Top Banner
UAVSAR Polarimetric Calibra3on Alexander Fore, Bruce Chapman, Brian Hawkins, ScoA Hensley, Cathleen Jones, Thierry Michel, Ronald Muellerschoen Jet Propulsion Laboratory, California Ins3tute of Technology © 2013 California Ins3tute of Technology, Government Sponsorship acknowledged
20

UAVSAR Polarimetric&Calibraon&

Nov 25, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: UAVSAR Polarimetric&Calibraon&

UAVSAR  Polarimetric  Calibra3on  

Alexander  Fore,  Bruce  Chapman,  Brian  Hawkins,  ScoA  Hensley,  Cathleen  Jones,  Thierry  Michel,  Ronald  Muellerschoen  

Jet  Propulsion  Laboratory,  California  Ins3tute  of  Technology  ©  2013  California  Ins3tute  of  Technology,  Government  Sponsorship  acknowledged  

Page 2: UAVSAR Polarimetric&Calibraon&

Overview  of  Talk  1.  Summary  of  hardware  events  and  calibra3on  changes.  2.  SAR  Performance  over  Time  

–  Noise-­‐Equivalent  σ0  (NESZ).  –  Resolu3on  es3mated  at  corner  reflectors.  

3.  Radiometric  and  Phase  Calibra3on  –  Performed  within  UAVSAR  processor:  jurassicprok.  –  Es3mated  using  point-­‐targets  and  distributed  targets.  –  Periodically  check  /  update  using  engineering  flights.  

4.  Cross-­‐talk  Calibra3on  –  Runs  as  part  of  post-­‐processing  kit.  –  Requires  radiometric  and  phase  calibra3on  to  be  applied  already.  –  Es3mated  using  the  data  itself  for  each  flight  line.  

5.  Temporal  Stability  of  Calibra3on  Parameters  

Page 3: UAVSAR Polarimetric&Calibraon&

Summary  of  Hardware  Events  /  Calibra3on  Changes  

Start  Date   Event   Effect  

4/23/2009   Ka-­‐band  /  L-­‐band  pod  swap   Changed  L-­‐band  calibra3on  

4/8/2011   L-­‐band  antenna  switch   New  calibra3on;  change  in  NESZ.  

4/19/2011   Updated  beam  table     Updated  L-­‐band  calibra3on  

6/14/2011   L-­‐band  calibra3on  change*   Updated  calibra3on  (~  1dB  change)  

8/15/2012   Ka-­‐band  /  L-­‐band  pod  swap   Changed  L-­‐band  calibra3on  

1/2/2013   Antenna  re-­‐installed  in  pod;  accidental  cable  short.  

Very  noisy  data  due  to  cable  short.  

3/2/2013   Cable  short  repaired.   Changed  L-­‐band  calibra3on  

*  Retroac3vely  applied  to  data  star3ng  in  September  2012  

Page 4: UAVSAR Polarimetric&Calibraon&

SAR  Performance  

•  We  have  tracked  the  noise-­‐equivalent  σ0  over  3me  and  have  found  two  regimes:  – One  for  3me  period  up  to  2011-­‐04-­‐07  – Another  for  ajer  2011-­‐04-­‐07  – The  difference  is  due  to  an  antenna  change.  

•  The  range  and  azimuth  resolu3ons  as  es3mated  by  corner  reflectors  have  been  extremely  stable  over  3me.  

Page 5: UAVSAR Polarimetric&Calibraon&

NESZ  Up  to  2011-­‐04-­‐07  

Page 6: UAVSAR Polarimetric&Calibraon&

NESZ  Ajer  2011-­‐04-­‐07  

Page 7: UAVSAR Polarimetric&Calibraon&

Range  and  Azimuth  Resolu3on  

Jan−08 Jan−09 Jan−10 Jan−11 Jan−12 Jan−13

2.4752.5

2.5252.55

2.5752.6

2.6252.65

2.6752.7

FWH

M [m

]

Mean, STD HH Range: 2.534, 0.040Mean, STD VV Range: 2.544, 0.041

HH FWHM RangeVV FWHM Range

Jan−08 Jan−09 Jan−10 Jan−11 Jan−12 Jan−13

0.925

0.95

0.975

FWH

M [m

]

Mean, STD HH Azimuth: 0.941, 0.051Mean, STD VV Azimuth: 0.941, 0.026

HH FWHM AzimuthVV FWHM Azimuth

Full  Width  at  Half  Max  of  Corner  reflectors  

Page 8: UAVSAR Polarimetric&Calibraon&

Radiometric  /  Phase  Calibra3on  •  Antenna  paAern  correc3on  performed  within  the  processor.  •  The  radiometric  and  phase  calibra3on  is  performed  within  the  processor  via  pre-­‐

computed  parameters:  –  Per-­‐channel  gain  bias  (HH,HV,VH,VV).  (corner  reflectors)  –  HH-­‐VV  phase  bias  polynomial  fit  to  incidence  angle.  (corner  reflectors)  –  HV-­‐VH  phase  bias  polynomial  fit  to  incidence  angle.  (distributed  targets)  

•  Corner  reflector  array  in  dry  lake  bed  in  Rosamond,  CA.  –  23  corner  reflectors  (side  length  =  2.4  meters).  –  Posi3on  of  CR  measured  very  accurately  with  differen3al  GPS.  

Page 9: UAVSAR Polarimetric&Calibraon&

Corner  Reflector  Calibra3on  Es3ma3on  

1.  For  each  imaged  corner  reflector  (CR)  we:  –  Compute  predicted  normalized  radar  cross-­‐sec3on  (σ0)  using  analy3cal  expression.  

–  Compute  observed  σ0  via  oversampling  and  integra3on  for  HH  and  VV  channels.  

–  Compute  observed  HH-­‐VV  phase  at  CR  peak.  2.  Collect  this  data  over  typically  8  flight-­‐lines  

covering  the  range  swath  of  UAVSAR.  –  From  these  data  we  generate  the  radiometric  and  phase  calibra3on  parameters.  

Page 10: UAVSAR Polarimetric&Calibraon&

20 25 30 35 40 45 50 55 60 6548495051525354555657585960

Incidence Angle [deg]

Mea

s R

CS

[dB]

HHVV

20 25 30 35 40 45 50 55 60 6516171819202122232425262728

Incidence Angle [deg]

Mea

s/Pr

edic

ted

RC

S [d

B]

HH Mean: 20.87 VV Mean: 23.80

HH RMSE: 20.94 VV RMSE: 23.87

20 25 30 35 40 45 50 55 60 65−10

−4

2

8

14

20

26

Incidence Angle [deg]

HH−V

V Ph

ase

[deg

]

BIAS: 16.63 RMS: 17.52 20 25 30 35 40 45 50 55 60 65

1.1

1.15

1.2

1.25

1.3

1.35

Incidence Angle [deg]

Co−

Pol C

hann

el Im

bala

nce

BIAS: 0.185 RMS: 0.189

No  Radiometric  or  Phase  Calibra3on  Applied  

Page 11: UAVSAR Polarimetric&Calibraon&

20 25 30 35 40 45 50 55 60 65282930313233343536

Incidence Angle [deg]

Mea

s R

CS

[dB]

HHVV

20 25 30 35 40 45 50 55 60 65−3

−2

−1

0

1

2

3

Incidence Angle [deg]

Mea

s/Pr

edic

ted

RC

S [d

B]

HH Mean: 0.02 VV Mean: −0.00

HH RMSE: 0.77 VV RMSE: 0.68

20 25 30 35 40 45 50 55 60 65−10

−4

2

8

14

20

Incidence Angle [deg]

HH−V

V Ph

ase

[deg

] BIAS: −0.11 RMS: 5.10

20 25 30 35 40 45 50 55 60 650.9

0.95

1

1.05

1.1

1.15

Incidence Angle [deg]

Co−

Pol C

hann

el Im

bala

nce

BIAS: −0.009 RMS: 0.033

With  Radiometric  and  Phase  Calibra3on  Applied  

Page 12: UAVSAR Polarimetric&Calibraon&

04590135180

−45−15

1545

0

5

10

x 105

Phi

Co−Polarization Power; CR3; No Calibration

Theta04590135180

−45−15

1545

0

500

1000

Phi

Co−Polarization Power; CR3; With Calibration

Theta

04590135180

−45−15

1545

0

5

10

x 105

Phi

Co−Polarization Power; CR4; No Calibration

Theta04590135180

−45−15

1545

0

500

1000

Phi

Co−Polarization Power; CR4; With Calibration

Theta

Co-­‐Polariza3on  Signatures  of  Corner  Reflectors  

Page 13: UAVSAR Polarimetric&Calibraon&

Cross-­‐Talk  Calibra3on  •  We  use  a  fully  general  distor3on  model:  

–  4  complex  parameters  that  link  polariza3ons  (u,v,w,z)  –  1  complex  parameter  for  the  HV/VH  channel  balance  (α)  –  1  complex  parameter  for  the  HH/VV  channel  balance  (k)  –  assumed  to  be  1  via  corner  reflector  analysis.  

•  We  use  Ainsworth  et  al.  method  for  cross-­‐talk  parameter  es3ma3on.  –  Data  driven  algorithm  using  local  window  to  compute  observed  polarimetric  covariance  matrix  (C).  

–  Remove  pixels  with  large  hh-­‐hv  correla3on  and  very  bright  pixels.  

–  Use  a  large  window  (~40,000  pixels)  for  computa3on  of  C.  –  Rather  CPU  intensive,  we  use  domain  decomposi3on  to  perform  parallel  processing.  

Page 14: UAVSAR Polarimetric&Calibraon&

Fully  general  formula3on:  

Ohh Ohv

Ovh Ovv

"

# $

%

& ' =Y

k wku 1"

# $

%

& ' Shh ShvSvh Svv

"

# $

%

& ' αk αkzv 1

"

# $

%

& ' +

Nhh Nhv

Nvh Nvv

"

# $

%

& '

Ohh

Ovh

Ohv

Ovv

"

#

$ $ $ $

%

&

' ' ' '

= D

ShhSvhShvSvv

"

#

$ $ $ $

%

&

' ' ' '

D :=

1 w α v / α vwu α uv / α vz wz α 1/ α wuz z α u / α 1

#

$

% % % %

&

'

( ( ( (

With  k=1/√α;  Y=1:  

(*)  T.L.  Ainsworth,  L.  Ferro-­‐Famil,  and  Jong-­‐Sen  Lee.  Orienta3on  angle  preserving  a  posteriori  polarimetric  sar  calibra3on.  IEEE  Transac3ons  on  Geoscience  and  Remote  Sensing,  44(4):994–1003,  April  2006.  

Cross-­‐Talk  Calibra3on  Algorithm  

Assume  radiometric  and  phase  calibra3on:  

Itera3ve  parameter  es3ma3on  (*)  

Cross-­‐talk  parameter  es3mates:  (u,  v,  w,  z,  α)  

Construct  observed  polarimetric  covariance  matrix  over  window:  Cij  =  <  Oi  Oj*>  

E = D−1 =1

(uv−1)(vz−1)

1 −w −v vw−u / α 1/ α uv / α −v / α

−z α wz α α −w αuz −z −u 1

"

#

$$$$$

%

&

'''''

Calibra3on  Matrix:   Cross-­‐Talk  Removal  

Cross-­‐Talk  Calibrated  SLC  HH,  HV,  VH,  VV  channels  

SLC  HH,  HV,  VH,  VV  channels  (no  cross-­‐talk  calibra3on)  

Page 15: UAVSAR Polarimetric&Calibraon&

0 1500 3000 4500 6000 7500 9000

0

0.1

0.2

0.3

0.4

abs(

alp

ha)

[dB

]

Range Pixel

0 1500 3000 4500 6000 7500 9000

0

10

20

30

arg

(alp

ha)

[deg]

Range Pixel

0 1500 3000 4500 6000 7500 9000

−40

−20

abs(

u)

[dB

]

Range Pixel

0 1500 3000 4500 6000 7500 9000

−40

−20

abs(

v) [dB

]Range Pixel

0 1500 3000 4500 6000 7500 9000

−40

−20

abs(

w)

[dB

]

Range Pixel

0 1500 3000 4500 6000 7500 9000

−40

−20

abs(

z) [dB

]

Range Pixel

Red:  Es3mated  cross-­‐talk  parameters  as  a  func3on  of  range  Black:  Residual  es3mated  cross-­‐talk  parameters  

•  u,v,w,z  about  -­‐15  dB  before  cross-­‐talk  calibra3on.  •  Ajer  cross-­‐talk  calibra3on,  residual  cross-­‐talk  parameters  are  es3mated  to  be  ~  

-­‐40  dB.  •  Leaked  power  is  propor3onal  to  cross-­‐talk  parameters  squared.    

Page 16: UAVSAR Polarimetric&Calibraon&

Temporal  Stability  of  Calibra3on  Parameters  

Here  is  a  subset  of  all  the  Rosamond  engineering  flights  taken  up  to  end  of  2012  -­‐Each  point  represents  an  engineering  flight  over  Rosamond.  -­‐Dashed  lines  represent  change  in  calibra7on  parameters.  Here  we  show  the  mean  observed  /  model  ra3o  in  dB  for  each  flight  over  the  Rosamond  CR  array.  On  the  next  slide  we  show  the  RMS  error  in  radiometeric  calibra3on  and  phase  calibra3on  Note  that  other  geophysical  errors  sources  may  be  present  (water,  dirty  CR,  …etc).  

Jan−08 Jan−09 Jan−10 Jan−11 Jan−12 Jan−13−1.5

−1

−0.5

0

0.5

1

Mea

n O

bs/M

odel

Rat

io [d

B]

Mean HH ratio [dB]: −0.272Mean VV ratio [dB]: −0.308

HHVV

Jan−08 Jan−09 Jan−10 Jan−11 Jan−12 Jan−13

0.1

0.2

0.3

RMSE

of O

bs/M

odel

Rat

io

Mean RMSE HH [dB]: 0.620Mean RMSE VV [dB]: 0.677

HHVV

Jan−08 Jan−09 Jan−10 Jan−11 Jan−12 Jan−130

2.5

5

7.5

10

Phas

e RM

S [d

eg]

Mean RMS HHVV Phase: 5.293

HH−VV Phase RMS

Jan−08 Jan−09 Jan−10 Jan−11 Jan−12 Jan−13

−0.05

−0.025

0

0.025

0.05

Co−P

ol Im

bal.

Mean f Bias: −0.002Mean f RMS: 0.028

BiasRMS

Page 17: UAVSAR Polarimetric&Calibraon&

Jan−08 Jan−09 Jan−10 Jan−11 Jan−12 Jan−13−1.5

−1

−0.5

0

0.5

1

Mea

n O

bs/M

odel

Rat

io [d

B]

Mean HH ratio [dB]: −0.272Mean VV ratio [dB]: −0.308

HHVV

Jan−08 Jan−09 Jan−10 Jan−11 Jan−12 Jan−13

0.1

0.2

0.3

RMSE

of O

bs/M

odel

Rat

io

Mean RMSE HH [dB]: 0.620Mean RMSE VV [dB]: 0.677

HHVV

Jan−08 Jan−09 Jan−10 Jan−11 Jan−12 Jan−130

2.5

5

7.5

10

Phas

e RM

S [d

eg]

Mean RMS HHVV Phase: 5.293

HH−VV Phase RMS

Jan−08 Jan−09 Jan−10 Jan−11 Jan−12 Jan−13

−0.05

−0.025

0

0.025

0.05

Co−P

ol Im

bal.

Mean f Bias: −0.002Mean f RMS: 0.028

BiasRMS

Page 18: UAVSAR Polarimetric&Calibraon&

Summary  

•  Antenna  change  in  spring  2011  caused:  – Change  in  radiometric  calibra3on.  – Change  in  noise-­‐equivalent  sigma0.  

•  UAVSAR  has  provided  well  calibrated  data  for  more  than  3  years.  

Page 19: UAVSAR Polarimetric&Calibraon&

Version September 25, 2012 submitted to Remote Sens. 17 of 26

A. Corner Reflector Model206

In Figure 8 we plot a diagram of a trihedral corner reflector. Consider a rectangular coordinate system207

in which the ortha-normal axes, (x, y, z), are oriented along each of the three short legs of the corner208

reflector with the origin where the three legs meet, and ˆP = Px

x + Py

y + Pz

z is the unit vector that209

points from origin of this coordinate system to the antenna phase center. Without loss of generality, we210

pick Px

Py

Pz

. Then the theoretical radar cross section for a trihedral corner reflector is given by211

[4]212

�cr

=

4⇡l4

�2

Px

+ Py

+ Pz

� 2

Px

+ Py

+ Pz

�2, (P

x

+ Py

� Pz

)

�cr

=

4⇡l4

�2

Px

Py

Px

+ Py

+ Pz

�2, (P

x

+ Py

Pz

) (15)

B. Computation of Observed Corner Reflector Response213

Using a database of surveyed corner reflector locations and the motion data, we are able to estimate the214

approximate position of each corner reflector within the single-look complex SAR data in range-azimuth215

coordinates. We extract a 64x64 chip of single-look complex (SLC) data centered on the peak pixel216

power, and oversample it by a factor of 8, then generate the oversampled CR response as the amplitude217

squared. In Figure 9 we plot an image of the oversampled HH CR response from a corner reflector on218

the Rosamond lake bed. In [6–8], two methods of computing the corner RCS are described: the “peak”219

method and the “integration” method. The “peak” method computes the corner RCS as the maximum220

of the oversampled corner reflector response times the range and azimuth resolutions. The “integration”221

method has been presented in different ways, however, they all involve summation of the oversampled222

corner reflector response over a larger region that contains all the side lobes and then subtraction of the223

estimated speckle power contained in the region. The speckle power is estimated using a region that224

does not contain the side lobes of the point target response.225

In this document, we compute the corner RCS as

�0 = �max

az

, (16)

where �max

is the maximum value of the oversampled CR response, �⇢

is the full-width at half maximum226

of the CR response in range, and �

az

is the same for the azimuth dimension. For a focused SAR image,227

these full-widths at half maximum are the range and azimuth resolutions (?? is this really true?).228

C. Estimation of Cross-Talk Parameters229

Page 20: UAVSAR Polarimetric&Calibraon&

Range

Azi

muth

Oversampled HH RCS [dB]

64 128 192 256 320 384 448 512

64

128

192

256

320

384

448

512 −50

−40

−30

−20

−10

0

10

20

30