Top Banner
Unary adaptive subtraction of joint multiple models with complex wavelet frames TaM0: Non-stationary, wavelet-based, adaptive multiple removal TaM1: “Complex” wavelet transform + simple one-tap (unary) filter TaM2: Redundancy selection: noise robustness and processing speed TaM3: Smooth adaptation to adaptive joint multiple model filtering S. Ventosa (1) , S. Le Roy, I. Huard, A. Pica (2) , H. Rabeson, L. Duval* (3) (1) IPGP, (2) CGGVeritas, (3) IFP Energies nouvelles Contacts: [email protected],[email protected] Motivation: Multiple model data Shot number Time (s) 1200 1400 1600 1800 2000 2200 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 Shot number Time (s) 1200 1400 1600 1800 2000 2200 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 Shot number Time (s) 1200 1400 1600 1800 2000 2200 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 Shot number Time (s) 1200 1400 1600 1800 2000 2200 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 Data and three multiple models, common offset plane (need for a model-based, non-stationary, adaptive multiple filtering). Complex wavelet frame decomposition Complex Morlet wavelet definition: ψ (t)= π 1/4 e 0 t e t 2 /2 0 : central frequency (1) Discretized time r , octave j , voice v : ψ v r,j [n]= 1 2 j +v/V ψ nT r 2 j b 0 2 j +v/V ,b 0 : sampling at scale zero (2) Time-scale analysis: d = d v r,j = d[n]v r,j [n] = n d[n] ψ v r,j [n] (3) Time-scale data and model trace representations Time (s) Scale 2.8 3 3.2 3.4 3.6 3.8 4 4.2 2 4 8 16 0 500 1000 1500 2000 Time (s) Scale 2.8 3 3.2 3.4 3.6 3.8 4 4.2 2 4 8 16 0 500 1000 1500 2000 Time (s) Scale 2.8 3 3.2 3.4 3.6 3.8 4 4.2 2 4 8 16 0 500 1000 1500 2000 Time (s) Scale 2.8 3 3.2 3.4 3.6 3.8 4 4.2 2 4 8 16 0 500 1000 1500 2000 Data and model trace Morlet wavelet scalograms. Redundancy selection 0 0.5 1 1.5 2 2.5 3 3.5 4 Time (s) primary multiple noise sum 0 0.5 1 1.5 2 2.5 3 3.5 4 -0.1 -0.05 0 0.05 0.1 0.15 Time (s) true multiple adapted multiple Key features fast off-line parameter selection realistic synthetics varying random noise realizations SNR-based wavelet parameter selection controllable redundancy allows: simple stable synthesis dual frame resistance to field noise computational efficiency balanced Morlet wavelet frame approximately analytic sliding window processing along scales 4 6 8 10 12 14 16 5 10 15 20 10 12 14 16 18 20 Redundancy S/N (dB) Median S/N adapt (dB) 10 11 12 13 14 15 16 17 18 19 Complex wavelet domain adaptation Time (s) Scale 2.8 3 3.2 3.4 3.6 3.8 4 4.2 2 4 8 16 0 500 1000 1500 2000 Time (s) Scale 2.8 3 3.2 3.4 3.6 3.8 4 4.2 2 4 8 16 0 500 1000 1500 2000 Time (s) Scale 2.8 3 3.2 3.4 3.6 3.8 4 4.2 2 4 8 16 0 500 1000 1500 2000 Time (s) Scale 2.8 3 3.2 3.4 3.6 3.8 4 4.2 2 4 8 16 0 500 1000 1500 2000 Adapted joint and individual model trace Morlet wavelet scalograms. Unary filter estimation Windowed adaptation: complex a opt compensates local delay/amplitude mis- matches: a opt = arg min {a k }(k K ) d k a k x k 2 (4) Vector Wiener equations for complex signals: d, x m = k a k x k , x m (5) Time-scale synthesis: ˆ d[n]= r j,v ˆ d v r,j ψ v r,j [n] (6) Results: field data multiple filtering Shot number Time (s) 1200 1400 1600 1800 2000 2200 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 Shot number Time (s) 1200 1400 1600 1800 2000 2200 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 Subtraction results: (top) model 3 (bottom) joint multi-model multiple removal. Some multiples better attenuated around 3s, random noises reduced. References [1] Herrmann, F. J. and D. Wang and D. J. Verschuur, 2008, Adaptive curvelet-domain primary-multiple separation: Geophysics, 73, A17–A21. [2] Donno, D., H. Chauris, and M. Noble, 2010, Curvelet-based multiple prediction: Geo- physics, 75, WB255–WB263. [3] Neelamani, R., A. Baumstein, and W. S. Ross, 2010, Adaptive subtraction using complex-valued curvelet transforms: Geophysics, 75, V51–V60. [4] Jacques, L., L. Duval, C. Chaux, and G. Peyr ´ e, 2011, A panorama on multiscale geo- metric representations, intertwining spatial, directional and frequency selectivity: Signal Process., 91, 2699–2730. [5] Ventosa, S., H. Rabeson, P. Ricarte, and L. Duval, 2011, Complex wavelet adaptive multiple subtraction with unary filters: Proc. EAGE Conf. Tech. Exhib. [6] Ventosa, S., S. Le Roy, I. Huard, A. Pica, H. Rabeson, P. Ricarte, and L. Duval, 2012, Adaptive multiple subtraction with wavelet-based complex unary Wiener filters: Geo- physics, 77, V183–V192. SEG Annual Meeting, Las Vegas, Nevada, USA, 4-9 November 2012
1

Unary adaptive subtraction of joint multiple models with complex wavelet frames

Jul 04, 2015

Download

Technology

Laurent Duval

Multiple attenuation is one of the greatest challenges in seismic processing. Due to the high cross-correlation between primaries and multiples, attenuating the latter without distorting the former is a complicated problem. We propose here a joint multiple model-based adaptive subtraction, using single-sample unary filters' estimation in a complex wavelet transformed domain. The method offers more robustness to incoherent noise through redundant decomposition. It is first tested on synthetic data, then applied on real-field data, with a single-model adaptation and a combination of several multiple models.


Read More: http://library.seg.org/doi/abs/10.1190/segam2012-0440.1
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Unary adaptive subtraction of joint multiple models with complex wavelet frames

Unary adaptive subtraction of joint multiple models with complex wavelet framesTaM0: Non-stationary, wavelet-based, adaptive multiple removalTaM1: “Complex” wavelet transform + simple one-tap (unary) filterTaM2: Redundancy selection: noise robustness and processing speedTaM3: Smooth adaptation to adaptive joint multiple model filtering

S. Ventosa(1), S. Le Roy, I. Huard, A. Pica(2), H. Rabeson, L. Duval*(3)(1)IPGP, (2)CGGVeritas, (3)IFP Energies nouvellesContacts: [email protected],[email protected]

Motivation: Multiple model dataShot number

Tim

e (s

)

1200140016001800200022001.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

Shot number

Tim

e (s

)

1200140016001800200022001.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

Shot number

Tim

e (s

)

1200140016001800200022001.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

Shot number

Tim

e (s

)

1200140016001800200022001.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

Data and three multiple models, common offset plane (need for a model-based, non-stationary, adaptive multiple filtering).

Complex wavelet frame decomposition•Complex Morlet wavelet definition:

ψ(t) = π−1/4e−iω0te−t2/2, ω0: central frequency (1)

•Discretized time r, octave j, voice v:

ψvr,j[n] =1√

2j+v/Vψ

(nT − r2jb02j+v/V

), b0: sampling at scale zero (2)

•Time-scale analysis:

d = dvr,j =⟨d[n], ψvr,j[n]

⟩=∑

n

d[n]ψvr,j[n] (3)

Time-scale data and model trace representations

Time (s)

Sca

le

2.8 3 3.2 3.4 3.6 3.8 4 4.2

2

4

8

16

0

500

1000

1500

2000

Time (s)

Sca

le

2.8 3 3.2 3.4 3.6 3.8 4 4.2

2

4

8

16

0

500

1000

1500

2000

Time (s)

Sca

le

2.8 3 3.2 3.4 3.6 3.8 4 4.2

2

4

8

16

0

500

1000

1500

2000

Time (s)

Sca

le

2.8 3 3.2 3.4 3.6 3.8 4 4.2

2

4

8

16

0

500

1000

1500

2000

Data and model trace Morlet wavelet scalograms.

Redundancy selection

0 0.5 1 1.5 2 2.5 3 3.5 4Time (s)

primarymultiplenoisesum

0 0.5 1 1.5 2 2.5 3 3.5 4−0.1

−0.05

0

0.05

0.1

0.15

Time (s)

true multipleadapted multiple

Key features• fast off-line parameter selection

– realistic synthetics– varying random noise realizations– SNR-based wavelet parameter selection

• controllable redundancy allows:

– simple stable synthesis dual frame– resistance to field noise– computational efficiency balanced

•Morlet wavelet frame

– approximately analytic– sliding window processing along scales

46

810

1214

16

5

10

15

2010

12

14

16

18

20

RedundancyS/N (dB)

Med

ian

S/N

adap

t (dB

)

10

11

12

13

14

15

16

17

18

19

Complex wavelet domain adaptation

Time (s)

Sca

le

2.8 3 3.2 3.4 3.6 3.8 4 4.2

2

4

8

16

0

500

1000

1500

2000

Time (s)

Sca

le

2.8 3 3.2 3.4 3.6 3.8 4 4.2

2

4

8

16

0

500

1000

1500

2000

Time (s)

Sca

le

2.8 3 3.2 3.4 3.6 3.8 4 4.2

2

4

8

16

0

500

1000

1500

2000

Time (s)

Sca

le

2.8 3 3.2 3.4 3.6 3.8 4 4.2

2

4

8

16

0

500

1000

1500

2000

Adapted joint and individual model trace Morlet wavelet scalograms.

Unary filter estimation•Windowed adaptation: complex aopt compensates local delay/amplitude mis-

matches:

aopt = argmin{ak}(k∈K)

∥∥∥∥∥d−∑

k

akxk

∥∥∥∥∥

2

(4)

•Vector Wiener equations for complex signals:

〈d,xm〉 =∑

k

ak 〈xk,xm〉 (5)

•Time-scale synthesis:d[n] =

r

j,v

dvr,jψvr,j[n] (6)

Results: field data multiple filtering

Shot number

Tim

e (s

)

1200140016001800200022001.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

Shot number

Tim

e (s

)

1200140016001800200022001.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

Subtraction results: (top) model 3 (bottom) joint multi-model multiple removal.

Some multiples better attenuated around 3s, random noises reduced.

References[1] Herrmann, F. J. and D. Wang and D. J. Verschuur, 2008, Adaptive curvelet-domain

primary-multiple separation: Geophysics, 73, A17–A21.

[2] Donno, D., H. Chauris, and M. Noble, 2010, Curvelet-based multiple prediction: Geo-physics, 75, WB255–WB263.

[3] Neelamani, R., A. Baumstein, and W. S. Ross, 2010, Adaptive subtraction usingcomplex-valued curvelet transforms: Geophysics, 75, V51–V60.

[4] Jacques, L., L. Duval, C. Chaux, and G. Peyre, 2011, A panorama on multiscale geo-metric representations, intertwining spatial, directional and frequency selectivity: SignalProcess., 91, 2699–2730.

[5] Ventosa, S., H. Rabeson, P. Ricarte, and L. Duval, 2011, Complex wavelet adaptivemultiple subtraction with unary filters: Proc. EAGE Conf. Tech. Exhib.

[6] Ventosa, S., S. Le Roy, I. Huard, A. Pica, H. Rabeson, P. Ricarte, and L. Duval, 2012,Adaptive multiple subtraction with wavelet-based complex unary Wiener filters: Geo-physics, 77, V183–V192.

SEG Annual Meeting, Las Vegas, Nevada, USA, 4-9 November 2012