthevarietyofresourcesandprovincesintheworld,expectedcostsofexplorationandproductionwillthereforespanabroadspectrum,includingtechnologiesofunconventionalresourceslikeshalegas,shaleoil,andoilsands.Nonetheless,itisworthnotingthattheIEAexpectaveragecostofoilandgasextractiontoincreaseofthecoming25years,whereascostsofnewrenewabletechnologiesareexpectedtofall.Thiswillsupportatransitionwherebyrenewableenergywillgainmarketsharesattheexpenseoffossilfuels.

TechnologicalchangeinIEA’sscenariosistheresultofadetailedsetofexogenousassumptionsforregionalandindustry‐specificinnovationrates,andisthereforenotaresultofthemodel.Theestablishmentofthesetechnologycoefficientsisbasedonprofessionaljudgment,allowingforinfluencesontechnologicalchangefrombothpoliciesandprices.Thismethodlacksrobustsupportfromeconomictheoryandthemodeldocumentation(IEA,2015b)isalsoratherweakfortheprocessofinnovationandtechnologicalprogress.

Inpractice,technologicaldevelopmentwillbeaproductofasetofexplanatoryvariablesinclucing,prices,policies,economicactivity,(R&D)investment,andresearch.Ideallyspeaking,technologicalprogressshouldthereforebeendogenizedinmodelsenergy,economics,andclimatechange.Gillinghametal(2011)forasurveyofrecentliteratureonendogenoustechnologicalchangeinstudiesofclimatepolicies.AmoreexplicitrepresentationoftheprocessoftechnologicaldevelopmentwouldsupportthecredibilitytheIEA’smethodologyandmodellingapproach.

IEA(2015a,b)alsoraisesuspicionsthatsubstitutionpossibilitiesareunder‐ratedbothforhouseholdsandcompanies.Moreover,theexactvariationintechnologicalprogressbetweenIEA’sthreescenariosisnotspecified,andtheexactdriversofthisvariationalsoremainunexplained.Asanexample,relativeenergypricesplayaroleforenergy‐specificR&Dinvestments(e.g.,Leyetal.,2016).Consequently,moreweightshouldbeputonmotivationandexplanationofhowvariationinenergypricesbetweenthethreescenariosinfluenceonthetechnologyprocess.AlthughIEA’sWorldEconomicOutlookleavestheimpressionofgreatdetailandandcare,theimportanceoftechnologicalprogresswouldsuggestanevenmoreconsideratemodellingstrategy.

Newrenewableenergy

Thefacilitationoffurthercapacityexpansioninrenewableenergyisoneofthemostimportantareasincontemporaryenergyandclimatepolicies.Anenergymixwithlessfossilfuelsandmorerenewableenergywillmakeiteasiertocombineambitionstostemglobalwarmingwithgeneralwelfareaspirations.Consequently,relevantR&Dactivitites,innovation,andcommercialisationofrenewabletechnologiesisanareaofstrong

Page 18: Undressing the emperor: A critical review of IEA’s WEO€¦ · dynamic development of renewable energy (e.g., Metayer et al, 2015). IEA’s projections have fallen particularly

18  

interest,amongpolticians,industryleaders,andNGOs.Renewableenergyincludestraditionalbiofuelsandconventionalhydropowerforelectricityproduction.Howeverthemajorityofattentionoverrecentyearshasbeendirectedatsolarenergyandwindpower.Thebackgroundisobviouslyanenormoustechnicalpotential,promisingimprovementsintechnologyandcost,andwidespreadgovernmentsupport(Timilsinamfl,2012,Timilsinamfl,2013).

Figure7.Globalprimaryenergydemandbyenergycarrierandscenario2000‐2040,bntoeoilequivalents

Source:IEA(2015a).

Despitetheexpansionofgeneralinterestandstronggrowthoverthelast10‐15years,newrenewableenergysourcesstillplayamodestroleintheprimaryenergymix.Figure7providesabreakdownofglobalprimaryenergymixin2013,withashareofrenewablesofapproximately14percent.With10percentfortraditionalbiofuels,and2.5percentforthesumofhydropower,thermal,andsolarthermalenergy,modernrenewableenergymakesuplessthan1.5percentoftotalprimaryenergydemand.Modernrenewablesislargelymadeupbyphotovoltaicsolarenergy(PV)andwindpower,butalsoincludesconcentratedheatplants(CHP)andmodernthermalenergy.

Withcompoundannualgrowthof8percentsincetheturnofthecentury,newrenewableshaveincrasedtheirshareoftotalprimaryenergydemandby1percentagepointin13years.Withasharaccelerationofcapacityexpansionoverrecentyears,thequestionishowtoapproachtheoutlookforthesenewandinterestingsourcesofenergysupply.Beforewediscussthisquestion,letushaveacloserlookatthemodellingapproachfornewrenewableenergyinIEA’sWorldEnergyModel.

AccordingtoIEA(2015b),aseparateblockhasbeendevelopedtoaccountforcapacityadditionsandproductionofpowerheatfromrenewableenergysourcesintheWorld

0

5

10

15

20

25

2000 2013 Currentpolicies2040

NewPolicies2040

450scenario2040

Coal Oil Gas Nuclear Hydro Bioenergy Otherrenewables

Page 19: Undressing the emperor: A critical review of IEA’s WEO€¦ · dynamic development of renewable energy (e.g., Metayer et al, 2015). IEA’s projections have fallen particularly

19  

EnergyModel.ThismodelblockcombineshistoricaldatawithmethodologyfrombothengineeringandeconomicstoadaptprojectionsforsolarenergyandwindpowertothescenariosoftheWorldEnergyOutlook.Investmentinvarioustypesofpowerproductionaredrivenbyestimatedcapacityrequirementsbasdedoncalibratedstaticcostfunctionsfordifferenttechnologies,whichalsoaccountforregionalandsectoralvariationintaxesandduties,subsidies,technicaland/orgeographicconstraints.Thestaticcostfunctionsarethenaugmentedwithanadhocdynamicelementtoaccountfortechnologicalprogressanddynamicscaleeconomies,orlearning‐by‐doingmechanisms.Thesedynamicsareconstrainedtodiminishovertime,inlinewithastandardS‐patternformodelsofthemarketpeneterationfornewproductsandservices.

Thespecificapproachtothiscalibrationisnotdocumentedanyfurther,andtherelevantrelationsandparametersarealsonotavailabletothepublic.Again,itisthereforedifficulttogiveafullevaluationofthemodellingapproach.However,aswewillsee,thepublishedprojectionsdosuggestthattheIEA’smodellingapproachmostprobablycouldimproveonreviewandrevision.Thereasonissimplythatsofar,IEA’sprojectionsfornewrenewableenergyhavebeenoutpacedbyreal‐worlddevelopments.

Figure8.IEA’soutlookforsolarenergyandwindpowerovertimeAccumulatedinstalledcapacity(GW),NewPoliciesscenario

 

Source:deVosogdeJager(2014).

IEA’s(2015)centralNewPoliciesscenarioimpliesannualaveragecapacityadditionsof7percentforrenewableenergysourcesapartfromhydropowerandbioenergy.Thisisroughlyinlinewithannualgrowthsincetheturnofthecentury,bothslowerthanthegrowthobservedoverrecentyears.Ingeneral,IEA’sprojectionsfornewrenewableenergyhavebeenconsistentlyoutpacedbyactualdevelopmentsoverthelast10‐15

Solarenergy Windpower

Page 20: Undressing the emperor: A critical review of IEA’s WEO€¦ · dynamic development of renewable energy (e.g., Metayer et al, 2015). IEA’s projections have fallen particularly

20  

years(cfFigure8).AstabilizationofinvestmentrateshasbeenakeyfeatureofIEA’sprojections,whereasobservedinvestmentrateshavecontinuedtoclimb.Thedynamicsofsolarenergyandwindpowerhaveclearlybeenunder‐estimated,atleastintheshorttomediumterm.Thishasobviouslytriggeredcriticalremarks,fromthepress,fromrenewablemarketanalysts,environmentandclimateNGOs,andfrominterestsoftherenewableindustryitself(e.g.,Cloete,2014;deVosogdeJager,2014;Osmundsen,2014;Roberts,2015).

AmoredetailedevaluationIEAsprojectionsforrenewableenergyinelectricitygenerationisprovidedbyMetayeretal(2015),whohavetracedrelevantdevelopmentsinannualvolumesofIEA’sWorldEnergyOutlookovertheperiod1994‐2014.Theirconclusionisalsothatprojectionsforsolarenergyandwindpowerhavebeensignificantlyunder‐estimated.ThisprovidessufficientevidencetoconcludethattheIEAindeedhasbeentooconservativeonbehalfofnewrenewableenergyexpansion.However,theshortfallremainstobeexplained.Metayeretal(2015)arguethatthechoiceoffunctionalforminIEA’sWorldEnergyModelputsalinearisedstraitjacketonthedevelopmentofrenewablesforelectricityproduction,whichissimplyimpossibletoalignwithreal‐worlddevelopmentsofsolarenergyandwindpoweroverthelastyears.Thefunctionalformitselfishardlythemainprobleminthisrespect,andtheissueismorelikelytobeaboutbiasesrelatingtoparameterisation,restrictions,and(cost)assumptions.

Otherexplanationsareflavouredbypolitics,andsomestudiesarguethattheIEAsimplyreflecttheinterestsoftheir29industrialisedmembercountries,andalsothetheinterestsoftheoilandgasindustryofthesecountries(e.g.,Roberts,2015).Thearguementimpliesthatastatus‐quobiasinthepreferencesofkeyIEAstakeholderscouldimplyacorrespondingbiasinanalysesandprojections.Ifthiswasthecase,oneshouldprobablyexpectashortfallinattentionandeffortfromtheIEAonissuesrelatingtorenewableenergy,inanalyses,communication,andadvisoryactivity.However,theoppositeisprobablymoretrue,asIEAcontinuouslydemonstratesheavyemphasisonrenewablesintheistakeholderoutreach.Activitiesincludetechnologystudies,specialreportsandpermanentworkinggroups.TheimpressionisthattheIEAtakeseveryopportunitytostresstheimportanceofrenewablesgrowthinfacilitatingamoresustainableenergymix.

Amoreplausibleexplanationarisefromthecombinationofinstitutionalconservatism,vintageeffectsincapitalformation,andsubstantialadjustmentcosts.Theresultisasluggishadaptationoftheglobalenergymix,whichalsoagreeswellwithhistoricaldevelopments.Atthesametime,animportantrolefortheIEAistoilluminateandexplainpotentialchangesintheglobalenergysituation–overthelongterm.Thisprioritymightbedifficulttounitewiththeconcernfordetailedinformationoneverysectorandcountry,andinparticularformoreperipheralaspectsofthegeneralenergypicture.Evenafterseveralyearsofdouble‐digitgrowthforsolarenergyandwindpower

Page 21: Undressing the emperor: A critical review of IEA’s WEO€¦ · dynamic development of renewable energy (e.g., Metayer et al, 2015). IEA’s projections have fallen particularly

21  

capacity,thecontributionfromthesesourcestoglobalpowergenerationremainswellbelow5percent.

Oneshouldalsobearinmindthattheevaluationofmodellingandanalysesatthislevelofcomplexitymostoftenwillgiveamixedresult.Thedegreeofsucesswillvarybyindustry,energysector,andbyregion.InsomeareasIEA’soutlookperformsprettywell,whereasotherareasarelesssuccessful.Attheendoftheday,IEA’sWorldEconomicOutlookisnotaforecast,butascenarioexercise.Inthiscontext,itisinterestingtonotethatIEA’sCurrentPoliciesscenariohasprovidedthemostaccurateprojectionofaggregatedevelopmentsinenergydemandandGHGemissions,whereasexpostdevelopmentsfornewrenewableshavebeenmoreinlinewiththe450scenario.ThegeneraltendencyforthecentralNewPoliciesscenarioisanover‐estimationoftheroleforoilandgas,andanunder‐estimationofthegrowthofnewrenewables–andcoal(Cloete,2015).

Finally,itisnotstraightforwardtoraiseobjectionstothetheoreticalbasisforIEA’smodellingofnewrenewables.AnS‐shapedpenerationofnewrenewableenergyisareasonableapproximationofaprocesswhichhasbeenobservedforarangeofproductandservicemarkets.Increasingmarginalcostsofnewrenewablesineachsectorandregionwillalsoimplythatthemarginalvalueofcapacityadditionswilldecreaseinthemarketshare.Consequently,theissueofdecelerationfornewrenewablesinpowergenerationthereforeboilsdowntoaquestionoftiming.Withwell‐suppliedelectricitymarketsinWesternEurope,lowoilandgasprices,andemptygovernmentcoffins,theIEAmightberightrenewablesstagnationbeforeweknow.

Concludingremarks

Overthelast15years,competentleadership,highambitions,andfruitfulpromotionhasgraduallyliftedthestatusofIEA’sannualflagshippublicationWorldEnergyOutlooktoaleadingreferenceforgovernments,politicians,non‐governmentorganisations,businessandindustry.TodaynoglobaldebateonenergyandclimatpoliciescanescapethepremisesimpliedbytheIEA’sanalyses.ThisdevelopmentmakesitmoreimportantthanevertolooktheIEAinthecards,shedlightonboththestrengthandweaknessesoftheiranalyticalapproach,andmakesurethatenergyandclimatesbuildontransparentanalysesandthelatestinsightsfromacademicresearch.

QuestionscanberaisedonseveralareasoftheIEAs’methodologyandmodellingstrategy.Energypricesandeconomicactivityareexogenoustothemodel,andsoisalongseriesofvariablesforenergytechnologyandpolicydevelopment.Themodellingapproachisthereforenotparticularlywellsuitedforcharacterisationofmarketequilibria,andalsoleavestheimpressionthattechnologicalflexibilityhasnothadtheattetionitdeservesintheunderstandingoflong‐termdemandandsupply.

Page 22: Undressing the emperor: A critical review of IEA’s WEO€¦ · dynamic development of renewable energy (e.g., Metayer et al, 2015). IEA’s projections have fallen particularly

22  

ItisalsohardtoarguethattheIEA’sWorldEnergyModelmeetstherequirementsofamacroeconometricmodel.Tomanyvariablesareexogenousandtomanycoefficientsarecalibratedbasedonprofessionaljudgment.Econometricequationsarealsoshortondocumentation,andtheIEA(2015b)includesinformationoncoefficientestimatesormodeldiagnostics.Consequently,evaluationisvirtuallyimpossibleforthisimportantaspectofthemodel.Atthesametime,thewiderangeofmodelrestrictions,exogenousassumptions,fixedcoefficients,andconstanttrendsraiseasuspicionthatanyfuturedevelopmentcanbesupportedbyasuitablechoiceofinputvariables.

Empiricalmodelsofenergyeconomicsandclimatechangeshouldopenfortheendogenisationofeconomicactivity.FortheIEA’sWorldEnergyOutlook,thiscouldallowvariationinenergypricesandpoliciestoimplycorrespondingvariationineconomicgrowthbetweenthedifferentscenarios.Moreover,uncertaintycouldbespannedbyavarietyofsector‐specifictechnologyshocks,oreventhroughstochasticmodellingoftechnologicalprogressbothfortraditionalandunconventionalenergycarriers.Thecostofsuchadevelopmentwouldpossiblybealossofdetailandgranularity,whichiskeytothecurrentversionofthemodel.However,thenetbenefitwouldmostprobablystillbepositive.

ThisreviewhasillustratedthatthetaskfacedbytheIEAinmodellinglong‐termenergymarketdevelopmentsisbothimportantandverycomplex.Analysesandprojectionsofenergyandclimatedevelopmentswillhavetodrawoninsightsfromgeology,technology,andeconomics–andarealsoapoliticalminefield.Anyconclusionsandoutlookwillthereforeraisediscussion,amongacademic,industryleaders,politicians,andinthepublic.TheIEA’sWorldEnergyOutlookshouldthereforeberegardedasavoiceinthisdebate,ratherthanbibleinitsownrespect.Consequently,allpartiesrelatingtothistypeofinformationareadvisedtotakeboththeIEA’sanalysesandcompetingviewsontheenergyworldwithasuitablegrainofsalt.

Page 23: Undressing the emperor: A critical review of IEA’s WEO€¦ · dynamic development of renewable energy (e.g., Metayer et al, 2015). IEA’s projections have fallen particularly

23  

Literature

Al‐Juaied,MohammedandAdamWhitmore(2009):Realisticcostsofcarboncapture.DiscussionPaper2009/08.BelferCenterforScienceandInternationalAffairs.HarvardKennedySchool.HarvardUniversity.

Allan,Grant,Gilmartin,Michelle,McGregor,Peter,Swales,J.Kim,andKarenTurner.Economicsofenergyefficiency.InEvans,J.andL.C.Hunt(eds)InternationalHandbookontheEconomicsofEnergy.EdwardElgarPublishing.Cheltenham,UK.

Ayres,RobertU.,vandenBergh,JeroenC.J.M.,Lindenberger,DietmarandBenjaminWarr(2013):Theunderestimatedcontributionofenergytoeconomicgrowth.StructuralChangeandEconomicDynamics27,79‐88.

Berk,IstemiandI.HakanYetkiner(2014):EnergyPricesandEconomicGrowth:TheoryandEvidenceintheLongRun.Renewable&SustainableEnergyReviews36,228–235.

BGR(2014):Reserven,RessourcenundVerfügbarkeitvonEnergierohstoffen.Energiestudie.BundesanstaltfürGeowissenschaftenundRohstoffe.Hannover.

Bhattacharyya,SubhesC.(2011):EnergyEconomics,Springer.

Bjørnland,HildeC.andAndersThorsrud(2015).BoomorGloom?ExaminingtheDutchdiseaseintwo‐speedeconomies.TheEconomicJournal(forthcoming).

BP(2015):StatisticalReviewofWorldEnergy.BP.London.

Bretschger,Lucas,Ramer,RogerandFlorentineSchwark(2011):Growtheffectsofcarbonpolicies:ApplyingafullydynamicCGEmodelwithheterogeneouscapital.ResourceandEnergyEconomics33,963‐980.

Chang,YounghoandYanfeiLi(2015):Therevealedrelationshipbetweenenergyconsumptionandeconomicgrowth:Causality,macroeconomics,newtrend,andimplications.InYan,Jinyue(red),HandbookofCleanEnergySystems.Wiley.NewYork.

Chitnis,MonaandSteveSorrell(2015).Livinguptoexpectations:EstimatingdirectandindirectreboundeffectsforUKhouseholds.EnergyEconomics(forthcoming).

Cloete,Schalk(2014):Evaluating15yearsofIEAenergyforecasts.Blogarticle.(http://theenergycolletive.com).16December.

deVos,RolfandDaviddeJager(2014):WorldEnergyOutlookhidestherealpotentialofrenewables.Blogg‐artikkel.EnergyPost(http://www.energypost.eu).14March.

Emhjellen,MagneandPetterOsmundsen(2015):CCS:HardtoPassDecisionGates.UnderpubliseringiSPEEconomics&Management.

Page 24: Undressing the emperor: A critical review of IEA’s WEO€¦ · dynamic development of renewable energy (e.g., Metayer et al, 2015). IEA’s projections have fallen particularly

24  

Gillingham,Kenneth,Newell,Richard,G.andWilliamA.Pizer(2011):Modelingendogenoustechnologicalchangeforclimatepolicyanalysis.EnergyEconomics30,2734‐2753.

Gillingham,K.,Rapson,D.andG.Wagner(2016):Thereboundeffectandenergyefficiencypolicy.ReviewofEnvironmentalEconomics&Policy10(1),(undervegs).

GlobalCCSInstitute(2015):TheGlobalStatusofCCS2015.Summaryreport(http://www.globalccsinstitute.com).

Hamilton,JamesD.(2008):Oilandthemacroeconomy.NewPalgraveDictionaryofEconomics.Palgrave.London.

Hamilton,JamesD.(2012):Oilprices,exhaustibleresources,andeconomicgrowth.Kapittel1iFouquet,Roger(red.)HandbookofEnergyandClimateChange.Elgar.CheltenhamUK.

Hartley,Peter,MedlockIII,KennethB.,Temzelides,TedandXinyaZhang(2016).Energysectorinnovationandgrowth:Anoptimalenergycrisis.TheEnergyJournal37(1),233‐258.

Heubaum,HaraldandFrankBierman(2015):Integratingglobalenergyandclimategovernance:ThechangingroleoftheInternationalEnergyAgency.EnergyPolicy87,229‐239.

IEA(2015a):WorldEnergyOutlook.InternationalEnergyAgency.Paris.

IEA(2015b):WorldEnergyModel.Documentation.Memo.InternationalEnergyAgency.Paris.(http://www.worldenergyoutlook.org/weomodel).

IEA(2015c):EnergyandClimateChange.WorldEnergyOutlookSpecialReport.InternationalEnergyAgency.Paris.

IEA(2015d):EnergyTechnologyPerspectives2015:MobilisingInnovationtoAccelerateClimateAction.InternationalEnergyAgency.Paris.

IMF(2015):Wherearecommodityexportersheaded?Outputgrowthintheaftermathofthecommodityboom.Kapittel2iWorldEconomicOutlook.InternationalMonetaryFund.October.

Jimenez‐Rodriguez,RebecaandMarceloSanchez(2005):OilpriceshocksandrealGDPgrowth:EmpiricalevidencefromsomeOECD.AppliedEconomics37(2),201‐228.

Killian,Lutz(2008):Theeconomiceffectsofenergypriceshocks.JournalofEconomicLiterature46(4),871‐909.

Ley,Marius,Stucki,TobiasandMartinWoerter(2016):Theimpactofenergypricesongreeninnovation.TheEnergyJournal37(1),41‐75.

Page 25: Undressing the emperor: A critical review of IEA’s WEO€¦ · dynamic development of renewable energy (e.g., Metayer et al, 2015). IEA’s projections have fallen particularly

25  

Lindholt,Lars(2013):Thetug‐of‐warbetweenresourcedepletionandtechnologicalchangeintheglobaloilindustry1981‐2009.DiscussionPaper732.Statistisksentralbyrå.

Lohwasser,RichardandReinhardMadlener(2012):EconomicsofCCSforcoalplants:ImpactofinvestmentcostsandefficiencyonmarketdiffusioninEurope.EnergyEconomics34(3),850‐863.

Meayer,Matthieu,Breyer,ChristianandHans‐JosefFell(2015):TheprojectionsforthefutureandqualityinthepastoftheWorldEnergyOutlookforsolarPVandotherrenewableenergytechnologies.Proceedings.31stEuropeanPVsolarenergyconference.14‐18September.Hamburg,Germany.

Mohammadi,HassanandShahrokhParvaresh(2014):Energyconsumptionandoutput:Evidencefromapanelof14oil‐exportingcountries.EnergyEconomics41,41‐46.

Nachtigali,DanielogDirkRübbelke(2016):Thegreenparadoxandlearning‐by‐doingintherenewableenergysector.ResourceandEnergyEconomics43,74‐92.

Osmundsen,Terje(2014):HowtheIEAexaggeratesthecostandunderestimatesthegrowthofsolarpower.Blogg‐artikkel.EnergyPost(http://www.energypost.eu).4March.

Roberts,David(2015):TheIEAconsistentlyunderestimatewindandsolarpower.Why?Blogarticle.VOXEnergyandEnvironment(http://vox.com).12October.

Saunders,HarryD.(2014).Recentevidenceforlargerebound:Elucidatingthedriversandtheirimplicationsforclimatechangemodels.TheEnergyJournal36(1),23‐48.

Schwark,Florentine(2014):Energypriceshocksandmedium‐termbusinesscycles.JournalofMonetaryEconomics64,112‐121.

Stern,DavidI.(2000):AmultivariateconintegrationanalysisoftheroleofenergyintheUSmacroeconomy.EnergyEconomics22,267‐283.

Stern,David I. (2011):Theroleofenergy ineconomicgrowth.Annalsof theNewYorkAcademyofSciences1219(1),26‐51.

Stern,DavidI.andKerstinEnflo(2013):Causalitybetweenenergyandoutputinthelongrun.EnergyEconomics39,135‐146.

Stern,DavidI.andAstridKerner(2012):Theroleofenergyintheindustrialrevolutionandmoderneconomicgrowth.TheEnergyJournal33(3),125‐152.

Sorrell,Steve(2011):Thereboundeffect:Definitionandestimation.InEvans,J.andL.C.Hunt(eds)InternationalHandbookontheEconomicsofEnergy.EdwardElgarPublishing.Cheltenham,UK.

Page 26: Undressing the emperor: A critical review of IEA’s WEO€¦ · dynamic development of renewable energy (e.g., Metayer et al, 2015). IEA’s projections have fallen particularly

26  

Stern,Nicholasetal(2006):SternReview:Theeconomicsofclimatechange.CambridgeUniversityPress.Cambridge.Storbritannia.

Thompson,Henry(2014):AnenergyfactorproportionsmodeloftheUSeconomy.EnergyEconomics43,1‐5.

Timilsina,G.R.,Kurdgelashvili,L.andP.ANarbel(2012).Solarenergy:Markets,economics,andpolicies.RenewableandSustainableEnergyReviews16,449‐465.

Timilsina,G.R.,vanKooten,G.C.andP.A.Narbel(2013).Globalwindpowerdevelopment:Economicsandpolicies.EnergyPolicy61,642‐652.

Tol,RichardS.J.(2009):Theeconomiceffectsofclimatechange,JournalofEconomicPerspectives23(2),29‐51.

Train,KennethE.(2009):DiscreteChoiceModelswithSimulation.CambridgeUniversityPress.Cambridge.Storbritannia.

USGS(2012);AssessmentofPotentialAdditionstoConventionalOilandGasResourcesintheWorldfromReservesGrowth.FactSheetFS2012‐3052.UnitedStatesGeologicalSurvey.Bolder.Colorado.

VandeGraal,Thijs(2012):Obsoleteorresurgent?TheInternationalEnergyAgencyinachanginggloballandscape.EnergyPolicy48,233‐241.