Top Banner
Regional Scale Modelling of the lower River Murray wetlands 216 9 References Abbruzzese B, Leibowitz SG (1997) A Synoptic Approach for Assessing Cumulative Impacts to Wetlands. Environmental Management 21, 457-475. Andersson L (2004) Experiences of the Use of Riverine Nutrient Models on Stakeholder Dialogues. Water Resources Development 20, 399-413. Anonymous (1995) 'Wetlands: Characteristics and Boundaries.' (National Academy Press: Washington, D.C.) APHA, Greenberg AE, Clesceri LS, Eaton AD, Association AWW, (U.S.) WPCF (1992) 'Standard methods for the examination of water and wastewater / prepared and published jointly by American Public Health Association, American Water Works Association, Water Pollution Control Federation ; joint editorial board, Arnold E. Greenberg, Lenore S. Clesceri, Andrew D. Eaton.' (APHA-AWWA-WPCF: Washington, D.C) Arthington AH, Pusey BJ (2003) Flow restoration and protection in Australian rivers. River Research and Applications 19, 377-395. Asaeda T, Trung VK, Manatunge J, Van Bon T (2001) Modelling macrophyte- nutrient-phytoplankton interactions in shallow eutrophic lakes and the evaluation of environmental impacts. Ecological Engineering 16, 341-357. Asaeda T, Van Bon T (1997) Modelling the effects of macrophytes on algal blooming in eutrophic shallow lakes. Ecological Modelling 104, 261-287. Baker PD, Brookes JD, Burch MD, Maier HR, Ganf GG (2000) Advection, growth and nutrient status of phytoplankton populations in the Lower River Murray, South Australia. Regulated Rivers: Research and Management 16, 327-344. Baldry I (2000) Effect of Common Carp (Cyprinus carpio) on Aquatic Restorations. http://www.hort.agri.umn.edu/h5015/00papers/baldry.htm Bart J (1995) Acceptance criteria for using individual-based models to make management decisions. Ecological Applications 5, 411-420. Bartsch D (1997) Impact of Irrigation Drainage on Sunnyside Wetland: A Comparative Limnological Study. Honours thesis, The University of Adelaide.
74

Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Aug 18, 2018

Download

Documents

lamminh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Regional Scale Modelling of the lower River Murray wetlands

216

9 References

Abbruzzese B, Leibowitz SG (1997) A Synoptic Approach for Assessing Cumulative

Impacts to Wetlands. Environmental Management 21, 457-475.

Andersson L (2004) Experiences of the Use of Riverine Nutrient Models on

Stakeholder Dialogues. Water Resources Development 20, 399-413.

Anonymous (1995) 'Wetlands: Characteristics and Boundaries.' (National Academy

Press: Washington, D.C.)

APHA, Greenberg AE, Clesceri LS, Eaton AD, Association AWW, (U.S.) WPCF

(1992) 'Standard methods for the examination of water and wastewater / prepared and

published jointly by American Public Health Association, American Water Works

Association, Water Pollution Control Federation ; joint editorial board, Arnold E.

Greenberg, Lenore S. Clesceri, Andrew D. Eaton.' (APHA-AWWA-WPCF:

Washington, D.C)

Arthington AH, Pusey BJ (2003) Flow restoration and protection in Australian rivers.

River Research and Applications 19, 377-395.

Asaeda T, Trung VK, Manatunge J, Van Bon T (2001) Modelling macrophyte-

nutrient-phytoplankton interactions in shallow eutrophic lakes and the evaluation of

environmental impacts. Ecological Engineering 16, 341-357.

Asaeda T, Van Bon T (1997) Modelling the effects of macrophytes on algal blooming

in eutrophic shallow lakes. Ecological Modelling 104, 261-287.

Baker PD, Brookes JD, Burch MD, Maier HR, Ganf GG (2000) Advection, growth

and nutrient status of phytoplankton populations in the Lower River Murray, South

Australia. Regulated Rivers: Research and Management 16, 327-344.

Baldry I (2000) Effect of Common Carp (Cyprinus carpio) on Aquatic Restorations.

http://www.hort.agri.umn.edu/h5015/00papers/baldry.htm

Bart J (1995) Acceptance criteria for using individual-based models to make

management decisions. Ecological Applications 5, 411-420.

Bartsch D (1997) Impact of Irrigation Drainage on Sunnyside Wetland: A

Comparative Limnological Study. Honours thesis, The University of Adelaide.

Page 2: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Regional Scale Modelling of the lower River Murray wetlands

217

Bavor HJ, Davies CM, Sakadevan K (2001) Stormwater treatment: do constructed

wetlands yield improved pollutant management performance over a detention pond

system? Water Science and Technology 44, 565-570.

Beardall J, Young E, Roberts S (2001) Approaches for determining phytoplankton

nutrient limitation. Aquatic Sciences 63, 44-69.

Beck MB (1997) Applying systems analysis in managing the water environment:

towards a new agenda. Water Science and Technology 36, 1-17.

Bedford BL, Preston EM (1988) Developing the Scientific Basis for Assessing

Cumulative Effects of Wetland Loss and Degradation on Landscape Functions:

Status, Perspectives, and Prospects. Environmental Management 12, 751-771.

Benndorf J, Recknagel F (1982) Problems of application of the ecological model

salmo to lakes and reservoirs having various trophic states. Ecological Modelling 17,

129-145.

Bjornsson KT, Ostendorf B, Recknagel F (2003) Using wetland nutrient modelling to

estimate River Murray and floodplain wetland water exchange. In 'International

Congress on Modelling and Simulation Proceedings'. Townsville, Australia. (Ed. DA

Post) pp. 404-409. (Modelling and Simulation Society of Australia and New Zealand

Inc.)

Blindow I, Anderson G, Hargeby A, Johansson S (1993) Long-term pattern of

alternate stable states in two shallow eutrophic lakes. Freshwater Biology 30, 159-

167.

Boon PI, Bailey PCE (1997) Implications of nutrient enrichment for management of

primary productivity in wetlands. In 'Wetlands in a dry Land: Understanding for

Management'. (Ed. WD Williams). (Environment Australia and Land and Water

Resources Research and Development Corporation)

Boumans R (2001) Personal Communication,

Boumans RM, Villa F, Costanza R, Voinov A, Voinov H, Maxwell T (2001) Non

spatial calibrations of a General Unit Model for Ecosystem simulations. Ecological

Modelling 146, 17-32.

Page 3: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Regional Scale Modelling of the lower River Murray wetlands

218

Bowden WB (1987) The biogeochemistry of nitrogen in freshwater wetlands.

Biogeochemistry 4, 313-313.

Bowles BA, Powling IJIJ, Burns FL (1979) 'Effects on water quality of artificial

aeration and destratification of Tarago Reservoir / by Barbara A. Bowles, I. Joan

Powling and Frank L. Burns.' (Australian Government Publishing Service: Canberra)

Braskerud BC (2002) Factor affecting phosphorus retention in small constucted

wetlands treating agricultural non-point source pollution. Ecological Engineering 19,

41-61.

Bunn SE, Arthington AH (2002) Basic Principles and Ecological Consequences of

Altered Flow Regimes of Aquatic Biodiversity. Environmental Management 30, 492-

507.

Burbridge PR (1994) Integrated planning and management of freshwater habitats,

including wetlands. Hydrobiologia 285, 311-322.

Burgoon PS (2001) Denitrification in free water surface wetlands receiving carbon

supplements. Water Science and Technology 44, 163-169.

Burton JR (1974) Hydrology of the Basin. In 'The Muray Waters: Man, Nature and a

River System'. (Eds HJ Frith and G Sawer) pp. 45-61. (Angus and Robertson PTY

LTD: Sydney)

Caffrey JM, Kemp WM (1992) Influence of the submerged plant, Potamogeton

perfoliatus, on nitrogen cycling in estuarine sediments. Limnology and Oceanography

37, 1483-1495.

Carpenter SR, Cottingham KL (1997a) Resilience and restoration of lakes.

Conservation Ecology [online] 1, 2.

Carpenter SR, Pace ML (1997b) Dystrophy and eutrophy in lake ecosystems:

implications of fluctuating inputs. Oikos 78, 3-14.

Caswell H (1988) Theory and models in ecology: A different perspective. Ecological

Modelling 43, 33-44.

Cetin L (2001) Contribution to a Generic Wetland Ecosystem Model (WETMOD) of

the Lower River Murray Floodplains. Honours thesis, The University of Adelaide.

Page 4: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Regional Scale Modelling of the lower River Murray wetlands

219

Cetin L, Recknagel F, Boumans RM (2001) WETMOD: A Generic Wetland

Ecosystem Model for the Simulation of Floodplain Wetlands at the Lower River

Murray (South Australia). In 'International Congress on Modelling and Simulation

Proceedings'. Canberra, Australia. (Eds F Ghassemi, P Whetton, R Little and M

Littleboy) pp. 837-842. (Modelling and Simulation Society of Australia and New

Zealand Inc.)

Chambers PA, Prepas EE (1994) Nutrient dynamics in riverbeds: the impact of

sewage effluent and aquatic macrophytes. Water Research 28, 453-464.

Chen RL, Barko JW (1988) Effects of Freshwater Macrophytes on Sediment

Chemistry. Journal of Freshwater Ecology 4, 279-289.

Close AF (1986) Computer Modelling of the River Murray. In 'Hydrology and Water

Resources Symposium'. Griffith University, Brisbane. (National Conference

Publication No. 86/13)

Close AF (1996) A New Model of Flow and Solute Transport in the River Murray. In

'23rd Hydrology and Water Resources Symposium'. Hobart Australia

Costanza R, d‟Arge R, et al. (1997) The value of the world‟s ecosystem services and

natural capital. Nature 387, 253-260.

Costanza R, Ruth M (1998) Using Dynamic Modeling to Scope Environmental

Problems and Build Consensus. Environmental Management 22, 183-195.

Croucher D (2005) Personal Communication,

Crumpton WG (2001) Using wetlands for water quality improvement in agricultural

watersheds; the importance of a watershed scale approach. Water Science and

Technology 44, 559-564.

Dambacher JM, Li HW, Rossignol PA (2003) Qualitative predictions in model

ecosystems. Ecological Modelling 161, 79-93.

de Wit MJM (2001) Nutrient Fluxes at the river basin scale. I: PolFlow model.

Hydrological Processes 15, 743-759.

Page 5: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Regional Scale Modelling of the lower River Murray wetlands

220

de Wit MJM, Pebesma EJ (2001) Nutrient fluxes at the river basin scale. II: the

balance between data availability and model complexity. Hydrological Processes 15,

761-775.

DeAngelis DL, Gross LJ, Huston MA, Wolff WF, Fleming DM, Comiskey EJ,

Sylvester SM (1998) Landscape Modeling for Everglades Ecosystem Restoration.

Ecosystems 1, 64-78.

DWLBC (2004) Department of Water Land and Biodiversity Conservation,

Elliott JA, Irish AE, Reynolds CS, Tett P (2000) Modelling freshwater phytoplankton

communities: an exercise in validation. Ecological Modelling 128, 19-26.

Fitz HC, DeBellevue EB, Costanza R, Boumans R, Maxwell T, Wainger L, Sklar FH

(1996) Development of a general ecosystem model for a range of scales and

ecosystems. Ecological Modelling 88, 263-295.

Forgan BW (2001) Australian Solar Radiation Data (CD).

Frears A (2006) Wetland Project Officer, Lower Murray

South Australian Murray-Darling Basin Natural Resources Management Board,

Gibbs MM, White E (1994) Lake Horowhenua: a computer model of its limnology

and restoration prospects. Hydrobiologia 275/276, 467-477.

Goodall DW (1972) Building and testing ecosystem models. In 'Mathematical Models

in Ecology'. (Ed. JNJ Jeffers) pp. 173-194. (Blackwell: Oxford)

Goonan PM, Beer JA, Thompson TB, Suter PJ (1992) Wetlands of the River Murray

flood plain, South Australia. 1. Prelimenary survey of the biota and physio-chemistry

of the ten wetlands from Chowilla to Mannum. Transactions of the Royal Society of

South Australia 116, 81-94.

Graneli W, Solander D (1988) Influence of aquatic macrophytes on phosphosus

cycling in lakes. Hydrobiologia 170, 245-266.

Griffin SL, Herzfeld M, Hamilton DP (2001) Modelling the impact of zooplankton

grazing on phytoplankton biomass during a dionoflagellate bloom in the Swan River

Estuary, Western Australia. Ecological Engineering 16, 373-394.

Page 6: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Regional Scale Modelling of the lower River Murray wetlands

221

Guerrin F, Dumas J (2001) Knowledge representation and qualitative simulation of

salmon redd functioning. Part I: qualitative modeling and simulation. Biosystems 59,

75-84.

Hamilton DP, Mitchell SF (1996) An empirical model for sediment resuspension in

shallow lakes. Hydrobiologia 317, 209-220.

Harrison J (1994) 'Water Resources Series No 11: Review of Nutrients in Irrigation

Drainage in the Murray-Darling Basin.' CSIRO Australia - Division of Water

Resources.

Hecky RE, Kilham P (1988) Nutrient limitation of phytoplankton in freshwater and

marine environments: a review of recent evidence on the effect of enrichment.

Limnology and Oceanography 33, 796-822.

Hills SE (1974) The Physiographic setting. In 'The Muray Waters: Man, Nature and a

River System'. (Eds HJ Frith and G Sawer) pp. 1-12. (Angus and Robertson PTY

LTD: Sydney)

Holland K, Jolly I, Overton I, Miles M, Vears L, Walker G (2005) 'The Floodplain

Risk Methodology (FRM): A suite of tools to rapidly assess at the regional scale the

impacts of groundwater inflows and benefits of improved inundation on the

floodplains of the lower River Murray.' CSIRO Land and Water, South Australian

Department for Environment and Heritage, CSIRO Land and Water Technical Report

27/05.

Holtan H, Kamp-Nielsen L, Stuanes AO (1988) Phosphorus in soil, water and

sediment: an overview. Hydrobiologia 170, 19-34.

Hulbert L, Wallis J, Peterson S, Richmond B (2000) STELLA Research Software. In.

(HPS High Performance Systems Inc.)

Hunter RG, Combs DL, George DB (2001) Nitrogen, Phosphorus and Organic

Carbon Removal in Simulated Wetland Treatment Systems. Archives of

Environmental Contamination and Toxicology 41, 274-281.

Jacobs T (1990) River Regulation. In 'The Murray'. (Eds N Mackay and D Eastburn)

pp. 39-60. (Murray Darling Basin Commission: Canberra, Australia.)

Jensen A, Paton P, Mowbray T, Simpson D, Kinnear S, Nicols S (1996) 'Wetlands

Atlas of the South Australian Murray Valley: A summary of current knowledge of

Page 7: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Regional Scale Modelling of the lower River Murray wetlands

222

Murray Valley wetlands as a basis for integrated catchment management.' (South

Australian River Murray Wetlands Management Committee, Department of

Environment and Natural Resources)

Johnson LB, Gage SH (1997) Landscape approaches to the analysis of aquatic

ecosystems. Freshwater Biology 37, 113-132.

Johnston CA (1991) Sediment and Nutrient Retention by Freshwater Wetlands:

Effects on Surface Water Quality. Critical Reviews in Environmental Control 21, 491-

565.

Johnston CA, Detenbeck NE, Niemi GJ (1990) The cumulative effect of wetlands on

stream water quality and quantity. Biogeochemistry 10, 105-105.

Kadlec RH (1997) An autobiotic wetland phosphorus model. Ecological Engineering

8, 145-172.

Kadlec RH, Reddy KR (2001) Temperature effects in treatment wetlands. Water

Environment Research: a Research Publication Of The Water Environment

Federation 73, 543-557.

Keenan LW, Lowe EF (2001) Determining ecologically acceptable nutrient loads to

natural wetlands for water quality improvement. Water Science and Technology 44,

289-294.

Kirk J (1998) 'GIS and Irrigation: An Inventory of Projects in the Murray-Darling

Basin.' (Murray-Darling Basin Commission)

Kobayashi T, Gibbs P, Dixon PI, Shiel RJ (1996) Grazing by a River Zooplankton

Community: Importance of Microzooplankton. Marine & Freshwater Research 47,

1025-1036.

Lemly AD (1997) Risk Assessment as an Environmental Management Tool:

Considerations for Freshwater Wetlands. Environmental Management 21, 343-358.

Lennox LJ (1984) Lough Ennell: laboratory studies on sediment phosphorus release

under varying mixing, aerobic and anaerobic conditions. Freshwater Biology 14, 183-

187.

Page 8: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Regional Scale Modelling of the lower River Murray wetlands

223

Li X, Jongman RH, Xiao D, Bert HW, Bregt AK (2002) The effect of spatial pattern

on nutrient removal of a wetland landscape. Landscape and Urban Planning 60, 27-

41.

Li X, Xiao D, Jongman RH, Bert HW, Bregt AK (2003) Spatial modeling on the

nutrient retention of an esutary wetland. Ecological Modelling 167, 33-46.

Lijklema L (1994) Nutrient dynamics in shallow lakes: effects of changes in loading

and role of sediment-water interactions. Hydrobiologia 275/276, 335-348.

Lüderitz V, Gerlach F (2002) Phosphorus Removal in Different Constructed

Wetlands. Acta Biotechnology 22, 91-99.

Ludwig DB, Walker B, Holling CS (1997) Sustainability, stability, and resilience.

Conservation Ecology [online] 1, 7.

Mackay N, Eastburn D (1990) 'The Murray.' (Murray Darling Basin Commission:

Canberra, Australia)

Marsden MW (1989) Lake restoration by reducing external phosphorus loading: the

influence of sediemnt phosphorus release. Freshwater Biology 21, 139-162.

Marsh F (1997) A comparative study of the impacts of carp on phytoplankton and

water quality in two Lower River Murray wetlands. Honours thesis, The University of

Adelaide.

Maxwell T, Costanza R (1997) An Open Geographic Modeling Environment.

Simulation Journal 68, 175-185.

Mayer DG, Butler DG (1993) Statistical validation. Ecological Modelling 68, 21-32.

McComb A, Qiu S (1997) The effects of drying and reflooding on nutrient release

from wetland sediments. In 'Wetlands in a Dry Land: Understanding for

Management'. (Ed. WD Williams). (Environment Australia, Biodiversity Group:

Canberra)

McIntosh BS (2003) Qualitative modelling with imprecise ecological knowledge: a

framework for simulation. Environmental Modelling & Software 18, 295-307.

Page 9: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Regional Scale Modelling of the lower River Murray wetlands

224

McIntosh BS, Muetzelfeldt RI, Legg CJ, Mazzoleni S, Csontos P (2003) Reasoning

with direction and rate of change in vegetation state transition modelling.

Environmental Modelling & Software 18, 915-927.

McIntyre NR, Wagener T, Wheater HS, Yu ZS (2003) Uncertainty and risk in water

quality modelling and management. Journal of Hydroinformatics 5, 259-274.

McIntyre NR, Wheater HS A tool for risk-based management of surface water

quality. Environmental Modelling & Software In Press, Corrected Proof.

Meijer ML, Jeppesen E, et al. (1994) Long-term responses to fish-stock reduction in

small shallow lakes: interpretation of five-year results of four biomanipulation cases

in The Netherlands and Denmark. Hydrobiologia 275/276, 457-466.

Mitasova H, Mitas L (1998) Process Modeling and Simulations, NCGIA Core

Curriculum in GIScience.

Mitchell SF (1989) Primary production in a shallow eutrophic lake dominated

alternately by phytoplankton and by submerged macrophytes. Aquatic Botany 33,

101-110.

Mitsch WJ, Gosselink JG (2000) 'Wetlands.' (John Wiley & Sons, Inc.: New York,

USA)

Morris JT (1991) Effects of Nitrogen Loading on Wetland Ecosystems with Particular

Reference to Atmospheric Deposition. Annual Reviews of Ecology and Systematics

22, 257-279.

Moss B (1990) Engineering and biological approaches to the restoration from

eutriphication of shallow lakes in which aquatic plant communities are important

components. Hydrobiologia 200/201, 367-377.

Muhammetoglu AB, Soyupak S (1997) A tree-dimensional water quality-macrophyte

interaction model for shallow lakes. Ecological Modelling 133, 161-180.

Murdoch B, Greenwood A, Cresswell D (2004) 'SIWM Model Evaluation Progress

Report to July 2004.' South Australian Department of Water, Land and Biodiversity

Conservation Report DWLBC 2005/08, Report DWLBC 2005/08.

Page 10: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Regional Scale Modelling of the lower River Murray wetlands

225

Murray AG (2001) The use of simple models in the design and calibration of a

dynamic 2D model of a semi-enclosed Australian bay. Ecological Modelling 136, 15-

30.

Naiman RJ, Bunn SE, Nilsson C, Petts GE, Pinay G, Thompson LC (2002)

Legitimising Fluvial Ecosystems as Users of Water: An Overview. Environmental

Management 30, 455-467.

Nichols S (1998) 'Wetlands Management Study report Wetland Care Australia.'

Wetland Care Australia.

Nielsen DL, Chick AJ (1997) Flood-mediated changes in aquatic macrophyte

community structure. Marine & Freshwater Research 48, 153-157.

Nürnberg GK (1984) The prediction of internal phosphorus load in lakes with anoxic

hypolimnia. Limnology and Oceanography 29, 111-124.

Nürnberg GK (1998) Prediction of Phosphorus Release Rates from Total and

Reductant- Soluble Phosphorus in Anoxic Lake Sediments. Canadian Journal of

Fisheries and Aquatic Sciences 45, 453-461.

Olila OG, Reddy KR, Harris WG (1995) Forms and distribution of inorganic

phosphorus in sediments of two shallow eutrophic lakes in Florida. Hydrobiologia

302, 147-161.

Oliver RL (1993) 'Phosphorus Dynamics and Bioavailability in Turbid Waters.' Land

and Water Resources Research and Development Corporation, Canberra.

Oreskes N, Shrader-Frechette K, Berlitz K (1994) Verification, validation, and

confirmation of numerical models in the earth sciences. Science 263, 641-646.

Overton I (2000) Personal Communication,

Overton I (2005) Modelling floodplain inundation on a regulated river: integrating

GIS, remote sensing and hydrological models. River Research and Applications 21,

991 - 1001.

Parsons S, Dohnal M (1995) The qualitative and semiqualitative analysis of

environmental problems. Environmental Software 10, 75-85.

Page 11: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Regional Scale Modelling of the lower River Murray wetlands

226

Peijl MJvd, Oorschot MMPv, Verhoeven JTA (2000a) Simulation of the effects of

nutrient enrichment on nutrient and carbon dynamics in a river marginal wetland.

Ecological Modelling 134, 169-184.

Peijl MJvd, Verhoeven JTA (1999) A model of carbon, nitrogen and phosphorus

dynamics and their interactions in river marginal wetlands. Ecological Modelling 118,

95-130.

Peijl MJvd, Verhoeven JTA (2000b) Carbon, nitrogen and phosphorus cycling in river

marginal wetlands; a model examination of landscape geochemical flows.

Biogeochemistry 50, 45-71.

Philcox MB (1997) 'Overview if the Lower River Murray Reclaimed Swamps

Irrigation Areas.' Primary Industries, South Australia.

Pimm SL (1997) The value of everything. Nature 387, 231-232.

Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD, Sparks RE,

Stromberg JC (1997) The natural flow regime: a paradigm for river conservation and

restoration. BioScience 47, 769-784.

Power M (1993) The predictive validation of ecological and environmental models.

Ecological Modelling 68, 33-50.

Pressey B (1990) Wetlands. In 'The Murray'. (Eds N Mackay and D Eastburn) pp.

167-182. (Murray Darling Basin Commission: Canberra, Australia.)

Pressey RL (1987) 'Murray Valley Management Review: Background paper number

5. The Murray Wetlands in SA: Management considerations and Research needs.'

South Australia.

Preston EM, Bedford BL (1988) Evaluating Cumulative Effects on Wetland

Functions: A Conceptual Overview and Generic Framework. Environmental

Management 12, 565-583.

Reckhow KH (1994) Water quality simulation modeling and uncertainty analysis for

risk assessment and decision making. Ecological Modelling 72, 1-20.

Recknagel F (nd) Personal Communication,

Page 12: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Regional Scale Modelling of the lower River Murray wetlands

227

Recknagel F, Bartsch D, Marsh F, Schiller N (nd) Degradation of Lower Murray

Floodplain Wetlands by Common Carp and Irrigation Drainage: Impacts on the River

Murray and Implications for Restoration.

Recknagel F, Benndorf J (1982) Validation of the Ecological Simulation Model

"SALMO". Hydrobiologia 67, 113-125.

Recknagel F, Hosomi M, Fukushima T, Kong D-S (1995) Short- and Long-Term

control of external and internal phosphorus loads in Lakes - A scenario analysis.

Water Research 29, 1767-1779.

Recknagel F, Marsh F, Matthews S, Schiller N (1997) Common carp in natural

wetlands: impacts and management. In 'Wetlands in a Dry Land: Understanding for

Management'. (Environment Australia and Land and Water Resources Research and

Development Corporation)

Recknagel F, van der Wielen M (2000) Ecological Restoration of Shallow Eutrophic

Lakes by Drawdown: Concept and Implications for Lake Dianchi (China). In

'Proceedings of the International Conference on Eutrophication in China. Kunming'

Reddy KR, Diaz OA, Scinto LJ, Agami M (1995) Phosphorus dynamics in selected

wetlands and streams of the lake Okeechobee Basin. Ecological Engineering 5, 183-

207.

Reddy KR, Patrick JWK, Lindau CW (1989) Nitrification-denitrification at the plant

root-sediment interface in wetlands. Limnology & Oceanography 34, 1004-1013.

Rengasany P, Olsson KA (1991) Sodicity and soil structure. Australian Journal of

Soil Research 29, 935 - 952.

RMCWMB (2002) 'Water Allocation Plan for the River Murray Prescribed

Watercourse (as amended 12th January, 2004).' River Murray Catchment Water

Management Board, Government of South Australia, Berri, South Australia.

Roberts J, Ganf GG (1986) Annual production of Typha orientalis Presl. in inland

Australia. Australian Journal of Marine and Freshwater Research 37, 659-668.

Roberts J, Ludwig JA (1991) Riparian vegetation along current-exposure gradients in

flooplain wetlands of the River Murray, Australia. Journal of Ecology 79, 117-127.

Page 13: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Regional Scale Modelling of the lower River Murray wetlands

228

Rousseau DPL, Vanrollenghem P, A., De Pauw N (2004) Constructed wetlands in

Flanders: a performance analysis. Ecological Engineering 23, 151-163.

Rykiel J, Edward J. (1996) Testing ecological models: the meaning of validation.

Ecological Modelling 90, 229-244.

Sand-Jensen K (1998) Influence of submerged macrophytes on sediment composition

and near-bed flow in lowland streams. Freshwater Biology 39, 663-679.

Sand-Jensen K, Madsen TV (1992) Patch dynamics of the stream macrophyte,

Callitriche cophocarpa. Freshwater Biology 27, 277-282.

Sand-Jensen K, Mebus TJR (1996) Fine -scale patterns of water velocity within

macrophyte patches in streams. Oikos 76, 169-180.

Sand-Jensen K, Moller J, Olsen BH (1988) Biomass regulation of microbenthic algae

in a Danish lowland stream. Oikos 53, 332-340.

Scheffer M (1998) 'Ecology of Shallow Lakes.' (Chapman & Hall: London)

Scheffer M, Hosper SH, Meijer M-L, Moss B, Jeppesen E (1993) Alternative

equilibria in shallow lakes. Trends in Ecology & Evolution 8, 275-279.

Scheffer M, Rinaldi S (2000) Minimal models of top-down control of phytoplankton.

Freshwater Biology 45, 265-283.

Schindler DW (1977) Evolution of Phosphorus Limitation in Lakes. Science 195, 260-

262.

Scholz O, Gawne B, Ebner B, Ellis I (2002) The effect of drying and re-flooding on

nutrient availability in ephemeral deflation basin lakes in western New South Wales,

Australia. River Research and Applications 18, 185-196.

Schulz C, Gelbrecht J, Rennert B (2004) Constructed wetlands with free water surface

for treatment of aquaculture effluents. Journal of Applied Ichthyology 20, 64-70.

Schwoerbel J (1993) 'Einfuehrung in die Limnologie.' (UTB Fuer Wissenschaft;

Gustav Fischer Verlag Jena und Stuttgart)

Page 14: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Regional Scale Modelling of the lower River Murray wetlands

229

Shafron M, Croome R, Rolls J (1990) Water Quality. In 'The Murray'. (Eds N Mackay

and D Eastburn) pp. 147-166. (Murray Darling Basin Commission: Canberra,

Australia.)

Shiel RJ, Walker KF, Williams WD (1982) Plankton of the Lower River Murray,

South Australia. Australian Journal of Marine and Freshwater Research 33, 301-327.

Siebentritt MA (2003) The Influence Of Water Regime On The Floristic Composition

Of Lower River Murray Wetlands. Ph.D. thesis, University of Adelaide.

Siebentritt MA, Ganf GG, Walker KF (2004) Effects of an enhanced flood on riparian

plants of the River Murray, South Australia. River Research and Applications 20,

765-774.

Simpson D (2003) Water Loss Calculator.

Sklar FH, Costanza R, Maxwell T (1993) State-of-the-Art Spatial Modeling for

Wetland Management. In ' Barataria-Terrebonne National Estuary Program,

Scientific-Technical Committee Data Inventory Workshop Proceedings'. Thibodaux,

LA 70310 pp. 354-366. (BTNEP)

SKM (2004) 'River Murray Wetlands Baseline Survey.' South Australian Murray

Darling Basin Natural Resources Management Board.

SKM (2006) 'River Murray Wetlands Baseline Survey - 2005.' South Australian

Murray Darling Basin Natural Resources Management Board.

Soendergaard M, Kristiansen P, Jeppesen E (1992) Phosphorus release from

resuspended sediment in the shallow and wind exposed Lake Arresoe, Denmark.

Hydrobiologia 228, 91-99.

Stephen D, Moss B, Phillips G (1998) The relative importance of top-down and

bottom-up control of phytoplankton in a shallow macrophyte-dominated lake.

Freshwater Biology 39, 699-713.

Strager JM, Yuill CB, Wood PB (2000) Landscape-based Riparian Habitat Modeling

for Amphibians and Reptiles using ARC/INFO GRID and ArcView GIS. In 'ESRI

International User Conference 2000'

Sullivan TJ (1997) Ecosystem Manipulation Experimentation as a Means of Testing a

Biogeochemical Model. Environmental Management 21, 15-21.

Page 15: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Regional Scale Modelling of the lower River Murray wetlands

230

Thomann RV (1998) The Future "Golden Age" of Predictive Models for Surface

Water Quality and Ecosystem Management. Journal of Environmental Engineering

124, 94-103.

Timms RM, Moss B (1984) Prevention of growth of potentially dense phytoplankton

populations by zooplankton grazing, in the presence of zooplanktonivotus fish, in a

shallow wetland ecosystem. Limnology and Oceanography 29, 472-486.

Tsang C (1991) The Modelling Process and Model Validation. Ground Water 29,

825-831.

van der Molen DT, Boers PCM (1994) Influence of internal loading on phosphorus

concentration in shallow lakes before and after reduction of the external loading.

Hydrobiologia 275-276, 379-389.

van der Wielen M (2001) Drying cycles as a switch between alternative stable states

in wetlands. In 'SIL 2001 conference'. Melbourne

van der Wielen M (nd) Personal Communication,

Voinov A, Costanza R (1999a) Watershed management and the Web. Journal of

Environmental Management 56, 231-245.

Voinov A, Costanza R, Wainger L, Boumans R, Villa F, Maxwell T, Voinov H

(1999b) Pautuxent landscape model: integrated ecological economic modeling of a

watershed. Environmental Modelling and Software 14, 473-491.

Walker KF (1979) Regulated Streams in Australia: The Murray-Darling River

System. In 'The Ecology of Regulated Streams'. (Eds JV Ward and JA Stanford) pp.

143-162. (Plenum Press: New York)

Walker KF (1985) A review of the ecological effects of river regulation in Australia.

Hydrobiologia 125, 111-129.

Walker KF, Boulton AJ, Thoms MC, Sheldon F (1994) Effects of Water-level

Changes Induced by Weirs on the Distribution of Littoral Plants along the River

Murray, South Australia. Australian Journal of Marine and Freshwater Research 45,

1421-1438.

Page 16: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Regional Scale Modelling of the lower River Murray wetlands

231

Walker KF, Hillman TJ (1982) Phosphorus and Nitrogen Loads in Waters Associated

with the River Murray near Albury-Wodonga, and their Effects on Phytoplankton

Populations. Australian Journal of Marine and Freshwater Research 33, 223-243.

Walker KF, Thoms MC (1993) Environmental Effects of Flow Regulation on the

Lower River Murray, Australia. Regulated Rivers: Research and Management 8, 103-

119.

Wallach D, Genard M (1998) Effect of uncertainty in input and parameter values on

model prediction error. Ecological Modelling 105, 337-345.

Webster IT, Maier H, Baker P, Burch M (1997) Influence of wind on water levels and

lagoon-river exchange in the River Murray, Australia. Marine & Freshwater

Research 48, 541-550.

Wen L (2002a) Mechanisms for Phosphorus Elimination in Constructed Wetlands: A

Pilot Study for the Treatment of Agricultural Drainage Water from Dairy Farms at the

Lower River Murray, South Australia. PhD thesis, The University of Adelaide.

Wen L (2002b) Personal Communication,

Wen L, Recknagel F (2002) In situ removal of dissolved phosphorus in irrigation

drainage water by planted floats: preliminary results from growth chamber

experiment. Agriculture, Ecosystems and Environment 90, 9-15.

Weymouth G, Le Marshall J (1994) An operational system to estimate insolation over

the Australian region. In 'Proc. Pacific Ocean Remote Sensing Conference'.

Melbourne, Australia 1-4 Mar 1994 pp. 443-449. (Bureau of Meteorology Research

Centre,)

Wood SN (2001) Partially Specified Ecological Models. Ecological Monographs 71,

1-25.

Young WJ, Lam DCL, V. R, Wong IW (2000) Development of an environmental

flows decision support system. Environmental Modelling & Software 15, 257-265.

Page 17: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Regional Scale Modelling of the lower River Murray wetlands

232

Glossary

Terminology

Wetland categories The division of wetlands into very simplified hydrological

connectivity classification, i.e. wetlands of similar type

“Exemplar” The monitored data of a wetland of a given category

Category wetlands wetland with no driving variable data within a give wetland

category for which “exemplar” data will be used as driving

variables, i.e. wetlands of a particular category

GIS Geographical Information System

DEM Digital Elevation Model

SME Spatial Modelling Environment – A GIS based modelling

environment

Simulation Running the model based on a management scenario

Scenario Hypothetical management situation which is modelled by

WETMOD 2 at a simulation run. One run of the model

Development Construction of the model including adapting WETMOD 1,

spatial data, wetland monitored data and river data followed by

calibration and validation of the model.

Calibration Fitting the model output to monitored data and adjusting

parameters such as thresholds

Validation Testing the model with data not used during the model

development to determine the degree of agreement between a

model and the real system.

State variables Model output (Phosphorus as PO4-P, nitrogen as NO3-N,

macrophytes, phytoplankton and zooplankton)

Driving variables Model time-series input (water temperature, turbidity, Secchi

depth and solar radiation)

Calibration Set parameters adjusted within the model to fit the model to

monitored data (e.g. turbidity sedimentation threshold,

zooplankton mortality rate, maximum phytoplankton growth

rate)

Retention Nutrient retain within a wetland

Uptake The reduction of nutrient load in a wetland through

phytoplankton and macrophyte growth ≈ Retention

Load Amount of suspended nutrient in the wetland, irrigation

drainage or river (resulting in inflow load to the wetland).

Directly related to the concentration simulated.

NTU Nephelometric Turbidity Units

Page 18: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Regional Scale Modelling of the lower River Murray wetlands

233

Organisations

MDBC Murray Darling Basin Commission

BOM Bureau of Meteorology

DWLBC South Australian Department of Water, Land and Biodiversity

Conservation

DEH South Australian Department for Environment and Heritage

Equations

t

N R[mg/day] Nutrient Retention

τ [1/day] Turnover rate

D Average linear deviation from the measured values as a fraction

of the average observed values

ID Total Irrigation Drainage load

IC Concentration of irrigation drainage nutrient

I Irrigation Drainage flow in litres/day

∆ID Change in total Irrigation Drainage load after management

RF Total River Inflow load

%RO Percentage Reduction in Outflow

OF Total Outflow load

∆OF Change in total Outflow load post management.

CR and CW Concentrations of nutrients in the river

CR and CW Concentrations of nutrients in the wetland

R River flow rate

ƒ Represents a fraction of the river flow rate R.

%RO: Change in outflow due to management when compared to the

status quo (no management).

%RI: Effective change in wetland nutrient inflow due to nutrient

reduction scenario as compared with the status quo.

RL Initial river nutrient load

RN Change in wetland retention due to management

%RL Percentage River Load removed due to the wetland

management

Page 19: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

234

Appendix A: WETMOD differential equations

The initial concentrations for each wetland category are fixed as in Table 17.

Table 17: Initial values

Category Macrophyte

(MAC_BIOMASS),

Phytoplankton, Zooplankton, PO4-P, NO3-N

1 5 0.0001 1.2 0.00011 0.0003

2 15 0.0001 0.001, 0.00275 0.0004

3 5 0.0001 1.2 0.000133 0.00011

4 0.1 7.04 1.2 0.00026 0

5 0.1 2.51 1.2 0.000109

5

0.00026

6 15 Look at Data 1.2 Look at

Data

Look at

Data

The descriptions of the Macrophyte, Phytoplankton and Nutrient sectors were adapted

from (Cetin 2001).

Page 20: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

235

$Macrophytes

Equations Source

MAC_BIOMASS(t) = MAC_BIOMASS(t - dt) +

(Mac_Gross_PP - Mac_mortality - Mac_respiration) * dt

INFLOWS:

Mac_Gross_PP = if Turbidity<TurbGrowthLimiting then

Mac_GPP*mac_prod_cf*MAC_BIOMASS else 0.001

(Boumans 2001)

OUTFLOWS:

Mac_mortality = Mac_mort_rate*MAC_BIOMASS (Asaeda et al.

1997)

Mac_respiration = Mac_resp_rate*MAC_BIOMASS (Asaeda et al.

1997)

mac_net_prod = Mac_Gross_PP-Mac_respiration

mac_nut_cf =

(NO3N/(NO3N+mac_Ks_N))*(PO4P/(PO4P+mac_Ks_P))

Jorgensen 1986

mac_prod_cf = underwater_light_cf*mac_temp_cf*mac_nut_cf (Boumans 2001)

mac_temp_cf = EXP(0.2*(water_temp-mac_temp_opt))*((40-

water_temp)/(40-mac_temp_opt))^(0.2*(40-mac_temp_opt))

(Boumans 2001)

reflection = 0.9*(SolarRadiationInCalculation*100) (Recknagel et al.

1982)

surface_light = 0.5*reflection (Recknagel et al.

1982)

Turbidity2Secchi = IF (2.4355*(Turbidity)^-0.5675) =0 Then

0.000001 Else (2.4355*(Turbidity)^-0.5675)

underwater_light_cf = surface_light*EXP(-

(4.6/Zeu_Calculated)*1)

(Recknagel et al.

1982)

Zeu_Calculated = IF(Manual_Secchi_Overide=0)

THEN(1.7*(Manual_Secchi_Overide+0.001))

ELSE(1.7*Manual_Secchi_Overide)

(Recknagel et al.

1982)

Parameters Units Source

Mac_GPP = 0.005 kg/m3/d (Boumans 2001)

mac_Ks_N = 0.0001 kg/m3 Calibrated

mac_Ks_P = 0.00005 kg/m3 Calibrated

Mac_mort_rate = 0.01 kg/m3/d (Asaeda et al. 1997)

Mac_resp_rate = 0.018 cm3/m

3/d (Asaeda et al. 1997)

TurbGrowthLimiting = 70 NTU Calibrated

Page 21: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

236

Model terms Definition

MAC BIOMASS The biomass of the photosynthetic portion of the

macrophytes.

Mac GPP The gross primary production rate for the total plant

biomass.

Mac Gross PP The gross primary productivity of the photosynthetic

biomass.

Mac Ks N The half-saturation constant for the uptake of nitrates by

macrophytes.

Mac Ks P The half-saturation constant for the uptake of phosphate by

macrophytes.

Mac mort rate Mortality rate for the photosynthetic biomass

Mac mortality The mortality of the photosynthetic biomass.

Mac net prod The net primary productivity for total macrophyte biomass.

Mac nut cf The macrophyte nutrient coefficient.

Mac prod cf The macrophyte production coefficient.

Mac resp rate Respiration rate of photosynthetic biomass

Mac respiration The respiration of photosynthetic biomass.

Mac temp cf Macrophyte temperature coefficient

Mac temp opt The optimum temperature for macrophyte growth

Manual Secchi

override

Switch between sources of Secchi depth.

Manual vs Monitored

Secchi

Switch between sources of Secchi depth.

Reflection Determines the proportion incoming solar radiation reflected

from the water surface.

Secchi Selection of calculated or measured Secchi depth

Site assumed Secchi

Manual

Manual input of Secchi depth (fixed)

Surface Light Defines the proportion of light entering the surface water.

Turbidity2Secchi The calculation of the Secchi depth based on turbidity (see

Methodology)

Underwater light cf The underwater light coefficient.

Zeu Calculated Defines euphotic zone at 1 metre depth.

Page 22: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

237

$Phytoplankton

Equations Source

PHYTOPLANKTON(t) = PHYTOPLANKTON(t - dt) +

(pht_Gross_PP + Phytoplankton_In - Pht_grazing -

pht_respiration - pht_mortality - pht_sedimentation -

Phytoplankton_Out) * dt

INFLOWS:

pht_Gross_PP = if PHYTOPLANKTON>pht_max or

Turbidity>TurbGrowthLimiting then pht_max else

pht_prod_cf*pht_GPP*PHYTOPLANKTON

(Boumans 2001)

Phytoplankton_In = PhytoplanktonInflow_cm3m3

OUTFLOWS:

Pht_grazing = PHYTOPLANKTON*(zoo_growth_rate-

Zoo_resp_rate)

(Recknagel et al.

1982)

pht_respiration =

pht_resp_rate*pht_temp_cf*PHYTOPLANKTON

pht_mortality = pht_mort_rate*PHYTOPLANKTON (Asaeda et al.

1997)

pht_sedimentation = pht_sed*PHYTOPLANKTON (Recknagel et al.

1982)

Phytoplankton_Out = PhytoplanktonOutflow_cm3m3

pht_max = IF Cat_Cal_Used=6 THEN (pht_max_6) ELSE IF

Cat_Cal_Used = 5 THEN (pht_max_5) ELSE

((IF(Cat_Cal_Used = 1) THEN(pht_max_1) ELSE

((IF(Cat_Cal_Used = 2 ) THEN (pht_max_2) ELSE

((IF(Cat_Cal_Used =3) THEN (pht_max_3) ELSE

((IF(Cat_Cal_Used = 4) THEN (pht_max_4) ELSE 2))))))))

(Recknagel et al.

1982)

pht_net_prod = pht_Gross_PP-pht_respiration

pht_nut_cf =

(NO3N/(NO3N+pht_Ks_N))*(PO4P/(PO4P+pht_Ks_P))

Jorgensen 1986

pht_prod_cf = underwater_light_cf*pht_temp_cf*pht_nut_cf (Boumans 2001)

pht_sed = IF Cat_Cal_Used=6 THEN (pht_sed_6) ELSE IF

Cat_Cal_Used = 5 THEN (pht_sed_5) ELSE

((IF(Cat_Cal_Used = 1) THEN(pht_sed_1) ELSE

((IF(Cat_Cal_Used = 2 ) THEN (pht_sed_2) ELSE

((IF(Cat_Cal_Used =3) THEN (pht_sed_3) ELSE

((IF(Cat_Cal_Used = 4) THEN (pht_sed_4) ELSE 0.2))))))))

(Recknagel et al.

1982)

pht_temp_cf = 1.08^(water_temp-20) Hamilton and

Schladow 1997

Page 23: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

238

Equations Source

ZOOPLANKTON(t) = ZOOPLANKTON(t - dt) + (Pht_grazing

- Zoo_mortality) * dt

INFLOWS:

Pht_grazing = PHYTOPLANKTON*(zoo_growth_rate-

Zoo_resp_rate)

(Recknagel et al.

1982)

OUTFLOWS:

Zoo_mortality =

ZOOPLANKTON*zoo_mort_rate*(1.05^(water_temp-20))

(Recknagel et al.

1982)

dark_grazing = grazing_temp_cf*zoo_grazing_cf (Recknagel et al.

1982)

day_length = 12-7*COS(Time_period) (Recknagel et al.

1982)

grazing_temp_cf = IF(water_temp=0) THEN(1.05*EXP(-

2*ABS(LOGN((water_temp+0.001)/20))+0.26))

ELSE(1.05*EXP(-2*ABS(LOGN(water_temp/20))+0.26))

(Recknagel et al.

1982)

pht_grazing_rate = dark_grazing*(24-

day_length)/24+0.8*dark_grazing*day_length/24

(Recknagel et al.

1982)

pht_Ks_grazing = If PHYTOPLANKTON>0 THEN

4*0.4*PHYTOPLANKTON^1.5 Else

4*0.4*(PHYTOPLANKTON+0.00001)^1.5

(Recknagel et al.

1982)

zoo_grazing_cf = if ZOOPLANKTON>0 then

PHYTOPLANKTON

*pht_pref/ZOOPLANKTON/(5/pht_Ks_grazing

+PHYTOPLANKTON*pht_pref/pht_Ks_grazing

+5/ZOOPLANKTON+PHYTOPLANKTON

*pht_pref/ZOOPLANKTON) else 0.001

(Recknagel et al.

1982)

zoo_growth_rate = if MAC_BIOMASS>10 then ((0.8-

0.4/1.3)*pht_grazing_rate) else 0.05

(Recknagel et al.

1982)

zoo_mort_rate = IF Cat_Cal_Used=6 THEN (ZooMortRate_6)

ELSE IF Cat_Cal_Used = 5 THEN (ZooMortRate_5) ELSE

((IF(Cat_Cal_Used = 1) THEN(ZooMortRate_1) ELSE

((IF(Cat_Cal_Used = 2 ) THEN (ZooMortRate_2) ELSE

((IF(Cat_Cal_Used =3) THEN (ZooMortRate_3) ELSE

((IF(Cat_Cal_Used = 4) THEN (ZooMortRate_4) ELSE

0.3))))))))

(Recknagel et al.

1982)

Zoo_resp_rate = (((0.22-0.08/1.3)*pht_grazing_rate)*0.36)

*(0.17*(water_temp/20)^2+0.05)

(Recknagel et al.

1982)

Page 24: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

239

Parameters Units Source

pht_GPP = 1.8 cm3/m

3/d (Boumans 2001)

pht_Ks_N = 0.00001 kg/m3 Hamilton and Schladow

1997

pht_Ks_P = 0.00001 kg/m3 Hamilton and Schladow

1997

pht_max_1 = 0.1

pht_max_2 = 0.1

pht_max_3 = 1

pht_max_4 = 1

pht_max_5 = 0.5

pht_max_6 = 2

Calibrated

pht_mort_rate = 0.019 cm3/m

3/d (Asaeda et al. 1997)

pht_pref = 2.5 dimless (Recknagel et al. 1982)

pht_resp_rate = 0.047 cm3/m

3/d (Asaeda et al. 1997)

pht_sed_1 = if Turbidity >TurbSed_pht

then 0.1 else 0.01

pht_sed_2 = if Turbidity >TurbSed_pht

then 0.05 else 0.01

pht_sed_3 = if Turbidity >TurbSed_pht

then 0.05 else 0.01

pht_sed_4 = if Turbidity >TurbSed_pht

then 0.5 else 0.2

pht_sed_5 = if Turbidity >TurbSed_pht

then 0.5 else 0.2

pht_sed_6 = if Turbidity >TurbSed_pht

then 0.5 else 0.2

Fraction of

biomass

(Where 1 is

100%)

Calibrated

TurbSed_pht = 95 NTU Calibrated

ZooMortRate_1 = 0.2

ZooMortRate_2 = 0.2

ZooMortRate_3 = 0.5

ZooMortRate_4 = 0.2

ZooMortRate_5 = 0.6

ZooMortRate_6 = 0.3

cm3/m

3/d Calibrated

Page 25: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

240

Model terms Definition

PHYTOPLANKTON The biomass of phytoplankton (defines Chl-a concentration

in terms of biomass).

Dark grazing Defies the grazing rate of zooplankton during night-time

feeding on phytoplankton.

Day length Defines the length of the day.

Grazing temp cf Temperature coefficient for grazing.

Pht GPP The phytoplankton gross primary production rate.

Pht grazing The grazing of phytoplankton by zooplankton.

Pht grazing rate Determines the grazing rate dependent on the time of day.

Pht Gross PP The phytoplankton gross primary productivity.

Pht Ks grazing The half-saturation constant for zooplankton grazing on

phytoplankton.

Pht Ks N The half-saturation constant for the uptake of nitrates by

phytoplankton.

Pht Ks P The half-saturation constant for the uptake of phosphate by

phytoplankton.

Pht max The maximum possible biomass of phytoplankton, i.e. the

carrying capacity.

Pht mort rate The phytoplankton mortality rate.

Pht mortality The phytoplankton mortality.

Pht net prod The phytoplankton net primary productivity.

Pht nut cf The phytoplankton nutrient coefficient.

Pht pref The zooplankton preference factor for phytoplankton

grazing.

Pht prod cf The phytoplankton production coefficient.

Pht resp rate The phytoplankton respiration rate.

Pht respiration The phytoplankton respiration.

Pht sed The sedimentation rate of phytoplankton, which is

dependent on turbidity.

Pht sedimentation The sedimentation of phytoplankton.

Pht temp cf The phytoplankton temperature coefficient.

Phytoplankton in The inflow of phytoplankton into the wetland.

Phytoplankton out The inflow of phytoplankton into the river.

PhytoplanktonInflow

cm3m3

The phytoplankton inflow concentration in cm3/m3

PhytoplanktonOutflow

cm3m3

The phytoplankton outflow concentration in cm3/m3

Page 26: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

241

ZOOPLANKTON The biomass of zooplankton.

Zoo grazing cf The grazing coefficient of zooplankton, which changes with

the phytoplankton biomass.

Zoo growth rate The growth rate of zooplankton.

Zoo mort rate The mortality rate for zooplankton.

Zoo mortality The zooplankton mortality.

Zoo resp rate The respiration rate of zooplankton.

Page 27: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

242

$Nutrients

Equations Source

PO4P(t) = PO4P(t - dt) + (P_loading + P_sed_release +

P_IN_gL - P_uptake - P_soil_coprecip - P_OUT) * dt

INFLOWS:

P_loading =

(P_from_land+P_loading_rate)/Wetlandvolume_Liters

Jorgensen 1986

P_sed_release = Turbidity/900*P_from_land (Recknagel et al.

1982)

P_IN_gL = PInflowAmount_mgL/1000

OUTFLOWS:

P_uptake =

PO4P*((pht_net_prod*pht_PC)+(mac_net_prod*Mac_PC))

(Boumans 2001)

P_soil_coprecip = P_sed*PO4P (Recknagel et al.

1982)

P_OUT = POutflow_Amount_gL

P_sed = IF Cat_Cal_Used=6 THEN (P_sed_6) ELSE IF

Cat_Cal_Used = 5 THEN (P_sed_5) ELSE ((IF(Cat_Cal_Used

= 1) THEN(P_sed_1) ELSE ((IF(Cat_Cal_Used = 2 ) THEN

(P_sed_2) ELSE ((IF(Cat_Cal_Used =3) THEN (P_sed_3)

ELSE ((IF(Cat_Cal_Used = 4) THEN (P_sed_4) ELSE

0.05))))))))

(Recknagel et al.

1982)

pht_PC = IF Cat_Cal_Used=6 THEN (pht_PC_6) ELSE IF

Cat_Cal_Used = 5 THEN (pht_PC_5) ELSE

((IF(Cat_Cal_Used = 1) THEN(pht_PC_1) ELSE

((IF(Cat_Cal_Used = 2 ) THEN (pht_PC_2) ELSE

((IF(Cat_Cal_Used =3) THEN (pht_PC_3) ELSE

((IF(Cat_Cal_Used = 4) THEN (pht_PC_4) ELSE 0.05))))))))

(Boumans 2001)

Equations Source

NO3N(t) = NO3N(t - dt) + (N_loading + N_sed_release +

N_IN_gL - N_uptake - N_soil_coprecip - N_OUT -

Denitrification) * dt

INFLOWS:

N_loading =

(N_from_land+N_loading_rate)/Wetlandvolume_Liters

Jorgensen 1986

N_sed_release = Turbidity/2500*N_from_land (Recknagel et al.

1982)

N_IN_gL = NInflowAmount_mgL/1000

Page 28: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

243

OUTFLOWS:

N_uptake =

NO3N*((pht_net_prod*pht_NC)+(mac_net_prod*Mac_NC))

(Boumans 2001)

N_soil_coprecip = N_sed*NO3N (Recknagel et al.

1982)

N_OUT = NOutflow_Amount_gL

N_sed = IF Cat_Cal_Used=6 THEN (N_sed_6) ELSE IF

Cat_Cal_Used = 5 THEN (N_sed_5) ELSE ((IF(Cat_Cal_Used

= 1) THEN(N_sed_1) ELSE ((IF(Cat_Cal_Used = 2 ) THEN

(N_sed_2) ELSE ((IF(Cat_Cal_Used =3) THEN (N_sed_3)

ELSE ((IF(Cat_Cal_Used = 4) THEN (N_sed_4) ELSE

0.1))))))))

(Recknagel et al.

1982)

pht_NC = IF Cat_Cal_Used=6 THEN (pht_NC_6) ELSE IF

Cat_Cal_Used = 5 THEN (pht_NC_5) ELSE

((IF(Cat_Cal_Used = 1) THEN(pht_NC_1) ELSE

((IF(Cat_Cal_Used = 2 ) THEN (pht_NC_2) ELSE

((IF(Cat_Cal_Used =3) THEN (pht_NC_3) ELSE

((IF(Cat_Cal_Used = 4) THEN (pht_NC_4) ELSE 0.05))))))))

(Boumans 2001)

Parameters Units Source

P_loading_rate = 0.0005 g/L Walker and Hillman

N_loading_rate = 0.005 g/L Walker and Hillman

Mac_NC = 0.5 Ratio (Boumans 2001)

Mac_PC = 0.1 Ratio (Boumans 2001)

N_from_land = 0.0005 g/m2 Young et al 1996

P_from_land = 0.00003 g/m2 Young et al 1996

N_sed_1 = if Turbidity>TurbSedN

then 0.32 else 0.22

N_sed_2 = if Turbidity>TurbSedN

then 0.15 else 0.12

N_sed_3 = if Turbidity>TurbSedN

then 0.5 else 0.1

N_sed_4 = if Turbidity>TurbSedN

then 0.5 else 0.2

N_sed_5 = if Turbidity>TurbSedN

then 0.2 else 0.1

N_sed_6 = if Turbidity>70 then 0.2

else 0.1

Ratio Calibrated

P_sed_1 = if Turbidity>TurbSedP then

0.32 else 0.22

Ratio Calibrated

Page 29: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

244

P_sed_2 = if Turbidity>TurbSedP then

0.15 else 0.12

P_sed_3 = if Turbidity>TurbSedP then

0.5 else 0.1

P_sed_4 = if Turbidity>TurbSedP then

0.5 else 0.2

P_sed_5 = if Turbidity>TurbSedP then

0.2 else 0.1

P_sed_6 = if Turbidity>70 then 0.2

else 0.1

pht_NC_1 = 0.05

pht_NC_2 = 0.05

pht_NC_3 = 0.05

pht_NC_4 = 0.05

pht_NC_5 = 0.05

pht_NC_6 = 0.05

Ratio (Boumans 2001)

pht_PC_1 = 0.05

pht_PC_2 = 0.05

pht_PC_3 = 0.1

pht_PC_4 = 0.5

pht_PC_5 = 0.05

pht_PC_6 = 0.05

Ratio (Boumans 2001)

TurbSedN = 70 NTU Calibrated

TurbSedP = 70 NTU Calibrated

Model terms Definition

NO3N Nitrate as NO3-N

PO4P Orthophosphate as PO4-P

N sed Coprecipitation rate for NO3-N dependent on turbidity

P sed Coprecipitation rate for PO4-P dependent on turbidity

Mac NC N:C ratio required by macrophytes

Pht NC N:C ratio required by phytoplankton

N loading Non point source of NO3-N

N loading rate Non point source of NO3-N (minimal)

N from land Non point source of NO3-N (minimal)

Page 30: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

245

P loading Non point source of PO4-P

P loading rate Non point source of PO4-P (minimal)

P from land Non point source of PO4-P (minimal)

Mac PC P:C ratio required by macrophytes

Pht PC P:C ratio required by phytoplankton

N soil coprecip The coprecipitation rate for NO3-N O

P soil coprecip The coprecipitation rate for PO4-P

N in gL The inflow of NO3-N into the wetland.

P in gL The inflow of PO4-P into the wetland.

Ninflow Amount gL The NO3-N inflow concentration in g/L

Noutflow Amount gL The NO3-N outflow concentration in g/L

N sed release The NO3-N released from sediments.

N out The outflow of NO3-N to the river

P out The outflow of PO4-P to the river

Pinflow Amount gL The PO4-P inflow concentration in g/L

Poutflow Amount gL The PO4-P outflow concentration in g/L

P sed release The PO4-P released from sediments.

N uptake The uptake of NO3-N associated with macrophyte and algae

production.

P uptake The uptake of PO4-P associated with macrophyte and algae

production.

Page 31: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

246

$NutrientExchange

Equations/Rules Description/definition

DrainFlow_SunnyORPaiw =

IF(Category_Time_Series_Used=1)THEN(PDrainFlo

w_Paiwalla)

ELSE(IF(Category_Time_Series_Used=2)

THEN(PDrainFlow_Sunnyside) ELSE(0))

Gives the modeller the

option to simulate

irrigation inflow into

Paiwalla wetland.

Intended to test whether

the hypothesis that no

irrigation drainage was

affecting Paiwalla

wetland.

DrainFlow_PreMultiplication_Factor =

IF(IrrigationDrainage=1)

THEN(DrainFlow_SunnyORPaiw)

ELSE(IF(IrrigationDrainage=2)

THEN(PDrainFlow_REEDY) ELSE(0))

Selects the appropriate

drainage flow depending

to the wetland being

simulated.

DrainFlow_L = IF

(Drainage_Channel_multiplication_Factor=0) THEN

(DrainFlow_PreMultiplication_Factor) ELSE

((DrainFlow_PreMultiplication_Factor

*(Drainage_Channel_multiplication_Factor

*Seasonal_Flow_Pattern_SunnyORReedy)))

Calculates the drain flow

volume given the average

flow volume per day and

the seasonal flow pattern.

Therefore the average

flow can be increased

and the seasonal flow

pattern maintained.

Seasonal_Flow_Pattern_SunnyORReedy =

IF(Category_Time_Series_Used = 2)

THEN(Seasonal_Flow_Pattern_Sunnyside)ELSE(IF(

Category_Time_Series_Used = 4)

THEN(Seasonal_Flow_Pattern_Reedy) ELSE(1))

PDrainFlow_Paiwalla =

IF((Paiwalla_P_Drain_mg_perL+Paiwalla_N_Drain_

mg_perL)>0)

THEN(DrainFlowVolume_Liters_perDay_Sunnyside)

ELSE(0)

PDrainFlow_REEDY =

IF((Reedy_DrainPConc_mg_perL+REEDY_DrainNC

onc_mg_perL)>0)

THEN(DrainFlowVolume_Liters_perDay_REEDY)

ELSE(0)

PDrainFlow_Sunnyside =

IF((Sunnyside_P_Drain_mg_perL+Sunnyside_N_Drai

n_mg_perL)>0)

THEN(DrainFlowVolume_Liters_perDay_Sunnyside)

ELSE(0)

Selects the drain flow

volume from the

appropriate wetland data.

Page 32: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

247

Equations/Rules Description/definition

Chla%_Removed_from_Drainage_Load = 0 Manual control to reduce

the Chl-a inflow.

Chla_DrainLoad_REEDY =

IF(REEDY_Chla_Drain_ugL>0)

THEN(REEDY_Chla_Drain_ugL

*DrainFlowVolume_Liters_perDay_REEDY)

ELSE(0)

Chla_DrainLoad_Sunnyside =

IF(Sunnyside_Chla_ugL>0)

THEN(Sunnyside_Chla_ugL*DrainFlowVolume_Lite

rs_perDay_Sunnyside) ELSE(0)

Calculates inflow load

from the concentration

and flow volume.

Chla_Drain_Load_Reedy2 =

(IF(IrrigationDrainage=1) THEN(0)

ELSE(IF(IrrigationDrainage=2)

THEN(Chla_DrainLoad_REEDY)/100 ELSE(0)))*(IF

(Chla%_Removed_from_Drainage_Load >0) THEN

(100-Chla%_Removed_from_Drainage_Load) Else

100)

Chla_DrainLoad_Sunnyside2 =

(IF(IrrigationDrainage=1)

THEN(Chla_DrainLoad_Sunnyside)/100

ELSE(IF(IrrigationDrainage=2) THEN(0)

ELSE(0)))*(IF

(Chla%_Removed_from_Drainage_Load >0) THEN

(100-Chla%_Removed_from_Drainage_Load) Else

100)

Calculates the actual load

used in the simulation.

This is where the load is

reduced as per potential

management strategy.

REEDY_Chla_Drainage_divided_into_wetland =

IF(Drainage_Channel_multiplication_Factor=0)

THEN(Chla_Drain_Load_Reedy2/Wetlandvolume_Li

ters)

ELSE((Chla_Drain_Load_Reedy2/Wetlandvolume_Li

ters)*(Drainage_Channel_multiplication_Factor*Seas

onal_Flow_Pattern_SunnyORReedy))

Sunnyside_Chla_divided_into_wetland =

IF(Drainage_Channel_multiplication_Factor=0)

THEN(Chla_DrainLoad_Sunnyside2/Wetlandvolume

_Liters)

ELSE((Chla_DrainLoad_Sunnyside2/Wetlandvolume

_Liters)*(Drainage_Channel_multiplication_Factor*S

easonal_Flow_Pattern_SunnyORReedy))

Calculates the dispersal

of inflow load into the

wetland, i.e. to obtain

concentration.

Fits the concentration to

the seasonal flow pattern.

Chla_Accross_Wetland = Selects wether Reedy

Page 33: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

248

IF(Category_Time_Series_Used=2)

THEN(Sunnyside_Chla_divided_into_wetland)

ELSE(REEDY_Chla_Drainage_divided_into_wetland

)

Creek or Sunnyside

wetland data is to be used

depending on wetland

being simulated.

PhytoplanktonInflow_cm3m3 =

(((ChlaRiver_ugL/2.5)*Hypothetical_Inflow_m3)/(We

tlandvolume_Liters/1000))+(Chla_Accross_Wetland*

2.5)

Calculates the total

Phytoplankton inflow

into the wetland.

Merges Irrigation

drainage Chla-a inflow

and River Chl-a inflow.

Converts Chl-a into

phytoplankton.

PhytoplanktonOutflow_cm3m3 =

Hypothetical_Outflow_m3*PHYTOPLANKTON/(We

tlandvolume_Liters/1000)

Calculates the

concentration of outflow

depending on the outflow

volume and the

concentration within the

wetland.

Page 34: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

249

Equations/Rules Description/definition

N%_Removed_from_Drain_Load = 0 Manual control to reduce

the NO3-N inflow

NDrainLoad_REEDY =

IF(REEDY_DrainNConc_mg_perL>0)

THEN(REEDY_DrainNConc_mg_perL*DrainFlowV

olume_Liters_perDay_REEDY) ELSE(0)

NDrainLoad_Sunnyside =

IF(Sunnyside_N_Drain_mg_perL>0)

THEN(Sunnyside_N_Drain_mg_perL*DrainFlowVol

ume_Liters_perDay_Sunnyside) ELSE(0)

NDrainLoad_Paiwalla =

IF(Paiwalla_N_Drain_mg_perL>0)

THEN(Paiwalla_N_Drain_mg_perL*DrainFlowVolu

me_Liters_perDay_Sunnyside) ELSE(0)

Calculates inflow load

from the concentration

and flow volume

NDrainLoad_SunnyORPaiw =

IF(Category_Time_Series_Used=1)THEN(NDrainLoa

d_Paiwalla)

ELSE(IF(Category_Time_Series_Used=2)

THEN(NDrainLoad_Sunnyside) ELSE(0))

Select the appropriate

drain load for either

Sunnyside or Paiwalla

wetlands.

NDrainLoad = (IF(IrrigationDrainage=1)

THEN(NDrainLoad_SunnyORPaiw)/100

ELSE(IF(IrrigationDrainage=2)

THEN(NDrainLoad_REEDY)/100 ELSE(0)))*(IF

(N%_Removed_from_Drain_Load >0) THEN (100-

N%_Removed_from_Drain_Load) Else 100)

Calculate the actual load

used in the simulation.

This is where the load is

reduced as per potential

management strategy.

N_Drain_Water_Inflow =

IF(Drainage_Channel_multiplication_Factor=0)

THEN(NDrainLoad/Wetlandvolume_Liters)

ELSE((NDrainLoad/Wetlandvolume_Liters)*(Drainag

e_Channel_multiplication_Factor*Seasonal_Flow_Pat

tern_SunnyORReedy))

Calculates the dispersal

of inflow load into the

wetland, i.e. to obtain

concentration.

Fits the concentration to

the seasonal flow pattern.

NInflowAmount_mgL =

((Hypothetical_Inflow_Liters*NRiver_mgL)/Wetland

volume_Liters)+N_Drain_Water_Inflow

Calculates the inflow

concentration as a

function of the wetland

volume of NO3-N into

the wetland.

NOutflow_Amount_gL =

(NO3N*Hypothetical_Outflow_Liters)/(Wetlandvolu

me_Liters)

Calculates the outflow

concentration as a

function of the wetland

volume of NO3-N from

the wetland.

Page 35: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

250

Equations/Rules Description/definition

P%_Removed_from_Drain_Load = 0 Manual control to reduce

the PO4-P inflow

PDrainLoad_REEDY =

IF(Reedy_DrainPConc_mg_perL>0)

THEN(Reedy_DrainPConc_mg_perL*DrainFlowVolu

me_Liters_perDay_REEDY) ELSE(0)

PDrainLoad_Sunnyside =

IF(Sunnyside_P_Drain_mg_perL>0)

THEN(Sunnyside_P_Drain_mg_perL*DrainFlowVolu

me_Liters_perDay_Sunnyside) ELSE(0)

PDrainLoad_Paiwalla =

IF(Paiwalla_P_Drain_mg_perL>0)

THEN(Paiwalla_P_Drain_mg_perL*DrainFlowVolu

me_Liters_perDay_Sunnyside) ELSE(0)

Calculates inflow load

from the concentration

and flow volume

PDrainLoad_SunnyORPaiw =

IF(Category_Time_Series_Used=1)THEN(PDrainLoa

d_Paiwalla)

ELSE(IF(Category_Time_Series_Used=2)

THEN(PDrainLoad_Sunnyside) ELSE(0))

Select the appropriate

drain load for either

Sunnyside or Paiwalla

wetlands.

PDrainLoad = ((IF(IrrigationDrainage=1)

THEN(PDrainLoad_SunnyORPaiw)/100

ELSE(IF(IrrigationDrainage=2)

THEN(PDrainLoad_REEDY)/100 ELSE(0)))*(IF

(P%_Removed_from_Drain_Load >0) THEN (100-

P%_Removed_from_Drain_Load) Else 100))

Calculate the actual load

used in the simulation.

This is where the load is

reduced as per potential

management strategy.

P_Drain_Water_Inflow =

IF(Drainage_Channel_multiplication_Factor=0)

THEN(PDrainLoad/Wetlandvolume_Liters)

ELSE((PDrainLoad/Wetlandvolume_Liters)*(Drainag

e_Channel_multiplication_Factor*Seasonal_Flow_Pat

tern_SunnyORReedy))

Calculates the dispersal

of inflow load into the

wetland, i.e. to obtain

concentration.

Fits the concentration to

the seasonal flow pattern.

PInflowAmount_mgL =

((Hypothetical_Inflow_Liters*PRiver_mgL)/Wetlandv

olume_Liters)+P_Drain_Water_Inflow

Calculates the inflow

concentration as a

function of the wetland

volume of PO4-P into the

wetland.

POutflow_Amount_gL =

(PO4P*Hypothetical_Outflow_Liters)/(Wetlandvolum

e_Liters)

Calculates the outflow

concentration as a

function of the wetland

volume of PO4-P from

the wetland

Page 36: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

251

$Wetland&RiverFlowExchange

Equations/Rules Description/definition

Percentage_of_River_Flow_regarded_as_exchange =

1

Manual control of the

exchange volume as

percentage of the

wetland.

River_Exchange_Below_1% = 1 To reduce the exchange

volume below 1% of

river flow

FlowExchange%ofRiverFlow =

((FlowRiver_m3_per_Day/100)*Percentage_of_River

_Flow_regarded_as_exchange)/River_Exchange_Belo

w_1%

Calculates the volume

exchanged.

Hypothetical_Inflow_m3 =

IF(Flow_In_No1_ManualInput2_Wetland3_River4 =

2) THEN(ManualControlFlowIn_m3)

ELSE(IF(Flow_In_No1_ManualInput2_Wetland3_Ri

ver4 = 3) THEN(FlowExchangeInVolumeDependent)

ELSE(IF(Flow_In_No1_ManualInput2_Wetland3_Ri

ver4 = 4)THEN(FlowExchangeInRiverDependent)

ELSE(0)))

Selects the source of the

control for volume

exchange. Possible to

manually set exchange

volume.

Hypothetical_Outflow_m3 =

IF(Flow_Out_No1_ManualInput2_Wetland3_River4

= 2) THEN(ManualControlFlowOut_m3)

ELSE(IF(Flow_Out_No1_ManualInput2_Wetland3_R

iver4 = 3)

THEN(FlowExchangeOutVolumeDependent)

ELSE(IF(Flow_Out_No1_ManualInput2_Wetland3_R

iver4 =

4)THEN(FlowExchangeOutRiverDependent+(DrainFl

ow_L/1000)) ELSE(0)))

Selects the source of the

control for volume

exchange. Possible to

manually set exchange

volume.

Adds the irrigation drain

inflow volume to the

outflow volume.

Page 37: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

252

$SpatialRelevantTimeSeries

Solar Radiation see Methodology

$RiverNutrients

See Methodology

$WetlandsTimeseriesUpdateMeasuredValues

Extra wetland data and future wetland data.

$WetlandTimeseriesUpdate

Extra wetland data and future wetland data.

$RiverTimeseries4WetlandUpdateTimeseries

Same as $RiverNutrients but for extra wetland data and future wetland data.

$PotentialContributionToRiver

See Methodology

Page 38: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

253

Appendix B: Driving Variables

Page 39: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

254

Figure 74: Data - Model Driving Variables; From Figure 9 in section 2.3

T urbidity

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

Fe

b-9

7

Ma

r-9

7

Ap

r-9

7

Ma

y-9

7

Ju

n-9

7

Ju

l-9

7

Au

g-9

7

NT

U

Wate r T e mpe rature

0

5

1 0

1 5

2 0

2 5

Fe

b-9

7

Ma

r-9

7

Ap

r-9

7

Ma

y-9

7

Ju

n-9

7

Ju

l-9

7

Au

g-9

7

de

g C

Solar R adiation Paiwalla & Sunnyside We tlands

0

5

1 0

1 5

2 0

2 5

3 0

Fe

b-9

8

Ma

r-9

8

Ap

r-9

8

Ma

y-9

8

Ju

n-9

8

Ju

l-9

8

Au

g-9

8

MJ

pe

r s

qu

are

me

ter

A

B

C

P a iwa lla W e tland 1997 S unnys ide W e tland 1997

Page 40: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

255

Figure 75: Data - Model Driving Variables; From Figure 9 in section 2.3

T urbidity

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

Fe

b-9

7

Ma

r-9

7

Ap

r-9

7

Ma

y-9

7

Ju

n-9

7

Ju

l-9

7

Au

g-9

7

Se

p-9

7

NT

U

Wate r T e mpe rature

0

5

1 0

1 5

2 0

2 5

3 0

3 5

Fe

b-9

7

Ma

r-9

7

Ap

r-9

7

Ma

y-9

7

Ju

n-9

7

Ju

l-9

7

Au

g-9

7

Se

p-9

7

de

g C

Solar R adiation P ilby C re e k & Lock 6 We tlands

0

5

1 0

1 5

2 0

2 5

3 0

3 5

Fe

b-9

8

Ma

r-9

8

Ap

r-9

8

Ma

y-9

8

Ju

n-9

8

Ju

l-9

8

Au

g-9

8

Se

p-9

8

MJ

pe

r s

qu

are

me

ter

D

E

F

L o ck 6 we tla nd 1 9 9 7 P ilb y C re e k W e tla nd 1 9 9 7

Page 41: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

256

Figure 76: Data - Model Driving Variables; From Figure 9 in section 2.3

T urbidity

-5 0

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

Ju

n-0

0

Ju

l-0

0

Au

g-0

0

Se

p-0

0

Oc

t-0

0

No

v-0

0

De

c-0

0

Ja

n-0

1

Fe

b-0

1

Ma

r-0

1

Ap

r-0

1

Ma

y-0

1

NT

U

Wate r T e mpe rature

0

5

1 0

1 5

2 0

2 5

3 0

Ju

n-0

0

Ju

l-0

0

Au

g-0

0

Se

p-0

0

Oc

t-0

0

No

v-0

0

De

c-0

0

Ja

n-0

1

Fe

b-0

1

Ma

r-0

1

Ap

r-0

1

Ma

y-0

1

de

g C

Solar R adiation R e e dy C re e k We tland

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

Ju

n-0

0

Ju

l-0

0

Au

g-0

0

Se

p-0

0

Oc

t-0

0

No

v-0

0

De

c-0

0

Ja

n-0

1

Fe

b-0

1

Ma

r-0

1

Ap

r-0

1

Ma

y-0

1

MJ

pe

r s

qu

are

me

ter

G

H

I

Reedy C reek W e tland 2000 -2001

Page 42: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

257

Figure 77: Time Series Irrigation Drainage ; From Figure 10 section 2.3.1

Dra in ag e Ph yto p lan kto n

0

0 .0 5

0 .1

0 .1 5

0 .2

0 .2 5

0 .3

0 .3 5

0 .4

0 .4 5

Fe

b-9

7

Ma

r-9

7

Ap

r-9

7

Ma

y-9

7

Ju

n-9

7

Ju

l-9

7

Au

g-9

7

cm

3/m

3

D rainage N O 3-N

0

0 .2

0 .4

0 .6

0 .8

1

1 .2

Fe

b-9

7

Ma

r-9

7

Ap

r-9

7

Ma

y-9

7

Ju

n-9

7

Ju

l-9

7

Au

g-9

7

mg

/L

D rainage PO 4-P

0

0 .5

1

1 .5

2

2 .5

3

3 .5

Fe

b-9

7

Ma

r-9

7

Ap

r-9

7

Ma

y-9

7

Ju

n-9

7

Ju

l-9

7

Au

g-9

7

mg

/L

A

B

C

S unnys ide W e tland

Page 43: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

258

Figure 78: Time Series Irrigation Drainage; From Figure 10 section 2.3.1

Se aso n al Drain ag e Patte rn Re e d y Cre e k Su b catch me n t

0 .0 0

0 .2 0

0 .4 0

0 .6 0

0 .8 0

1 .0 0

1 .2 0

1 .4 0

1 .6 0

1 .8 0

Ju

n-0

0

Ju

l-0

0

Au

g-0

0

Se

p-0

0

Oc

t-0

0

No

v-0

0

De

c-0

0

Ja

n-0

1

Fe

b-0

1

Ma

r-0

1

Ap

r-0

1

Ma

y-0

1

Re

lati

ve

Ra

te P

er

Mo

nth

-

-

D

Page 44: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

259

Figure 79: Time Series Irrigation Drainage ; From Figure 10 in section 2.3.1

D rainage Phytoplankton

-2 0

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

Ju

n-0

0

Ju

l-0

0

Au

g-0

0

Se

p-0

0

Oc

t-0

0

No

v-0

0

De

c-0

0

Ja

n-0

1

Fe

b-0

1

Ma

r-0

1

Ap

r-0

1

Ma

y-0

1

cm

3/m

3

D rainage N O 3-N

-0 .4

-0 .2

0

0 .2

0 .4

0 .6

0 .8

1

1 .2

1 .4

Ju

n-0

0

Ju

l-0

0

Au

g-0

0

Se

p-0

0

Oc

t-0

0

No

v-0

0

De

c-0

0

Ja

n-0

1

Fe

b-0

1

Ma

r-0

1

Ap

r-0

1

Ma

y-0

1

mg

/L

Drainage PO4-P

-1

0

1

2

3

4

5

6

7

8

Ju

n-0

0

Ju

l-0

0

Au

g-0

0

Se

p-0

0

Oc

t-0

0

No

v-0

0

De

c-0

0

Ja

n-0

1

Fe

b-0

1

Ma

r-0

1

Ap

r-0

1

Ma

y-0

1

mg

/L

E

F

G

Re e d y C re e k W e tla nd

Page 45: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

260

Figure 80: River Data; From Figure 11 in section 2.3.2

PO4-P

-1

0

1

2

3

4

5

6

Fe

b-9

7

Ma

r-9

7

Ap

r-9

7

Ma

y-9

7

Ju

n-9

7

Ju

l-9

7

Au

g-9

7

mg

/L

NO3-N

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fe

b-9

7

Ma

r-9

7

Ap

r-9

7

Ma

y-9

7

Ju

n-9

7

Ju

l-9

7

Au

g-9

7

mg

/L

Phytoplankton

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Feb-9

7

Mar-

97

Apr-

97

May-9

7

Jun-9

7

Jul-97

Aug-9

7

cm

3/m

3

A

B

C

P a iwa lla W e tla nd S unnys id e W e tla nd

Page 46: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

261

Figure 81: River Data; From Figure 11 in section 2.3.2

PO4-P

-0.05

0

0.05

0.1

0.15

0.2

Feb-9

7

Mar-

97

Apr-

97

May-9

7

Jun-9

7

Jul-97

Aug-9

7

Sep-9

7

mg

/L

NO3-N

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Feb-9

7

Mar-

97

Apr-

97

May-9

7

Jun-9

7

Jul-97

Aug-9

7

Sep-9

7

mg

/L

Phytoplankton

0

2

4

6

8

10

12

14

Fe

b-9

7

Ma

r-9

7

Ap

r-9

7

Ma

y-9

7

Ju

n-9

7

Ju

l-9

7

Au

g-9

7

Se

p-9

7

cm

3/m

3

D

E

F

L o ck 6 we tla nd 1 9 9 7 P ilb y C re e k W e tla nd 1 9 9 7

Page 47: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

262

Figure 82: River Data; From Figure 11 in section 2.3.2

PO4-P

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Ju

n-0

0

Ju

l-0

0

Au

g-0

0

Se

p-0

0

Oct-

00

No

v-0

0

De

c-0

0

Ja

n-0

1

Fe

b-0

1

Ma

r-0

1

Ap

r-0

1

Ma

y-0

1

mg

/L

NO3-N

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ju

n-0

0

Ju

l-0

0

Au

g-0

0

Se

p-0

0

Oct-

00

No

v-0

0

De

c-0

0

Ja

n-0

1

Fe

b-0

1

Ma

r-0

1

Ap

r-0

1

Ma

y-0

1

mg

/L

Phytoplankton

0

2

4

6

8

1 0

1 2

1 4

Ju

n-0

0

Ju

l-0

0

Au

g-0

0

Se

p-0

0

Oc

t-0

0

No

v-0

0

De

c-0

0

Ja

n-0

1

Fe

b-0

1

Ma

r-0

1

Ap

r-0

1

Ma

y-0

1

cm

3/m

3

G

H

I

Reedy C reek W e tland

Page 48: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

Appendix C: Key to wetland number

NOTE: This appendix is included in the print copy of the thesis held in the University of Adelaide Library.

Page 49: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

266

Appendix D: Cumulative Management Scenarios

Page 50: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

267

Table 20: Change in PO4-P wetland loading and percentage outflow due to management; category 3 wetland scenarios

PO4-P Net Loading to wetland kg/annum % Reduction in Outflow

Aus

wetland

#

Wetland

name

Wetlands

id

Used

depth

m

Volume

m3

Category

managed

Status Quo

Turbidity

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

S0070 CAURNAMONT 703 1.5 1353858 3 541 535 540 542 -13 -2 3

S0075 WALKER FLAT

SOUTH LAGOON

690 0.8 710419 3 533 527 527 526 -12 -12 -14

S0076 LAKE BYWATERS 1107 0.8 310292 3 512 504 498 489 -11 -21 -34

S0082 DEVON DOWNS

SOUTH

685 0.92 493457 3 525 519 517 513 -11 -16 -23

S0093 YARRAMUNDI 1102 2 195388 3 493 483 471 496 -11 -25 4

1101 2 617098 3 530 524 523 531 -12 -14 2

S0094 YARRAMUNDI

NORTH

663 2 704688 3 532 527 527 533 -12 -12 1

S0103 ARLUNGA 651 0.9 1497057 3 512 505 511 514 -19 -4 5

S0104 ROONKA 646 0.9 147172 3 452 438 424 419 -15 -29 -34

S0105 REEDY ISLAND FLAT 644 1.2 266973 3 480 469 464 465 -16 -23 -20

Page 51: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

268

PO4-P Net Loading to wetland kg/annum % Reduction in Outflow

Aus

wetland

#

Wetland

name

Wetlands

id

Used

depth

m

Volume

m3

Category

managed

Status Quo

Turbidity

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

S0106 McBEAN POUND

SOUTH

645 0.65 42489 3 350 328 297 269 -11 -27 -41

S0107 McBEAN POUND

NORTH

642 0.65 121855 3 441 425 409 392 -14 -29 -44

S0108 SINCLAIR FLAT 641 0.92 20053 3 264 241 210 234 -8 -19 -10

640 0.92 513745 3 498 490 489 488 -16 -18 -20

S0109 DONALD FLAT

LAGOON

1044 1.25 1760260 3 514 506 513 516 -20 -2 6

S0110 IRWIN FLAT 391 2 881564 3 507 500 502 509 -18 -12 4

S0111 MURBPOOK LAGOON

COMPLEX

383 0.92 32620 3 321 298 266 278 -10 -24 -19

381 0.92 946764 3 508 501 503 506 -18 -12 -5

380 0.92 65777 3 393 373 348 346 -13 -29 -30

S0112 MURBKO SOUTH 379 0.9 1147222 3 510 503 506 510 -19 -10 -1

Page 52: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

269

PO4-P Net Loading to wetland kg/annum % Reduction in Outflow

Aus

wetland

#

Wetland

name

Wetlands

id

Used

depth

m

Volume

m3

Category

managed

Status Quo

Turbidity

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

S0113 MURBKO FLAT

COMPLEX

375 0.7 75477 3 405 386 362 344 -13 -30 -42

374 0.7 1135665 3 510 503 506 508 -19 -10 -6

371 0.7 65887 3 393 373 348 329 -13 -29 -41

S0115 WOMBAT REST

BACKWATER

367 0.7 264111 3 479 468 463 455 -16 -23 -35

S0142 BOGGY FLAT 294 1.5 89373 3 438 423 396 443 -11 -31 3

S0149 BIG TOOLUNKA FLAT 324 2.3 848443 3 532 526 526 533 -13 -14 2

S0160 YARRA COMPLEX 262 2 1717745 3 539 534 538 542 -15 -2 6

S0174 LOCH LUNA and

NOCKBURRA CREEK

1036 2 127894 3 492 475 456 534 -12 -27 32

S0174 LOCH LUNA and

NOCKBURRA CREEK

190 2 6146303 3 589 581 593 597 -25 11 24

S0189 PYAP LAGOON 631 2 904144 3 574 567 568 577 -15 -12 5

Page 53: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

270

PO4-P Net Loading to wetland kg/annum % Reduction in Outflow

Aus

wetland

#

Wetland

name

Wetlands

id

Used

depth

m

Volume

m3

Category

managed

Status Quo

Turbidity

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

S0201 AJAX ACHILLES LAKE 492 1.2 22764 3 283 259 225 419 -8 -20 48

486 1.2 262527 3 496 484 477 478 -16 -26 -25

S0203 SALT CREEK AND

GURRA GURRA LAKES

471 1.5 78987 3 420 401 375 444 -13 -30 16

S0207 LYRUP CAUSEWAY

WEST

1048 0.92 17437 3 250 227 195 228 -7 -17 -7

S0214 RUMPAGUNYAH CREEK 1039 2 230689 3 490 478 469 493 -15 -27 3

1031 2 371340 3 508 498 493 507 -16 -24 -1

S0218 GOAT ISLAND AND

PARINGA PADDOCK

1007 0.92 227636 3 490 478 468 461 -15 -27 -36

1006 0.92 235651 3 491 479 471 463 -15 -27 -36

S0219 PARINGA ISLAND 997 0.92 12402 3 169 154 129 145 -7 -18 -11

996 0.92 39096 3 263 248 224 219 -12 -32 -37

995 0.92 111272 3 321 311 298 290 -16 -36 -49

Page 54: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

271

PO4-P Net Loading to wetland kg/annum % Reduction in Outflow

Aus

wetland

#

Wetland

name

Wetlands

id

Used

depth

m

Volume

m3

Category

managed

Status Quo

Turbidity

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

S0219 PARINGA ISLAND 93 0.92 227075 3 343 336 329 324 -18 -33 -44

92 0.92 25097 3 229 213 186 188 -10 -28 -27

91 0.92 72376 3 301 289 271 263 -14 -36 -46

90 0.92 17157 3 197 181 155 161 -9 -23 -19

89 0.92 10223 3 153 138 115 137 -6 -16 -7

S0220 RAL RAL CREEK AND

RAL RAL WIDEWATERS

956 2 6785374 3 367 360 367 369 -37 4 14

S0227 HORSESHOE SWAMP 69 1.2 327432 3 350 343 340 339 -19 -30 -32

S0229 WOOLENOOK

BEND COMPLEX

978 1.2 2111925 3 365 359 364 366 -29 -3 7

84 1.2 29590 3 242 226 200 244 -11 -30 1

82 1.2 41520 3 267 253 229 253 -13 -33 -12

Page 55: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

272

PO4-P Net Loading to wetland kg/annum % Reduction in Outflow

Aus

wetland

#

Wetland

name

Wetlands

id

Used

depth

m

Volume

m3

Category

managed

Status Quo

Turbidity

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

S0230 MURTHO PARK

COMPLEX

67 0.92 31733 3 248 232 206 204 -11 -31 -32

61 0.92 24337 3 226 210 183 185 -10 -27 -26

60 0.92 50151 3 280 266 244 237 -13 -35 -41

47 0.92 250315 3 345 338 332 328 -18 -32 -44

S0242 SLANEY OXBOW 32 1.25 90869 3 313 302 286 291 -15 -37 -30

XR001 Lock 6 Wetland 1134 0.92 164860 3 364 358 363 364 -28 -6 2

Min 153 138 115 137

Max 589 581 593 597

Average 406 394 382 392

Median 438 423 396 419

Total 23140 22451 21795 22338

Page 56: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

273

Table 21: Change in NO3-N wetland loading and percentage outflow due to management; category 3 wetland scenarios

NO3-N Net Loading to wetland kg/annum % Reduction in Outflow

Aus

wetland

#

Wetland

name

Wetlands

id

Used

depth

m

Volume

m3

Category

managed

Status Quo

Turbidity

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

S0070 CAURNAMONT 703 1.5 1353858 3 682 684 703 738 1 12 30

S0075 WALKER FLAT

SOUTH LAGOON

690 0.8 710419 3 665 662 675 700 -2 5 17

S0076 LAKE BYWATERS 1107 0.8 310292 3 626 609 616 650 -7 -4 10

S0082 DEVON DOWNS

SOUTH

685 0.92 493457 3 651 643 654 687 -4 1 16

S0093 YARRAMUNDI 1102 2 195388 3 590 563 567 795 -10 -8 73

1101 2 617098 3 660 655 668 759 -3 3 47

S0094 YARRAMUNDI

NORTH

663 2 704688 3 665 661 675 759 -2 5 46

S0103 ARLUNGA 651 0.9 1497057 3 709 705 728 753 -2 10 25

S0104 ROONKA 646 0.9 147172 3 583 537 547 640 -15 -12 19

S0105 REEDY ISLAND FLAT 644 1.2 266973 3 638 608 619 726 -12 -8 35

Page 57: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

274

NO3-N Net Loading to wetland kg/annum % Reduction in Outflow

Aus

wetland

#

Wetland

name

Wetlands

id

Used

depth

m

Volume

m3

Category

managed

Status Quo

Turbidity

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

S0106 McBEAN POUND

SOUTH

645 0.65 42489 3 405 333 342 349 -15 -13 -12

S0107 McBEAN POUND

NORTH

642 0.65 121855 3 561 510 520 531 -16 -12 -9

S0108 SINCLAIR FLAT 641 0.92 20053 3 282 215 227 617 -11 -9 56

640 0.92 513745 3 678 661 676 713 -8 -1 17

S0109 DONALD FLAT

LAGOON

1044 1.25 1760260 3 712 709 732 762 -2 12 29

S0110 IRWIN FLAT 391 2 881564 3 697 688 706 779 -5 5 43

S0111 MURBPOOK LAGOON

COMPLEX

383 0.92 32620 3 361 289 299 610 -14 -12 48

381 0.92 946764 3 699 691 709 740 -4 5 22

380 0.92 65777 3 475 409 423 619 -16 -13 35

S0112 MURBKO SOUTH 379 0.9 1147222 3 704 698 717 746 -3 7 23

Page 58: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

275

NO3-N Net Loading to wetland kg/annum % Reduction in Outflow

Aus

wetland

#

Wetland

name

Wetlands

id

Used

depth

m

Volume

m3

Category

managed

Status Quo

Turbidity

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

S0113 MURBKO FLAT

COMPLEX

375 0.7 75477 3 496 433 446 495 -16 -13 0

374 0.7 1135665 3 704 697 716 739 -4 7 19

371 0.7 65887 3 475 410 423 477 -16 -13 0

S0115 WOMBAT REST

BACKWATER

367 0.7 264111 3 637 607 618 646 -12 -8 3

S0142 BOGGY FLAT 294 1.5 89373 3 516 466 462 803 -14 -15 79

S0149 BIG TOOLUNKA FLAT 324 2.3 848443 3 686 683 691 780 -2 2 49

S0160 YARRA COMPLEX 262 2 1717745 3 701 703 718 766 1 10 36

S0174 LOCH LUNA and

NOCKBURRA CREEK

1036 2 127894 3 611 560 569 947 -13 -11 88

S0174 LOCH LUNA and

NOCKBURRA CREEK

190 2 6146303 3 811 815 842 881 2 17 39

S0189 PYAP LAGOON 631 2 904144 3 777 770 790 880 -3 6 48

Page 59: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

276

NO3-N Net Loading to wetland kg/annum % Reduction in Outflow

Aus

wetland

#

Wetland

name

Wetlands

id

Used

depth

m

Volume

m3

Category

managed

Status Quo

Turbidity

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

S0201 AJAX ACHILLES LAKE 492 1.2 22764 3 304 234 242 805 -12 -11 85

486 1.2 262527 3 645 614 619 734 -13 -10 36

S0203 SALT CREEK AND

GURRA GURRA LAKES

471 1.5 78987 3 508 445 451 831 -16 -15 84

S0207 LYRUP CAUSEWAY

WEST

1048 0.92 17437 3 263 196 205 650 -11 -9 62

S0214 RUMPAGUNYAH CREEK 1039 2 230689 3 634 600 604 820 -13 -12 72

1031 2 371340 3 669 646 654 804 -10 -7 61

S0218 GOAT ISLAND AND

PARINGA PADDOCK

1007 0.92 227636 3 633 599 603 668 -13 -12 14

1006 0.92 235651 3 636 602 607 671 -13 -11 14

S0219 PARINGA ISLAND 997 0.92 12402 3 183 136 140 402 -12 -11 57

996 0.92 39096 3 308 258 259 394 -19 -18 33

995 0.92 111272 3 399 366 364 419 -19 -20 12

Page 60: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

277

NO3-N Net Loading to wetland kg/annum % Reduction in Outflow

Aus

wetland

#

Wetland

name

Wetlands

id

Used

depth

m

Volume

m3

Category

managed

Status Quo

Turbidity

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

S0219 PARINGA ISLAND 93 0.92 227075 3 436 416 416 449 -15 -15 9

92 0.92 25097 3 259 208 207 390 -17 -17 42

91 0.92 72376 3 366 326 324 405 -20 -21 19

90 0.92 17157 3 217 167 169 385 -14 -14 48

89 0.92 10223 3 164 121 124 430 -11 -10 65

S0220 RAL RAL CREEK AND

RAL RAL WIDEWATERS

956 2 6785374 3 480 477 489 514 -3 9 38

S0227 HORSESHOE SWAMP 69 1.2 327432 3 449 433 436 477 -13 -11 23

S0229 WOOLENOOK

BEND COMPLEX

978 1.2 2111925 3 476 472 483 504 -5 8 30

84 1.2 29590 3 278 226 225 519 -17 -18 82

82 1.2 41520 3 314 265 266 506 -19 -19 75

Page 61: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

278

NO3-N Net Loading to wetland kg/annum % Reduction in Outflow

Aus

wetland

#

Wetland

name

Wetlands

id

Used

depth

m

Volume

m3

Category

managed

Status Quo

Turbidity

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

S0230 MURTHO PARK

COMPLEX

67 0.92 31733 3 285 234 233 392 -18 -18 38

61 0.92 24337 3 256 204 204 389 -16 -16 42

60 0.92 50151 3 333 286 286 397 -19 -20 27

47 0.92 250315 3 440 421 422 453 -15 -14 10

S0242 SLANEY OXBOW 32 1.25 90869 3 384 348 345 481 -19 -21 52

XR001 Lock 6 Wetland 1134 0.92 164860 3 475 470 481 499 -5 7 25

Min 164 121 124 349

Max 811 815 842 947

Average 513 481 490 622

Median 516 477 489 650

Total 29254 27445 27935 35477

Page 62: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

279

Table 22: Change in Phytoplankton wetland loading and percentage outflow due to management; category 3 wetland scenarios

Phytoplankton Loading to wetland m3/annum % Reduction in Outflow

Aus

wetland

#

Wetland

name

Wetlands

id

Used

depth

m

Volume

m3

Category

managed

Status Quo

Turbidity

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

S0070 CAURNAMONT 703 1.5 1353858 3 -8 -9 -12 -10 -2 -19 -10

S0075 WALKER FLAT

SOUTH LAGOON

690 0.8 710419 3 -8 -9 -10 -12 -3 -11 -20

S0076 LAKE BYWATERS 1107 0.8 310292 3 -7 -8 -9 -11 -3 -11 -21

S0082 DEVON DOWNS

SOUTH

685 0.92 493457 3 -8 -8 -10 -12 -3 -11 -22

S0093 YARRAMUNDI 1102 2 195388 3 -7 -7 -8 -8 -3 -11 -11

1101 2 617098 3 -8 -8 -10 -3 -3 -11 27

S0094 YARRAMUNDI

NORTH

663 2 704688 3 -8 -9 -10 -6 -3 -11 13

S0103 ARLUNGA 651 0.9 1497057 3 -8 -8 -11 -11 -1 -20 -20

S0104 ROONKA 646 0.9 147172 3 -6 -6 -8 -6 -3 -12 -3

S0105 REEDY ISLAND FLAT 644 1.2 266973 3 -7 -7 -8 -7 -3 -11 -1

Page 63: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

280

Phytoplankton Loading to wetland m3/annum % Reduction in Outflow

Aus

wetland

#

Wetland

name

Wetlands

id

Used

depth

m

Volume

m3

Category

managed

Status Quo

Turbidity

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

S0106 McBEAN POUND

SOUTH

645 0.65 42489 3 -4 -4 -4 -5 -2 -4 -8

S0107 McBEAN POUND

NORTH

642 0.65 121855 3 -5 -6 -7 -8 -3 -12 -18

S0108 SINCLAIR FLAT 641 0.92 20053 3 -2 -2 -3 0 -1 -3 17

640 0.92 513745 3 -7 -8 -9 -11 -3 -11 -23

S0109 DONALD FLAT

LAGOON

1044 1.25 1760260 3 -8 -8 -11 -12 -1 -19 -25

S0110 IRWIN FLAT 391 2 881564 3 -8 -8 -9 -6 -2 -11 7

S0111 MURBPOOK LAGOON

COMPLEX

383 0.92 32620 3 -3 -3 -4 -1 -1 -4 17

381 0.92 946764 3 -8 -8 -9 -11 -2 -11 -21

380 0.92 65777 3 -4 -5 -6 -7 -2 -14 -18

S0112 MURBKO SOUTH 379 0.9 1147222 3 -8 -8 -10 -11 -2 -11 -21

Page 64: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

281

Phytoplankton Loading to wetland m3/annum % Reduction in Outflow

Aus

wetland

#

Wetland

name

Wetlands

id

Used

depth

m

Volume

m3

Category

managed

Status Quo

Turbidity

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

S0113 MURBKO FLAT

COMPLEX

375 0.7 75477 3 -5 -5 -7 -7 -2 -13 -16

374 0.7 1135665 3 -8 -8 -9 -11 -2 -11 -18

371 0.7 65887 3 -4 -5 -6 -6 -2 -14 -13

S0115 WOMBAT REST

BACKWATER

367 0.7 264111 3 -7 -7 -8 -10 -3 -11 -20

S0142 BOGGY FLAT 294 1.5 89373 3 -5 -5 -7 -10 -3 -12 -35

S0149 BIG TOOLUNKA FLAT 324 2.3 848443 3 -8 -8 -10 -8 -3 -11 -3

S0160 YARRA COMPLEX 262 2 1717745 3 -8 -9 -12 -12 -2 -18 -18

S0174 LOCH LUNA and

NOCKBURRA CREEK

1036 2 127894 3 -6 -7 -8 -10 -2 -10 -26

S0174 LOCH LUNA and

NOCKBURRA CREEK

190 2 6146303 3 -9 -9 -12 -12 3 -12 -13

S0189 PYAP LAGOON 631 2 904144 3 -9 -9 -11 -6 -2 -10 15

Page 65: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

282

Phytoplankton Loading to wetland m3/annum % Reduction in Outflow

Aus

wetland

#

Wetland

name

Wetlands

id

Used

depth

m

Volume

m3

Category

managed

Status Quo

Turbidity

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

S0201 AJAX ACHILLES LAKE 492 1.2 22764 3 -2 -2 -3 0 -1 -3 18

486 1.2 262527 3 -6 -7 -8 -6 -3 -11 3

S0203 SALT CREEK AND

GURRA GURRA LAKES

471 1.5 78987 3 -5 -5 -6 -11 -3 -12 -42

S0207 LYRUP CAUSEWAY

WEST

1048 0.92 17437 3 -2 -2 -2 0 -1 -2 16

S0214 RUMPAGUNYAH CREEK 1039 2 230689 3 -6 -7 -8 -7 -3 -11 -3

1031 2 371340 3 -7 -7 -9 -4 -3 -11 16

S0218 GOAT ISLAND AND

PARINGA PADDOCK

1007 0.92 227636 3 -6 -7 -8 -7 -3 -11 -3

1006 0.92 235651 3 -6 -7 -8 -7 -3 -11 -3

S0219 PARINGA ISLAND 997 0.92 12402 3 -1 -1 -1 0 -1 -3 17

996 0.92 39096 3 -2 -2 -3 -4 -2 -14 -19

995 0.92 111272 3 -3 -4 -4 -3 -3 -12 -1

Page 66: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

283

Phytoplankton Loading to wetland m3/annum % Reduction in Outflow

Aus

wetland

#

Wetland

name

Wetlands

id

Used

depth

m

Volume

m3

Category

managed

Status Quo

Turbidity

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

S0219 PARINGA ISLAND 93 0.92 227075 3 -4 -4 -5 -5 -3 -11 -15

92 0.92 25097 3 -2 -2 -2 -1 -2 -4 16

91 0.92 72376 3 -3 -3 -4 -3 -3 -12 -4

90 0.92 17157 3 -1 -2 -2 0 -1 -3 16

89 0.92 10223 3 -1 -1 -1 0 -1 -2 15

S0220 RAL RAL CREEK AND

RAL RAL WIDEWATERS

956 2 6785374 3 -4 -4 -6 -8 6 -13 -33

S0227 HORSESHOE SWAMP 69 1.2 327432 3 -4 -4 -5 -4 -3 -11 -4

S0229 WOOLENOOK

BEND COMPLEX

978 1.2 2111925 3 -4 -4 -6 -7 0 -15 -22

84 1.2 29590 3 -2 -2 -2 0 -2 -4 26

82 1.2 41520 3 -2 -2 -3 -6 -2 -14 -39

Page 67: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

284

Phytoplankton Loading to wetland m3/annum % Reduction in Outflow

Aus

wetland

#

Wetland

name

Wetlands

id

Used

depth

m

Volume

m3

Category

managed

Status Quo

Turbidity

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

25%

Turbidity

Reduction

50%

Turbidity

Reduction

75%

Turbidity

Reduction

S0230 MURTHO PARK

COMPLEX

67 0.92 31733 3 -2 -2 -2 -1 -2 -5 17

61 0.92 24337 3 -2 -2 -2 -1 -2 -4 16

60 0.92 50151 3 -3 -3 -4 -3 -2 -13 -11

47 0.92 250315 3 -4 -4 -5 -6 -3 -11 -23

S0242 SLANEY OXBOW 32 1.25 90869 3 -3 -3 -4 -4 -3 -12 -8

XR001 Lock 6 Wetland 1134 0.92 164860 3 -4 -4 -6 -6 0 -17 -18

Min -9 -9 -12 -12

Max -1 -1 -1 0

Average -5 -5 -7 -6

Median -5 -5 -7 -6

Total -293 -309 -380 -354

Page 68: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

285

Table 23: PO4-P comparison between Full year wet versus Summer wet Winter dry for three selected wetlands; category 3 wetland scenarios

Net Loading to wetland kg/annum % Reduction in Outflow

Aus wetland

#

Wetland name

Wetlands id

Used depth

Volume m

3

Status Quo Turbidity

25% Turbidity Reduction

50% Turbidity Reduction

75% Turbidity Reduction

25% Turbidity Reduction

50% Turbidity Reduction

75% Turbidity Reduction

Full Year Wet

S0174 LOCH LUNA and NOCKBURRA CREEK

190 2 6146303 589 581 593 597 -25 11 24

S0219 PARINGA ISLAND 93 0.92 227075 343 336 329 324 -18 -33 -44

XR001 Lock 6 Wetland 1134 0.92 164860 364 358 363 364 -28 -6 2

Sum Full Year Wet 1296 1274 1285 1286

Summer Wet; Winter Dry

S0174 LOCH LUNA and

NOCKBURRA CREEK

190 2 6146303 149 143 151 154 -48 15 36

S0219 PARINGA ISLAND 93 0.92 227075 71 68 70 72 -26 -5 8

XR001 Lock 6 Wetland 1134 0.92 164860 77 73 77 79 -48 4 24

Summer Wet Only 297 284 298 304

Less Loading to

wetland if Summer Wet Only

999 991 986 982

The load to the wetland, for the full year wet scenario, is calculated from the average retention in the scenario time period multiplied by 365. The

load to the wetland, for the summer wet winter dry management scenario, is calculated as a sum from the 88 days simulated in the model to be

the peak macrophyte growth period.

Page 69: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

286

Table 24: NO3-N comparison between Full year wet versus Summer wet Winter dry for three selected wetlands; category 3 wetland scenarios

Net Loading to wetland kg/annum % Reduction in Outflow

Aus wetland

#

Wetland name

Wetlands id

Used depth

Volume m

3

Status Quo Turbidity

25% Turbidity Reduction

50% Turbidity Reduction

75% Turbidity Reduction

25% Turbidity Reduction

50% Turbidity Reduction

75% Turbidity Reduction

Full Year Wet

S0174 LOCH LUNA and NOCKBURRA CREEK

190 2 6146303 811 815 842 881 2 17 39

S0219 PARINGA ISLAND 93 0.92 227075 436 416 416 449 -15 -15 9

XR001 Lock 6 Wetland 1134 0.92 164860 475 470 481 499 -5 7 25

Sum Full Year Wet 1722 1700 1740 1830

Summer Wet; Winter Dry

S0174 LOCH LUNA and

NOCKBURRA CREEK

190 2 6146303 374 375 393 417 1 30 71

S0219 PARINGA ISLAND 93 0.92 227075 182 173 186 206 -16 8 49

XR001 Lock 6 Wetland 1134 0.92 164860 200 198 208 217 -7 26 54

Summer Wet Only 756 746 787 841

Less Loading to

wetland if Summer Wet Only

966 954 953 989

The load to the wetland, for the full year wet scenario, is calculated from the average retention in the scenario time period multiplied by 365. The

load to the wetland, for the summer wet winter dry management scenario, is calculated as a sum from the 88 days simulated in the model to be

the peak macrophyte growth period.

Page 70: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

287

Table 25: Phytoplankton comparison between Full year wet versus Summer wet Winter dry for three selected wetlands; category 3 wetland scenarios

Net Loading to wetland kg/annum % Reduction in Outflow

Aus wetland

#

Wetland name

Wetlands id

Used depth

Volume m

3

Status Quo Turbidity

25% Turbidity Reduction

50% Turbidity Reduction

75% Turbidity Reduction

25% Turbidity Reduction

50% Turbidity Reduction

75% Turbidity Reduction

Full Year Wet

S0174 LOCH LUNA and NOCKBURRA CREEK

190 2 6146303 -9.23 -8.57 -11.63 -11.81 3 -12 -13

S0219 PARINGA ISLAND 93 0.92 227075 -3.79 -4.10 -4.87 -5.30 -3 -11 -15

XR001 Lock 6 Wetland 1134 0.92 164860 -4.40 -4.41 -6.13 -6.29 0 -17 -18

Sum Full Year Wet -17 -17 -23 -23

Summer Wet; Winter Dry

S0174 LOCH LUNA and

NOCKBURRA CREEK

190 2 6146303 -2.34 -1.48 -2.71 -1.99 17 -7 7

S0219 PARINGA ISLAND 93 0.92 227075 -0.87 -0.85 -1.04 -1.01 1 -7 -6

XR001 Lock 6 Wetland 1134 0.92 164860 -0.95 -0.69 -1.43 -1.16 10 -20 -9

Summer Wet Only -4 -3 -5 -4

Less Loading to

wetland if Summer Wet Only

13 14 17 19

The load to the wetland, for the full year wet scenario, is calculated from the average retention in the scenario time period multiplied by 365. The

load to the wetland, for the summer wet winter dry management scenario, is calculated as a sum from the 88 days simulated in the model to be

the peak macrophyte growth period.

Page 71: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

288

Table 26: Change in PO4-P wetland loading and percentage in and outflow due to management; category 4 wetland scenarios

PO4-P Net Loading to Wetland kg/annum % Reduction in Inflow % Reduction in Outflow

Aus

Wetland #

Wetland

name

Used

depth m

Volume

m3

Wetland

Category

Status

Quo Irrigation Drainage

Nutrient

25%

Irrigation Drainage Nutrient

Reduction

50%

Irrigation Drainage Nutrient

Reduction

75%

Irrigation Drainage Nutrient

Reduction

25%

Irrigation Drainage Nutrient

Reduction

50%

Irrigation Drainage Nutrient

Reduction

75%

Irrigation Drainage Nutrient

Reduction

25%

Irrigation Drainage Nutrient

Reduction

50%

Irrigation Drainage Nutrient

Reduction

75%

Irrigation Drainage Nutrient

Reduction

S0035 TAILEM

BEND

0.8 765545 4 7171 7487 7798 8104 0.0070 0.0140 0.0210 6.00 11.90 17.69

S0052 REEDY CREEK

0.8 591799 4 21778 22101 22518 22829 0.0014 0.0027 0.0041 1.23 2.81 3.99

S0148 LITTLE TOOLUNKA FLAT

1.4 739622 4 5088 5454 5727 6218 0.0089 0.0177 0.0266 7.67 13.42 23.70

S0151 RAMCO LAGOON

0.3 279446 4 4974 5015 5557 5861 0.0089 0.0177 0.0266 0.86 11.95 18.18

S0179 KINGSTON

COMMON

0.92 340410 4 5126 5665 5723 6273 0.0082 0.0165 0.0247 9.88 10.96 21.03

S0180 WACHTELS LAGOON

0.92 6259251 4 9140 9200 9259 9317 0.0082 0.0165 0.0247 4.13 8.26 12.37

S0185 YATCO LAGOON

0.5 1729378 4 7585 7798 7973 8110 0.0082 0.0165 0.0247 7.12 12.97 17.54

Min 4974 5015 5557 5861

Max 21778 22101 22518 22829

Average 8694 8960 9222 9530

Median 7171 7487 7798 8104

Total 60861 62720 64555 66712

Page 72: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

289

Table 27: Change in NO3-N wetland loading and percentage in and outflow due to management; category 4 wetland scenarios

NO3-N Net Loading to Wetland kg/annum % Reduction in Inflow % Reduction in Outflow

Aus

Wetland #

Wetland

name

Used

depth m

Volume

m3

Wetland

Category

Status

Quo Irrigation Drainage

Nutrient

25%

Irrigation Drainage Nutrient

Reduction

50%

Irrigation Drainage Nutrient

Reduction

75%

Irrigation Drainage Nutrient

Reduction

25%

Irrigation Drainage Nutrient

Reduction

50%

Irrigation Drainage Nutrient

Reduction

75%

Irrigation Drainage Nutrient

Reduction

25%

Irrigation Drainage Nutrient

Reduction

50%

Irrigation Drainage Nutrient

Reduction

75%

Irrigation Drainage Nutrient

Reduction

S0035 TAILEM

BEND

0.8 765545 4 19038 19102 19166 19230 0.0003 0.0006 0.0009 0.42 0.84 1.26

S0052 REEDY CREEK

0.8 591799 4 3965 4019 4074 4128 0.0007 0.0014 0.0021 0.69 1.38 2.07

S0148 LITTLE TOOLUNKA FLAT

1.4 739622 4 1782 1837 1891 1945 0.0009 0.0017 0.0026 0.51 1.02 1.52

S0151 RAMCO LAGOON

0.3 279446 4 8078 8180 8178 8125 0.0009 0.0017 0.0026 2.31 2.28 1.06

S0179 KINGSTON

COMMON

0.92 340410 4 7484 8196 6421 7977 0.0008 0.0016 0.0024 12.28 -18.31

8.51

S0180 WACHTELS LAGOON

0.92 6259251 4 5493 5507 5521 5536 0.0008 0.0016 0.0024 0.19 0.37 0.56

S0185 YATCO LAGOON

0.5 1729378 4 3160 3195 3230 3265 0.0008 0.0016 0.0024 0.35 0.70 1.04

Min 1782 1837 1891 1945

Max 19038 19102 19166 19230

Average 7000 7148 6926 7172

Median 5493 5507 5521 5536

Total 49000 50036 48481 50204

Page 73: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix

290

Table 28: Change in Phytoplankton wetland loading and percentage in and outflow due to management; category 4 wetland scenarios

Phytoplankton Net Loading to Wetland

m3/annum % Reduction in Inflow % Reduction in Outflow

Aus

Wetland #

Wetland

name

Used

depth m

Volume

m3

Wetland

Category

Status

Quo Irrigation Drainage

Nutrient

25%

Irrigation Drainage Nutrient

Reduction

50%

Irrigation Drainage Nutrient

Reduction

75%

Irrigation Drainage Nutrient

Reduction

25%

Irrigation Drainage Nutrient

Reduction

50%

Irrigation Drainage Nutrient

Reduction

75%

Irrigation Drainage Nutrient

Reduction

25%

Irrigation Drainage Nutrient

Reduction

50%

Irrigation Drainage Nutrient

Reduction

75%

Irrigation Drainage Nutrient

Reduction

S0035 TAILEM BEND

0.8 765545 4 31 47 63 80 0.0014 0.0029 0.0043 4.13 8.24 12.37

S0052 REEDY CREEK

0.8 591799 4 33 49 65 81 0.0011 0.0022 0.0032 4.08 8.16 12.24

S0148 LITTLE

TOOLUNKA FLAT

1.4 739622 4 33 50 67 83 0.0014 0.0028 0.0042 4.10 8.20 12.28

S0151 RAMCO

LAGOON

0.3 279446 4 87 115 139 159 0.0014 0.0028 0.0042 7.92 14.61 20.12

S0179 KINGSTON COMMON

0.92 340410 4 77 100 123 146 0.0014 0.0027 0.0041 6.04 12.10 18.14

S0180 WACHTELS LAGOON

0.92 6259251 4 136 140 143 146 0.0014 0.0027 0.0041 1.05 2.10 3.16

S0185 YATCO

LAGOON

0.5 1729378 4 91 101 110 120 0.0014 0.0027 0.0041 2.63 5.26 7.91

Min 31 47 63 80

Max 136 140 143 159

Average 70 86 101 116

Median 77 100 110 120

Total 487 601 710 815

Page 74: Tumi Bjornsson Ph.D. Thesis - University of Adelaide · Regional Scale Modelling of the lower River Murray wetlands 216 9 References ... Bowles BA, Powling IJIJ, ... Johnston CA (1991)

Appendix E: WETMOD 2 Code (CD) is included with the print copy held in the University of Adelaide

Library.