Top Banner
THREE MOMENT EQUATION (Continuous Beams)
179
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: una

THREE – MOMENT

EQUATION

(Continuous

Beams)

Page 2: una

THREE-MOMENT EQUATION

This is used to determine the moments at the supports of a fully

continuous beams, in turn needed for reaction calculations.

3 – MOMENT EQUATION IN BEAMS 1 AND 2

M1L1 + 2M2 (L1+L2) + M3L2 + 6Aā/L1 + 6Aƃ/L2 = 6EI [ (h1 / L1)+(h3 / L2) ]

Where:

M1 = bending moment @ pt. 1

L1 = length of beam 1

M2 = bending moment @ pt. 2

L2 = length of beam 2

M3 = bending moment @ pt. 3

6Aā/L1 = 3-moment factor of beam 1

6AБ/L2 = 3-moment factor of beam 2

EI = flexural modulus

h1 = sag / settlement @ pt. 1

Page 3: una

h3 = sag / settlement @ pt. 3

RULES OF SIGNS:

If the moment at any point is actually negative, sign must be

used when substituting to the equation. Similarly, if an unknown

Moment is actually negative at any point, the three moment equation

will be having a negative value for that moment.

VALUES FOR 6Aā/L AND 6Aƃ/L

Type of Loading

6Aā/L 6Aƃ/L

1.

2.

3.

Page 4: una

4.

5.

6.

EXAMPLE 1

Page 5: una

28Mb + 8Md + 2040 = 0 ← (Equation 1)

8Mb + 28Md + 1824 = 0 ← (Equation 2)

Multiply eqn. 1 by 8 & eqn. 2 by -28 224 Mb + 64Md + 16,320 = 0 -224 Mb - 784Md - 51,072 = 0 --------------------------------------------------------------------------------------------------------

-720Md - 34,752 = 0 ← (Equation 3)

Md = -48.27 KN∙m Substitute value of Md in eqn. 1 28Mb + 8(-48.27) +2040 = 0

Page 6: una

Mb = -59.07 KN∙m

Solving for Reactions at beam ab

∑Mb = ∑M @ left -59.07 = 6Ra - 120(3)

Ra = 50.16 KN Solving for Reactions at beam de

Md=-48.27 Beam BCDE

Page 7: una

∑Mb= ∑M @ left -59.07 = -40(4) - 90(10) + 21.96(14) + 8Rd

Rd = 86.69 KN

Beam BCDE

∑Md = ∑M @ right -48.27 = 50.16(14) - 120(11) - 40(4) +8Rb

Rb = 86.69 KN

Page 8: una

SHEAR AND MOMENT DIAGRAM

Example 2

Page 9: una

Overhang Beam ab

Mb = -15(1.5)

Mb = -22.5 KN∙m Beam bd

← (Equation 1)

Page 10: una

Beam ce

← (Equation 2) Multiply Eqn. 1 by 2, Equate 1 by 2

56Mc + 16Md + 9570 = 0 -8Mc - 16Md - 3840 = 0 ________________________________________________________

48Mc + 5730 = 0

Mc = -119.38 KN∙m Sustitute te value of Mc in Eqn. 1

28(-119.38) + 8Md + 4785 = 0

Md = -180.30 KN∙m

Page 11: una

SHEAR AND MOMENT DIAGRAM

Page 12: una

BEAM

DEFLECTIONS

Page 13: una

THREE – MOMENT

EQUATION

Page 14: una

Example 1

Find the deflection at midspan.

DEFLECTION AT MIDSPAN:

thus;

Page 15: una

Example 2

Find the deflection at midspan.

DEFLECTION AT MIDSPAN:

Page 16: una

Example 3 Find the deflection at b and d.

MOMENT AT MIDSPAN OF ABC :

Mb = 12.8125 KN∙m MOMENT AT C:

MC = -5.625 KN∙m DEFLECTION AT POINT D

Page 17: una

DEFLECTION AT POINT B

Example 4

Find the deflection at point d and f.

Page 18: una
Page 19: una

Example 5

Find the deflection 7m from point a.

Page 20: una

Example 6

Find the deflection at point b and d.

DEFLECTION AT POINT B

DEFLECTION AT POINT D

Page 21: una

Example 7

Find the deflection at point a, c, d, e and g.

E = 200,000 MPa I = 5.3333 x 10-4 m4

Page 22: una
Page 23: una

Example 8

Find the deflection at 2.5m from a.

Solving for Reactions

∑Fv = 0

Solving for the moment at ‘a’, ‘b’ and δ

Mb = -1.35 KN∙m

Ma = -5.6 KN∙m

Page 24: una

Example 9

Find the deflection at point b.

DEFLECTION AT POINT B

Page 25: una

Example 10

Find the deflection at 7m from a.

DEFLECTION AT 7m FROM A

Page 26: una

Example 11

Find the deflection at point b.

DEFLECTION AT POINT B

Page 27: una

Example 12

Find the deflection at 4m from a.

Page 28: una

Solving for reactions

V 21 21

M 5.25 -5.25

DEFLECTION AT 4m FROM A

Page 29: una

UNIT LOAD

METHOD

Page 30: una

Where:

M = moment equation at every segment of the beam due to real load

m = moment equation at every segment of the beam due to a unit load acting at the point where deflection is desired.

E = modulus of elasticity of the beam (MPa)

I = moment of inertia of the beam at x-axis (mm4)

δ = deflection at a point and it may be vertical or horizontal

a & b = limits of integration

Where:

= slope at a point in an elastic curve

M = moment equation at every segment of the beam due to real load

m = moment equation at every segment of the beam due to a unit load applied at the point where the slope/rotation is desired

E = modulus of elasticity of the beam (MPa)

I = moment of inertia of the beam at x-axis (mm4)

a & b = limits of integration

Example 1

Page 31: una

Find the deflection at midspan.

=

Page 32: una

+

=

+

=

Rotation:

+

+

= 0 Example 2

Find the deflection at midspan.

Page 33: una

DEFLECTION AT L/2

Page 34: una

+

Example 3

Solve for the deflection at b.

Page 35: una

Positioning unit load at b

Page 36: una

DEFLECTION AT POINT B

Page 37: una

+

Positioning unit load at d

Page 38: una

DEFLECTION AT POINT B

+

+

Example 4

Solve for the deflection at point d and f.

Page 39: una
Page 40: una

Positioning unit load at F

Page 41: una

DEFLECTION AT POINT F

+

+

+

Example 5

Page 42: una

Solve for the deflection at 7m from a.

Page 43: una

Positioning unit load at 7m from a

Page 44: una
Page 45: una

DEFLECTION AT 7M FROM A

+

+

+

Example 6

Solve for the deflection at b and d.

Page 46: una

Positioning Unit Load

Page 47: una
Page 48: una

DEFLECTION AT B

+

+

Since it is in the same beam, the values of M are the same.

Positioning unit load

Page 49: una

DEFLECTION AT D

+

+

Page 50: una

Example 7

Solve for the deflection at 2.5m from a.

Page 51: una

Positioning unit load at 2.5m from a

Page 52: una

DEFLECTION AT POINT 2.5 FROM A

+

Example 8

Find the deflection at midspan.

Page 53: una

Positioning unit load

Rotation

Example 9

Page 54: una

Solve for the deflection at 7m from a.

Positioning unit load at 7m from a

Page 55: una

DEFLECTION AT 7m FROM A

Page 56: una

Example 10

Find the deflection at free end.

Page 57: una

Solution :

Rotation

Page 58: una

AREA MOMENT

METHOD

Page 59: una
Page 60: una

Theorem 1. The change in slope between two lines tangent to the elastic

curve at point “a” and “b” is equal to the product of 1/EI and the area of the moment diagram from “a” and “b” only.

Theorem 2. The deviation of point “a” with respect to a tangent line drawn

from “b” in the elastic curve is equal to the product of 1/EI at the moment area of Aab taken at an axis of “a”.

Similarly:

Note:

Page 61: una

Example 1 Find the deflection at midspan.

Page 62: una

Example 2

Find the deflection at midspan.

Page 63: una

Example 3 Solve for the deflection at b and d.

Page 64: una
Page 65: una

Example 4

Solve for the deflection at point d and f .

Page 66: una
Page 67: una

Example 5

Solve for the deflection at 7m from a.

Page 68: una

Example 6

Solve for the deflection at point b and d.

Page 69: una

Example 7

Find the deflection at free end.

Page 70: una

Example 8 Find the deflection at free end

Page 71: una

+

-

Page 72: una

Example 9

Solve for the deflection at free end.

Page 73: una

t b/a

Page 74: una

Example 10

Solve for the deflection at free end.

Page 75: una

Example 11 Solve for the deflection at 4m from a.

Page 76: una

δ at 4m fr. a = ?

Page 77: una
Page 78: una

CONJUGATE BEAM

METHOD

Page 79: una

Theorem 1:

The rotation (θ) at a point in the actual beam is equal to the

shear ( ) at that point o the fictitious (conjugate beam) of equal span

loaded with M/EI diagram.

Theorem 2:

The deflection (δ) at a point in the actual beam is equal to the

moment ( ) at that point o the fictitious (conjugate beam) of equal span loaded with M/EI diagram.

Condition of the supports

Actual beam Conjugate

Example 1

Page 80: una

Find the deflection at midspan.

∑M @C = 0

↑+∑Fv = 0

∑M @C = 0

Page 81: una

Example 2 Find the deflection at midspan.

∑M @C = 0

Page 82: una

∑M @B = 0

Example 3 Find the deflection at b.

∑M @C = 0

Page 83: una

Deflection at point b

Deflection at point d

Example 4 Find the deflection at point d and f.

Page 84: una

∑M @ hinge= 0

Ra = 432.222 KN

∑M @ d= 0

Page 85: una

∑M @ f= 0

Example 5 Find deflection 7m from point a.

δ at 7m fr. a = ?

Page 86: una

∑M @ b= 0

Ra = 98.9091 KN ∑M @ 7m fr. a= 0

Example 6 Find the deflection at point b and d.

Page 87: una

∑M @C = 0

Deflection at point b

Deflection at point d

Page 88: una

Example 7

Find the deflection at point a, c, d, e and g.

E = 200,000 MPa I = 5.3333 x 10-4

Page 89: una

δ at a,c,d,e,and g = ?

∑M @ f = 0

→ Equation 1 ∑M @ b = 0

→Equation 2 Equate Equation 1 to 2: Mg = 10.125 KN∙m Rg = 1.0625 KN

Page 90: una

∑M @ e = 0

-

∑M @ d = 0

∑M @ c = 0

∑M @ a = 0

Example 8

Page 91: una

Find the deflection at 2.5m from a.

δ at 2.5 from a = ? ∑M @ b = 0

→ Equation 1 ∑M @ a = 0

Page 92: una

→ Equation 2 Rc = 0.4042 KN Mc = 1.82 KN∙m ∑M @ 2.5 fr.a = 0

Example 9 Find the deflection at point b.

Example 10

Page 93: una

δ at 7m fr. a = ?

Example 11

Page 94: una

∑M @b = 0

Page 95: una

Example 12

Page 96: una

δ at c = ?

Example 14 Find the deflection at point c.

E = 200,000 MPa I = 100 cm4

Page 97: una

δ at 1m from b = ?

∑M @ b= 0

→ Equation 1

∑M @ d= 0

→ Equation 2

Equate 1 and 2

Md = -172.5 KN∙m Rc = -96.25 KN

∑M @ 1m fr. b= 0

Example 15

E = 22 GPa

I = 10,000 mm4

δ at free end = ?

Page 98: una

∑M @ free end= 0

Page 99: una

DOUBLE

INTEGRATION

METHOD

Page 100: una

DOUBLE INTEGRATION METHOD

Procedure:

1.) Determine the moment equation usually at the last

segment of the beam.

2.) Integrate the moment equation to get the slope equation.

3.) Integrate the slope equation to get the deflection equation.

4.) Evaluate the constants of integration using boundary

conditions.

5.) Calculate the required slope or deflection (δ).

Mathematically:

Moment Equation

Slope Equation

Deflection Equation

Example 1

Page 101: una

M = y” =

y’ =

y =

at x=0 , y=0 ,

at x = L , y = 0 , C =

0 =

At

Y =

δ=

Example 2

Page 102: una

M =

y’ =

y =

at x = 0 , y = 0 , = 0

at x = L , y = 0 , C = -

0 =

At x =

y =

δ=

Example 3

Page 103: una

M = y” = 11.375x + 21.125 < x-5> - 2.5

y’ =

y =

at x=0 , y = 0 , at x=5 , y = 0 , C = -21.3542

0 =

C=-21.3542 at x=2.5 , y = δ at b

y= =

y =

Example 4 Find the deflection at point d and f.

Page 104: una

M = y” = 48.3333x - 2.5x2 – 20 <x -2> - 30 <x – 6>+ 101.6667<x-12> y’ = 24.1667x2 – 0.8333x3 – 10<x-2>2 – 15<x-6>2 + 50.8333<x-12>2 + C y = 8.0556x3 – 0.20833x4 – 3.3333<x-2>3 – 5<x-6>3 + 16.9444<x-12>3 + Cx + C2

at x = 12 , y = 0 , C = 432.2222

at x = 9 , y = δd

y = 8.0566( 9 )3-0.20833( 9 )4 – 3.3333<9-2>3 – 5<9-6>3 + 16.9444<9-12>3-432.2222(9)

At x = 20, y =

Example 5

Page 105: una

Find the deflection 7m from point a.

M = y” = 6.54545x – 10 < x – 5 > -

y’ =

y =

at x = 0 , y = 0 , =0

at x = 11 , y = 0 , C = -98.909

0 =

C = - 98.909

At x = 7 , y = δ

Y =

Example 6 Find the deflection at point b and d.

Page 106: una

M = y” = 58.9286x -

y’ =

-

y =

-

at x= 0 , y = 0 , at x= 7 , y = 0 ,

0 =

-

C = -254.0181 at x = 4 , y = δb

y =

-

Page 107: una

δb=

at x=8.5 , y = δd

y =

-

δd=

Example 7 Find the deflection at point b.

M = y"=

y’ =

Page 108: una

y =

at x=L , y’ = 0 , C =

at x=L , y = 0 , =

at x=0 , y =

0 =

Example 8 Find the deflection at 7m from a.

M = y” = -10x -

y’ = -

Page 109: una

y = --

at x = 10 , y’ = 0 , C = 2166.6667 , 68.3333

0=

at x= 10 , y = 0

0 =

At x = 3 , y = δ

y =

Example 9 Find the deflection at point b.

M = y” =

y’ =

y =

Page 110: una

at x=L , y’ = 0 , C =

at x=L , y = 0 , C =

at x=0 , y’ =

0 =

Example 10

Find the deflection at free end.

δ at free end:

Page 111: una

M = y” = -300 + 45x –

y” = -300 + 45x - -

y’ = -300x +

y = -

at x=0 , y’=0 ,

at x=0 , y=0 ,

at x=10 , y=δ at free end

Substitute the value of x to equation of y

y= -

δ at free end = -

Example 11

Page 112: una

δ at 1m from b (left) = ?

M = y’’ = 0.778<x-2> + 6.2222<x-5> -

y’’ = 0.778<x-2> + 6.2222<x-5> -

y’ =

y =

y =

δ at 1m. From b =

Example 12

Page 113: una

Maximum δ = ?

M = y” = -15.7321<x-2> - 10<x-4> - 26.7679 <x – 9>

+

y’ =

y =

C1 = 14.6006 C2= -31.3029 Location of max δ

Page 114: una

0 =

x = 5.8223 m

Max

Max δ =

Page 115: una

CASTIGLIANO’S

SECOND THEOREM

Page 116: una

Castigliano’s Second Theorem

This theorem is used to determine deflections of statically

determinate structure and it’s also used to analyze indeterminate beam

and trusses.

δ =

where:

M - bending moment equation at each segment of the beam

due to real loads with respect to the chosen origin.

– partial derivation of bending moment due to load P.

EI – Flexural modulus

Note:

1. In applying the theorems, the load at a point where the

deflection is desired is referred to as P.

2. After the operations required in the equation are

completed the numerical value of P is replaced on the

equation.

3. Should there be no at the point or in the deflection is

desired. An imaginary force P will be able to replaced there

in the direction desired. After the operation is complete, the

correct value of P which is zero will be substituted in the

expression.

4. If the slope or rotation is desired in the beam the partial

derivative is taken with respect to assumed moment P

acting at the point which the rotation is desired a positive

sign. The answer indicates that the rotation is in the

assumed direction of the moment P.

Page 117: una

Example 1

δ at midspan = ?

Span Orig M δM/δP M δM/δP δM (δM/δP)dx/EI

a - b a Px/2 x/2 Px2/4

b - c c Px/2 x/2 Px2/4

Example 2

Page 118: una

δ at midspan = ?

Span Orig M δM/δP M δM/δP δM (δM/δP)dx/EI

a - b a wLx/2+Px/+ wx2/2

x2/2

b - c c wLx/2+Px/2+ wx2/2

x2/2

Page 119: una

DETERMINATE

TRUSSES

Example 1

Find the stresses and deflections of each member.

Page 120: una

A = 300x300mm2 E = 200 GPa

θ1 = 63.4349 θ2 = 53.130 ab = 1.7569 C ac = 5.2143 C bc = 3.4286 C bd = 6.7857 C df = 9.4235 C

ef = 7.7858 C cd = 0.2858 T ce = 7.7858 C de = 0

Page 121: una

Vertical Deflections

Joint a

ab = 0 ac = 0 bc = 0

bd = 0 cd = 0 ce = 0

de = 0 df = 0 ef = 0

Page 122: una

Joint b

ab = 0.7986 C ac = 0.3571 T bc = 0.2857 C

bd = -0.3571 C cd = 0.3771 T ce = 0.1428 T

de = 0 df = 0.3194 C ef = 0.1428 T

Joint c

ab = 0.7986 C ac = 0.3571 T bc = 0.7143 T

bd = 0.3571 C cd = 0.3571 C ce = 0.1428 T

de = 0 df = 0.3194 C ef = 0.1428 T

Page 123: una

Joint d

ab = 0.3194 C ac = 0.1428 T bc = 0.2858 T

bd = 0.1428 C cd = 0.3571 C ce = 0.7143 T

de = 0 df = 0.6388 C ef = 0.3571 T

Joint e

ab = 0.3194 C ac = 0.1428 T bc = 0.2858 T

bd = 0.1428 C cd = 0.3571 C ce = 0.3571 T

de = 0 df = 0.7986 C ef = 0.3571 T

Page 124: una

Joint f

ab = 0 ac = 0 bc = 0 bd = 0

cd = 0 ce = 0 de = 0 df = 0

ef = 0

Page 125: una

Joint b

Mem. S U L(m) A E SUL/AE (mm)

ab -1.7569 -0.7986 4.4721 0.09m2 200GPa 0.00035

ac -5.2143 0.3571 2 0.09m2 200GPa -0.00021

bc -3.4286 -0.2857 4 0.09m2 200GPa 0.00022

bd -6.7857 -0.3571 3 0.09m2 200GPa 0.0004

cd 4.2858 0.3571 5 0.09m2 200GPa 0.00043

ce -7.7858 0.1428 3 0.09m2 200GPa -0.00019

de 0 0 4 0.09m2 200GPa 0

ef -7. 7858 -0.3194 2 0.09m2 200GPa -0.00012

df -9.4235 0.1428 4.4721 0.09m2 200GPa 0.00075

δb = 0.00163 mm

Joint c

Mem. S U L(m) A E SUL/AE (mm)

ab -1.7569 -0.7986 4.4721 0.09m2 200GPa 0.00035

ac -5.2143 0.3571 2 0.09m2 200GPa -0.00021

bc -3.4286 0.7143 4 0.09m2 200GPa 0.00054

bd -6.7857 -0.3571 3 0.09m2 200GPa 0.0004

cd 4.2858 0.3571 5 0.09m2 200GPa 0.00043

ce -7.7858 0.1428 3 0.09m2 200GPa -0.00019

de 0 0 4 0.09m2 200GPa 0

ef -7. 7858 -0.3194 2 0.09m2 200GPa -0.00012

df -9.4235 0.1428 4.4721 0.09m2 200GPa 0.00075

δc = 0.00127 mm

Page 126: una

Joint d Mem. S U L(m) A E SUL/AE (mm)

ab -1.7569 -0.3194 4.4721 0.09m2 200GPa 0.00014

ac -5.2143 0.1428 2 0.09m2 200GPa -0.00083

bc -3.4286 0.2858 4 0.09m2 200GPa -0.00022

bd -6.7857 -0.1428 3 0.09m2 200GPa 0.00016

cd 4.2858 -0.3573 5 0.09m2 200GPa -0.00043

ce -7.7858 0.3573 3 0.09m2 200GPa -0.00046

de 0 1 4 0.09m2 200GPa 0

ef -7. 7858 -0.7986 2 0.09m2 200GPa -0.000187

df -9.4235 0.3573 4.4721 0.09m2 200GPa -0.0031

δd = 0.000667 mm

Joint e Mem. S U L(m) A E SUL/AE (mm)

ab -1.7569 -0.3194 4.4721 0.09m2 200GPa 0.00014

ac -5.2143 0.1428 2 0.09m2 200GPa -0.00083

bc -3.4286 0.2858 4 0.09m2 200GPa -0.00032

bd -6.7857 -0.1428 3 0.09m2 200GPa 0.00016

cd 4.2858 -0.3573 5 0.09m2 200GPa -0.00043

ce -7.7858 0.3573 3 0.09m2 200GPa -0.00046

de 0 0 4 0.09m2 200GPa 0

ef -7. 7858 -0.7986 2 0.09m2 200GPa -0.000187

df -9.4235 0.3573 4.4721 0.09m2 200GPa -0.0031

δe = 0.000667 m

Page 127: una

Horizontal Deflections

Joint a

ab = 0 ac = 0 bc = 0

bd = 0 cd = 0 ce = 0

de = 0 df = 0 ef = 0

Joint b

ab = 0.6388 T ac = 0.2857 C bc = 0.5714 T

Page 128: una

bd = 0.7143 C cd = 0.7143 C

ce = 0.7143 C de = 0

df = 0.7143 C ef = 0.6388 T

Joint c

ab = 0 ac = 0 bc = 0

bd = 0 cd = 0

ce = 1 C

de = 0 df = 0

ef = 1 C

Joint d

ab = 0.6388 T ac = 0.2857 C bc = 0.5714 C

bd = 0.2857 T cd = 0.7143 T ce = 0.7143 C

de = 0 df = 0.6388 C ef = 0.7143 C

Page 129: una

Joint e

ab = 0 ac = 0 bc = 0

bd = 0 cd = 0 ce = 0

de = 0 df = 0

ef = 1 C

Joint f

ab = 0 ac = 0 bc = 0

bd = 0 cd = 0 ce = 0

de = 0 df = 0

ef = 1 C

Page 130: una

Joint b

Mem. S U L(m) A E SUL/AE (mm)

ab -1.7569 -0.6388 4.4721 0.09m2 200GPa -0.00028

ac -5.2143 -0.2857 2 0.09m2 200GPa 0.00017

bc -3.4286 0.5714 4 0.09m2 200GPa -0.00044

bd -6.7857 -0.7143 3 0.09m2 200GPa 0.00081

cd 4.2858 -0.7143 5 0.09m2 200GPa -0.00085

ce -7.7858 -0.7143 3 0.09m2 200GPa 0.00093

de 0 0 4 0.09m2 200GPa 0

ef -7. 7858 -0.6388 2 0.09m2 200GPa 0.00055

df -9.4235 0.7143 4.4721 0.09m2 200GPa -0.00017

δb = 0.0042 mm

Joint c

Mem. S U L(m) A E SUL/AE (mm)

ab -1.7569 0 4.4721 0.09m2 200GPa 0

ac -5.2143 0 2 0.09m2 200GPa 0

bc -3.4286 0 4 0.09m2 200GPa 0

bd -6.7857 0 3 0.09m2 200GPa 0

cd 4.2858 0 5 0.09m2 200GPa 0

ce -7.7858 -1 3 0.09m2 200GPa 0.0013

de 0 0 4 0.09m2 200GPa 0

ef -7. 7858 0 2 0.09m2 200GPa 0

df -9.4235 -1 4.4721 0.09m2 200GPa 0.00087

δc = 0.00217 mm

Joint d Mem. S U L(m) A E SUL/AE (mm)

Page 131: una

ab -1.7569 0.6388 4.4721 0.09m2 200GPa -0.00028

ac -5.2143 -0.2857 2 0.09m2 200GPa 0.00017

bc -3.4286 -0.5714 4 0.09m2 200GPa -0.00044

bd -6.7857 0.2857 3 0.09m2 200GPa -0.00032

cd 4.2858 0.7143 5 0.09m2 200GPa -0.00085

ce -7.7858 -0.7143 3 0.09m2 200GPa 0.00093

de 0 0 4 0.09m2 200GPa 0

ef -7. 7858 -0.6388 2 0.09m2 200GPa 0.0015

df -9.4235 -0.7143 4.4721 0.09m2 200GPa 0.00062

δd = 0.00391 mm

Joint e Mem. S U L(m) A E SUL/AE (mm)

ab -1.7569 0 4.4721 0.09m2 200GPa 0

ac -5.2143 0 2 0.09m2 200GPa 0

bc -3.4286 0 4 0.09m2 200GPa 0

bd -6.7857 0 3 0.09m2 200GPa 0

cd 4.2858 0 5 0.09m2 200GPa 0

ce -7.7858 0 3 0.09m2 200GPa 0

de 0 0 4 0.09m2 200GPa 0 ef -7. 7858 0 2 0.09m2 200GPa 0

df -9.4235 -1 4.4721 0.09m2 200GPa 8.65x10-3

δe = 0.000865 mm

Page 132: una

Example 2

Find the stresses and deflections of each member.

A = 0.0001m2

E = 10 GPa θ= 53.1301

ab = 6 C ac = 27.5 C ad = 16.5 T bc = 0 cd = 0 ce = 24 C cf = 12.5 T df = 16.5 T ef = 16 C

eg = 24 C fg = 7.5 T fh = 19.5 T gh = 0 gi = 0 gj = 32.5 C hj = 19.5 T ij = 8 C

Page 133: una

Joint b

ab = 6 C

ac = 0 ad = 0 bc = 0 cd = 0

ce = 0 cf = 0 df = 0 ef = 0

eg = 0 fg = 0 fh = 0 gh = 0

gi = 0 gj = 0 hj = 0 ij = 0

Joint c

ab = 0 ac = 0.9375 C ad = 0.5625 T bc = 0 cd = 1 T ce = 0.375 C

cf = 0.3125 C df = 0.5625 C ef = 0 eg = 0.375 T fg = 0.3125 T fh = 0.1875 T

gh = 0 gi = 0 gj = 0.3125 C hj = 0.1875 T ij = 0

Joint d

Page 134: una

ab = 0 ac = 0.9375 C ad = 0.5625 T bc = 0 cd = 0 ce = 0.375 C

cf = 0.3125 C df = 0.5625 T ef = 0 eg = 0.375 C fg = 0.3125 T fh = 0.1875 T

gh = 0 gi = 0 gj = 0.3125 C hj = 0.1875 T ij = 0

Joint e

ab = 0 ac = 0.625 C ad = 0.375 T bc = 0 cd = 0 ce = 0.75 C

cf = 0.625 T df = 0.375 T ef = 1 C eg = 0.75 C fg = 0.625 T fh = 0.375 T

gh = 0 gi = 0 gj = 0.625 C hj = 0.375 T ij = 0

Joint f

Page 135: una

ab = 0 ac = 0.625 C ad = 0.375 T bc = 0 cd = 0 ce = 0.75 C

cf = 0.625 T df = 0.375 T ef = 0 eg = 0.75 C fg = 0.625 T fh = 0.375 T

gh = 0 gi = 0 gj = 0.625 C hj = 0.375 T ij = 0

Joint g

ab = 0 ac = 0.3125 C ad = 0.1875 T bc = 0 cd = 0 ce = 0.375 C cf = 0.3125 T

df = 0.1875 T ef = 0 eg = 0.375 C fg = 0.3125 C fh = 0.5625 T gh = 0 gi = 0

gj = 0.9375 C hj = 0.5625 T ij = 0

Joint h

Page 136: una

ab = 0 ac = 0.3125 C ad = 0.1875 T bc = 0 cd = 0 ce = 0.375 C

cf = 0.3125 T df = 0.1875 T ef = 0 eg = 0.375 C fg = 0.3125 C fh = 0.5625 T

gh = 1 T gi = 0 gj = 0.9375 C hj = 0.5625 T ij = 0

Joint i

ab = 0 ac = 0

ad = 0 bc = 0

cd = 0 ce = 0

cf = 0 df = 0 ef = 0

eg = 0 fg = 0 fh = 0 gh = 0

gi = 0 gj = 0 hj = 0 ij = 1 C

Page 137: una

Joint b

Mem. S U L(m) A E SUL/AE(mm)

ab -6 -1 20 0.0001m2 10 GPa 120

ac -27.5 0 25 0.0001m2 10 GPa 0

ad 16.5 0 15 0.0001m2 10 GPa 0

bc 0 0 15 0.0001m2 10 GPa 0

cd 0 0 20 0.0001m2 10 GPa 0

ce -24 0 15 0.0001m2 10 GPa 0

cf 12.5 0 25 0.0001m2 10 GPa 0

df 16.5 0 15 0.0001m2 10 GPa 0

ef -16 0 20 0.0001m2 10 GPa 0

eg -24 0 15 0.0001m2 10 GPa 0

fg 7.5 0 25 0.0001m2 10 GPa 0

fh 19.5 0 15 0.0001m2 10 GPa 0

gh 0 0 20 0.0001m2 10 GPa 0

gi 0 0 15 0.0001m2 10 GPa 0

gj -32.5 0 25 0.0001m2 10 GPa 0

hj 19.5 0 15 0.0001m2 10 GPa 0

ij -8 0 20 0.0001m2 10 GPa 0

δb = 120mm

Page 138: una

Joint c

Mem. S U L(m) A E SUL/AE(mm)

ab -6 0 20 0.0001m2 10 GPa 0

ac -27.5 -0.9375 25 0.0001m2 10 GPa 644.53135

ad 16.5 0.5625 15 0.0001m2 10 GPa 139.21875

bc 0 0 15 0.0001m2 10 GPa 0

cd 0 0 20 0.0001m2 10 GPa 0

ce -24 -0.375 15 0.0001m2 10 GPa 135

cf 12.5 -0.3125 25 0.0001m2 10 GPa -97.65625

df 16.5 0.5625 15 0.0001m2 10 GPa 139.21875

ef -16 0 20 0.0001m2 10 GPa 0

eg -24 -0.375 15 0.0001m2 10 GPa 135

fg 7.5 0.3125 25 0.0001m2 10 GPa 58.59375

fh 19.5 0.1875 15 0.0001m2 10 GPa 54.84375

gh 0 0 20 0.0001m2 10 GPa 0

gi 0 0 15 0.0001m2 10 GPa 0

gj -32.5 -0.3125 25 0.0001m2 10 GPa 253.90625

hj 19.5 0.1875 15 0.0001m2 10 GPa 54.84375

ij -8 0 20 0.0001m2 10 GPa 0

δc = 1517.5mm

Page 139: una

Joint d

Mem. S U L(m) A E SUL/AE(mm)

ab -6 0 20 0.0001m2 10 GPa 0

ac -27.5 -0.9375 25 0.0001m2 10 GPa 644.53135

ad 16.5 0.5625 15 0.0001m2 10 GPa 139.21875

bc 0 0 15 0.0001m2 10 GPa 0

cd 0 1 20 0.0001m2 10 GPa 0

ce -24 -0.375 15 0.0001m2 10 GPa 135

cf 12.5 -0.3125 25 0.0001m2 10 GPa -97.65625

df 16.5 0.5625 15 0.0001m2 10 GPa 139.21875

ef -16 0 20 0.0001m2 10 GPa 0

eg -24 -0.375 15 0.0001m2 10 GPa 135

fg 7.5 0.3125 25 0.0001m2 10 GPa 58.59375

fh 19.5 0.1875 15 0.0001m2 10 GPa 54.84375

gh 0 0 20 0.0001m2 10 GPa 0

gi 0 0 15 0.0001m2 10 GPa 0

gj -32.5 -0.3125 25 0.0001m2 10 GPa 253.90625

hj 19.5 0.1875 15 0.0001m2 10 GPa 54.84375

ij -8 0 20 0.0001m2 10 GPa 0

δd = 1517.5mm

Page 140: una

Joint e

Mem. S U L(m) A E SUL/AE(mm)

ab -6 0 20 0.0001m2 10 GPa 0

ac -27.5 -0.625 25 0.0001m2 10 GPa 429.6875

ad 16.5 0.375 15 0.0001m2 10 GPa 92.8125

bc 0 0 15 0.0001m2 10 GPa 0

cd 0 0 20 0.0001m2 10 GPa 0

ce -24 -0.75 15 0.0001m2 10 GPa 270

cf 12.5 0.625 25 0.0001m2 10 GPa 195.3125

df 16.5 0.375 15 0.0001m2 10 GPa 92.8125

ef -16 -1 20 0.0001m2 10 GPa 320

eg -24 -0.75 15 0.0001m2 10 GPa 270

fg 7.5 0.625 25 0.0001m2 10 GPa 117.1875

fh 19.5 0.375 15 0.0001m2 10 GPa 109.6875

gh 0 0 20 0.0001m2 10 GPa 0

gi 0 0 15 0.0001m2 10 GPa 0

gj -32.5 -0.625 25 0.0001m2 10 GPa 507.8125

hj 19.5 0.375 15 0.0001m2 10 GPa 109.6875

ij -8 0 20 0.0001m2 10 GPa 0

δe = 2515 mm

Page 141: una

Joint f

Mem. S U L(m) A E SUL/AE(mm)

ab -6 0 20 0.0001m2 10 GPa 0

ac -27.5 -0.625 25 0.0001m2 10 GPa 429.6875

ad 16.5 0.375 15 0.0001m2 10 GPa 92.8125

bc 0 0 15 0.0001m2 10 GPa 0

cd 0 0 20 0.0001m2 10 GPa 0

ce -24 -0.75 15 0.0001m2 10 GPa 270

cf 12.5 0.625 25 0.0001m2 10 GPa 195.3125

df 16.5 0.375 15 0.0001m2 10 GPa 92.8125

ef -16 0 20 0.0001m2 10 GPa 0

eg -24 -0.75 15 0.0001m2 10 GPa 270

fg 7.5 0.625 25 0.0001m2 10 GPa 117.1875

fh 19.5 0.375 15 0.0001m2 10 GPa 109.6875

gh 0 0 20 0.0001m2 10 GPa 0

gi 0 0 15 0.0001m2 10 GPa 0

gj -32.5 -0.625 25 0.0001m2 10 GPa 507.8125

hj 19.5 0.375 15 0.0001m2 10 GPa 109.6875

ij -8 0 20 0.0001m2 10 GPa 0

δf = 2915 mm

Page 142: una

Joint g

Mem. S U L(m) A E SUL/AE(mm)

ab -6 0 20 0.0001m2 10 GPa 0

ac -27.5 -0.3125 25 0.0001m2 10 GPa 214.84375

ad 16.5 0.1875 15 0.0001m2 10 GPa 46.40625

bc 0 0 15 0.0001m2 10 GPa 0

cd 0 0 20 0.0001m2 10 GPa 0

ce -24 -0.375 15 0.0001m2 10 GPa 135

cf 12.5 0.3125 25 0.0001m2 10 GPa 97.65625

df 16.5 0.1875 15 0.0001m2 10 GPa 46.40625

ef -16 0 20 0.0001m2 10 GPa 0

eg -24 -0.375 15 0.0001m2 10 GPa 135

fg 7.5 -0.3125 25 0.0001m2 10 GPa -58.59375

fh 19.5 0.5625 15 0.0001m2 10 GPa 164.53125

gh 0 0 20 0.0001m2 10 GPa 0

gi 0 0 15 0.0001m2 10 GPa 0

gj -32.5 -0.9375 25 0.0001m2 10 GPa 761.71875

hj 19.5 0.5625 15 0.0001m2 10 GPa 164.53125

ij -8 0 20 0.0001m2 10 GPa 0

δg= 1707.5 mm

Page 143: una

Joint h

Mem. S U L(m) A E SUL/AE(mm)

ab -6 0 20 0.0001m2 10 GPa 0

ac -27.5 -0.3125 25 0.0001m2 10 GPa 214.84375

ad 16.5 0.1875 15 0.0001m2 10 GPa 46.40625

bc 0 0 15 0.0001m2 10 GPa 0

cd 0 0 20 0.0001m2 10 GPa 0

ce -24 -0.375 15 0.0001m2 10 GPa 135

cf 12.5 0.3125 25 0.0001m2 10 GPa 97.65625

df 16.5 0.1875 15 0.0001m2 10 GPa 46.40625

ef -16 0 20 0.0001m2 10 GPa 0

eg -24 -0.375 15 0.0001m2 10 GPa 135

fg 7.5 -0.3125 25 0.0001m2 10 GPa -58.59375

fh 19.5 0.5625 15 0.0001m2 10 GPa 164.53125

gh 0 -1 20 0.0001m2 10 GPa 0

gi 0 0 15 0.0001m2 10 GPa 0

gj -32.5 -0.9375 25 0.0001m2 10 GPa 761.71875

hj 19.5 0.5625 15 0.0001m2 10 GPa 164.53125

ij -8 0 20 0.0001m2 10 GPa 0

δh= 1707.5 mm

Page 144: una

Joint i

Mem. S U L(m) A E SUL/AE(mm)

ab -6 0 20 0.0001m2 10 GPa 0

ac -27.5 0 25 0.0001m2 10 GPa 0

ad 16.5 0 15 0.0001m2 10 GPa 0

bc 0 0 15 0.0001m2 10 GPa 0

cd 0 0 20 0.0001m2 10 GPa 0

ce -24 0 15 0.0001m2 10 GPa 0

cf 12.5 0 25 0.0001m2 10 GPa 0

df 16.5 0 15 0.0001m2 10 GPa 0

ef -16 0 20 0.0001m2 10 GPa 0

eg -24 0 15 0.0001m2 10 GPa 0

fg 7.5 0 25 0.0001m2 10 GPa 0

fh 19.5 0 15 0.0001m2 10 GPa 0

gh 0 0 20 0.0001m2 10 GPa 0

gi 0 0 15 0.0001m2 10 GPa 0

gj -32.5 0 25 0.0001m2 10 GPa 0

hj 19.5 0 15 0.0001m2 10 GPa 0

ij -8 -1 20 0.0001m2 10 GPa 160

δi= 160 mm

Page 145: una

ANALYSIS OF

INDETERMINATE

TRUSS BY

CASTIGLIANO’S

THEOREM

Page 146: una

Procedure:

1.) Determine one support as the redundant which is to be

removed from the given truss.

2.) Determine the first set of bar forces due to applied loads in

the absence of the redundant.

3.) Determine the bar stresses due to redundant only in the

absence of real load.

4.) Tabulate the bar stresses obtained using the format below.

5.) Get the summation of

6.) Solve for the unknown reaction.

Radius of Curvature (m)

Example 1

Page 147: una

Find the reactions.

Stresses

ab =5.2778 C ac = 7.1667 T bc = 3 T bd = -8.6133 C cd = 5.4083 C

ce = 11.6667 T de = 0 df = 14.0216 C ef = 11.6667 T

Horizontal Unit Load

ab =0 ac = 1 C bc = 0 bd = 0

cd = 0

ce = 1 C de = 0 df = 0 ef = 0

Member S’ U L A E

ab -5.2778 0 5m 0.0005m2 12 Gpa

ac 7.1667 -1 3m 0.0005m2 12 Gpa

bc 3 0 4m 0.0005m2 12 Gpa

Page 148: una

S’-uRe

0 0 -5.2778

-3.5833 1.05 17.8333

0 0 3

0 0 -8.6133

0 0 -5.4083

-5.8333 0.5 221.8333

0 0 0

0 0 -14.0216

-5.8333 0.5 21.8333

Rah = 18.1667 KN

Rfh =

Rfv = 10.7778 KN

Rav = 7.2222 KN

Example 2

Find the reactions.

bd -8.6133 0 0.0005m2 12 Gpa

cd -5.4083 0 0.0005m2 12 Gpa

ce 11.6667 -1 3m 0.0005m2 12 Gpa

de 0 0 2m 0.0005m2 12 Gpa

df -14.0216 0 0.0005m2 12 Gpa

ef 11.6667 -1 3m 0.0005m2 12 Gpa

Page 149: una

Member S’ U L A E

ab -4 0 4m 0.0005m2 12 Gpa

ac -2.8284 0 5.6567m 0.0005m2 12 Gpa

ad 6 1 4m 0.0005m2 12 Gpa

bc -4 0 4m 0.0005m2 12 Gpa

cd -6 0 4m 0.0005m2 12 Gpa

ce -6 0 4m 0.0005m2 12 Gpa

de 8.4853 0 5.6567m 0.0005m2 12 Gpa

df 0 1 4m 0.0005m2 12 Gpa

ef -10 0 4m 0.0005m2 12 Gpa

Page 150: una

S’-uRe

0 0 -4

0 1.05 -2.8284

4 0 9

0 0 -4

0 0 -6

-5.8333 0 -6

0 0 8.4853

0 0 3

-5.8333 0 -10

Rfh = 3 KN

Rav = 6 KN

Rfv = 10 KN

Rah = 11 KN

Page 151: una

MOMENT

DISTRIBUTION

METHOD

(MDM)

Page 152: una

Example 1 Find the reactions of the frames below.

Column = 2I

Beam = I

Page 153: una

↑+∑Fv = 0

Rvc = 168.5884 KN

∑Fh= 0

Rhc = 19.4532 KN

Origin A B C D E

ab ba bd cd db dc de ed

DF 1 0.7059 0.2941 0 0.2059 0.6176 0.1765 1

FEM -14.40 9.6 -82.5 0 82.5 0 -81.6667 81.6667

1st 14.40 51.4601 21.4399 0 -0.1716 -0.5146 -0.1471 -81.6667

CO 25.7301 7.2 -0.0858 -0.2573 10.72 0 -40.8334 -0.0736

2nd

-25.7301 -5.0219 -2.0923 0 6.2003 18.5980 5.3150 0.0736

CO -2.5110 -12.8651 3.1002 9.2990 -1.0462 0 0.0368 2.6575

3rd -2.5110 6.8930 2.8719 0 0.2078 0.6234 0.1782 -2.6575

0 57.2661 -57.2661 9.0417 98.4103 18.7068 -117.1172 0

Page 154: una

Example 1

Determine the vertical deflection at point E of the simple frame

below. Use E=11370 MPa and I = 1750x106 mm4 for all members.

Page 155: una

Unit Load

A. “M” due to real loads 1. Segment ab

Page 156: una

2. Segment bd

3. Segment cd

Page 157: una

4. Segment de

5. Segment ef

Page 158: una

B. Due to vertical load downward

1. Segment ab

2. Segment bd

Page 159: una

3. Segment cd

4. Segment de

5. Segment ef

Page 160: una

Solution:

Horizontal Unit Load

Page 161: una

mab = x mbd = x mcd = 0 mde = 0.6667x mef = 0.6667x Substitute:

Page 162: una

Moment

Distribution of

Frames with

Sidesway

Page 163: una

Procedure:

1. The joints are held against sidesway. The fixed-end moments

caused by the applied loading are distributed and the first set of

balanced end moments is obtained, call these joint as “ M’ ”.

2. The unloaded frame is then assumed to have a certain amount

of sidesway which will cause a set of fixed-end moments. These

fixed-end moment are then distributed and a second set of

balanced end moment is obtained, call these moment as “ M ”.

3. The resulting set of end moments may be obtained by adding

the first set and the product of a ratio “k” and a second set. The

value “k” may be obtained using shear conditions.

M = M’ + KM”

ILLUSTRATION:

Actual frame Due to loads Due to sidesway

M M’ M”

Page 164: una

Example 1

Orig A B C

MEM ab ba bg bc cb cf cd

DF 0 0.3636 0.2728 0.3636 0.3636 0.2728 0.3636 FEM 0 0 -2.6667 -3 3 -4 -3

1ST 0 2.0604 1.5459 2.0604 1.4544 1.0912 1.4544

CO 1.0302 0 -0.3638 0.7272 1.0302 0.5456 0.2857

2ND

0 -0.1321 -0.0991 -0.1321 -0.2801 -0.2801 -0.2801

CO -0.0661 0 -0.0063 -0.1401 -0.0661 0.0372 0.0372

3RD

0 0.0532 0.0399 0.0532 -0.0432 -0.0432 -0.0432

∑ 0.9614 1.9815 -1.5501 -0.4314 5.0952 -1.5460 -1.5460

Page 165: una

Orig D E F

MEM dc de ed ef fe fc fg

DF 0.5714 0.4286 0.4286 0.5714 0.3636 0.2727 0.3636

FEM 3 -4 4 0 0 4 0

1ST

0.5714 0.4286 -1.7144 -2.2856 1.4544 1.0912 -0.9696

CO 0.7272 -0.8572 0.2143 0.7272 1.1428 0.5456 -0.7272

2ND 0.0734 -0.0361 0.2198 0.2931 0.3934 0.2952 -0.0167

CO -0.1401 0.1099 -0.0181 0.1967 0.1466 -0.1051 0.1967

3RD

0.0173 0.0129 -0.0963 0.1283 -0.0121 -0.0090 -0.0535

∑ 4.2501 -4.2501 2.6513 -2.6513 -2.0693 3.6354 -1.5703

Orig G H MEM gf gb gh hg

DF 0.3636 0.2127 0.3636 0 FEM 0 2.6667 0 0 1ST -1.4544 -0.7275 -0.9696 0 CO -0.4840 0.7730 0 -0.4848 2ND 0.3934 -0.0125 -0.0167 0 CO -0.0084 -0.0496 0 -0.0084 3RD -0.0120 -0.0401 -0.0535 0 ∑ -1.5662 2.6100 -1.0398 -0.4932

Page 166: una

PORTAL

METHOD

Page 167: una

Example 1

Determine the shear moment and axial forces, and the columns,

girders of the frame below.

Solution:

1.) Column Shear

1st level

Page 168: una

ground level

2.) Column Moments

1st level

Mcb = Mbc = 7.50 ( 1.50 ) = 11.25 KN.m

Mde = Med = 15 ( 1.50 ) = 22.5 KN.m

Mih = Mhi = 7.50 ( 1.50 ) = 11.25 KN.m

Ground level

Mba = Mab = 10 ( 2 ) = 20 KN.m

Meh = Mfe = 20 ( 2 )= 40 KN.m

Mhg = Mgh = 10 ( 2 )= 20 KN.m

3.) Girder Moments

Joint c :Mdc = Mcb = 11.25 KN.m Joint d :22.50 = 11.25 + Mdi = 11.25 KN.m

Page 169: una

Joint i :Mdi = Mih = 11.25 KN.m Joint b :Mba + Mhg = 31.25 KN.m Joint h :Mhi + Mhg = 31.25 KN.m Joint e :Mbe + Meh = Med + Mef = 31.25 KN.m

4.) Girder Shears

Mcd = Vcd( 2 ) 11.25 = Vcd( 2 ) = 5.625 KN Mdi = Vdi( 2 ) 11.25 = Vdi( 2 ) = 5.625 KN Mbe = Vbe( 2 ) 31.25 = Vbe( 2 ) = 15.625 KN Meh = Veh( 2 ) 31.25 = Veh( 2 ) = 15.625 KN

5.) Column Axial Forces “ s “

Joint C

3.625 – Scb = 0

Scb = 5.625 KN

Page 170: una

Joint i

Sih – 5.625 = 0

Sih = 5.625 KN

Joint b

5.625 + 15.625 – Sba= 0 Sba = 21.25 KN

Page 171: una

Joint d

By inspection, Sde = 0

Joint e

By inspection, Sef = 0

Joint h

-15.625 – 5.625 + Shg = 0 Shg = 21.25 KN

Page 172: una

Cantilever

Method

Page 173: una

Cantilever Method Assumptions:

1. There is a point of inflection at midpoint of all members. 2. The intensity of axial force in each column of a storey is

proportional to the horizontal distance of that column from the center of gravity of all columns of the storey under consideration.

Example 1 Analyze the building frame below completely using the cantilever method. Assume area of each column is 100,000mm2.

Page 174: una

1. Coulmn Axial Forces

∑ax

1st level (Above A-A)

∑M@1=0

60(1) + Sde (6) – sin (14) = 0 60 + 0.09 sin (6) – 14 sin = 0 Sin = 4.46 KN

Page 175: una

Thus; Scb = 0.91 (4.46) ; Scb = 4.06 KN Sde = 0.09 (4.46) ; Sde = 0.40 KN

Ground level (Above B-B)

∑M@2=0

40(1.5) + 60(3.5) + 0.09 Shg (6) – Shg (14) = 0

Shg = 20.06 KN Sba = 18.25 KN

Sef = 1.81 KN

2. Girder Shear

Joint c

∑Fv = 0

Vcd – 4.06 = 0 Vcd = 4.06 KN

Page 176: una

Joint d

∑Fv = 0 -4.06 – 0.40 + Vdi = 0 Vdi = 4.46 KN

Joint b

∑Fv = 0 -18.25 + 4.06 + Vbe = 0 Vbe = 14.19 KN

Page 177: una

Joint e

∑Fv = 0 -14.19 – 1.81 + 0.40 + Veh = 0 Veh = 15.60 KN

3. Girder Moments

Mcd = Mde = 4.06 (3) = 12.18 KN∙m Mdi = Mid = 4.06 (4) = 17.84 KN∙m Mbe = Meb = 14.19 (3) = 42.57 KN∙m Meh = Mhe = 15.60 (4) = 62.40 KN∙m

4. Column Moments

∑M column = ∑M girder

Joint c Mcd = Mcb = 12.18 KN∙m

Joint d Mdc + Mdi = Mde Mde = 30.02 KN∙m

Page 178: una

Joint j Mdi = Mih = 17.84 KN∙m

Joint h Mhi + Mhg = Mhe 17.84 + Mhg = 62.40 Mhg = 44.56 KN∙m

Joint b Mbc + Mba = Mbe 12.18 + Mba = 42.57 Mba = 30.39 KN∙m

Joint e Med + Mef = Meb + Meh 30.02 + Mef = 42.57 + 62.40 Mef = 74.95 KN∙m

5. Column Shear

Vbc = 2 (12.18) / 2 = 12.18 KN Vde = 2 (30.02) / 2 = 30.02 KN Vih = 2 (17.84) / 2 = 17.84 KN Vba = 2 (30.39) / 3 = 20.26 KN Vef = 2 (74.95) / 3 = 49.97 KN Vhg = 2 (44.56) / 3 = 29.71 KN

Page 179: una