Top Banner
Two Stage Amplifier Design using PSpice M2-3
28

Two Stage Amplifier Design using PSpicewebstaff.kmutt.ac.th/~werapon.chi/M2_3/1_2014/M2_3_Lecture_08_2.pdf · = Forward transit time of minority carriers, average of lifetime of holes

Apr 27, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Two Stage Amplifier Design using PSpicewebstaff.kmutt.ac.th/~werapon.chi/M2_3/1_2014/M2_3_Lecture_08_2.pdf · = Forward transit time of minority carriers, average of lifetime of holes

Two Stage Amplifier Design using PSpice

M2-3

Page 2: Two Stage Amplifier Design using PSpicewebstaff.kmutt.ac.th/~werapon.chi/M2_3/1_2014/M2_3_Lecture_08_2.pdf · = Forward transit time of minority carriers, average of lifetime of holes

HYBRID MODEL PI

M2-3 Electronics

Page 3: Two Stage Amplifier Design using PSpicewebstaff.kmutt.ac.th/~werapon.chi/M2_3/1_2014/M2_3_Lecture_08_2.pdf · = Forward transit time of minority carriers, average of lifetime of holes

HYBRID MODEL PI PARAMETERS • Parasitic Resistances • rb = rb’b = ohmic resistance – voltage drop in base region

caused by transverse flow of majority carriers, 50 ≤ rb ≤ 500

• rc = rce = collector emitter resistance – change in Ic due to change in Vc, 20 ≤ rc ≤ 500

• rex = emitter lead resistance – important if IC very large, 1 ≤ rex ≤ 3

M2-3 Electronics

Page 4: Two Stage Amplifier Design using PSpicewebstaff.kmutt.ac.th/~werapon.chi/M2_3/1_2014/M2_3_Lecture_08_2.pdf · = Forward transit time of minority carriers, average of lifetime of holes

HYBRID MODEL PI PARAMETERS • Parasitic Capacitances • Cje0 = Base-emitter junction (depletion layer) capacitance,

0.1pF ≤ Cje0 ≤ 1pF • Cµ0 = Base-collector junction capacitance, 0.2pF ≤ Cµ0 ≤

1pF • Ccs0 = Collector-substrate capacitance, 1pF ≤ Ccs0 ≤ 3pF • Cje = 2Cje0 (typical) • ψ0 =.55V (typical) • τF = Forward transit time of minority carriers, average of

lifetime of holes and electrons, 0ps ≤ τF ≤ 530ps

M2-3 Electronics

Page 5: Two Stage Amplifier Design using PSpicewebstaff.kmutt.ac.th/~werapon.chi/M2_3/1_2014/M2_3_Lecture_08_2.pdf · = Forward transit time of minority carriers, average of lifetime of holes

HYBRID MODEL PI PARAMETERS • rπ = rb’e = dynamic emitter resistance – magnitude varies to

give correct low frequency value of Vb’e for Ib • rµ = rb’c = collector base resistance – accounts for change in

recombination component of Ib due to change in Vc which causes a change in base storage

• cπ = Cb’e = dynamic emitter capacitance – due to Vb’e stored charge

• cµ = Cb’c = collector base transistion capacitance (CTC) plus Diffusion capacitance (Cd) due to base width modulation

• gmVπ = gmVb’e = Ic – equivalent current generator

M2-3 Electronics

Page 6: Two Stage Amplifier Design using PSpicewebstaff.kmutt.ac.th/~werapon.chi/M2_3/1_2014/M2_3_Lecture_08_2.pdf · = Forward transit time of minority carriers, average of lifetime of holes

Hybrid Pi Relationships

Cm

T

T

Cm

C B

I g = V k T V = = 26mV @ 300 K

q I g =

26mV (26mV) ( ) 26mV r = =

I Iπ

°

β

β = gm rπ

πc m π

π

β v i = = g vrM2-3 Electronics

Page 7: Two Stage Amplifier Design using PSpicewebstaff.kmutt.ac.th/~werapon.chi/M2_3/1_2014/M2_3_Lecture_08_2.pdf · = Forward transit time of minority carriers, average of lifetime of holes

Hybrid Pi Relationships

M2-3 Electronics

Page 8: Two Stage Amplifier Design using PSpicewebstaff.kmutt.ac.th/~werapon.chi/M2_3/1_2014/M2_3_Lecture_08_2.pdf · = Forward transit time of minority carriers, average of lifetime of holes

Design of a Two Stage Amplifier

M2-3 Electronics

Page 9: Two Stage Amplifier Design using PSpicewebstaff.kmutt.ac.th/~werapon.chi/M2_3/1_2014/M2_3_Lecture_08_2.pdf · = Forward transit time of minority carriers, average of lifetime of holes

Two Stage Amplifier Design Specifications Design a two stage common emitter amplifier with partial emitter bypass for the following specifications: VCC = 20V VE = .1VCC

RE1A = .25RE1 VC1 = .6VCC IC1 = 2mA RE2A = .4RE2 VC2 = .55VCC IC2 = 2.5mA R2 = .1βRE1 R4 = .1βRE2 RL = 10kΩ fCL1 = 16Hz fCL2 = 13Hz fCL3 = 12Hz fCL4 = 67Hz fCL5 = 8Hz For both stages: β = 140 τCB = 150ps VA = 100V Cµ ≈ 8pF fT = 150MHz rb = 19Ω

M2-3 Electronics

Page 10: Two Stage Amplifier Design using PSpicewebstaff.kmutt.ac.th/~werapon.chi/M2_3/1_2014/M2_3_Lecture_08_2.pdf · = Forward transit time of minority carriers, average of lifetime of holes

Hybrid Pi Model

M2-3 Electronics

Page 11: Two Stage Amplifier Design using PSpicewebstaff.kmutt.ac.th/~werapon.chi/M2_3/1_2014/M2_3_Lecture_08_2.pdf · = Forward transit time of minority carriers, average of lifetime of holes

Low Critical Frequencies • There is one low critical frequency for each coupling and

bypass capacitor • We start by determining the (Thevenin) impedance seen by

each capacitor • Then we construct a RC high pass filter (output across Z) • We may then calculate the critical frequency by letting |XC| = Z and solving for either fCL or C and fCL = fCL1 + fCL2 + fCL3 + fCL4 + fCL5

CL

CL

1 f = 2 π Z C

1 C = 2 π f Z

M2-3 Electronics

Page 12: Two Stage Amplifier Design using PSpicewebstaff.kmutt.ac.th/~werapon.chi/M2_3/1_2014/M2_3_Lecture_08_2.pdf · = Forward transit time of minority carriers, average of lifetime of holes

Hybrid Pi Model Input First Stage

( )IN1 1 2 b1 π1 E1AZ = R //R // r + r + (β + 1)R

M2-3 Electronics

Page 13: Two Stage Amplifier Design using PSpicewebstaff.kmutt.ac.th/~werapon.chi/M2_3/1_2014/M2_3_Lecture_08_2.pdf · = Forward transit time of minority carriers, average of lifetime of holes

Hybrid Pi Model Output First Stage

( )O1 C1 O1 E1AZ = R // r + R

M2-3 Electronics

Page 14: Two Stage Amplifier Design using PSpicewebstaff.kmutt.ac.th/~werapon.chi/M2_3/1_2014/M2_3_Lecture_08_2.pdf · = Forward transit time of minority carriers, average of lifetime of holes

Hybrid Pi Model Input Second Stage

[ ]IN2 3 4 b2 π2 E2AZ = R //R // r + r + (β + 1)R

M2-3 Electronics

Page 15: Two Stage Amplifier Design using PSpicewebstaff.kmutt.ac.th/~werapon.chi/M2_3/1_2014/M2_3_Lecture_08_2.pdf · = Forward transit time of minority carriers, average of lifetime of holes

Hybrid Pi Model Output Second Stage

( )O2 C2 O2 E2AZ = R // r + R

M2-3 Electronics

Page 16: Two Stage Amplifier Design using PSpicewebstaff.kmutt.ac.th/~werapon.chi/M2_3/1_2014/M2_3_Lecture_08_2.pdf · = Forward transit time of minority carriers, average of lifetime of holes

Hybrid Pi Model Emitter Bypass First Stage

( ) β

1 2 b1 π1 TH_IN1 + E1A E1B

R //R + r + rZ = R // R

+ 1

M2-3 Electronics

Page 17: Two Stage Amplifier Design using PSpicewebstaff.kmutt.ac.th/~werapon.chi/M2_3/1_2014/M2_3_Lecture_08_2.pdf · = Forward transit time of minority carriers, average of lifetime of holes

Hybrid Pi Model Emitter Bypass Second Stage

[ ] β

3 4 C1 o1 E1A b2 π2 TH_IN2 + E2A E2B

R //R //R //(r + R ) + r + rZ = R // R

+ 1

M2-3 Electronics

Page 18: Two Stage Amplifier Design using PSpicewebstaff.kmutt.ac.th/~werapon.chi/M2_3/1_2014/M2_3_Lecture_08_2.pdf · = Forward transit time of minority carriers, average of lifetime of holes

fCL1

πCL1

IN1 1

1 f = 2 Z C

M2-3 Electronics

Page 19: Two Stage Amplifier Design using PSpicewebstaff.kmutt.ac.th/~werapon.chi/M2_3/1_2014/M2_3_Lecture_08_2.pdf · = Forward transit time of minority carriers, average of lifetime of holes

fCL2

( )πCL2

O1 IN2 2

1 f = 2 Z + Z C

Determine the Thevenin Impedance seen by C2

M2-3 Electronics

Page 20: Two Stage Amplifier Design using PSpicewebstaff.kmutt.ac.th/~werapon.chi/M2_3/1_2014/M2_3_Lecture_08_2.pdf · = Forward transit time of minority carriers, average of lifetime of holes

fCL3

( )πCL3

O2 L 3

1 f = 2 Z + R C

Determine the Thevenin Impedance seen by C3

M2-3 Electronics

Page 21: Two Stage Amplifier Design using PSpicewebstaff.kmutt.ac.th/~werapon.chi/M2_3/1_2014/M2_3_Lecture_08_2.pdf · = Forward transit time of minority carriers, average of lifetime of holes

fCL4

Determine the Thevenin Impedance seen by CE1

( )πCL4

TH_IN1 4

1 f = 2 Z C

M2-3 Electronics

Page 22: Two Stage Amplifier Design using PSpicewebstaff.kmutt.ac.th/~werapon.chi/M2_3/1_2014/M2_3_Lecture_08_2.pdf · = Forward transit time of minority carriers, average of lifetime of holes

fCL5

Determine the Thevenin Impedance seen by CE2

( )πCL5

TH_IN2 5

1 f = 2 Z C

M2-3 Electronics

Page 23: Two Stage Amplifier Design using PSpicewebstaff.kmutt.ac.th/~werapon.chi/M2_3/1_2014/M2_3_Lecture_08_2.pdf · = Forward transit time of minority carriers, average of lifetime of holes

Schematic of Design

M2-3 Electronics

Page 24: Two Stage Amplifier Design using PSpicewebstaff.kmutt.ac.th/~werapon.chi/M2_3/1_2014/M2_3_Lecture_08_2.pdf · = Forward transit time of minority carriers, average of lifetime of holes

Simulation Profile

M2-3 Electronics

Page 25: Two Stage Amplifier Design using PSpicewebstaff.kmutt.ac.th/~werapon.chi/M2_3/1_2014/M2_3_Lecture_08_2.pdf · = Forward transit time of minority carriers, average of lifetime of holes

Probe Plot – Y Axis Settings

M2-3 Electronics

Page 26: Two Stage Amplifier Design using PSpicewebstaff.kmutt.ac.th/~werapon.chi/M2_3/1_2014/M2_3_Lecture_08_2.pdf · = Forward transit time of minority carriers, average of lifetime of holes

Probe Plot – X Axis X Grid Settings

M2-3 Electronics

Page 27: Two Stage Amplifier Design using PSpicewebstaff.kmutt.ac.th/~werapon.chi/M2_3/1_2014/M2_3_Lecture_08_2.pdf · = Forward transit time of minority carriers, average of lifetime of holes

Frequency Response

M2-3 Electronics

Page 28: Two Stage Amplifier Design using PSpicewebstaff.kmutt.ac.th/~werapon.chi/M2_3/1_2014/M2_3_Lecture_08_2.pdf · = Forward transit time of minority carriers, average of lifetime of holes

Frequency Response

M2-3 Electronics