Top Banner
Ultrafast processes in molecules Mario Barbatti [email protected] – Transient spectra and excited states
50

Ultrafast processes in molecules

Feb 23, 2016

Download

Documents

Barny

Ultrafast processes in molecules. II – Transient spectra and excited states. Mario Barbatti [email protected]. Energy (eV). Singlet. Triplet. 10. VR. Ph. Fl. PA. 0. Nuclear coordinates. Femtosecond phenomena. conical intersection 10-10 2 fs. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Ultrafast processes in molecules

Ultrafast processes in molecules

Mario [email protected]

II – Transient spectra and excited states

Page 2: Ultrafast processes in molecules

SingletTriplet

avoided crossing 102-104 fsconical intersection 10-102 fs

PA – photoabsorption 1 fs

VR – vibrational relaxation 102-105 fs

Energy (eV)

0

10

Nuclear coordinates

PhFl

PA

VR

Fl – fluorescence 106-108 fsintersystem crossing 105-107 fs

Ph – phosforescence 1012-1017 fs

Femtosecond phenomena

Page 3: Ultrafast processes in molecules
Page 4: Ultrafast processes in molecules

4

time-resolved experiments

Page 5: Ultrafast processes in molecules

5

Static spectrum: information is integrated over time

0

absorptionade

gua

thy

cyt

Page 6: Ultrafast processes in molecules

Ultra-short laser pulses

Transient spectrum: information is time resolved

Page 7: Ultrafast processes in molecules

7

450 500 550 600 650 700

0.0

0.2

0.4

0.6

0.8

1.0

Fluo

resc

ence

spe

ctru

m

(nm)

Time resolved spectra

static

transient

Page 8: Ultrafast processes in molecules

Transient (time-dependent) spectra: pump-probe

Mestdagh et al. J. Chem. Phys. 113, 240 (2000)

Page 9: Ultrafast processes in molecules

w

t

Dt

+

Dt

pump

and probe

Page 10: Ultrafast processes in molecules

td ~2000 fs

td < 200 fs

td < 200 fs

Page 11: Ultrafast processes in molecules

Mathies et al. Science 240, 777 (1988)

probe wavelength

= 618 nm

t = 60 fs

= 560 - 710 nm

t = 6 fs

Pump

Probe

Page 12: Ultrafast processes in molecules

0

absorption

1

transmission

2

stimulated emission

0

excited state absorption (ionization)

1

transmission

1

spontaneous emission (fluorescence)

Page 13: Ultrafast processes in molecules

Transmission due to ground state depletion

11

Excited stateabsorption

00

22

Stimulated emission

00

Ground state absorption

Page 14: Ultrafast processes in molecules

14

Page 15: Ultrafast processes in molecules

15

Bacteriorhodopsin

Page 16: Ultrafast processes in molecules

16

geometry optimization

Page 17: Ultrafast processes in molecules

17

Topography of the potential energy surface

Page 18: Ultrafast processes in molecules

18

Topography of the excited-state potential energy surface

We want determine:• minima• saddle points• minimum energy paths• conical intersections

Page 19: Ultrafast processes in molecules

19

Newton-Raphson

A bit of basic mathematics: The Newton-Raphson’s Method

0xR

x

f(x)

x1x2x3

n

nnn xf

xfxx'1

Numerical way to get the root of a function

Prove it!

Page 20: Ultrafast processes in molecules

20

To find the extreme of a function, apply Newton-Raphson’s Method to the first derivative

0xe

f(x)

0 x

df/dx

xxe

x1x2x3

n

nnn xf

xfxx'''

1

Newton-Raphson

Page 21: Ultrafast processes in molecules

21

kkkTkkkkTkkk EE xxxHxxxxxgxx 1111

21

Taylor expansion:

221

2

22

212

21

221

221

2

//

/////

NN

N

EE

EEEEE

rrr

rrrrrrrr

xH

Hessian matrix:

NE

E

r

rxg

/

/ 1

Gradient vector:

iiii

N

zyx ,,,1

r

r

rx

Geometry optimization

Szabo and Ostlund, Modern Quantum Chemistry, Appendix C

Page 22: Ultrafast processes in molecules

22

Geometry optimization

At xe, g(xe) = 0

kkke xgxHxx 1 Prove it!

xe xk

If H-1 is exact: Newton-Raphson MethodIf H-1 is approximated: quasi-Newton Method

When g = 0, an extreme is reached regardless of the accuracy of H-1, provided it is reasonable.

Page 23: Ultrafast processes in molecules

23

Problem 1:

• Get the gradient g

Numerical

Expensive, unreliable, however available for any method for which excited-state energies can be computed

x

xxExxExxE

DDD

211

1

1

1 gradient = 2 x 3N energy calculations!

Analytical

Fast, reliable, but not generally available

xdxdx 2

2

x

xxxxdxdx

DDD

2

222

Two ways to get the derivative of x2

Page 24: Ultrafast processes in molecules

24

Method Single/Multi Reference

Analytical gradients

Coupling vectors

Computational effort

Typical implementation

MR-CISD MR Columbus EOM-CC SR Aces2 SAC-CI SR Gaussian CC2 / ADC SR Turbomole CASPT2 MR Molpro MRPT2 MR Gamess CISD/QCISD SR Molpro / Gaussian MCSCF MR Columbus / Molpro DFT/MRCI MR S. Grimme (Münster) OM2 MR W. Thiel (Mülheim) TD-DFT SR Turbomole TD-DFTB SR M. Elstner (Braunschweig) FOMO/AM1 MR Mopac (Pisa)

Present situation of quantum chemistry methods

Methods allowing for excited-state calculations:

Page 25: Ultrafast processes in molecules

25

Problem 2:

• Get the Hessian H (or H-1)

Hessian has NxN = N2 elementsNormally second derivatives are computed numericallyHessian matrix is too expensive!

Use approximate Hessian:1. Compute H in inexpensive method (3-21G basis, e.g.)2. Do not compute. Use guess-and-update schemes (MS, BFGS)

11

111

11

kkTkk

TkkkkT

kkggxx

xxxxΛΛHH

11

11

kkTkk

Tkkkk

kggxx

ggxx1Λ

Example: update in the BFGS method:

Page 26: Ultrafast processes in molecules

26excited state relaxation

Page 27: Ultrafast processes in molecules

27

p p*

The electronic configuration changes quickly after the photoexcitation

Page 28: Ultrafast processes in molecules

28

Minima in the excited states

E

X

“Spectroscopic” minimum

Globalminimum

• “Spectroscopic” minima are close to the FC region

• Global minima often are counter-intuitive geometries

Page 29: Ultrafast processes in molecules

29

Minima in the excited states

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Ene

rgy

(eV

)

LIICMin S1

MXS 3

V.Exc.

S0

S1

S2

Page 30: Ultrafast processes in molecules

30

Minima in the excited states

NH

O

NHCH

O

Ground state minimum S1 “spectroscopic” minimum

Page 31: Ultrafast processes in molecules

31

0 20 40 60 80 1000

2

4

6

8

10

12

0 20 40 60 80 1000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.35

1.40

1.45

1.50

0 50 100 150 2001.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.600 50 100 150 200

0.0

0.2

0.4

0.6

0.8

1.0

Tota

l num

ber o

f hop

ping

s

Time (fs)

S2 S1 S1 S2

Ene

rgy

(eV

)

S1-S2 Gap

R(C6-N)

Bon

d le

ngth

(Å)

R(C2-C3) R(C4-C5) R(C2-O)

Bon

d le

ngth

(Å)

Time (fs)

Frac

tion

of tr

ajec

torie

s

S2

NH

CHO

NH

O(a)

(c)

(b)

(d)

(1)

(2)

0 20 40 60 80 1000

2

4

6

8

10

12

0 20 40 60 80 1000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.35

1.40

1.45

1.50

0 50 100 150 2001.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.600 50 100 150 200

0.0

0.2

0.4

0.6

0.8

1.0

Tota

l num

ber o

f hop

ping

s

Time (fs)

S2 S1 S1 S2

Ene

rgy

(eV

)

S1-S2 Gap

R(C6-N)

Bon

d le

ngth

(Å)

R(C2-C3) R(C4-C5) R(C2-O)

Bon

d le

ngth

(Å)

Time (fs)

Frac

tion

of tr

ajec

torie

s

S2

NH

CHO

NH

O(a)

(c)

(b)

(d)

(1)

(2)

0 20 40 60 80 1000

2

4

6

8

10

12

0 20 40 60 80 1000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.35

1.40

1.45

1.50

0 50 100 150 2001.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.600 50 100 150 200

0.0

0.2

0.4

0.6

0.8

1.0

Tota

l num

ber o

f hop

ping

s

Time (fs)

S2 S1 S1 S2

Ene

rgy

(eV

)

S1-S2 Gap

R(C6-N)

Bon

d le

ngth

(Å)

R(C2-C3) R(C4-C5) R(C2-O)

Bon

d le

ngth

(Å)

Time (fs)

Frac

tion

of tr

ajec

torie

s

S2

NH

CHO

NH

O(a)

(c)

(b)

(d)

(1)

(2) NH

CHO

NH

O(a)

(c)

(b)

(d)

(1)

(2)

Relaxation in the excited states

Barbatti et al., in Radiation Induced Molecular Phenomena in Nucleic Acid ( 2008)

Page 32: Ultrafast processes in molecules

32Merchan and Serrano-Andres, JACS 125, 8108 (2003)

Surface can have different diabatic characters

Page 33: Ultrafast processes in molecules

33

Minima may have different diabatic characters

E

X

np*

pp*

Change of diabatic character

Adiabatic surface

np

p*

np

p*

Page 34: Ultrafast processes in molecules

34

Initial relaxation may involve several states

E

Page 35: Ultrafast processes in molecules

35

Relaxation keeping the diabatic character

Merchán et al. J. Phys. Chem. B 110, 26471 (2006)

Page 36: Ultrafast processes in molecules

36

Relaxation changing the diabatic character

Barbatti et al. J.Chem.Phys. 125, 164323 (2006)

[1 .7 7 2 ]1 .7 3 2

[1 .7 7 2 ]1 .7 3 2

[1 .7 7 2 ]1 .7 3 2

Page 37: Ultrafast processes in molecules

37

0 1 2 3 4 5 60

1

2

3

4

5

6

7

0 1 2 3 4 5 60

1

2

3

4

5

6

7

0 1 2 3 4 5 60

1

2

3

4

5

6

7

0 1 2 3 4 5 60

1

2

3

4

5

6

7

0 1 2 3 4 5 60

1

2

3

4

5

6

7

0 1 2 3 4 5 60

1

2

3

4

5

6

7

0 1 2 3 4 5 60

1

2

3

4

5

6

7

0 1 2 3 4 5 60

1

2

3

4

5

6

7

dMW

(amu1/2Å)

6S1

np*

dMW

(amu1/2Å)

E8

p*

4H3

p*

dMW

(amu1/2Å)

Ene

rgy

(eV

)

2E

pp*

B3,6

np*

Ene

rgy

(eV

)

2H3

pp*E

nerg

y (e

V)

E3

pp*

4S3

np*

In general, multiple paths are available

Page 38: Ultrafast processes in molecules

38

Common reaction paths: efficiency

pp*/csnp*

X C

R1

R2 R3

R4

np*/cs

Ener

gy

np*

Reaction path

C O

R1

R2

pp*/cs

pp*X C

R1

R2 R3

R4

p-1sp*p-3s*

n-1s

N H

R1

R2

Page 39: Ultrafast processes in molecules

39

0 90 180 270 3600

90

180

(°)

)

0 90 180 270 3600

90

180

(°)

)

0 fs120 fs

170 fs200 fs

The trapping effect9H-adenine

Ener

gy

Reaction path

Ener

gy

Reaction path

0 90 180 270 3600

90

180

(°)

(°)

2-pyridone

Ener

gy

Reaction path

Ener

gy

Reaction path

Page 40: Ultrafast processes in molecules

40

4

6

8

4

6

0 5 10

4

6

3T1

pp*/cspp*

np*

Ene

rgy

(eV

)

6E

pp*/cspp*

np*out-of-plane O

np*/cspp*

np*

dMW

(Å.amu1/2)

E5

pp*/cspp*

np*

6,3B

np*/cspp*

np*

Radiationless decay: thymine

Zechmann and Barbatti, J. Phys. Chem. A 112, 8273 (2008)

Page 41: Ultrafast processes in molecules

41

Radiationless decay: lifetime

0 50 100

0.00

0.25

0.50

0.75

1.00

0 50 100 0 50 100 150

S3

S2

S1

S0

S4

Occ

upat

ion

S2

Time (fs)

S3 S

1

S0

S2

S1

S0

pyridonepyrrole

NH

adenineN

N

NH2

NH

N NH O

0 50 100

0.00

0.25

0.50

0.75

1.00

0 50 100 0 50 100 150

S3

S2

S1

S0

S4

Occ

upat

ion

S2

Time (fs)

S3 S

1

S0

S2

S1

S0

pyridonepyrrole

NH

adenineN

N

NH2

NH

N

adenineN

N

NH2

NH

N NH O

pp*/cs

pp*

pp*/cs

pp*

np*/csnp* np*/csnp*p-1s

p*p-3s*n-1s

p-1sp*p-3s*

n-1s

Page 42: Ultrafast processes in molecules

42

excited-state intramolecular proton transferESIPT

Page 43: Ultrafast processes in molecules

43

Proton Transfer in 2-(2'-Hydroxyphenyl)benzothiazole (HBT)

325 350 400 450 500 550 600 650 700

Elsaesser and Kaiser, Chem. Phys. Lett. 128, 231 (1986)

Page 44: Ultrafast processes in molecules

44

ESIPT reaction schemes

pump

ketoform

NOH

S1

S0

emission

DtN

OHNOH

NOH

reaction path

electronicconfigurationchange

several modes contribute

Page 45: Ultrafast processes in molecules

45

0.000

0.005

DT/T0

0.015

0 1 2 3 4 ps 6

0.000

0.005

0.010

0.015

gas phase

solution

DT/T

Lochbrunner, Wurzer, Riedle, J. Phys. Chem. A 107 10580 (2003)

Emission signal at the keto wave number appears after only 30 fs

Page 46: Ultrafast processes in molecules

46

Page 47: Ultrafast processes in molecules

47

Internal conversion should play a role

Page 48: Ultrafast processes in molecules

0.000

0.005

DT/T0

0.015

0 1 2 3 4 ps 6

0.000

0.005

0.010

0.015

gas phase

solution

probe = 570 nmResolution: 30 fs

• Barbatti, Aquino, Lischka, Schriever, Lochbrunner, Riedle, PCCP 11, 1406 (2009)

ESIPT: environment effects

Page 49: Ultrafast processes in molecules

ESIPT: QM/MM simulations

• Ruckenbauer, Barbatti, Lischka, unpublished

Page 50: Ultrafast processes in molecules

50

Next lecture

• Adiabatic approximation• Non-adiabatic corrections

[email protected]