Top Banner

of 31

Ulaby Equations

Jan 10, 2016

Download

Documents

pdavid345

equations from circuits ulaby 2nd edition good pdf annotated
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Circuitsby Fawwaz T. Ulaby and Michel M. Maharbiz

    Equations

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • Chapter 1: Circuit Terminology

    Chapter 2: Resisitive Circuits

    Chapter 3: Analysis Techniques

    Chapter 4: Operational Amplifiers

    Chapter 5: RC and RL First-Order Circuits

    Chapter 6: Circuit Analysis by Laplace Transform

    Chapter 7: ac Analysis

    Chapter 8: ac Power

    Chapter 9: Frequency Response of Circuits and Filters

    Chapter 10: Three-Phase Circuits

    Chapter 11: Magnetically Coupled Circuits

    Chapter 12: Fourier Analysis Techniques

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • I =VR

    (1.2)

    i=dqdt

    (A) (1.3)

    q(t) = t

    i dt (C) (1.6)

    p= i (W) (1.9)

    n

    k=1

    pk = 0 (1.10)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • R=`

    A=

    `

    A() (2.2)

    = iR (2.3)

    p= i = i2R=2

    R(W) (2.4)

    G=1R

    (S) (2.5)

    p= i = G2 (W) (2.7)

    N

    n=1

    in = 0 (KCL) (2.8)

    N

    n=1

    n = 0 (KVL) (2.11)

    Req =N

    i=1

    Ri (resistors in series) (2.22a)

    i =(

    RiReq

    )s (2.22b)

    1Req

    =N

    i=1

    1Ri

    (resistors in parallel) (2.31)

    Geq =N

    i=1

    Gi (conductances in parallel) (2.34)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • R1 = R2 (2.38a)

    is =sR1

    (2.38b)

    R1 =RbRc

    Ra+Rb+Rc(2.42a)

    R2 =RaRc

    Ra+Rb+Rc(2.42b)

    R3 =RaRb

    Ra+Rb+Rc(2.42c)

    Ra =R1R2+R2R3+R1R3

    R1(2.43a)

    Rb =R1R2+R2R3+R1R3

    R2(2.43b)

    Rc =R1R2+R2R3+R1R3

    R3(2.43c)

    R1 = R2 = R3 =Ra3

    (if Ra = Rb = Rc) (2.44a)

    Ra = Rb = Rc = 3R1 (if R1 = R2 = R3) (2.44b)

    Rx =(R2R1

    )R3 (balanced condition) (2.47)

    Vout ' V04(RR

    )(2.48)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • GV = It (3.26)

    RI = Vt (3.27)

    iN =ThRTh

    (3.37a)

    RN = RTh (3.37b)

    RL Rs (maximum current transfer) (3.39)

    RL Rs (maximum voltage transfer) (3.40)

    RL = Rs (maximum power transfer) (3.42)

    pmax =2s RL

    (RL+RL)2=

    2s4RL

    (3.43)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • ip = in = 0 (ideal op-amp model) (4.16)

    p = n (ideal op-amp model) (4.17)

    G=os

    =(RfRs

    )(4.24)

    o = G11+G22 (4.31)

    o =(RfR

    )[1+2] (equal gain) (4.32)

    o =(1+2) (inverted adder) (4.33)

    o =(RfR1

    )1+

    (RfR2

    )2+ +

    (RfRn

    )n (4.34)

    o =[(

    R4R3+R4

    )(R1+R2R1

    )]2

    (R2R1

    )1 (4.40)

    o =(R2R1

    )(21) (equal gain) (4.44)

    o =(

    1+2RR2

    )(21) (4.56)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • u(t) =

    {0 for t < 01 for t > 0

    (5.2)

    r(tT ) ={

    0 for t T(tT ) for t T (5.4)

    r(t) = t

    u(t) dt = t u(t) (5.6)

    rect(tT

    )

    =

    0 for t < (T /2)1 for (T /2) t (T + /2)0 for t > (T + /2)

    (5.8)

    C =q

    (F) (any capacitor) (5.20)

    C =Ad

    (parallel-plate capacitor) (5.21)

    C =2pi`

    ln(b/a)(coaxial capacitor) (5.22)

    (t) = (t0)+1C

    tt0i dt (5.24)

    (t) =1C

    t0i dt

    (capacitor uncharged before t = 0)

    (5.25)

    w(t) =12C 2(t) (J) (5.28)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • 1Ceq

    =N

    i=1

    1Ci

    =1C1

    +1C2

    + + 1CN

    (capacitors in series)

    (5.35)

    Ceq =N

    i=1

    Ci (capacitors in parallel) (5.40)

    C11 =C22 (5.46)

    L=N2S`

    (solenoid) (5.51)

    i(t) = i(t0)+1L

    tt0 dt (5.55)

    Leq =N

    i=1

    Li = L1+L2+ +LN

    (inductors in series) (5.62)

    1Leq

    =N

    i=1

    1Li=

    1L1

    +1L2

    + + 1LN

    (inductors in parallel) (5.65)

    ddt

    +a = 0 (source-free) (5.69)

    (t) = (0) et/ (natural response) (5.77)

    = RC (s) (5.78)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • i(t) =VsR

    et/ u(t) (for t 0)(natural response) (5.82)

    ddt

    +a = b (5.87)

    (t) = ()+ [(0)()]et/ (for t 0)(switch action at t = 0) (5.95)

    (t) = ()+ [(T0)()]e(tT0)/(for t T0) (5.97)

    (switch action at t = T0)

    i(t) = i(0) et/ (for t 0)(natural response) (5.102)

    =1a=

    LR

    (5.103)

    i(t) = i()+ [i(0) i()]et/ (for t 0)(switch action at t = 0) (5.106)

    i(t) = i()+ [i(T0) i()]e(tT0)/(for t T0)

    (switch action at t = T0)

    (5.107)

    out(t) = 1RC tt0i(t ) dt +out(t0) (5.128)

    out(t) = 1RC t

    0i(t ) dt (if out(0) = 0) (5.129)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • out =RC didt (5.130)

    tfall =CnD+C

    pD

    g(5.155)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • damping coefficient =R2L

    (Np/s) (6.1a)

    resonant frequency 0 =1LC

    (rad/s) (6.1b)

    (series RLC)

    iL+a2iL+b2iL = c2 (6.12)

    =1

    2RC(parallel RLC) (6.14)

    (tT ) = 0 for t 6= T

    (tT ) dt = 1(6.15a)

    (6.15b)

    u(tT ) = t

    (T ) dddt

    [u(tT )] = (tT )

    (6.19a)

    (6.19b)

    x(t) (tT ) dt = x(T )

    (sampling property)

    (6.23)

    e j = cos + j sin (6.27)

    x= |z|cos y= |z|sin|z|=

    x2+ y2 = tan1(y/x) (6.30)

    z = (x+ jy) = x jy= |z|e j = |z| (6.31)

    |z|=

    zz (6.32)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • F(s) =LLL[ f (t)] =

    0f (t) est dt (6.40)

    (t) 1 (6.46)

    [cos(t)] u(t)s

    s2+2(6.47)

    f (at)1a

    F( sa

    )a> 0

    (time-scaling property)

    (6.49)

    f (tT ) u(tT ) eT s F(s)T 0

    (time-shift property)

    (6.53)

    f =d fdt

    s F(s) f (0)(time-differentiation property)

    (6.58)

    f =d2 fdt2

    s2 F(s) s f (0) f (0)(second-derivative property) (6.61)

    t0

    f (t ) dt 1s

    F(s)

    (time-integration property)

    (6.62)

    F(s) =A1

    s+ p1+

    A2s+ p2

    + + Ans+ pn

    =n

    i=1

    Ais+ pi

    (6.83)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • A1 = (s+ pi) F(s)s=pi

    i= 1,2, . . . ,n(6.84)

    B j ={

    1(m j)!

    dm j

    dsm j[(s+ p)m F(s)]

    }s=p

    j = 1,2, . . . ,m (6.92)

    LLL1[(n1)!(s+a)n

    ]= tn1eat u(t) (6.94)

    = Ri V = RI (6.107)

    = Ldidt

    V = sLIL i(0) (6.110)

    i=Cddt

    I = sCVC (0) (6.111)

    ZR = R, ZL = sL and ZC =1

    sC(6.112)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • = 2pi f (rad/s) (7.3)

    T =1f

    (s) (7.4)

    didt

    jI (7.21)

    i dt

    Ij

    (7.23)

    Z =VI

    () (7.29)

    ZR =VRIR

    = R (7.30)

    ZL =VLIL

    = jL (7.35)

    ZC =VCIC

    =1

    jC(7.38)

    Zeq =N

    i=1

    Zi (impedances in series) (7.64)

    Yeq =N

    i=1

    Yi (admittances in parallel) (7.66)

    Z1 =ZbZc

    Za+Zb+Zc(7.69a)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • Z2 =ZaZc

    Za+Zb+Zc(7.69b)

    Z3 =ZaZb

    Za+Zb+Zc(7.69c)

    Za =Z1Z2+Z2Z3+Z1Z3

    Z1(7.70a)

    Zb =Z1Z2+Z2Z3+Z1Z3

    Z2(7.70b)

    Zc =Z1Z2+Z2Z3+Z1Z3

    Z3(7.70c)

    Z1 = Z2 = Z3 =Za3, if Za = Zb = Zc (7.71a)

    Za = Zb = Zc = 3Z1 if Z1 = Z2 = Z3 (7.71b)

    21

    =N2N1

    = n (7.120)

    i2i1=

    N1N2

    (7.121)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • Xav =1T

    T0

    x(t) dt (8.5)

    cos2 x=12+

    12

    cos2x

    1T

    T0

    cos2(

    2pintT

    +1)

    dt =12

    and

    1T

    T0

    sin2(

    2pintT

    +2)

    dt =12

    (8.10)

    Ieff =

    1T

    T0

    i2(t) dt (8.13)

    Xrms = Xeff =

    1T

    T0

    x2(t) dt (8.14)

    1T

    T0

    cos(nt+) dt = 0 (n= 1,2, . . .) (8.22)

    Pav =VmIm

    2cos( i) (W) (8.23)

    Pav =VrmsIrms cos( i) (W) (8.24)

    Pav =VrmsIrms =V 2rmsR

    (purely resistive load)

    (8.25)

    Pav =VrmsIrms cos90 = 0

    (purely reactive load)

    (8.26)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • S =12

    VI (VA) (8.29)

    S = VrmsIrms (VA) (8.32)

    Q=VrmsIrms sin( i) (VAR) (8.34)

    Pav =Re[S] (average absorbed power) (8.36a)

    Q= Im[S] (peak exchanged power) (8.36b)

    Pav =Re[S] =12|I|2R= I2rmsR (W) (8.39a)

    Q= Im[S] =12|I|2X = I2rmsX (VAR) (8.39b)

    n

    i=1

    Pavi = 0 andn

    i=1

    Qi = 0 (8.40)

    S= |S|=P2av+Q2 =VrmsIrms (8.43)

    pf=PavS

    = cos( i) (8.44)

    pf= cosz (8.49)

    pf=

    {cosZL for the RL circuit alonecosnew for the compensated circuit

    (8.53)

    XL =Xs (8.63)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • RL = Rs (8.64)

    ZL = Zs (maximum power transfer) (8.65)

    Pav(max) =18|Vs|2RL

    (8.66)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • M(c) =M0

    2= 0.707M0 (9.5)

    0 =1LC

    (RLC circuit) (9.11)

    R = KmR,

    L = KmL,

    C =CKm

    ,

    and

    =

    (magnitude scaling only)

    (9.23)

    R = R,

    L =LKf,

    C =CKf,

    and

    = Kf

    (frequency scaling only)

    (9.25)

    R = KmR,

    L =KmKf

    L,

    C =1

    KmKfC,

    and

    = Kf

    (magnitude and frequency scaling)

    (9.26)

    G= XY G [dB] = X [dB]+Y [dB] (9.31)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • G=XY

    G [dB] = X [dB]Y [dB] (9.32)

    0 =1LC

    (9.48)

    c1 =R2L

    +

    (R2L

    )2+

    1LC

    (9.50a)

    c2 =R2L

    +

    (R2L

    )2+

    1LC

    (9.50b)

    B= c2c1 =RL

    (9.51)

    0 =c1c2 (9.52)

    Q= 2pi(WstorWdiss

    )=0

    (9.53)

    Q=0LR

    (bandpass filter) (9.61)

    Q=0B

    (bandpass filter) (9.62)

    c1 =1RC

    (RC filter) (9.72)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • Y-Source Configuration

    V1 =VYs0

    V2 =VYs120

    V3 =VYs240(10.1)

    -Source Configuration

    V12 = V1V2=VYs0VYs120

    =

    3VYs30 =Vs30

    V23 = V2V3 =Vs90V31 = V3V1 =Vs150

    with Vs =

    3VYs

    (10.3)

    VN = 0 (balanced network) (10.8)

    Z = 3ZY (10.12)

    PT = 3VYLIYL cosYQT = 3VYLIYL sinY

    (balanced network)

    (10.18a)

    (10.18)

    ST = PT+ jQT =

    3VLILY

    (balanced Y-load)

    (10.20)

    PT(t) = 3VYLIYL cosY (10.27)

    PT = P1+P2(any 3-phase load)

    (10.41)

    QT = 3V 2LZ

    sin (10.43)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • QT =

    3 (P2P1) (balanced load) (10.45)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • 2 =M21 di1dt (11.6)

    1 = L1di1dt

    +Mdi2dt

    and

    2 = L2di2dt

    +Mdi1dt

    (11.8a)

    (11.8b)

    1 = L1di1dtM di2

    dtand

    2 = L2di2dtM di1

    dt

    (11.9a)

    (11.9b)

    k =ML1L2

    (11.21)

    M(max) =L1L2 (11.22)

    (perfectly coupled transformer with k = 1)

    ZR =2M2

    R2+ jL2+ZL(11.25)

    [V1V2

    ]=[jL1 jMjM jL2

    ][I1I2

    ](transformer)

    (11.27c)

    [V1V2

    ]=[j(Lx+Lz) jLz

    jLz j(Ly+Lz)

    ][I1I2

    ](T-equivalent circuit) (11.28)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • Lx = L1MLy = L2M

    and

    Lz =M

    (transformer dots on same ends)

    (11.29a)

    (11.29b)

    (11.29c)

    Lx = L1+M

    Ly = L2+M

    and

    Lz =M(transformer dots on opposite ends)

    (11.30a)

    (11.30b)

    (11.30c)

    La =L1L2M2L1M

    Lb =L1L2M2L2M

    and

    Lc =L1L2M2

    M(transformer with dots on same ends)

    (11.31a)

    (11.31b)

    (11.31c)

    M(max) =L1L2

    (ideal transformer)

    (11.34)

    L2L1

    =N22N21

    = n2 (11.35)

    V2V1

    = n (ideal transformerwith dots on same side) (11.36)

    I2I1=

    1n

    (ideal transformerdots on same ends) (11.39)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • V2V1

    =N2N

    =N2

    N1+N2and

    I2I1=

    V1V2

    =N1+N2

    N2(step-down autotransformer)

    (11.42)

    V2V1

    =NN2

    =N1+N2

    N2and

    I2I1=

    V1V2

    =N2

    N1+N2(step-up autotransformer)

    (11.43)

    VLsVLp

    =ILpILs

    = n (Y-Y and -) (11.44)

    ST =

    3VLIL (Y and ) (11.45)

    VLsVLp

    =ILpILs

    =n3

    (Y-)

    and

    VLsVLp

    =ILpILs

    =

    3 n (-Y)

    (11.46)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • f (t) = a0+

    n=1

    (an cosn0t+bn sinn0t)

    (sine/cosine representation) (12.15)

    a0 =1T

    T0

    f (t) dt

    an =2T

    T0

    f (t) cosn0t dt

    bn =2T

    T0

    f (t) sinn0t dt

    (12.17a)

    (12.17b)

    (12.17c)

    An =a2n+b2n

    and

    n =

    tan1

    (bnan

    )an > 0

    pi tan1(bnan

    )an < 0

    (12.26)

    Ann = an jbn (12.27)

    f (t) = a0+

    n=1

    An cos(n0t+n)

    (amplitude/phase representation)

    (12.28)

    Even Symmetry: f (t) = f (t)

    a0 =2T

    T/20

    f (t) dt,

    an =4T

    T/20

    f (t) cos(n0t) dt, (12.31)

    bn = 0,

    An = |an|, and n ={

    0 if an > 0180 if an < 0

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • Odd Symmetry: f (t) = f (t)a0 = 0, an = 0,

    bn =4T

    T/20

    f (t) sin(n0t) dt, (12.32)

    An = |bn| and n ={90 if bn > 090 if bn < 0

    Solution Procedure:Fourier Series Analysis Procedure

    Step 1: Express s(t) in terms of an amplitude/phase Fourier series as

    s(t) = a0+

    n=1

    An cos(n0t+n) (12.33)

    with Ann = an jbn.

    Step 2: Establish the generic transfer function ofthe circuit at frequency as

    H() = Vout when s = 1cost. (12.34)

    Step 3: Write down the time-domain solution as

    out(t) = a0 H( = 0)

    +

    n=1

    AnRe{H( = n0) e j(n0t+n)}.(12.35)

    Pav =VdcIdc+12

    n=1

    VnIn cos(nin) (12.43)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • cn =an jbn

    2and

    cn =an+ jbn

    2= cn

    (12.47)

    f (t) =

    n=

    cne jn0t

    (exponential representation)

    (12.48)

    cn =1T

    T/2T/2

    f (t) e jn0t dt (12.50)

    sinc(x) =sinxx

    (12.54)

    f (t) =

    n=

    cne jn0t (12.58a)

    cn =1T

    T/2T/2

    f (t) e jn0t dt (12.58b)

    F() =F [ f (t)] =

    f (t) e jt dt (12.62a)

    f (t) =F1[F()] =1

    2pi

    F() e jt d (12.62b)

    K1 f1(t)+K2 f2(t) K1 F1()+K2 F2()

    (linearity property) (12.65)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • (t t0) e jt0and

    (t) 1

    (12.67a)

    (12.67b)

    e j0t 2pi (0)and

    1 2pi ()

    (12.68a)

    (12.68b)

    e j0t f (t) F(0)(frequency-shift property)

    (12.69)

    f (t t0) e jt0 F()(time-shift property)

    (12.70)

    cos0t pi[ (0)+ (+0)] (12.71)

    sin0t jpi[ (+0) (0)] (12.72)

    Aeat u(t)A

    a+ j, for a> 0 (12.73)

    sgn(t) = u(t)u(t) (12.74)

    u(t) pi ()+1j

    (12.79)

    f (t) j F() (12.81)

    cos0t f (t)12[F(0)+F(+0)] (12.82)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • F() = F()(reversal property)

    (12.85)

    f 2(t) dt =1

    2pi

    |F()|2 d

    (Parsevals theorem)

    (12.86)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

    Chapter 1Chapter 2Chapter 3Chapter 4Chapter 5Chapter 6Chapter 7Chapter 8Chapter 9Chapter 10Chapter 11Chapter 12