Top Banner
Retrospective eses and Dissertations Iowa State University Capstones, eses and Dissertations 1995 Triple testcross analysis to detect epistasis and estimate genetic variances in an F2 maize population Duane Paul Wolf Iowa State University Follow this and additional works at: hps://lib.dr.iastate.edu/rtd Part of the Agricultural Science Commons , Agriculture Commons , and the Agronomy and Crop Sciences Commons is Dissertation is brought to you for free and open access by the Iowa State University Capstones, eses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective eses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Recommended Citation Wolf, Duane Paul, "Triple testcross analysis to detect epistasis and estimate genetic variances in an F2 maize population " (1995). Retrospective eses and Dissertations. 10739. hps://lib.dr.iastate.edu/rtd/10739
267

Triple testcross analysis to detect epistasis and estimate ...

Nov 28, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Triple testcross analysis to detect epistasis and estimate ...

Retrospective Theses and Dissertations Iowa State University Capstones, Theses andDissertations

1995

Triple testcross analysis to detect epistasis andestimate genetic variances in an F2 maizepopulationDuane Paul WolfIowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Agricultural Science Commons, Agriculture Commons, and the Agronomy and CropSciences Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State UniversityDigital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State UniversityDigital Repository. For more information, please contact [email protected].

Recommended CitationWolf, Duane Paul, "Triple testcross analysis to detect epistasis and estimate genetic variances in an F2 maize population " (1995).Retrospective Theses and Dissertations. 10739.https://lib.dr.iastate.edu/rtd/10739

Page 2: Triple testcross analysis to detect epistasis and estimate ...

INFORMATION TO USERS

This manuscript has been reproduced firom the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in ^pewriter face, while others may be firom zny type of computer printer.

The qnaM^ of this reproduction is dependent upon the qnali^ of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, prim bleedthrough, substandard marginc and inqiroper aligmnent can adverse^ affect reproduction

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized coj^iight material had to be removed, a note wiH indicate the deletion.

Oversize materials (e.g., maps, drawings, diarts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing firom left to right in equal sections with wrnaH overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photogrs^hs induded in the original manuscr^t have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photogr^hic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directfy to order.

A Bell & Howell Information Connpany 300 North Zeeb Road. Ann Art3or. Ml 48106-1346 USA

313/761-4700 800/521-0600

Page 3: Triple testcross analysis to detect epistasis and estimate ...
Page 4: Triple testcross analysis to detect epistasis and estimate ...

Triple testcross analysis to detect epistasis and

estimate genetic variances in an F2 maize population

by

Duane Paul Wolf

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Department; Agronomy Major; Plant Breeding

Appfbved:

In arge of Major Work

For the Major Department

For the Graduate College

Iowa State University Ames, Iowa

1995

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Page 5: Triple testcross analysis to detect epistasis and estimate ...

UHI Number: 9531806

OHI Microform 9531806 Copyright 1995r by OMI Company. All rights reserved.

This microform edition is protected against unauthorized copying under Title 17, United States Code.

UMI 300 North Zeeb Road Ann Arbor, HI 48103

Page 6: Triple testcross analysis to detect epistasis and estimate ...

ii

TABLE OF CONTENTS

INTRODUCTION 1

LITERATURE REVIEW 3

Heterosis 3

Design III 4

Epistasis 8

Epistatic Variance 9

Epistatic Effects 12

Triple Testcross 27

MATERIALS AND METHODS 32

Genetic Materials 32

Experimental Procedures 33

Statistical Analysis 34

Genetic Analysis 40

Test for Epistasis 40

Genetic Variance Components 44

Weighted Least Squares 47

Heritabilities 54

Correlations 55

RESULTS 56

Triple Testcross 61

Means 61

Epistasis 68

Variance Components 75

Page 7: Triple testcross analysis to detect epistasis and estimate ...

iii

Triple Testcross 75

Design III 77

S, Progeny 81

Covariance Sj and Half-sibs 81

Weighted Least Squares 85

Heritabilities 105

Correlations 105

Phenotypic 105

Genetic 109

DISCUSSION 117

Epistasis 117

Variance Components 122

Weighted Least Squares 124

Implications to Maize Breeding 129

SUMMARY AND CONCLUSIONS 133

REFERENCES 135

ACKNOWLEDGEMENTS 143

APPENDIX A. TRIPLE TESTCROSS ANALYSES BY ENVIRONMENT 144

APPENDIX B. DESIGN III ANALYSES ACROSS ENVIRONMENTS 159

APPENDIX C. S, PROGENY ANALYSES ACROSS AND BY 166 ENVIRONMENTS

APPENDIX D. TESTCROSS AND EPISTATIC DEVIATION MEANS 179 OF TRIPLE TESTCROSS PROGENY, BY ENVIRON­MENT AND ACROSS ENVIRONMENTS

APPENDIX E. S, PROGENY MEANS ACROSS ENVIRONMENTS AND 242 BY ENVIRONMENT.

Page 8: Triple testcross analysis to detect epistasis and estimate ...

iv

ABSTRACT

Maize (Zea mays L.) breeders have successfully exploited

heterosis by crossing inbred lines to develop hybrid

cultivars. Epistatic effects can contribute significantly to

the expression of heterosis for specific hybrids. The hybrid

B73 X Mol7 was a widely grown hybrid with exceptional

performance in the central U.S. Corn Belt during the late

1970's and early 1980's. It is possible that favorable

epistatic effects contributed to the performance of B73 x

Mol7. The objectives of this study were to use the triple

testcross design to determine if epistatic effects contribute

significantly to the performance of B73 x Mol7, estimate

additive and dominance genetic variances and the average level

of dominance for the Fj population derived from B73 x Mol7, and

use weighted least squares to determine the importance of

digenic epistatic variances relative to additive and dominance

variances.

The analyses of variance suggested that epistatic effects

were important for several traits. Comparison of testcross

mean determined that epistatic deviations were different from

zero for all traits. The deviation for grain yield was 7.0 g

plant"'. The B73 testcrosses contributed significantly to the

epistatic deviation for grain yield. Expression of epistasis

Page 9: Triple testcross analysis to detect epistasis and estimate ...

V

was significantly affected by environments.

Genetic variances were estimated using Design III and

weighted least squares analyses. Both analyses determined

that dominance variance was more important than additive

variance for grain yield. For other traits additive genetic

variance was more important than dominance variance. The

average level of dominance suggests overdominant gene effects

were present for grain yield.

Epistatic variances were generally not significantly

different from zero and, therefore, were relatively less

important than additive and dominance variances. For several

traits additive by additive epistatic variance decreased

estimates of additive genetic variance. In general, the

decrease in additive genetic variance was not significant.

Page 10: Triple testcross analysis to detect epistasis and estimate ...

1

INTRODUCTION

Maize (Zea mays L.) breeders have successfully exploited

heterosis for grain yield through the crossing of inbred lines

to develop hybrid cultivars. However, the nature of gene

action involved in expression of heterosis for grain yield of

elite maize hybrids remains unresolved. Information on

genetic variances, levels of dominance, and the importance of

genetic effects have contributed to a greater understanding of

the gene action involved in the expression of heterosis. The

models used to estimate these genetic parameters often assume

epistasis to be absent or of little importance.

Several studies indicate that epistasis is not a

significant component of genetic variability in maize

populations (Eberhart et al., 1966; Chi et al., 1969; Silva

and Hallauer, 1975). However, other studies have shown that

epistatic effects are important for specific combinations of

inbred lines (Bauman, 1959; Gorsline, 1961; Sprague et al.,

1962; Lamkey et al., 1995). Specific combining ability is

more important for selected lines than unselected lines,

indicating the importance of dominance and epistatic effects

in elite germplasm (Sprague and Tatum, 1942). Specific

crosses with epistatic effects likely have unique combinations

of genes contributing to heterosis. These unique combinations

are restricted to the specific cross and may be of small

Page 11: Triple testcross analysis to detect epistasis and estimate ...

2

importance in a maize population (Hallauer and Miranda, 1988).

The hybrid B73 x Mol7 was a widely grown hybrid in the

central Corn Belt of the United States in the late 1970's and

early 1980's. It was also widely grown in adapted regions

around the world. It is possible that favorable epistatic

effects contributed to the exceptional performance of this

hybrid.

Kearsey and Jinks (1968) developed the triple testcross

design by modifying the Design III (Comstock and Robinson,

1952). The modification provides a test for epistasis, while

allowing the estimation of genetic variances as provided by

the original Design III. The objectives of this study were

to use the triple testcross design to determine if epistatic

effects contribute significantly to the performance of B73 x

Mol7, estimate additive and dominance genetic variances and

the average level of dominance for the Fj population derived

from B73 X Mol7, and use weighted least squares to determine

the importance of digenic epistatic variances relative to

additive and dominance variances.

Page 12: Triple testcross analysis to detect epistasis and estimate ...

3

LITERATURE REVIEW

Heterosis

Heterosis is commonly observed for reproductive traits in

crosses between different strains or varieties of plants. The

term heterosis was first proposed by Shull in 1914 (Hayes

1952) and is described as the superiority of F, performance

over performance of the parents. Expression of heterosis is

due to non-additive genetic variance, dominance and/or

epistatic (Barker, 1979). To understand the reason for the

expression of heterosis it is necessary to understand the

relative importance of these non-additive genetic factors.

Estimates of genetic components of variance, level of

dominance and genetic effects have been utilized by maize

breeders to try and explain the expression of heterosis in

maize. While maize breeders have effectively exploited

heterosis, the genetic basis of heterosis remains unclear.

Two main genetic theories have been proposed to explain

heterosis; the overdominance and dominance hypotheses. Shull

(1908) presented the overdominance theory of heterosis. It

was based on the idea that heterozygosity per se was the cause

of heterosis. Hull (1945) coined the term 'overdominance' to

denote superiority of the heterozygote over either homozygote

at the locus level.

The dominance theory was first proposed by Bruce (1910).

Page 13: Triple testcross analysis to detect epistasis and estimate ...

4

Heterosis is a result of the accumulation, in the hybrid, of

favorable dominant growth factors contributed by each parent.

The hybrid will have more favorable factors than either

parent. Jones (1917) extended this theory to include linkage.

Linked favorable dominant loci would respond as a single loci.

If favorable dominant alleles are in repulsion phase linkage,

it would be difficult to distinguish dominance from true

overdominance.

A third consideration or theory, is that epistasis, the

interaction of non-alleles, may be an important factor in the

expression of heterosis, particularly in maize single crosses.

Epistatic effects have been observed to be important for

specific combinations of inbred lines (Bauman, 1959, Sprague

et al. 1962, Lamkey et al., 1995).

To gain a greater understanding of heterosis, maize

breeders have used the Design III mating design to determine

the average level of dominance, and other methods have been

used to determine the importance of epistasis.

Design III

The Design III mating design was developed by Comstock

and Robinson (1952) to estimate the average level of dominance

for quantitatively inherited traits. Assuming linkage

equilibrium and no epistasis, the Design III mating design is

a good design to estimate additive and dominance genetic

Page 14: Triple testcross analysis to detect epistasis and estimate ...

5

variance components for an Fj population. The Design III has

primarily been used in maize Fj populations to determine the

effects of linkage on estimates of additive and dominance

genetic variances and on the average level of dominance

(Hallauer and Miranda, 1988). Direct F-tests to determine

that dominance is present and complete are provided by the

Design III.

Comstock and Robinson (1952) discussed the effects of

linkage on estimates of additive and dominance genetic

variance, and the bias due to linkage effects can be large,

particularly in an Fj population where linkage disequilibrium

will be greatest. Additive genetic variance would be biased

upwards if coupling phase linkages predominate and downwards

if repulsion phase linkages predominate. Dominance genetic

variance would be biased upward regardless of linkage phase.

Repulsion phase linkages can cause the average level of

dominance to be estimated in the overdominant range. A test

for the effect of linkage bias can be made by advancing the F2

to successive generations by random mating, which would permit

recombination of some linked loci (Gardner et al. 1953). The

original F2 and random mated Fj synthetic generations can be

evaluated using the Design III. Estimates of additive and

dominance genetic variances and level of dominance can be

compared between generations. If repulsion phase linkages are

important random mating should decrease the average level of

Page 15: Triple testcross analysis to detect epistasis and estimate ...

6

dominance.

Gardner et al. (1953) used the design III to estimate

additive and dominance genetic variances in the Fj population

of several maize single crosses. Average level of dominance

was in the overdominant range for yield and partial to

complete dominance for other traits. The authors indicate it

may be either true overdominance or pseudo-overdominance

attributable to linkage effects.

Gardner and Lonnquist (1959) evaluated the Fj and Fi-Syn 8

generations of a maize single cross. Two samples of progeny

were developed for each generation. Sample 1 had an average

level of dominance for yield in the partial dominance range

for both generations. In sample 2 estimates of the average

level of dominance decreased for all traits from the Fj to F2-

Syn 8 generation. This supports the hypothesis that estimates

of average level of dominance in an Fj population are biased by

linkage effects. The authors suggest that the average level

of dominance is not greater than complete dominance for genes

controlling yield and other quantitative traits in maize.

However, the possibility of overdominance at one or more loci

can not be eliminated.

Moll et al. (1964) using the Design III, studied Fj

generations of two maize single crosses and advanced

generations derived by random mating. Their objective was to

determine the effect of linkage bias on estimation of genetic

Page 16: Triple testcross analysis to detect epistasis and estimate ...

7

variances. Estimates of dominance variance and average level

of dominance for grain yield decreased with random mating. In

advanced generations the average level of dominance was in the

complete dominance range. It was concluded that linkage

effects cause an upward bias in estimates of average level of

dominance from a Fj population.

Han and Hallauer (1989) used the Design III to evaluate

the Fj and Fj-Syn 5 generations from the single crosses B73 x

B84 and B73 x Mol7. Additive genetic variance estimates were

not significantly different between generations for all

traits, suggesting linkage did not bias estimates from the Fj

generation. Linkage had a positive bias on dominance variance

for grain yield, but bias was less important for other traits.

The Fj had an average level of dominance in the overdominant

range for grain yield in both crosses. The level of dominance

decreased to partial or complete dominance for the Fj-Syn 5 of

both crosses. The average level of dominance for other traits

was partial to complete dominance for both generations.

In general the Design III has shown that on average genes

controlling quantitative traits in maize F2 populations are in

the partial to complete dominance range. There has been

little support for genes with overdominance controlling

cpaantitative traits. Detection of overdominance has generally

been due to linkage.

Page 17: Triple testcross analysis to detect epistasis and estimate ...

8

Epistasis

Epistasis can be defined as the interaction of alleles at

non-homologous loci. Hollander (1955) reviewed the evolution

of the term epistasis. Bateson (1907) was the first to use

the term epistasis and applied it to a particular type of

interaction between non-alleles, which could be arranged in a

sort of cumulative series. The term epistasis was often used

to describe a two-locus interaction where one gene pair hid

the effect of another. This non-allelic interaction affecting

phenotypic expression of a qualitative trait resulted in

modified Fj ratios such as 9:3:4 and 9:7 (Hollander, 1955).

For quantitative characters epistasis is defined statistically

and not physiologically (Hallauer and Miranda, 1988).

Quantitatively epistasis describes any nonadditive interaction

between loci, in contrast to dominance effects which are due

to nonadditivity within a locus (Kempthorne, 1957). For a two

locus model epistasis is described as the failure of a gene

replacement at one locus to remain the same when a gene is

replaced at the other locus.

Maize researchers have used two general approaches to

determine the importance of epistasis. First, the magnitude

of epistatic variance, in relation to additive and dominance

variances, can be determined by using complex mating designs.

Secondly, researchers have used different methods of progeny

mean comparisons to test for the presence of epistatic

Page 18: Triple testcross analysis to detect epistasis and estimate ...

effects.

9

Epistatic Variances

Fisher (1918) was the first to partition the genetic

variance into additive, dominance, and epistatic components.

Cockerham (1954) showed that the epistatic variance could be

partitioned into additive x additive, additive x dominance,

and dominance x dominance components. Cockerham (1956)

suggested a method for the estimation of epistatic variances.

He proposed using mating Designs I and II with parents at two

levels of inbreeding to estimate epistatic variances. This

method provides sufficient independent equations for

estimation of digenic epistatic variances.

Eberhart et al. (1966) used this method on two open-

pollinated varieties, "Jarvis" and "Indian Chief". They

concluded that the additive genetic variance accounted for the

largest portion of the total genetic variance for all

characters in both varieties. Dominance variance was

important for grain yield. Epistatic variance was not an

important source of genetic variance for any traits, most

estimates were near zero or negative, and any positive

estimates had large standard errors. It was concluded that

mass, S,, or half-sib recurrent selection would be effective

for improving these varieties, because of the importance of

additive variance.

Page 19: Triple testcross analysis to detect epistasis and estimate ...

10

Stuber et al. (1966) studied genetic variance in the

cross of Jarvis and Indian Chief, by use of Design I and

Design II mating designs. Their objective was to determine

the type of gene action responsible for heterosis in an

interpopulation cross. Epistatic variance did not contribute

significantly to the genetic variability of the characters

studied. Robinson and Cockerham (1961) also did not find

evidence for epistasis in the cross of Jarvis and Indian

Chief. Additive and dominance variance were both important

components of the genetic variance for the characters studied.

Chi et al. (1969) used a complex mating design to

estimate genetic components of variance in the open-pollinated

variety "Reid Yellow Dent". Epistatic variances were

negligible relative to additive and dominance variances.

Additive variance was more important for ear height, ear

length, kernel-row number, and kernel weight. Dominance

variance was more important for plant height, ear diameter,

and grain yield.

Wright et al. (1971) used the triallel and diallel

analysis described by Rawlings and Cockerham (1962) to

estimate genetic components of variance in a strain of "Krug

Yellow Dent". Unweighted least squares and maximum likelihood

procedures were used for estimation of genetic variance

components. Significant epistatic effects were detected in

the analysis of variance, but realistic estimates of epistatic

Page 20: Triple testcross analysis to detect epistasis and estimate ...

11

variances were not obtained. Additive variance accounted for

the largest proportion and nonadditive variance a smaller

portion of the total genetic variance. Maximum likelihood

generally reduced the errors of the variance component

estimates.

Silva and Hallauer (1975) studied the importance of

epistatic variance for grain yield in the "Iowa Stiff Stalk

Synthetic". Design I and II mating designs were used to

develop half-sib and full-sib progenies. They compared

ordinary least squares, weighted least squares, and maximum

likelihood procedures for estimating genetic variance

components. Epistatic variance was not important for grain

yield. A model using additive genetic variance accounted for

93% of the total variability for grain yield. Inclusion of

dominance variance in the model accounted for 99% of the

variation and no improvement was observed when epistatic

variance was included. The estimate of dominance variance was

slightly greater than additive variance, and had less

environmental interaction. Ordinary least squares was

inadequate, while weighted least squares was an effective

method and much simpler to use than maximum likelihood.

Several problems exist when estimating components of

epistatic variance. If the frequency of genetic combinations

which exhibit epistatic effects are low the variability due to

epistasis may not be detected when effects are spread

Page 21: Triple testcross analysis to detect epistasis and estimate ...

12

throughout the population. Coefficients of the second- and

third-order genetic variance components are highly correlated

with first-order variance components, which reduces

sensitivity for detecting epistasis. Large errors are

associated with estimating variance components. The inability

to obtain convincing estimates of epistatic variance indicate

that either the genetic models used are inadequate or

epistatic variance is small relative to the total genetic

variance; it is probably a result of both factors (Hallauer

and Miranda, 1988).

Epistatic Effects

Mather (1949) developed generation means analysis to

detect epistatic effects in a cross. Anderson and Kempthorne

(1954) developed a similar analysis and applied it to

generations developed from two maize inbreds. Epistatic

components were an important part of the observed mean

genotypic values for midsilk date, ear height, and grain

yield.

Jinks (1955) applied the model of Mather (1949) to

generations derived from a wide range of diallel crosses in

maize. For several crosses significant epistatic effects for

grain yield were detected. Specific combining ability was

associated with the presence of epistatic effects, while

general combining ability was the result of uncomplicated

Page 22: Triple testcross analysis to detect epistasis and estimate ...

13

dominance.

Gamble (1962a) evaluated 15 single crosses developed from

six elite inbreds. Six generations from each cross, the

parental lines, Fi, Fj, and first backcross generations, were

evaluated in the generation means analysis developed by

Anderson and Kempthorne (1954). Dominance effects were the

most important effect for grain yield in all crosses.

Significant epistatic effects were observed in eight crosses

and were more important than additive effects. Additive x

additive and additive x dominance were the most important

epistatic effects. Gamble (1962a) reports that previous

studies show additive effects made a greater contribution to

variation for grain yield in open-pollinated varieties of

maize. The author indicates that in the development and

selection of inbred lines for yield performance, it is

possible that the importance of additive effects was reduced.

Gamble (1962b) observed that for plant height, ear length, ear

diameter, and seed weight, dominance effects accounted for the

majority of variation. Epistatic effects contributed more to

the variation of these traits than additive effects.

Hallauer and Russell (1962) used genetic populations

developed from a cross of two inbreds to estimate genetic

variance and genetic effects for days from silking to

maturity, grain moisture, and kernel weight. Epistatic

effects were significant for all traits. Dominance effects

Page 23: Triple testcross analysis to detect epistasis and estimate ...

14

were more important than additive effects. With the

assumption of no epistasis, estimates of dominance variance

were greater than zero, while estimates of additive variance

were zero for grain moisture and kernel weight. Variance

component estimates may be confounded with epistatic effects

detected in generation means analysis.

Moll et al. (1963) used generation means analysis to

study inheritance of resistance to brown spot (Physoderm

maydis) in six single crosses of maize. The majority of

variation in brown spot reaction was due to additive effects,

although, epistatic effects were present in certain crosses.

It was concluded that selection among inbreds should be

effective, because resistance of a parental inbred would be a

good indicator of resistance in the hybrid. The possible

presence of epistasis in some crosses may make selection among

hybrids necessary to obtain maximum resistance.

Russell and Eberhart (1970) studied the effects of three

gene loci on the inheritance of quantitative traits in maize.

They evaluated backcross-derived sublines of inbred B14,

differing by single marker genes. For plant and ear traits,

additive effects were more important than dominant effects,

but for grain yield dominant effects were greater. Epistatic

gene effects were also important; on average for all

characters, epistasis accounted for 41% of the variation among

genotypes.

Page 24: Triple testcross analysis to detect epistasis and estimate ...

15

Darrah and Hallauer (1972) used generation means analysis

to estimate genetic effects from four types of maize inbreds:

first-cycle lines, second-cycle lines, good lines, and poor

lines. Poor and second-cycle lines showed higher levels of

epistasis than good and first-cycle lines. Second-cycle

inbreds were selected from improved varieties or specific

crosses and are more likely to have favorable epistatic and

dominance relations. Poor inbreds expressed epistatic effects

because they had excellent performance in specific

combinations, but had poor general performance. Darrah and

Hallauer (1972) observed that inbreds selected from open

pollinated varieties (first-cycle) demonstrated more non-

additive gene action, particularly dominance effects, than was

found in open-pollinated varieties. A similar observation was

made by Gamble (1962a). In agreement with Gamble (1962 a &

b) , Darrah and Hallauer (1972) observed that for most traits

dominance effects were more important than additive or

epistatic effects.

The relationship between the level of heterozygosity and

performance of a quantitative trait can be studied to

determine if epistatic effects are present. A linear

relationship between performance and heterozygosity indicates

that epistasis is either negligible or not detectable (Martin

and Hallauer, 1976). Wright (1922) developed this

relationship based upon studies of hybrid vigor and inbreeding

Page 25: Triple testcross analysis to detect epistasis and estimate ...

16

depression in guinea pigs. Using this method Martin and

Hallauer (1976) evaluated four types of maize inbreds: first-

cycle, second-cycle, good lines, and poor lines. Epistasis

was detected more frequently in second-cycle lines compared

with first-cycle lines and more frequently in poor lines than

good lines. This was true for nearly all traits. Among

traits, epistasis was detected more frequently for ear

diameter and least frequently for yield. The authors

concluded that the greater frequency of epistasis in second-

cycle and poor lines was reasonable. Their reasoning is the

same as previously discussed by Darrah and Hallauer (1972).

Epistasis by environment interaction was significant and the

combined analysis across environments made the heterozygosity-

performance relation more linear, decreasing the importance of

epistasis. Previous studies by Robinson and Cockerham (1961)

and Sing et al. (1967) reported a linear relation in the open-

pollinated varieties Jarvis and Indian Chief. Conversely,

Sentz et al. (1954) observed a curvilinear response by

evaluating inbred lines developed from Jarvis and Indian

Chief. Based on their results and results of previous

studies, Martin and Hallauer (1976) suggested that epistatic

deviations from linearity are influenced by environment and

are a function of the genetic sample.

Comparisons of observed and predicted means of single,

three-way, and double-cross hybrids produced from elite inbred

Page 26: Triple testcross analysis to detect epistasis and estimate ...

17

lines have been used to test for the presence of epistatic

effects (Hallauer and Miranda, 1988). Favorable epistatic

combinations of genes could contribute to heterosis in a

single-cross hybrid. Recombination in a single-cross parent

used to produce double and three-way crosses could result in

the loss of these favorable epistatic combinations.

Bauman (1959) presented the general model for comparison

of single and three-way cross means. For a set of three

inbred lines a, b, and c, three-way cross ((a x b) x c)

performance in the absence of epistasis can be predicted as

the average of the two single-crosses (a x c) and (b x c).

Epistasis would be present if the performance of the three-way

cross deviates significantly from the average performance of

the single crosses.

Bauman (1959) applied this model to 32 sets of crosses

developed from elite homozygous inbreds. Sixteen sets had

significant epistatic deviations in at least 1 of 2 years for

grain yield, ear height, and kernel-row number. No deviations

were significant in the combined analysis. Bauman (1959)

reasons that sufficient degrees of freedom were not available

in the combined analysis to detect epistasis. More years and

locations would increase the power of the statistical test.

The author concluded that epistatic gene action was involved

in expression of the traits evaluated. Bauman (1959)

suggested that in some cases the epistatic deviations may be

Page 27: Triple testcross analysis to detect epistasis and estimate ...

18

similar to or part of the genotype by environment interactions

normally encountered. Some limitations of this test were: 1)

only a minimum amount of epistasis present will be detected,

2) the test is qualitative and not quantitative, 3)

cancellation of + and - effects may diminish detection of

epistasis, 4) linkage could affect estimates of epistasis, and

5) epistasis even if present may not be detected.

Gorsline (1961) applied the model of Bauman (1959) to

elite hybrids of the eastern U.S. Corn Belt. All hybrids

exhibited epistatic gene effects for several characters. He

observed interactions of epistasis with testers and concluded

that tester inbreds differed for loci involved in epistatic

gene action. Widespread and unpredictable interaction of

epistasis and environment reinforced the need for greater

testing of hybrids. He concluded that the presence of

epistatic gene effects for a particular character is dependent

on the specific cross and environment.

Sprague et al. (1962) evaluated 60 combinations of single

and three-way crosses developed from six elite inbred lines.

Thirteen of the combinations had significant epistatic

deviations between single and three-way cross means. Each of

the six lines was involved in significant epistatic

deviations. Line 0s420 was more frequently involved in

significant epistatic deviations, but 0s420 produced the

lowest mean yield in the diallel single-cross series. Line

Page 28: Triple testcross analysis to detect epistasis and estimate ...

19

B14 was least frequently involved in significant epistatic

deviations, and B14 had the highest mean yield in the diallel

single-cross series. This may suggest that epistasis does not

contribute to general combining ability. The authors suggest

that intense selection in a single-cross testing program would

insure a greater level of additive and dominance effects and

may increase epistatic interactions. They concluded that

their results and those of Bauman (1959) indicated that

epistatic gene action may be of some importance in determining

yield of commercial hybrids.

Eberhart et al. (1964) re-examined the data of Sprague et

al. (1962) to determine the effect of epistasis on predicting

all possible double-crosses from six elite inbreds. Epistatic

effects causing double-crosses to differ from their predicted

grain yield based on single and three-way crosses were

detected for numerous combinations of lines. The authors

suggest that epistatic effects were fixed in some of the

inbred lines by selection. It was concluded that epistatic

effects were not as important as genotype by environment

interactions or plot error.

Eberhart and Gardner (1966) developed a model to

characterize the means of a fixed set of varieties and variety

crosses. The model explains variation in entry means due to

additive, dominance, and additive x additive effects.

Eberhart and Hallauer (1968) applied the model to the inbred

Page 29: Triple testcross analysis to detect epistasis and estimate ...

20

lines previously evaluated by Sprague et al. (1962) and

Eberhart et al. (1964). Epistatic effects were detected for

yield, and there was no epistasis by environment interaction.

The authors determined the greatest bias to prediction of

three-way and double-cross performance based on single-cross

means was genotype by environment interaction. It was

concluded that more complex procedures to predict three-way

and double-cross performance were not necessary.

Sprague and Thomas (1967) suggested the detection of

epistasis in previous studies may be either because of the

genetic model used or because of the eliteness of the

germplasTO. Studies using least squares estimation of variance

components in open-pollinated varieties did not find evidence

for epistasis (Eberhart et al. 1966 and Stuber et al. 1966).

Conversely, studies comparing means of various generations

developed from elite inbreds have found significant epistatic

effects (Bauman, 1959, Gorsline, 1961 and Sprague et al.

1962). Sprague and Thomas (1967) compared single and three-

way crosses developed from unselected lines of the maize

variety "Midland". Their objective was to determine whether

selection plays a role in the manifestation of epistatic

effects. The unselected lines had a frequency of significant

epistatic deviations comparable to previous studies based on

single and three-way cross means. It was concluded that the

occurrence of epistatic effects in previous studies was not

Page 30: Triple testcross analysis to detect epistasis and estimate ...

21

due to the selection of lines based on hybrid performance.

The authors also concluded that differences in the importance

of epistasis between previous studies were a result of the

model used.

Stuber and Moll (1971) compared unselected with selected

lines for detecting epistatic effects. The open-pollinated

varieties of maize, Jarvis and Indian Chief, were the source

populations. Unselected random inbred lines were developed

from the original population, while selected random inbred

lines were developed from improved populations after three

cycles of reciprocal recurrent selection for grain yield.

Epistatic effects were significant for both unselected and

selected populations of Jarvis and Indian Chief.

Stuber et al. (1973) evaluated the unselected and

selected lines used by Stuber and Moll (1971) to determine the

effect of epistasis on prediction of three-way and double-

cross performance. Epistatic deviations and effects of

genotype by environment interactions caused significant bias

in hybrid predictions. The authors concluded, except for

unique, infrequent combinations of lines, strongly influenced

by epistatic effects, standard single-cross estimation of

three-way and double crosses need not be replaced.

Moreno-Gonzales and Dudley (1981) studied epistasis in

related and unrelated maize hybrids using three methods.

Elite inbreds derived from "Stiff Stalk Synthetic" and inbreds

Page 31: Triple testcross analysis to detect epistasis and estimate ...

22

related to "Lancaster Sure Crop" were used to make all

possible crosses, additionally segregating selfed and

backcross generations were developed from each cross. The

progenies were evaluated using generation means analysis,

diallel analysis, and the method of Bauman (1959). Generation

means analysis showed that dominance effects were the more

important effects for all traits. Significant epistatic

effects were found in several crosses. In diallel analysis

dominance effects were more important for yield, while

additive effects were more important for plant and ear traits.

Epistatic variation was significant but small compared with

dominance and additive variation. Epistasis was significant

in 13 of 54 three-way crosses. Epistatic deviations were

predominately positive for yield, suggesting lines selected

for yield may have certain combinations of genes expressed

favorably in hybrids. All three methods detected significant

epistasis. Generation means and diallel analyses indicate

that epistatic effects and variances, while important, were

small relative to dominance effects and variances. The small

percentage of crosses exhibiting epistasis by Bauman's (1959)

method agrees with conclusions from the other methods;

epistasis is less important than dominance.

Melchinger et al. (1986) conducted a study similar to

Moreno-Gonzalez and Dudley (1981). They evaluated early flint

and dent inbreds for genetic effects by generation means

Page 32: Triple testcross analysis to detect epistasis and estimate ...

23

analysis, diallel analysis, and comparison of single and

three-way crosses. Dominance was the most important effect

for grain yield in generation means and diallel analyses.

Epistatic effects were significant in both methods, but not as

important as dominance or additive effects. In the diallel

analysis significant negative estimates of additive x additive

epistasis for yield suggest that advantageous gene

combinations in the lines had been disrupted by recombination

in the segregating generations.

Melchinger (1987) derived the expectations of means and

variances of testcross progeny produced from parental, Fj, and

backcrosses to each parent. The generations are developed

from a cross of two pure-breeding lines. The model includes

linkage and additive by additive epistasis and allows tests

for their presence. In the absence of epistasis, the

testcross mean of a generation is a linear function of the

percentage of germplasm from the two parents. With digenic

epistasis this relationship becomes non-linear and the

direction of the curve depends on coupling or repulsion phase

linkages.

The contribution of the additive by additive effects can

be estimated by the difference of the average parental

testcross mean from the F2 testcross mean. Similarly, the

average testcross mean of the backcross generations differs

from the testcross mean of the Fj generation by 1/4 the

Page 33: Triple testcross analysis to detect epistasis and estimate ...

24

additive by additive effect measured in the first comparison.

Melchinger (1987) also derived the genotypic variances

for testcross generations, considering different situations of

epistasis and linkage. Genetic variance of testcrosses

produced from the BC, and BCj generations should be equal in

the absence of epistasis. The pooled genotypic variances of

backcrosses should be half that of the Fj generation in the

absence of epistasis. In the presence of epistasis the pooled

values may exceed half the genotypic variance of the Fj

generation.

Melchinger et al. (1988) crossed two homozygous parental

lines, their Fj, and first backcross generations to an

unrelated single-cross tester. The testcross means were fit

to models testing for linkage and digenic epistasis using

methods derived by Melchinger (1987). The nonepistatic model

accounted for 98% of variation among testcross generation

means for grain yield. Inclusion of the digenic epistatic

effect improved the fit and accounted for 99% of the

variation. Significant differences in BC, and BC2 genetic

variances indicated epistasis was present for grain yield.

Melchinger et al. (1988) concluded that although epistasis was

statistically significant, its relative importance was minor.

Lamkey et al. (1995) utilized the Melchinger (1987) model

in the evaluation of the parental, Fj, Fj-Syn 8, BC,, and BCj

generations developed from B73 x B84 testcrossed to Mol7.

Page 34: Triple testcross analysis to detect epistasis and estimate ...

25

Inbreds B73 and B84 are related so the breeding population is

similar to those utilized in commercial corn breeding

programs. The epistatic model provided the best fit and

explained 69% of the variation for grain yield. Unlinked

additive x additive epistatic effects accounted for 21% of the

variation among generation means for grain yield and 18% for

grain moisture. The significant additive by additive effect

for grain yield was 0.20 Mg ha'. The average parental

testcross mean and the F2 testcross mean differed by 0.28 Mg

ha"'. Comparison of Fj and Fj-Syn 8 testcross means show a 0.27

Mg ha' reduction in yield from Fj to the Fj-Syn 8. Since

epistasis was present the reduction in yield may be attributed

to separating pairs of alleles that have contributed to a net

positive epistatic effect. Melchinger et al. (1988) referred

to this as epistatic recombinational loss. Lamkey et al.

(1995) suggests that both linked and unlinked epistatic

effects were important in the (B73 x B84) x Mol7 testcross

populations. Evidence indicates net positive epistatic

effects are fixed in B73 and B84, and suggests that B84

contains more favorable epistatic gene combinations than B73.

The authors suggest the presence of postive epistatic effects

in B73 may explain why it has been such a successful inbred in

maize breeding programs.

Significant estimates of epistatic variance components in

maize populations generally have not been obtained, whereas

Page 35: Triple testcross analysis to detect epistasis and estimate ...

26

significant epistatic effects have been detected in numerous

studies. In autogamous and asexual crops significant

estimates of epistatic variances have been obtained.

Matzinger (1968) reported a significant estimate of additive

by additive variance for plant height in an Fj population of

tobacco {Nicotiana tobacum L.). Matzinger et al., (1960) also

observed significant additive by additive variance for plant

height and leaf length in tobacco. Both studies evaluated

full-sib and S, progeny and used least squares to estimate

genetic variance components (Matzinger and Cockerham, 1963).

Hanson and Weber (1961) obtained a significant estimate of

additive by additive variance for oil percent in an Fj

population of soybean (Glycine max L. Merr.). Similarly, Brim

and Cockerham (1961) reported significant estimates of

additive by additive variance for maturity, plant height,

percent protein, and oil in soybeans. Both studies evaluated

four types of progeny from a population and used least squares

to estimate variance components. Comstock et al. (1958) and

Watkins and Spangelo (1968) observed that epistatic variances

account for a larger portion of the genetic variance for yield

in strawberries (Fragaria oval is), an asexual species. Mullin

et al. (1992) estimated genetic parameter of black spruce

(Picea mariana) by evaluation of clonally replicated full-

sibs. Additive variance was of most importance, while

epistatic variance accounted for 25 to 40% of the total

Page 36: Triple testcross analysis to detect epistasis and estimate ...

27

genetic variance for height growth. Dominance variance was

negligible. Therefore clonal selection could increase gain by

capturing (i) genetic variance due to epistasis and (ii) a

greater portion of the additive variance.

Triple Testcross

Kearsey and Jinks (1968) developed the triple testcross

(TTC) analysis as an extension of Comstock and Robinson's

(1952) Design III. The TTC can be used to detect epistasis

for quantitative traits and provide estimates of additive and

dominance genetic variance in the absence of epistasis.

Kearsey and Jinks (1968) state the TTC can be applied to any

base population regardless of mating system, gene frequencies,

or linkage state.

Triple testcross progeny are developed by crossing random

Fj plants as males to three testers forming three backcross

progeny denoted by L,;, Lj; and Ljj. Testers L, and Lj are the

parental inbred lines of the Fj population, as in the standard

Design III, and tester Lj is their F,. For the ith male, the

contrast (L,; + Ljj - 2X13;) will equal zero in the absence of

epistasis (Kearsey and Jinks 1968). The average variance of

the contrast would not be significantly greater than the error

variance in the absence of epistasis. The test will detect

epistatic effects for loci at which L, and differ. Kearsey

and Jinks (1968) stress that testers Lj and should be

Page 37: Triple testcross analysis to detect epistasis and estimate ...

28

derived from the population under study to avoid detecting

false epistasis that may be caused by alleles showing

different dominance properties in different populations. As

in the standard Design III the variance of functions L,; + Ljj

and L,i - Lj; are used to estimate additive and dominance

genetic variances, respectively (Comstock and Robinson 1952).

Modifications to the TTC design of Kearsey and Jinks

(1968) have been proposed. Perkins and Jinks (1970) described

an alternative analysis in which the sums of squares for

epistasis are partitioned into two separate tests. The first

test determines if the mean value of the epistatic term (L, +

L2 - 2L3) over all sets of progeny families is different from

zero. This overall epistatic term tests for 'i' type

epistasis (additive by additive). The second test determines

variation in the epistatic term among males. Variation among

males tests for 'j' and '1' (additive by dominance and

dominance by dominance) types of epistasis. Perkins and Jinks

(1970) also proposed using the function L,i + Ljj + Lj; to

estimate the additive genetic variance.

Jinks and Perkins (1970) used the TTC to evaluate two

crosses of tobacco {Nicotiana rustica). Epistasis and

dominance were important in one cross and additive gene action

was important in the other cross. Jinks et al. (1973) studied

the incidence of epistasis in different environments for two

crosses of tobacco. Epistasis occurred with the highest

Page 38: Triple testcross analysis to detect epistasis and estimate ...

29

frequency and greatest magnitude at one or both extremes of

the range of environments for both crosses.

Goodwill (1975) used the TTC to analyze gene action

controlling pupa weight in Tribolium castaneum. Significant

epistatic variance for several populations was observed. In

the analysis, Goodwill separated the interaction of male x

tester into two orthogonal components with equal degrees of

freedom. Linear contrast for the two parental testers (L,i -

Lji) provides an unbiased estimate of dominance variance in the

absence of epistasis. The quadratic contrast (L,; + Lj; - 2L3i)

provides a test of epistasis. Epistasis was significant for

pupa weight in two populations and was more important than

dominance.

Ketata et al. (1976) used the method proposed by Perkins

and Jinks (1970) to evaluate a set of winter wheat {Triticum

aestivum L. em Thell.) cultivars. Epistasis affected the

expression of heading date, kernels/spikelet, and grain yield.

The expression of epistasis was influenced by cultivar. Singh

and Singh (1976) studied two wheat crosses and observed

significant overall epistasis (i type) for grains per spike

and yield in both crosses and plant height and ear length in

one cross. Both crosses had significant 'j' and '1' types of

epistasis for all traits.

Pooni et al. (1978) evaluated two single crosses of

tobacco by TTC analysis. Random inbred lines developed by

Page 39: Triple testcross analysis to detect epistasis and estimate ...

30

single seed descent from an Fj population were used to develop

progeny instead of random plants. Estimates of additive

genetic variance were obtained from the TTC analysis and from

evaluating the inbred lines. In one cross additive genetic

variance was greater than dominance or epistatic variance. In

the other cross epistasis and dominance were important

components of the genetic variation. They obtained additive

genetic variance estimates of consistent magnitude from TTC

and inbred lines for characters in both crosses. It was

concluded that an estimate of additive genetic variance from

TTC analysis is a satisfactory estimate of the genetic

variation among random inbred lines even in the presence of

epistasis.

Singh et al. (1986) conducted TTC analysis on four Fj

populations of field peas (Pisum ajrvense L.). Overall

epistasis ('i' type) was a major component affecting the

expression of days to flower, plant height, pod number, test

weight, and yield in four crosses. The 'j & 1' types of

epistasis were significant but less important than 'i' type

epistasis.

Kearsey et al. (1987) evaluated gene action for heading

date and dry matter production in two crosses of ryegrass

(Lolium perenne), using TTC analysis. Based on spaced plant

performance no evidence for epistasis was found. Additive and

dominance variance were important with partial to complete

Page 40: Triple testcross analysis to detect epistasis and estimate ...

31

dominance for all traits. Devey et al. (1989) evaluated these

same crosses of ryegrass in drilled plots. Significant 'i'

and 'j & 1' types of epistasis were observed in the combined

analysis for dry matter yield. Within environments 'i' type

epistasis was significant at both environments and 'j & 1'

types epistasis were significant at one environment.

Eta-Ndu (1994) modified the TTC of Kearsey and Jinks

(1968) to test for epistasis in two single crosses of maize,

based on testcross data. The L,;, Ljj, ha, and F3 generations

were testcrossed to two elite inbred testers. Evidence of

epistasis for genes controlling grain yield was observed in

both crosses. The tester used to make testcrosses influenced

the detection of epistasis. There was no association between

epistasis and testcross performance of F3 and backcrosses to

either parent. Therefore, no trend existed that would be of

predictive value in making decisions regarding the best type

of source population for inbred extraction when epistasis is

important. Examination of epistatic effects for individual

F2's, indicates that large epistatic effects may be obtained

from large or small family testcross means and vice versa.

So knowledge of the presence or absence of epistasis in an F2

individual may not be useful in predicting performance of its

progeny.

Page 41: Triple testcross analysis to detect epistasis and estimate ...

32

MATERIALS AMD METHODS

Genetic Materials

The hybrid B73 x Mol7 was an important and widely grown

hybrid in the central Corn Belt of the United States in the

late 1970s and early 1980s. Inbred B73 was a selection from

Iowa Stiff Stalk Synthetic after five cycles of half-sib

recurrent selection for grain yield (Russell, 1972). Inbred

Mol7 was derived by selection from the single cross of inbred

lines, CI187-2 X C103 (Zuber, 1973).

In 1991, the Fj population derived from B73 x Mol7 was

grown at the Agronomy Research Farm near Ames. Using the

triple testcross (TTC) mating design (Kearsey and Jinks,

1968), one hundred random F2 plants (males) were crossed to

both parents (B73 & Mol7) and the F,. B73, Mol7, and the F,

were considered testers. Each Fj plant was selfed to form S,

progenies. The following progeny were developed for

evaluation;

L,j = 100 testcross entries - Fj x B73,

Ii2i = 100 testcross entries - Fj x Mol7,

Lji = 100 testcross entries - Fj x F,,

and 100 S, progenies.

Page 42: Triple testcross analysis to detect epistasis and estimate ...

33

Experimental Procedures

TesterOSS and S, progeny were evaluated in separate

experiments. The 300 testcross entries were evaluated in a

replications-within-sets, randomized incomplete block design

with two replications per set. Ten sets were used and each set

contained 3 0 entries which were comprised of three testcrosses

from each of 10 different Fj plants. The S, progeny were grown

in a 10x10 lattice with two replications.

Both experiments were grown at the Agronomy Research

Center near Ames, the Atomic Energy Farm in Ames, and near

Elkhart, Iowa in 1992. In 1993, experiments were evaluated at

the Agronomy Research Center and the Ankeny Research Farm.

Each location by year combination was treated as a different

environment. Each plot was a single row 5.49m in length and

0.76m wide. Plots were overplanted and thinned to a stand of

57,520 plants hectare"'.

Sixteen traits were measured in both experiments. Days

from planting to 50% anthesis and silk emergence were recorded

at the Agronomy Research Center in 1992 and 1993, and at

Atomic Energy Farm in 1992. Silk delay was calculated as the

difference between anthesis and silk emergence. Plant and ear

heights (cm) were calculated as the average measurement of 10

competitive plants within a plot at all environments, except

Elkhart. Plant and ear height were measured from ground level

to the collar of the flag leaf and primary ear node.

Page 43: Triple testcross analysis to detect epistasis and estimate ...

34

respectively. At all five environments 10 competitive plants

within a plot were hand harvested (with gleaning for dropped

ears) and ears were dried to a uniform moisture. Data for the

following traits were measured as the average of 10 primary

ears or plants; ear diameter (cm), cob diameter (cm), ear

length (cm), kernel-row number, and ears plant'. Kernel depth

was recorded as the difference between ear and cob diameter.

Grain yield was determined from all primary and secondary ears

and expressed in grams plant"'. Barren plants was expressed as

the percentage of 10 harvested plants which did not produce an

ear. Root lodging (% of plants leaning more than 30 degrees

from vertical), stalk lodging (% of plants broken at or below

primary ear node), and dropped ears (% of plants with dropped

ear at harvest) were based on the total number of plants in a

plot and recorded at five environments.

Statistical Analysis

The testcross experiment was analyzed by both the TTC and

Design III methods. The TTC and Design III are similar, and

therefore, the same statistical model can be used for both

analyses. The exception is that in the Design III analysis

only entries from B73 and Mol7 testcrosses are included. The

TTC analysis was conducted to test for epistasis, and Design

III analysis was conducted to estimate genetic variance

components.

Page 44: Triple testcross analysis to detect epistasis and estimate ...

35

The statistical model used for the combined analysis was;

Yesnm = U + E, + S3 + {ES), + R,/,/, + + ME ,/

^erstm'

where

e = 1 to 5 (environments),

s = 1 to 10 (sets),

r = 1 to 2 (replications),

t = 1 to 3 (testers) (1 to 2 for Design III), and

m = 1 to 10 (males set"') .

The components are defined as;

Yesrtm = observation of the m"" male, by t"* tester, in s"*

set, in e^ environment;

u = overall mean;

Eg = effect of the e"" environment;

Sg = effect of the s"* set;

(ES)e5 = effect due to interaction of the s"" set and e"*

environment;

Rj/s/e = effect of the r"" replication within set and e""

environment;

T(t/s) ~ effect of the t"* tester within s"" set;

TEet/s = effect due to the interaction between t"* tester

within the s"* set and the e"* environment;

= effect of m"* male within the s*** set;

MEme/s = effect due to interaction between m'^' male within

Page 45: Triple testcross analysis to detect epistasis and estimate ...

36

s"* set and the e"* environment;

TMj s = effect due to interaction of m"" male and t"" tester

within s"" set;

TMEt e/s = effect due to interaction of m"* male by t"* tester

within s"" set and e*" environment; and

®erstm ~ random error associated with the r"* observation on

the m"' male, by t"* tester, within s*"* set and e"* environment.

The analysis of variance combined across environments is

shown in Table 1 for TTC and Table 2 for the Design III.

Environments and males were considered random and testers

fixed. Appropriate F-tests are shown. A Satterthwaite (1946)

approximate F-test was derived for the tester source of

variation. In the TTC analysis of variance, sources of

variation for tester, environment by tester, male by tester,

and environment by male by tester were partition further to

test for epistasis (Table 1). The test for epistasis will be

discussed later.

In the Sj progeny experiment low seed supplies and poor

germination resulted in several entries missing, at one or

more environments. Because of the missing entries the

experiment could not be analyzed as a lattice and was instead

analyzed as a randomized complete block design. Statistical

model for the combined analysis across environments of S,

progeny was:

Yerg = u + E, + R,/, + Gg + GEg^ + e„g.

Page 46: Triple testcross analysis to detect epistasis and estimate ...

Table 1. Analysis of variance for the triple testcross showing sources of varia­tion, degrees of freedom (df), mean squares (MS), expected mean squares (EMS), and F-tests for traits pooled over sets and combined across environments.

Source of variation

df MS EMS F-test

Env (E) e-1 Mil 6" + mt(7^R/s/E + rmtcr^sE + rta^ ME + rmtsa^ M11/M9+M4-H1

Sets (S) s-1 MIO + + rmta^sE + rmtea^s M10/M9

E X S (e-•l)(s-l) M9 + + rmta^sE M9/M8

Rep/E/S e3(r-l) MS a"- + 2 "it (7 jys/g M8/M1

Tester(T)/S s(t-l) M7 (j2 + 2 ETM + rmo\f + rrneK^ M7/M6+M3-M2

B73 vs Mol7 s M71 + + rea^xM + rma^ET + rmeK^i M71/M61+M31-M21

Epistasis s M72 + 2 ETM + 2

rma Ej- + rmeK^-j2 M72/M62+M32-M22

E X T/S s (t-l)(e-l) M6 + + rma g-j. M6/M2

E X B73vsMol7 s(e-l) M61 + + rmff^ETi M61/M21

E X Epistasis s(e-l) M62 a"- + + rmcr^BT? M62/M22

Male(M)/S s(m-l) M5 + + rteCT\, M5/M4

E X M/S s(m-l){e-l) M4 + M4/M1

T X M/S s(m-l)(t-l) M3 + + M3/M2

B73vsMol7 X M s(m-l) M31 + + M31/M21

Page 47: Triple testcross analysis to detect epistasis and estimate ...

Epistasis X M s(m-l) M32 + ra^ETM + M32/M22

E X T X M/S s(t-l)(m-l) (e-1)

M2 + ETM H2/M1

E X B73vsMol7 x M s(t-l)(m-1) M21 a' M21/M1

E X Epistasis x M s(t-l)(m-1) M22 a' + rea\jM2 M22/M1

Error es(r-l) (tm-1)

Ml a'

u 00

Page 48: Triple testcross analysis to detect epistasis and estimate ...

Table 2. Analysis of variance for the Design III showing sources of variation, degrees of freedom (df), mean squares (MS), expected mean squares (EMS), and F-tests for traits pooled over sets and combined across environments.

Source of variation

df MS EMS F-test

Env (E) e-1 Mil + 2 R/S/E + rmtCT^sE + M11/M9+M4-M1

Sets (S) s-1 MIO + •"ta^iyS/E + rmta^sE rmtea^s M10/M9

E X S (e-l){a-l) M9 + + rmta^sE M9/M8

Rep/E/S es(r-l) M8 + ">tCT^R/S/E M8/M1

Tester(T)/S s(t-l) M7 + rea^M + rmcr^T + rmeK\ M7/M6+M3-M2

E X T/S s(t-l)(e-l) M6 + rma^ET M6/M2

Male(M)/S s{m-l) M5 + rtCT^EM + rteCT^M M5/M4

E X M/S s(m-l)(e-1) M4 + M4/M1

T X M/S s<m-l)(t-1) M3 + M3/M2

E X T X M/S s{t-l)(m-1) (e-1)

M2 + M2/M1

Error es(r-l) (tm-1)

Ml

Page 49: Triple testcross analysis to detect epistasis and estimate ...

40

where

e = 1 to 5 (environments),

r = 1 to 2 (replications), and

g = 1 to ICQ (genotypes).

The components are defined as:

Ygfg = r* observation of the g"* genotype, in the e""

environment;

u = overall mean;

Eg = effect of the e"* environment;

Rr/e = effect of the r"* replication in the e"* environment;

Gg = effect of the g"* genotype;

GEgg = effect due to interaction of the g"* genotype and e"*

environment; and

e fg = random error associated with the r''' observation, of

the g"* genotype, in the e"" environment.

The analysis of variance combined across environments is

shown in Table 3. Appropriate F-tests are shown, a

Satterthwaite (1946) approximate F-test was derived for

environments. All effects were considered random.

Genetic Analysis

Test for Epistasis

For the i"" male of the Fj it was designated that L,; =

testcross produced by crossing the i"* male to B73, Lj; =

testcross produced by crossing the i"* male to Mol7, and Lj; =

Page 50: Triple testcross analysis to detect epistasis and estimate ...

Table 3. Analysis of variance for Sj progeny showing sources of variation, degrees of freedom (df), mean squares (MS), expected mean squares (EMS), and F-tests for the combined analysis across environments.

Source of Variation

df MS EMS F-test

Env (E) e-1 MS + M5/M4+M2-M1

Rep/E e{r-l) M4 + M4/M1

Genotypes (G) g-1 M3 + rcr^GE + reff^Q M3/M2

G X E (g-1)(e-1) M2 + M2/M1

Error e(r-l)(g-1) Ml

Page 51: Triple testcross analysis to detect epistasis and estimate ...

42

testcross produced by crossing the i"' male to the F,. Kearsey

and Jinks (1968) proposed the expression, L,j + Lji - 21 -, = D.

The epistatic deviation "D" should equal zero in the absence

of epistasis and will differ from zero if epistasis is

present. For the i"*" male from a population when computing

+ 1,2!" 21.3;, the additive and dominance terms cancel and

epistatic terms remain. This is true for any number of loci.

Irrespective of the genetic constitution of the population

(i.e., gene frequencies and linkage disequilibrium) the method

will detect epistasis for loci at which B73 and Mol7 differ

(Kearsey and Jinks, 1968).

The analysis of variance for the TTC provides two F-tests

for the presence of epistasis (Perkins and Jinks, 1970). The

source of variation due to tester was partitioned into two

orthogonal contrasts, one of which was L,. + Lj - 2L3 . The

contrast Lj + Lj. ~ 2L3. was designated as epistasis in the TTC

analysis (Table 1), and tests for the presence of additive by

additive epistatic effects. The tester x male source of

variation was partitioned into two sources of variation, one

of which was variation in L,; + Ljj - 2'L^i among males. Variation

in L,i + Lzi - 2113; was designated as epistasis by male in the TTC

analysis (Table 1) and tests for additive by dominance and

dominance by dominance epistatic effects. These two sources

of epistatic variation were also tested for their interaction

with environments.

Page 52: Triple testcross analysis to detect epistasis and estimate ...

43

A test for epistasis was also conducted based on the mean

of the epistatic deviation (5), across environments and within

environments. A t-test was conducted to determine if

deviation means were different from zero, as follows;

t = (5 - Uo)/ (V(D)/n)"2,

where

Uo = 0;

n = number of observations in the mean, (1000 for

means across environments and 200 for means within

environments);

V(D) = variance of the deviation, calculated as,

6(M6+M3-M2); and

M6+M3-M2 = Satterthwaite (1946) approximate mean

square used in numerator of the F-test for the tester source

of variation (Table 1). For yield the epistatic deviation

means (Dj) across environments for each Fj male were tested

using the t-test with n=10 observations.

The epistasis source of variation from the TTC analysis

and epistatic deviation are both based on the comparison of

testcross means across F2 males. Therefore positive and

negative epistatic effects will cancel and only net epistasis

will be detected. For epistasis by male, positive and

negative effects will not cancel because variation in effects

between males is tested.

Page 53: Triple testcross analysis to detect epistasis and estimate ...

44

Genetic Variance Components

The genetic-statistic models of the TTC (Jinks and

Perkins, 1970) and Design III (Comstock and Robinson, 1952)

were followed to derive genetic components. Variance

components were derived from the analyses of variance combined

across environments.

Additive genetic (a^^) and additive by environment (ct ae)

were estimated from the TTC. The necessary variance

components were calculated as (Table 1):

= (M5 - M4)/tre = covariance half-sibs = l/4a\, and

= (M4 - Ml)/tr = l/4a2AE.

From the Design III analysis dominance genetic

[a\) , and dominance by environment (a^oe) genetic variance

components were estimated. The necessary components were

calculated as (Table 2):

= (M5 - M4)/tre = covariance half-sibs =

= (M4 -Ml)/rt = 1/402^^;

= (M3 - Vi2) jx& = a\', and

~ (^2 ~ Ml)/r =

Two estimates of and were obtained to compare

estimates from the TTC (3 half-sibs/male) and Design III (2

half-sibs/male). Pooni and Jinks (1979) indicated that the

estimate from the Design III should be more precise than that

from TTC because of greater variation caused by genetic

segregation in the F, testcrosses.

Page 54: Triple testcross analysis to detect epistasis and estimate ...

45

Estimates of and obtained from the Design III were

used to estimate the average level of dominance as;

The assumptions for the translation of covariance of

relatives into genetic components of variance were given by

Comstock and Robinson (1948, 1952). An important assumption

when estimating the average level of dominance is linkage

equilibrium. If linkage disequilibrium exists in a population

estimates of and will be biased by linkage effects.

Additive variance will be biased upward if coupling phase

linkage predominates, and downward if repulsion phase linkage

predominates. Dominance variance will be biased upward

regardless of the linkage phase. Repulsion phase linkage will

likely result in an overestimate of d.

The Design III provides F-tests for two hypotheses

regarding dominance (Gardner et al., 1953):

1.) That dominance is lacking. In the presence of

dominance, M3 will be greater than M2 (Table 2).

2.) That dominance is complete. If dominance is complete

the ratio will not deviate from unity. Satterthwaite

(1946) approximate degrees of freedom were calculated for the

F-test of this ratio as discussed by Gardner et al. (1953).

From the combined analysis of variance for S, progeny,

genotypic (a^a) , genotypic by environment (a^oe) phenotypic

{a\) variance components were estimated as (Table 3):

Page 55: Triple testcross analysis to detect epistasis and estimate ...

46

a^o = (M3 - M2)/re,

= (M2 - Ml)/r, and

a^p = M3/re.

The a^Q can be expressed in genetic components as:

+ 1/Non­

standard errors for all variance components were

calculated using the method of Anderson and Bancroft (1952):

S.E. = {2/0" [(MSi)V(ni+2)]}"2,

where

MS; = the i® mean square;

n; = degrees of freedom associated with the i"* mean

square; and

C = coefficient of the variance component in the expected

mean square.

In addition, because half-sib and S, progeny were derived

from the same Fj parents, the covariance between them can be

translated into genetic variance components. Mean products

were obtained from the combined analysis of covariance between

half-sib and S, means as discussed by Matzinger and Cockerham

(1963). Mean products were multiplied by 2 to put them on

same magnitude as mean squares from the analyses of variance.

Mean products have the same expectations as mean squares (Mode

and Robinson, 1959) and, therefore, covariance components can

be derived from mean products as

Mxy = /

Page 56: Triple testcross analysis to detect epistasis and estimate ...

47

' XYE ~

OxY = Myy - MxYg/re, and

^XYE ~ Mxye/ »

where,

Mxy = mean product between half-sib and S, progeny;

Mxye = interaction of environment by half-sib and Sj

progeny mean product;

OxY = covariance of half-sib and S, progeny; and

''xYE = covariance by environment interaction.

The genetic covariance between half-sib and S, progeny has been

derived by Bradshaw (1983) and can be expressed as

'^xY ~ l/2a\; and

OxY = l/2a^;^E .

Standard errors of components of covariance were estimated by

the following formula (Dickerson, 1969):

S.E. = {1/C^ L [ (Mixx) (MiYv) + (MixY)'3/(ni+2)}"2,

where

C = the coefficient of the component of covariance;

Mjxx and Mjyy = mean squares for half-sib and Sj progeny;

Mjxy = mean product for half-sib and S, progeny; and

n; = degrees of freedom of ith mean product.

Weighted Least Squares

From Design III, S, progeny, and covariance combined

analyses there were eight mean squares and products which were

Page 57: Triple testcross analysis to detect epistasis and estimate ...

48

"translated into genetic components of variance and error

variances. In addition error mean squares from Design III and

S, analyses of variance were expressed in terms of error

variances. Mean squares and products were expressed fully in

terms of genetic components of variance through digenic

epistatic components and error variances as follows:

Design III (Table 2);

Males (M5)= a\, + rta^E^ + rtea^^

= <T\, + rt(l/4CT2 E+ l/16a2 E) + rte(l/4aVl/16' AA) /

Males X Environment (M4) = + rta^E^

= + rt(l/4a2^E+ 1/16ct2^e)»

Male X Tester (M3) = + ra^exM •*"

= + r((j2DE+ O^dde) •+• re(CTV^^DD)/ and

Male X Tester x Environment (M2) = + rcr^ETM

~ '^^dde) •

S, progeny (Table 3);

Genotypes (M3) = 0^2 +

re(a\+l/4a^o+cj^y^+l/16a^oD+l/4(y\D) f and

Genotypes x Environment (M2) = 0^2 + ra^os

Mean Products;

Half-sib & S, = raxvE +

Page 58: Triple testcross analysis to detect epistasis and estimate ...

49

= l/4a2AAE) + re(l/2a2A+ and

Half-sib & Sj X Environment = raxvE

= r{\/2a^^^+ l/4a2AAE),

where, is the additive genetic variance, a\ is the

dominance genetic variance, is additive by environment

variance, o de is dominance by environment variance, (J aa* ^ dd»

and a^AD the digenic epistatic variance components, ct aae#

\de 3 ® digenic epistatic by environment

variances, is the error variance of the Design III,

the error variance of S, progeny, is the covariance of

half-sibs and Sj progeny, and 0xye is the covariance by

environment. Translation matrices of mean squares and

products into coefficients of genetic and error variance

components for the complete model are presented in Tables 4,5,

and 6.

Silva and Hallauer (1975) used three methods to estimate

genetic variance components; i.e., ordinary least squares,

weighted least squares, and maximum-likelihood. They

indicated that ordinary least squares was inadequate, while

weighted least square was a good method and much simpler in

relation to maximum likelihood. Weighted analysis corrects

for unequal variances that exists between mean squares and

products. Weighted least squares as discussed by Nelder

(1960) was used to estimate genetic variance components. The

weighted analysis can be expressed as:

Page 59: Triple testcross analysis to detect epistasis and estimate ...

Table 4. Matrix of coefficients for means squares and mean products in terms of genetic, genetic by environment, and error variances for combined analysis of traits measured in five environments'.

Variance Components''

AE DE ' AAE DDE AD ADE

Design III

Males(M)

Males X Environment(E)

Males X Tester(T)

M X T X E

Error

S| progeny

Genotypes(G)

G X E

Error

Mean Products

Half-sib/S|

Half-sib/S, X E

5.00 1.00 0.00 0.00 1.25 0.25

0.00 1.00 0.00 0.00 0.00 0.25

0.00 0.00 0.00 2.00 0.00 0.00

0 .00 0 .00 0 .00 0 .00 0 .00 0 .00

9.30 2.00 2.30 0.50 9.30 2.00

0.00 2.00 0.00 0.50 0.00 2.00

0.00 0 .00 0 .00 0 .00 0 .00 0 .00

4.70 1.00 0.00 0.00 2.40 0.50

0.00 1.00 0.00 0.00 0.00 0.50

e2

0.00 0.00 0.00 0.00 1.00 0.00

0.00 0.00 0.00 0.00 1.00 0.00

0.00 0.00 10.00 2.00 0.00 0.00 10.00 2.00 0.00 0.00 1.00 0.00

0 .00 2 .00 0 .00 0 .00 1 .00 0 .00

0.00 0.00 0.00 0.00 1.00 0.00

0.58 0.12 2.30 0.50 0.00 1.00

0.00 0.12 0.00 0.50 0.00 1.00

0.00 0.00 0.00 0.00 0.00 1.00

0.00 0 .00 0 .00 0 .00 0 .00 0 .00

0.00 0.00 0.00 0.00 0.00 0.00

' All traits except plant and ear heights, anthesis, silk emergence, and silk delay.

*• Components of variance are additive genetic (o^a)/ dominance (a^o), digenic epistasis of and a^o > interaction of these components by environment {o^^Ef ®^de» <^dde» o'ade)? experimental error of the design III and experimental error of S, progeny (<?e2)-

O) o

Page 60: Triple testcross analysis to detect epistasis and estimate ...

Table 5. Matrix of coefficients for means squares and mean products in terms of genetic, genetic by environment, and error variance components for combined analysis across four environments for plant and ear heights.

Variance Components*

Mean Squares <^ae <^d o^de p^aa <^aae °^dd <^dde <^ad o^ade p^ci

Design III

Males(M) 4.00 1.00 0.00 0.00 1.00 0.25 0.00 0.00 0.00 0.00 1.00 0.00

Males X 0.00 1.00 0.00 0.00 0,00 0.25 0.00 0.00 0.00 0.00 1.00 0.00 Environment(E)

Males X 0.00 0.00 8.00 2.00 0.00 0.00 8.00 2.00 0.00 0.00 1.00 0.00 Tester(T) w

M X T X E 0.00 0.00 0.00 2.00 0.00 0.00 0.00 2.00 0.00 0.00 1.00 0.00

Error 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

S, progeny

Genotypes(G) 7.30 2.00 1.80 0.50 7.30 2.00 0.46 0.12 1.80 0.50 0.00 1.00

G X E 0.00 2.00 0.00 0.50 0.00 2.00 0.00 0.12 0-00 0.50 0.00 1.00

Error 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Mean Products

Half-sib/S| 3.70 1.00 0.00 0.00 1.80 0.50 0.00 0.00 0.00 0.00 0.00 0.00

Half-sib/S| X E 0.00 1.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00

' Components of variance are additive genetic (a\), dominance (o'd)/ digenic epistasis of and o'o (o^aa'P^dd'P^ad) » interaction of these components by environment (o^ae' p^de» p^aae» "^dde/ p'ade) ' experimental error of the design III (o^c) and experimental error of S, progeny

Page 61: Triple testcross analysis to detect epistasis and estimate ...

Table 6. Matrix of coefficients for mean squares and mean products in terms of genetic, genetic by environment, and error variance components for combined analysis across three environments for anthesis, silk emergence, and silk delay.

Variance Components*

Mean Squares p^a o^ae o^de o^aa c^aae o'dd o'dde <^ad o^ade c^ei «^e2

Design III

Males(M) 3.00 1.00 0.00 0.00 0.75 0.25 0.00 0.00 0.00 0.00 1.00 0.00

Males X 0.00 1.00 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.00 1.00 0.00 Environment(E)

Males X 0.00 0.00 6.00 2.00 0.00 0.00 6.00 2.00 0.00 0.00 1.00 0.00 Tester(T)

M X T X E 0.00 0.00 0.00 2.00 0.00 0.00 0.00 2.00 0.00 0.00 1.00 0.00

Error 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

S, progeny

Genotypes(G) 5.60 2.00 1.40 0.50 5.60 2.00 0.35 0.12 1.40 0.50 0.00 1.00

G X E 0.00 2.00 0.00 0.50 0.00 2.00 0.00 0.12 0.00 0.50 0.00 1.00

Error 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Mean Products

Half-sib/S, 2.90 1.00 0.00 0.00 1.40 0.50 0.00 0.00 0.00 0.00 0.00 0.00

Half-sib/S, X E 0.00 1.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00

(ji N

" Components of variance are additive genetic (cPa)^ dominance (a^o) r digenic epistasis of and o'd (0^aa»0^dd/0^ad) ' interaction of these components by environment {o^ae» ®^de/ o^aae» ®^dde/ o^ade)' experimental error of the design III and experimental error of S, progeny (<?e2)*

Page 62: Triple testcross analysis to detect epistasis and estimate ...

53

B = (X'WX)-' (X'WY) ;

where

B = column vector of estimated genetic and error

variances;

X = matrix of coefficients of the genetic and error

variances;

W = matrix with the inverse of the variances of mean

squares and products on the diagonal and zero on the off

diagonal; and

Y = column vector of observed mean squares and products.

Standard errors of the parameter estimates were computed

as the square root of the associated diagonal element of the

(X'WX)"' matrix. Variances of mean squares and products were

calculated by the methods of Mode and Robinson (1959). The

following formula was used for the variance of a mean square:

V(Mi) = [2(Mi)Vdfi+2],

where

Mi = ith mean square; and

dfj = degrees of freedom of ith mean square.

The following formula was used for the variance of a mean

product;

V(MixY) = [ (Mixx) (MiYv) + (MiXY)'3/(dfi+2) ,

where

Mjxx and MjyY = ith mean squares for half-sib and S,

progeny;

Page 63: Triple testcross analysis to detect epistasis and estimate ...

54

MjjjY = ith mean product of half-sib and S, progeny; and

dfj = degrees of freedom of ith mean product.

To estimate the genetic parameters of B, several

different models were tested. However, not all genetic and

error variances could be estimated from a single model. A

complete model included eight genetic variances and two error

variances. The adequacy of each model was tested using a Chi-

sguare test (Mather and Jinks, 1982).

= E [ (O - E)2 * V];

where

O = observed mean square or product;

E = expected mean square or product; and

V = inverse of the variance of the mean square or

product.

Heritabilities

Heritability estimates (h^) were calculated on a progeny

mean basis. For half-sib progeny of the TTC and Design III

as:

= aV(«yVrte + a^g^/te + •

For S, progeny as;

= a^o/CaVre + a^oe/e + •

Exact 90% confidence intervals for estimates of heritability

are reported, as defined by Knapp et al.(1985).

Page 64: Triple testcross analysis to detect epistasis and estimate ...

55

Correlations

Mode and Robinson (1959) outlined a method using analysis

of variance and covariance for the calculation of genetic (ro)

and phenotypic (rp) correlations. For traits x and y, they

were calculated as:

~ ''xy/(®^GX*®^OY)

where, o^xy" genetic covariance for traits x and y from the

combined analysis of covariance across environments;

a^ox and a^oY = genetic variance components of trait x

and y, respectively, from the combined analysis of variance.

The phenotypic correlations were calculated similarly using

appropriate phenotypic variance and covariance components.

Genetic correlations of the TTC and Design III are additive

genetic correlations because the variance and covariance were

completely additive genetic.

Page 65: Triple testcross analysis to detect epistasis and estimate ...

56

RESULTS

The average grain yield across environments for the TTC

was 112.9 g plant"'. Mean grain yields ranged from 150.0 g

plant"' (Ames, 1992) to 88.2 g plant"' (Ames, 1993). Growing

conditions in 1992 were generally good at all three locations,

although the Elkhart environment had below normal rainfall in

June and July. Average yield at the three environments in

1992 was 127.0 g plant"'. Excessive rainfall and below normal

temperatures in 1993 reduced yields at two environments to an

average of 91.6 g plant"'. The overall coefficient of

variation (CV) for grain yield was 14.3%. Environment CV's

ranged from 11.1% (Ames, 1992) to 17.2% (Ames, 1993).

The Ames (1993) environment required 7.6 and 6.8 more

days from planting to reach anthesis and silk emergence

respectively, compared with Ames (1992). The poor growing

conditions in 1993 caused an increase in barren plants from an

average of 0.2% in 1992 to 4.8% in 1993. Most ear and kernel

traits were also adversely affected.

The S, progeny had an average grain yield across

environments of 92.9 g plant"' (Table 7). Mean grain yields

ranged from 117.3 g plant"' at Ames (1992) to 65.2 g plant"' at

Ames (1993). Grain yield averaged 107.1 g plant"' in 1992 and

68.8 g plant"' in 1993. Overall CV was 17.1%, while individual

environments CV's ranged from 12.8% (Ames, 1992) to 25.0%

Page 66: Triple testcross analysis to detect epistasis and estimate ...

Table 7. Means and least significant differences (LSD) for Fj, B73, and Mol7 testcrosses and means for S, progeny combined across five environments and at individual environments.

Environment

Trait Testcross Combined Ames 1992 Elkart 1992

Atomic En­ergy 1992

Ames 1993 Ankeny 1993

Yield F, 110.5 147.0 111.2 120.1 83.5 90.7

(g plant') B73 117.7 158.9 114.0 114.5 96.7 104.5

Mol7 110.4 144.1 108.4 125.12 84.4 90.0

LSD(0.05) _a 4.1 3.9 4.8 3.9 3.7

Ear Fi 4.24 4.54 4.23 4.42 3.96 4.03

Diameter B73 4.46 4.73 4.43 4.68 4.19 4.26

(cm) Mol7 4.01 4.32 3.98 4.18 3.77 3.82

LSD(0.05) 0.03 0.04 0.04 0.05 0.04 0.04

s, 4.10 4.36 4.13 4.21 3.86 3.87

Cob F, 2.60 2.60 2.67 2.69 2.55 2.51

Diameter B73 2.77 2.74 2.80 2.87 2.75 2.68

(cm) Mol7 2.43 2.45 2.51 2.52 2.36 2.33

LSD(0.05) 0.02 0.02 0.02 0.02 0.03 0.03

s, 2.57 2.55 2.61 2.66 2.51 2.49

Kernel F, 1.63 1.94 1.57 1.73 1.41 1.52

Depth 873 1.69 1.98 1.63 1.81 1.44 1.58

(cm) Mol7 1.58 1.88 1.47 1.66 1.41 1.49

LSD(0.05) 0.02 0.04 0.04 0.04 - 0.04

Page 67: Triple testcross analysis to detect epistasis and estimate ...

Ear Length

(cm)

Kernel

Rows

(no.)

Ears

Plant"'

(no.)

Barren

Plants

{%)

S,

P.

B73

Mol7

LSD(0.05)

S,

Fi

B73

Mol7

I.SD(0.05)

B73

Mol7

LSD(0.05)

S,

Fi

B73

Mol7

LSD(0.05)

S,

1.53

14.8

14.1

16.1

0.3

14.1

14.3

16.0

1 2 . 8

0.1

14.0

0.98

1.00

0.98

0.01

0.97

2.5

1 . 1

2.5

0.7

4.3

1.81

16.4

16.1

17.4

0.2

15.1

14.3

16.0

12.8

0 . 1

14.1

1.00

1.01

1.00

1 .01

0 . 1

0 . 2

0.1

0 . 6

* Testcross means not significantly different. Trait not measured in that environment.

° Difference between anthesis and silk emergence.

1.53

14.9

14.1

16.4

0 . 2

14.1

14.1

15.8

12.7

0 . 1

13.8

1.00

0.99

1.00

0.99

0.1

0 . 8

0.3

1.7

1.54

13.8

12 .0

16.0

0.3

14.7

14.2

15.9

12.7

0 . 1

13.8

1.02

1.03

1 .01

1 .02

0 . 1

0 . 2

0 . 0

0 . 2

1.35

14.4

14.2

15.3

0.3

13.2

14.5

16.4

13.1

0.1

14.1

0.95

0.99

0.94

0 .02

0.92

6.0

2.1

6 . 8

1 .8

10.2

1.37

14.5

14.2

15.5

0 . 2

13.3

14.3

15.9

12.9

0.1

14.0

0.94 Oi 00

0.98

0.95

0.02

0.91

6 . 2

2 . 6

5.2

1.4

10.1

Page 68: Triple testcross analysis to detect epistasis and estimate ...

Table 7. (continued)

Trait Testcross Combined

Root F, 0.7

Lodging B73 0.9

(%) Mol7 0.3

LSD(0.05)

S, 0.5

Stalk F, 4.2

Lodging B73 3.6

(%) Mol7 5.3

LSD(0.05) 0.6

S, 4.6

Dropped F, 0.5

Ears B73 0.4

(%) Mol7 1.4

LSD{0.05) 0.4

S, 0.7

Plant F, 218.4

Height B73 226.4

(cm) Mol7 212.5

LSD{0.05) 1.5

S, 200.8

Environment

Ames 1992 Elkart Atomic En- Ames 1993 Ankeny 1993 1992 ergy 1992

1.2 0.2 1.3 0.1 0.8

0.5 0.1 2.1 0.2 1.7

0.2 0.2 0.3 0.1 0.5

0.5 - 0.7 - 0.6

0.6 0.2 0.1 0.1 1.5

4.6 1.4 2.3 6.6 6.0

4.2 1.0 1.8 5.8 5.3

5.6 1.2 2.0 9.0 8.8

- - - 1.3 1.0

6.3 1.8 2.4 6.0 6.9

0.3 0.2 0.2 1.3 0.7

0.3 0.2 0.1 1.2 0.4

0.8 0.6 0.1 4.6 1.0

0.3 0.3 - 0.8

1.2 0.4 0.4 1.1 0.4

219.9 223.4 204.0 226.2

229.0 ~ 230.2 214.6 231.6

210.3 ~ 216.6 200.1 222.9

1.4 ~ 1.7 1.7 1.7

205.5 — 206.6 186.9 203.1

Page 69: Triple testcross analysis to detect epistasis and estimate ...

Ear F, 109.0 105.8

Height B73 115.1 112.3

(cm) Mol? 105.8 100.3

LSD(0.05) 1.1 1.3

S, 98.3 98.0

Anthesis F, 83.5 81.7

(days from B73 84.7 83.2

planting) Mol7 83.4 81.4

LSD(0.05) 0.3 0.3

S, 84.8 83.4

Silk F| 86.1 84.7

Emergence 373 86.6 85.5

(days from Mol7 86.3 84.7

planting) LSD(0.05) - 0.3

S, 87.9 86.7

Silk Delay F, 2.6 3.0

(days)'= B73 1.9 2.2

Mol7 2.9 3.3

LSD(0.05) 0.1 0.2

S| 3.0 3.2

112.2

117.0

108.8

1.5

100.6

79.5

80.7

79.4

0.4

80.8

8 2 . 2

82.7

82.3

101.6

109.3

99.7

1.5

91.6

89.4

90.2

89.5

0 . 2

90.8

91.6

91.7

91.9

116.5

121.6

114.6

1.3

102.9

0\ O

84.6

2.7

2.1

3.0

0.3

3.8

92.8

2 . 2

1.5

2.4

0 . 2

2 . 0

Page 70: Triple testcross analysis to detect epistasis and estimate ...

61

(Ames, 1993). Barren plants increased from 0.8% in 1992 to

10.2% in 1993.

Triple Testcross

Means

Means of F,, B73, and Mol7 testerosses are presented in

Table 7. The TTC combined analyses of variance for five

environments are presented in Tables 8, 9, and 10. Highly

significant (P<0.01) differences were observed among testcross

means for all traits except yield (Table 8). The B73

testcrosses generally had greater ear and cob diameters,

kernel depth and kernel-row number, while Mol7 testcrosses had

greater ear length. Although significant differences did not

exist for yield, B73 testcrosses had the greatest yield across

environments and generally within environments (Table 7). The

environment by tester interaction was highly significant for

all traits except kernel-row number. All traits had a highly

significant tester by male interaction. Ear diameter and

length had significant (P<0.05) environment by tester by male

interactions.

For ear number and lodging traits, significant

differences were observed among testcross means for all traits

except root lodging (Table 9). The B73 testcrosses had more

ears plant"', and less barren plants, stalk lodging, and

dropped ears. The environment by tester interaction was

Page 71: Triple testcross analysis to detect epistasis and estimate ...

Table 8. Triple testcross analysis of variance combined across environments, means, and coefficients of variation (CV) for yield and ear traits measured at five environments in 1992 and 1993.

Source of Variation

Mean Squares

df Yield Ear Diameter

Cob Diameter

Kernel Depth

Ear Length

Kernel Rows

g plant"' cm cm cm cm no.

Env (E)

Set (S)

E X S

Rep/ExS

4

9

36

50

353432.70**

1416.81

1466.87*

856.35**

34.935**

0.140

0.171**

0.079**

3.538**

0.200

0.132**

0.025**

24.362**

0.118

0.216**

0.050**

607.27**

13.97

12.90**

1.95**

22.15**

7.92**

1.34**

0.47

Tester(T)/S

B73 vs Mol7

Epistasis

20

10

10

2337.64

3595.97

1079.30

4.991**

9.935**

0,047

2.820**

5.621**

0.020

0.324**

0.632**

0.016

108.24**

208.68**

7.80**

251.01**

500.01**

2.00**

E x T/S

E x B73vsMol7

E X Epistasis

80

40

40

1164.26**

1863.42**

465.10**

0.055**

0.071**

0.04

0.027**

0.036**

0.018

0.050**

0.064**

0.036

9.96**

18.06**

1.86**

0.40

0.39

0.40

Male(M)/S

E x M/S

90

360

733.06**

421.23**

0.194**

0.046**

0.115**

0.018*

0.092**

0.037*

6.42**

2.07**

8.56**

0.36

T x M/S 180 1091.87** 0.097** 0.030** 0.060** 3.34** 0.97**

Page 72: Triple testcross analysis to detect epistasis and estimate ...

B73vsMol7 X M

Epistasis X M

90 1855.95** 0.152** 0.036** 0.084** 5.31** 1.48**

90 327.78* 0.042 0.025** 0.036 1.37* 0.46*

E x T x M/S 720 269.39 0.036* 0.014 0.032

E x B73vsMol7 x M 360 299.64* 0.035 0.013 0.034

E X Epistasis x M 360 239.14 0.037* 0.015 0.029

1.16*

1.30**

1.02

0.31

0.31

0.32

Error 1450 260.70 0.032 0.015 0.031 1.03 0.35

Overall mean

CV {%)

112.88

14.30

4.24

4.23

2.60

4.67

1.63

10.76

15.00

6.76

14.38

4.14

*.** Significant at the 0.05 and 0.01 probability levels respectively.

Page 73: Triple testcross analysis to detect epistasis and estimate ...

Table 9. Triple testcross analysis of variance combined across environments, means, and coefficients of variation (CV) for five agronomic traits measured at five environments in 1992 and 1993.

Source of Variation

Mean Squares

df Ears Plant" Barren Plants

Root Lodging

Stalk Lodging

Dropped Ears

no. no.

Env (E)

Set (S)

E X S

Rep/ExS

4

9

36

50

0.482**

0.007

0.010**

0.005

3832.66**

34.68

88.53**

40.01*

150.69**

27.02

23.02**

7.04

4326.81**

55.70

101.38**

19.24

488.86**

6.97

5.27

7.66**

Tester(T)/S

B73 vs Mol7

Epistasis

20

10

10

0.016**

0 .022* *

0.010

112.42*

108.38

116.47

18.72

35.66*

1.78

87.34*

159.08*

15.60

37.62**

62.31*

12.92

E x T/S

E x B73vsMol7

E X Epistasis

80

40

40

0 .006* *

0 .006*

0.007**

64.51**

70.04**

58.98**

12.24**

15.64**

8.85*

41.38**

66.61**

16.16

16.11**

23.69**

8.53**

Male{M)/S

E x M/S

90

360

0.009**

0.005**

60.59*

43.02**

9.21**

5.86

62.57**

27.14*

7.05**

4.45

T x M/S 180 0.004 28.08 6.41 26.73* 5.30

Page 74: Triple testcross analysis to detect epistasis and estimate ...

B73vsMol7 X M

Epistasis x M

E x T x M/S

E X B73vsMol7 x M

E x Epistasis x M

Error

Overall mean

CV (%)

90 0.004 29.79

90 0.004 26.36

720 0.004 30.92

360 0.004 32.18*

360 0.004 29.66

1450 0.004 27.92

0.99 2.00

6.13 259.98

6.67 31.35** 6.95*

6.14 22.12 3.64

6.16 20.64 4.64*

6.26 20.81 5.22**

6.07 20.48 4.06

5.79 23.09 4.01

0.63 4.38 0.79

384.26 109.73 251.99

*,** Significant at the 0.05 and 0.01 probability levels respectively.

Page 75: Triple testcross analysis to detect epistasis and estimate ...

Table 10. Triple testcross analysis of variance combined across environments, means, and coefficients of variation (CV) for five agronomic traits measured at four environments in 1992 and 1993.

Source of Variation

Mean Squares

df Plant Height

Ear Height

Anthesis* Silk Emergence

Silk Delay*'

cm cm days days days

Env (E)

Set (S)

E X S

Rep/ExS

3(2)

9

27(18)

40(30)

48992.87** 24282.49**

1959.51** 1565.90**

15958.16** 13968.38**

537.49**

207.96**

364.32**

152.77**

34.08

29.87**

9.25**

45.98

26.02**

8.33**

98.65**

3.53

2.07

1.61*

Tester(T)/S

B73 vs Mol7

Epistasis

20

10

10

4055.28**

7917.01**

193.55

1858.41**

3545.85**

170.97**

34.19**

52.09**

16.30**

6.35

5.62

7.07**

15.94**

28.22**

3.67*

E x T/S

E x B73vsMol7

E x Epistasis

60(40)

30(20)

30(20)

136.31**

206.80**

65.81

68.57**

97.52**

39.61

3.70**

6.17**

1.24

2.73*

4.24**

1.22

1.19

1.32

1.05

Male(M)/S

E x M/S

90 1070.72** 790.72** 19.10** 18.14**

270(180) 45.04** 39.90** 2.49** 2.23**

2.82**

1.23

T x M/S 180 147.44** 91.37** 3.58** 3.64** 1.61*

Page 76: Triple testcross analysis to detect epistasis and estimate ...

B73vsMol7 X M 90

Epistasis X M 90

203.75**

91.12**

123.90**

58.84**

4.52**

2.64

4.77**

2.52*

1.65

1.57*

E x T x M/S 540(360) 42.25** 37.97** 1.88

E x B73vsMol7 x M 270(180) 39.05 36.09 1.75

E x Epistasis x M 270(180) 45.38** 39.86** 2.01

1.74*

1.61

1.86*

1.19*

1.21

1.16

Error 1160(870) 33.91 31.72 1.70 1.45 1.02

Overall mean

CV (%)

219.06

2 . 6 6

109.98

5.12

83.88

1.55

86.35

1.39

2.47

40.88

*,** Significant at the 0.05 and 0.01 probability levels respectively.

* Days from planting to 50% anthesis and silk emergence measured at three environments and degrees of freedom are listed in parentheses.

Difference between anthesis and silk emergence measured at three environments and degrees of freedom are listed in parentheses.

o\ •J

Page 77: Triple testcross analysis to detect epistasis and estimate ...

68

highly significant for all traits (Table 9). Stalk lodging

had a significant tester by male interaction and dropped ears

a significant environment by tester by male effect.

Highly significant differences existed among testcross

means for all traits except silk emergence (Table 10). Only

silk delay did not have a significant environment by tester

interaction. The B73 testcrosses had greater plant and ear

heights, more days to anthesis, and less silk delay (Table 7).

The tester by male interaction was significant for all traits,

and only days to anthesis did not have a significant

environment by tester by male interaction. Tester by

environment interactions and lack of a direct F-test for

testers may have decreased the ability to detect significant

differences among testcross means for some traits.

Analysis of variance tables for S, progeny are presented

in the appendix (Tables C1-C3). Highly significant

differences existed among genotypes for all traits except root

lodging. Genotype by environment interaction was either

significant or highly significant for all traits except,

kernel depth, ear length, root and stalk lodging, and dropped

ears.

Epistasis

Sources of variation due to epistasis and epistasis by

male are presented in Tables 8, 9, and 10 for the combined TTC

Page 78: Triple testcross analysis to detect epistasis and estimate ...

69

analysis. Epistasis was highly significant for ear length,

kernel-row number, ear height, anthesis, and silk emergence

and significant for silk delay (Tables 8, 9, and 10). The

environment by epistasis interaction was highly significant

for yield, ear length, ears plant'*, barren plants, and dropped

ears and significant for root lodging. Epistasis by male was

highly significant for cob diameter and plant and ear heights.

Epistasis by male was significant for yield, ear length,

kernel-row number, days to silk emergence, and silk delay.

The environment by epistasis by male effect was highly

significant for plant and ear heights and significant for ear

diameter and silk emergence.

The significance levels for epistasis and epistasis by

male sources of variation within individual environments are

presented in Table 11. Epistasis was either significant or

highly significant in all environments for ear length and days

to anthesis and in three environments for kernel-row number

and ears plant"'. Epistasis was either significant or highly

significant in two environments for yield, barren plants, and

dropped ears, and in one environment for ear and cob

diameters, root lodging, plant and ear heights, and days to

silk emergence.

Plant and ear heights had significant or highly

significant epistasis by male variation in four and three

environments, respectively. Epistasis by male was

Page 79: Triple testcross analysis to detect epistasis and estimate ...

70

Table 11.

Trait Source

Significance levels for epistasis and epistasis by xnale, from the individual environment analysis of variance for the triple testcross.

Environment

Ames 1992

Elkart 1992

Atomic Energy 1992

Ames 1993

Ankeny 1993

Yield (g plant""

Epistasis

Epistasis X male

ns

ns

ns

ns

ns

ns

**

ns ns

Ear Diameter (cm)

Epistasis

Epistasis x male

ns

ns

*

ns

ns

ns

ns

ns

ns •kit

Cob D iameter (cm)

Epistasis

Epistasis x male

ns

ns

ns

ns

ns

ns

ns

ns

Kernel Depth (cm)

Epistasis

Epistasis x male

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

Ear Length (cm)

Epistasis

Epistasis x male

icir

ns

*

ns ns ns

*

ns

Kernel Row Number (no.)

Epistasis

Epistasis X male

4r*

ns

*

ns

ns

ns

•kit

ns

ns

ns

Ears Plant"' (no.)

Epistasis

Epistasis x male

ns

ns

*

ns

ns

ns

k

ns

* *

ns

Barren Plants (%)

Epistasis

Epistasis X male

ns

ns

ns

ns

ns

ns

k

ns

k k

ns

Significant at the 0.05 and 0.01 probability levels respectively, otherwise nonsignificant (ns).

Page 80: Triple testcross analysis to detect epistasis and estimate ...

71

Table 11. (continued)

Trait Source

Environment

Ames 1992

Elkart 1992

Atomic Energy 1992

Ames Ankeny 1993 1993

Root Lodging (%)

Epistasis

Epistasis X male

**

ifk ns itif

ns

ns

ns

ns

ns

ns

Stalk lodging (%)

Epistasis

Epistasis x male

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

Dropped Ears (%)

Epistasis

Epistasis x male

"k

ns

ns

ns

ns

ns ns

ns

ns

Plant Height (cm)

Epistasis

Epistasis x male

ns ns * *

* *

* *

ns

Ear Height (cm)

Epistasis

Epistasis x male

Anthesis (days)**

Epistasis

Epistasis x male

ns

ns

•k 1c •k

ns *

*

ns

ns •k "k

-k-k

ns

Silk Emergence (days)

Epistasis

Epistasis x male ns

ns

ns *k

Silk Delay (days)®

Epistasis

Epistasis x male

ns

ns

ns

ns

ns *

• Trait not measured in that environment.

Days from planting to 50% anthesis and silk emergence.

° Difference between anthesis and silk emergence.

Page 81: Triple testcross analysis to detect epistasis and estimate ...

72

significant or highly significant in two environments for root

lodging and days to silk emergence and one environment for ear

and cob diameters, days to anthesis and silk delay. The Ames

(1993) environment had nine traits with significant epistasis

and four with significant epistasis by male sources of

variation. The Ames (1992) and Ankeny (1993) environments had

a similar number of traits with significant variation due to

both types of epistasis.

Epistatic deviation means averaged across environments

and for individual environments are presented in Table 12.

Deviations were calculated from testcross performance as (B73

+ Mol7) - 2Fi. Therefore, a negative mean indicates the Fj

testcrosses had a larger mean for that trait than the average

of B73 and Mol7 testcrosses.

The combined deviation means were highly significantly

different from zero for kernel-row number, ear height, days to

anthesis and silk emergence, and silk delay (Table 12).

Combined deviation means were significantly different from

zero for grain yield, ear length, barren plants, and dropped

ears. Positive deviations for grain yield, ear length,

kernel-row number, ear height, and days to anthesis and silk

emergence indicate greater observed values of B73 and of Mol7

testcrosses for these traits (Table 7). A positive deviation

for dropped ears indicates poor performance for B73 and Mol7

testcrosses compared with F, testcrosses. Negative deviations

Page 82: Triple testcross analysis to detect epistasis and estimate ...

Table 12. Epistatic deviation means combined across environments and for individual environments.

Environment

Trait Combined Ames 1992

Elkhart 1992

Atomic En­ergy 1992

Ames 1993

Ankeny 1993

Yield (g plant"') 7.04* 8.89* -0.12 -0.62 14.00** 13.10**

Ear Diameter (cm) 0.00 -0.03 -0.05 0.02 0.04 0.02

Cob Diameter (cm) 0.00 0.00 -0.02 0.01 0.02 0.00

Kernel Depth (cm) 0.00 -0.02 -0.03 -0.01 0.03 0.02

Ear Length (cm) 0.63* 0.72** 0.61** 0.45 0.65** 0.69**

Kernel Rows (no.) 0.29** 0.25* 0.22* 0.18 0.57** 0.14

Ears Plant"' (no.) 0.00 0.00 -0.01* 0.00 0.03 0.05**

Barren Plants (%) -1.40* 0.10 0.80 0.00 -3.10* -4.60**

Root Lodging (%) -0.17 -1.59** 0.00 -0.17 0.08 0.79

Stalk Lodging (%) 0.57 0.56 -0.53 -0.77 1.51 1.98*

Dropped Ears (%) 0.83* 0.50 0.44 -0.11 3.17** 0.08

Plant Height (cm) 2.20 -0.48 0.29 6.74** 2.22

Ear Height (cm) 2.80** 0.94 - 1.31 5.74** 3.18**

Anthesis (days)*" 1.10** 1.18** - 1.11** 1.04** -

silk Emergence (days)** 0.64** 0.82** - 0.65* 0.42 -

Silk Delay (days)"^ -0.47** -0.36 - -0.47* -0.60** -

*,** Significantly different from zero at 0.05 and 0.01 probability levels respectively.

* Trait not measured in that environment.

'' Days from planting to 50% anthesis and silk emergence.

Difference between anthesis and silk emergence.

Page 83: Triple testcross analysis to detect epistasis and estimate ...

74

for barren plants and silk delay, indicate poorer performance

of Fj testcrosses compared with B73 and Mo17 testcrosses for

these traits. For individual environments, ear length had

highly significant deviations in four environments, while

grain yield, kernel-row number, and days to anthesis had

highly significant or significant deviations in three

environments. Ears plant"', barren plants, ear height, days to

silk emergence, and silk delay had significant or highly

significant deviations in two environments. Root and stalk

lodging, dropped ears, and plant height had significant or

highly significant deviations in one environment. The Ames

(1993) and Ankeny (1993) environments had 56 and 46 percent,

respectively, of traits with deviations different from zero.

The magnitude of the deviations were generally larger in these

environments compared with other environments. For example,

Ames (1993) had a deviation for grain yield of 14.0 g plant'

and Ankeny (1993) a 13.l g plant' deviation. Elkhart and

Atomic Energy had deviations near zero and Ames (1992) a

deviation of 8.9 g plant''. Similarly, deviations for barren

plants were large and negative at Ames (-3.1%) and Ankeny (-

4.6%) in 1993. In 1992, barren plant deviations were zero or

small positive values at the three environments (Table 12).

Epistatic deviation means for each male are presented in

the appendix (Tables Dl, D2, and D3). Specifically for grain

yield, deviation means across environments ranged from -28.9

Page 84: Triple testcross analysis to detect epistasis and estimate ...

75

to 37.0 g plant"', with a median of 7.9 g plant"'. Thirteen of

the 100 males had deviations which were significantly or

highly significantly different from zero. Eta-Ndu (1994)

reported for the cross A679 x Wx6005 that among 52 males, 11

had significant deviations with tester LH85 and seven had

significant deviations with tester LH163.

Variance Components

Variance components were considered significantly

different from zero if they were greater than twice their

standard error. If estimates are distributed normally the 95%

confidence interval will be bounded by ± two standard errors

of the estimate. Estimates were considered different from

each other if their confidence intervals did not overlap.

Triple Testcross

Additive genetic (a^^) variance was significantly

different from zero for all traits, except barren plants

(Table 13). The magnitude of significant estimates were at

least two to four times greater than their respective standard

errors. Estimates of additive by environment (c^ae) variance

were significant for all traits except kernel-row number, root

and stalk lodging, dropped ears, and silk delay. Estimates of

<7^ for yield, ear length, and barren plants were smaller in

magnitude than estimates.

Page 85: Triple testcross analysis to detect epistasis and estimate ...

76

Table 13. Estimates of variance components' (± standard error) from the triple testcross analysis of variance across five environments'" .

Trait

Yield (g plant"')

Bar Diameter (cm)°

Cob Diameter (cm)'=

Kernel Depth (cm)°

Ear Length (cm)

Kernel Rows (no.)

Ears Plant(no.)®

Barren Plants (%)

Root Lodging (%)

Stalk Lodging (%)

Dropped Ears (%)

Plant Height (cm)

Ear Height (cm)

Anthesis (days)**

Silk Emergence (days)''

Silk Delay (days)®

1.98 ± 0.39

1.30 ± 0.23

0.73 ± 0.18

0.58 ± 0.13

1.09 ± 0.17

0.05 ± 0.02

2.34 ± 1.27

0.45 ± 0.19

4.72 ± 1.26

0.35 ± 0.15

170.95 ± 26.32

125.14 ± 19.44

3.69 ± 0.63

3.53 ± 0.60

0.35 ± 0.10

107.02 ± : 21.85 260.70 ± 9.68

0.90 ± 0.24 3.21 ± 0.12

0.19 ± 0.09 1.48 + 0.06

0.40 ± 0.20 3.09 + 0.12

0.70 + 0.11 1.03 + 0.04

0.00 ± 0.02 0.35 + 0.01

0.11 + 0.03 0.37 ± 0.01

10.07 + 2.24 27.92 ± 1.04

0.05 + 0.32 5.79 + 0.21

2.70 + 1.46 23.09 + 0.86

0.29 + 0.24 4.01 + 0.15

7.42 + 2.74 33.91 + 1.41

5.46 + 2.44 31.72 + 1.32

0.53 ± 0.18 1.70 + 0.08

0.52 + 0.16 1.45 + 0.07

0.14 + 0.09 1.02 + 0.05

' Variance components: additive genetic variance, ct ae additive genetic by environmental variance, and a\ is experimental error variance.

Five environments for all traits except plant and ear heights which were measured in four and anthesis, silk emergence and silk delay which were measured in three environments.

' Estimates and standard errors multiplied by 100.

** Days from planting to 50% anthesis and silk emergence.

' Difference between anthesis and silk emergence.

Page 86: Triple testcross analysis to detect epistasis and estimate ...

77

Design III

Barren plants, root lodging, and dropped ears did not

have estimates of significantly different from zero (Table

14). Significant estimates were generally two to five times

greater than their standard errors. Estimates of were not

different from zero for ear and cob diameters, kernel depth,

kernel-row number, root and stalk lodging and dropped ears.

Estimates of were larger than for yield, ears plant',

barren plants, and dropped ears. The precision and magnitude

of the estimates of from Design III and TTC were similar

(Tables 13 and 14). Estimates of from the Design III were

generally larger, but did not differ from TTC estimates by

more than a one standard error. For several traits, yield,

ear and cob diameters, kernel depth, and barren plants

estimates of from the Design III were smaller but not

significantly different than estimates from TTC.

Estimates of dominance genetic variance (a\) were

significantly different from zero for all traits except ears

plant"', barren plants, root lodging, dropped ears and silk

delay (Table 14). Significant estimates of o\ were generally

greater than three times their standard errors. Ear length,

barren plants, plant and ear heights, days to silk emergence,

and silk delay had significant estimates of a^oE-

Estimates of and a\ were not different from each other

for ear diameter, kernel depth, ear length, barren plants.

Page 87: Triple testcross analysis to detect epistasis and estimate ...

Table 14. Estimates of variance components* (± standard error) and average level of dominance (d) from the Design III analysis of variance across five environments''.

^^ Yield (g plant"') 52.46 ± : 18. 25 65.68 i : 27. 65 155.63 ± : 27. 45

Ear Diameter (cm)*' 2.15 ± 0. 43 0.40 + 0. 31 1.16 + 0. 23

Cob Diameter (cm)'* 1.62 ± 0. 28 0.07 ± 0. 13 0.24 + 0. 06

Kernel Depth (cm)'' 0.89 ± 0. 23 0.04 ± 0. 28 0.50 ± 0. 13

Ear Length (cm) 0.60 ± 0. 14 0.60 ± 0. 13 0.40 ± 0. 08

Kernel Rows (no.) 1.13 ± 0. 18 -0.02 ± 0. 03 0.12 ± 0. 02

Ears Plant"' (no.)** 0.06 ± 0. 02 0.09 ± 0. 04 0.00 ± 0. 01

Barren Plants {%) 2.91 ± 1-50 6.55 ± 2. 77 -0.24 + 0. 50

Hoot Lodging (%) 0.38 ± 0. 25 -0.11 ± 0. 53 0.04 + 0. 11

Stalk Lodging (%) 6.56 ± 1. 78 2.76 ± 2. 21 1.05 + 0. 49

Dropped Ears (%) 0.45 ± 0. 24 0.67 ± 0. 46 0.17 ± 0. 11

Plant Height (cm) 180.01 ± 28. 15 14.06 ± 4. 01 20.68 + 3. 78

Ear Height (cm) 136.65 ± 21. 68 13.65 ± 3. 79 10.98 ± 2. 32

Anthesis (days)® 3.53 ± 0. 63 0.60 ± 0. 25 0.46 ± 0. 12

Silk Emergence (days)' 3.25 + 0. 58 0.72 ± 0. 22 0.53 ± 0. 12

Silk Delay (days)*^ 0.40 ± 0. 13 0.30 ± 0. 14 0.07 + 0. 05

" Variance components: is additive genetic variance, CT^ae additive genetic by environmental variance, is dominance genetic variance, (T^de is dominance genetic by environmental variance, and experimental error variance.

Plant and ear heights measured in four environments and anthesis, silk emergence and silk delay measured in three environments.

° Average level of dominance deviated from complete dominance at 0.01 probability level.

^ Estimates and standard errors multiplied by 100.

' Days from planting to 50% anthesis or silk emergence.

f Difference between anthesis and silk emergence.

Page 88: Triple testcross analysis to detect epistasis and estimate ...

79

g^DE d g'p/q^A

15-96 1 : 12.71 267.72 i : 12.27 2.44' 2.97

0.14 ± 0.15 3.24 ± 0.15 1.04 0.54

-0.05 ± 0.06 1.39 ± 0.06 0.54"= 0.15

0.13 ± 0.15 3.14 ± 0.14 1.06 0.56

0.13 ± 0.05 1.05 ± 0.05 1.16 0.67

-0.02 ± 0.01 0.35 ± 0.02 0.46® 0.10

0.02 ± 0.02 0.35 ± 0.02 - 0.00

2.70 + 1.34 26.79 ± 1.23 - -0.08

0.08 ± 0.27 6.10 ± 0.28 0.47 0.11

-1.24 ± 0.94 23.30 ± 1.07 0.57 0.16

0.25 ± 0.22 4.72 ± 0.22 0.88 0.38

4.53 ± 1.81 29.28 ± 1.50 0.48"= 0.12

4.35 ± 1.70 27.38 + 1.40 0.40"= 0.08

0.06 + 0.10 1.63 ± 0.10 0.51' 0.13

0.16 ± 0.09 1.29 + 0.08 0.57' 0.16

0.15 ± 0.07 0.91 ± 0.05 0.61 0.19

Page 89: Triple testcross analysis to detect epistasis and estimate ...

80

root lodging, and dropped ears. For grain yield, was

greater than while the opposite was true for the remaining

traits. Therefore, the ratio was less than one for all

traits except grain yield (Table 14). Ratios were generally

greater in magnitude for traits in this study, compared with

ratios reported in the study of Han and Hallauer (1989), who

also evaluated the Fj of B73 x Mol7.

The average level of dominance deviated from complete

dominance for yield, cob diameter, kernel-row number, plant

height, ear height, anthesis, and silk emergence (Table 14).

Of these traits grain yield had an average level of dominance

in the overdominant range (2.44), while the remaining traits

exhibited partial dominance.

Han and Hallauer (1989) reported an average level of

dominance for grain yield of 1.28, which did not deviate from

complete dominance. The average level of dominance for other

traits in the present study were similar to those reported by

Han and Hallauer (1989). The average level of dominance for

grain yield observed in the present study was also greater

than estimates previously reported for Fj populations by

Robinson et al. (1949), Gardner et al. (1953), Moll et al.

(1964), and Gardner and Lonnquist (1959). Estimates reported

in these studies ranged from 1.03 to 2.14. For other traits

the level of dominance was similar to estimates from these

studies.

Page 90: Triple testcross analysis to detect epistasis and estimate ...

81

S, Progeny

Genetic variance (a^o) estimates were significantly

different from zero for all traits except root lodging (Table

15). Genetic by environmental (O^OE) variances were

significantly different from zero for all traits except kernel

depth, ear length, root and stalk lodging, and dropped ears.

The estimate of a^oE for ears plant' and barren plants was

larger but not significantly different than the estimate of

a^Q. Estimates of phenotypic variance were generally smaller

than the error variance, except for plant and ear heights.

For several traits the estimates of were smaller than those

reported by Han and Hallauer (1989).

Covariance 8, and Half-sibs

Covariance of S, and half-sibs translated into

are presented in Table 16. Estimates of were not different

from zero for yield and dropped ears. Additive by environment

variance was different from zero for yield, ear diameter, ears

plant"', barren plants, days to anthesis, and silk emergence.

For yield was significantly greater than CT\, while for

ears plant"' and barren plants it was larger but not different

from The magnitude of estimates from covariance of S, and

half-sibs was generally smaller than estimates from TTC and

Design III. For ears plant"', barren plants, days to anthesis,

and silk delay, estimates of were larger than those

Page 91: Triple testcross analysis to detect epistasis and estimate ...

Table 15. Estimates of variance components* (± standard error) from the S, progeny analysis of variance across five environments'".

Trait

Yield (g plant"') 206.44 ± 29.05 166.65 ± 29.20

Ear Diameter (cm)'^ 2.80 ± 20.40 2.38 ± 0.40

Cob Diameter (cm)*^ 1.45 ± 0.21 1.20 ± 0.21

Kernel Depth (cm)'^ 1.23 ± 0.17 0.91 ± 0.18

Ear Length (cm) 1.18 ± 0.17 1.04 ± 0.17

Kernel Rows (no.) 1.06 + 0.15 1.00 ± 0.15

Ears Plant"' (no.)° 0.44 + 0.06 0.29 ± 0.06

Barren Plants (%) 30.51 ± 4.29 18.13 ± 4.39

Root Lodging (%) 0.79 ± 0.11 -0.09 ± 0.13

Stalk Lodging (%) 7.46 ± 1.05 4.30 ± 1.07

Dropped Ears (%) 0.67 ± 0.09 0.26 ± 0.10

Plant Height (cm) 219.97 ± 30.95 210.67 ± 30.96

Ear Height (cm) 169.97 ± 23.92 163.22 ± 23.93

Anthesis (days)** 5.69 ± 0.80 4.95 ± 0.80

Silk Emergence (days)"* 4.75 ± 0.67 4.07 ± 0.67

Silk Delay (days)'' 0.82 ± 0.12 0.47 ± 0.12

2 2 • Variance components: Op is phenotypic variance, O q is genetic variance is genetic by environmental variance, and is experimental error

variance.

Plant and ear heights measured in four environments and anthesis, silk emergence and silk delay measured in three environments.

Estimates and standard errors multiplied by 100.

Days from planting to 50% anthesis or silk emergence.

® Difference between anthesis and silk emergence.

Page 92: Triple testcross analysis to detect epistasis and estimate ...

83

59.52 ± 15.89 251.02 ± 16.55

0.44 ± 0.18 3.20 ± 0.21

0.26 ± 0.10 1.80 ± 0.12

-0.02 ± 0.15 3.03 ± 0.20

0.07 ± 0.06 1.12 ± 0.07

0.05 ± 0.02 0.44 + 0.03

0.35 ± 0.06 0.71 + 0.05

32.42 ± 4.53 50.28 ± 3.32

-0.29 ± 0.42 8.76 ± 0.58

1.12 ± 1.40 27.10 + 1.79

0.20 ± 0,18 3.36 ± 0.22

8.66 3.47 50.88 + 3.78

7.23 ± 2.48 35.04 + 2.60

0.98 ± 0.23 2.21 ± 0.19

0.72 ± 0.22 2.38 ± 0.20

0.39 ± 0.11 1.19 ± 0.10

Page 93: Triple testcross analysis to detect epistasis and estimate ...

84

Table 16. Estimates of additive genetic (o a) additive by environment variance components (± standard error) from analysis of covariance between S, and half-sib progeny across five environments*.

^

Yield (g plant"') 28.09 ± : 18.42 57.48 ± : 14.87

Ear Diameter (cm)'' 1.46 ± 0.33 0.40 ± 0.16

Cob Diameter (cm)** 1.26 ± 0-21 -0.06 ± 0.09

Kernel Depth (cm)'' 0.50 ± 0.15 0.05 ± 0.14

Ear Length (cm) 0.62 ± 0.13 0.08 + 0.06

Kernel Rows (no.) 0.98 ± 0.15 -0.01 + 0.02

Ears Plant"^ (no. )*" 0.10 ± 0.03 0.13 + 0.03

Barren Plants (%) 5.51 ± 1.75 11.70 ± 2.25

Root Lodging (%) 0.40 ± 0.14 -0.17 ± 0.28

Stalk Lodging (%) 4.98 ± 1.10 1.02 ± 1.14

Dropped Ears (%) 0.03 ± 0.11 0.31 ± 0.16

Plant Height (cm) 172.87 ± 27.15 0.36 2.98

Ear Height (cm) 138.15 ± 21.36 -0.52 ± 2.38

Anthesis (days)*^ 4.01 ± 0.67 0.49 ± 0.22

Silk Emergence (days)*^ 3.44 ± 0.60 0.51 0.19

Silk Delay (days)'' 0.50 ± 0.10 -0.05 ± 0.08

* Plant and ear heights measured in four environments and anthesis, silk emergence and silk delay measured in three environments.

Estimates and standard errors multiplied by 100.

° Days from planting to 50% anthesis or silk emergence.

** Difference between anthesis and silk emergence.

Page 94: Triple testcross analysis to detect epistasis and estimate ...

85

obtained from TTC and Design III. Overall, estimates of

and from covariance analysis were generally within one

standard error of estimates from TTC and Design III.

Weighted Least Squares

Models that included the maximum number of parameters

permitted by the number of independent equations often

produced an X-matrix that was singular or nearly singular.

These models included two digenic epistatic terms and gave

unrealistic estimates (very large or negative, with large

standard errors). Chi et al. (1969), Wright et al. (1971) and

Silva and Hallauer (1975) also obtained unrealistic and

negative estimates as the number of epistatic terms in the

model increased. Therefore, models which included no more

than one digenic epistatic term were used.

The following six models were utilized for estimating

genetic and error variances:

Model Parameters

1

2 0'^A> O^AAF O^AAE. <1/

3 O\E, o'e2

4 O\E> O\, O\A> ^^AAE'

5 O\E> O\, 2 ^ V D R ® DDE»

6 O\E> O\, ^^VE' ^^ADE'

Results of the six models for each trait are presented in

Page 95: Triple testcross analysis to detect epistasis and estimate ...

86

Tables 17 to 32. Across all traits the Chi-square lack of fit

was generally significant for models 1 and 2, while the

remaining models generally provided an adequate fit to the

data. Model 3 generally provided a good fit, with R-squares

greater than 97 percent and lowest standard errors of the six

models for the majority of traits. Silva and Hallauer (1975)

and Wright et al. (1971) also obtained their best results from

the same model. Estimates of a\, ^rid from model

3 (Tables 17 to 32) were generally similar to estimates from

the Design III (Table 14), while the standard errors from

weighted least squares were generally less than those from

Design III. Only the estimate of for ear length was

significantly different between the two studies, which was

greater in the Design III. Additive genetic variance (ct a)

from model 3 was not different from zero for root lodging,

while o\ was not different from zero for ears plant"\ barren

plants, root lodging, dropped ears, and silk delay. Estimates

of were not significantly different from each other

for ear and cob diameters, kernel depth, ear length, root

lodging, and dropped ears. For the remaining traits estimates

of were greater than a\, except for yield.

Inclusion of digenic epistatic variances in models 4, 5,

and 6 generally improved the fit and increased the R-square

values compared with model 3. However, the standard errors of

a^A models 4, 5, and 6 increased compared with model

Page 96: Triple testcross analysis to detect epistasis and estimate ...

Table 17. Yield (g/plant), weighted least squares estimates (E) of variance components and their respective standard errors (SE) for six models, based on the combined analysis across five environments.

Variance Components* and Standard Errors

Model < ae < d O aa ® aae o^el <^c2

1 E

SB

60.93

11.79

57.48

10.07

276.77

9.94

254.82

15.13

96.3 51.7**

2 E -4.79 53.78 138.60 5.62 279.10 251.92 97.0 42.1**

SE 24.78 25.56 45.44 35.28 10.23 16.43

3 E 54.78 57.46 170.82 14.93 269.15 251.87 99.4 8.2

SE 11.85 10.08 26.81 12.19 10.99 15.20

4 E 13.31 62.40 161.32 14.88 87.38 -7.44 270.00 252.13 99.6 4.6

SE 24.98 26.21 27.28 12.61 46.23

0 dd

36.48

2 0 dde

11.56 16.43

5 E 41.23 58.97 625.66 -1.78 -470.03 16.61 269.98 251.02 99.9 1.1

SE 12.95 13.08 172.94 108.70 176.54

O ad

110.66

" ade

11.22 16.55

6 E 41.23 58.97 155.63 14.83 351.50 -12.62 269.98 251.02 99.9 1.1

SE 12.95 13.09 27.40 12.45 132.02 84.10 11.22 16.55

® Components of variance are additive genetic dominance (o^d)» digenic epistasis of and (cj aa»o^dd/®^ad) » interaction of these components by environment o^de/ ®^aae» "^dde# <^ade) f experimental error of the design III (a^ei) experimental error of S, progeny (0^52)*

*,** Chi-square lack of fit significant at the 0.05 and 0.01 probability levels, respectively.

Page 97: Triple testcross analysis to detect epistasis and estimate ...

Table 18. Ear diameter (cm), weighted least squares estimates (E) of variance components and their respective standard errors (SE) for six models, based on the combined analysis across five environments.

Variance Components* and Standard Errors

Model ®^de « aa " aae <^e2

1 E*"

SE

1.92

0.22

0.40

0.11

3.29

0.12

3.24

0.19

97.7 33.0**

2 E 1.56 0.29 0.61 0.16 3.31 3.20 97.7 32.1**

SE 0.50 0.28 0.75 0.40 0.12 0.21

3 E 1.83 0.40 1.19 0.15 3.20 3.21 99.8 2.2

SE 0.22 0.11 0.22 0.14 0.13 0.19

4 E 1.73 0.38 1.18 0.14 0.17 0.03 3.21 3.20 99.8 2.2

SE 0.50 0.29 0.22 0.15 0.76

dd

0.41

®*dde

0.14 0.21

5 E 1.73 0.40 3.12 0.23 -1.95 -0.09 3.21 3.20 99.9 1.7

SE 0.26 0.14 2.57 1.22 2.59

ad

1.24 0.13 0.21

6 E 1.73 0.40 1.17 0.14 1.45 0.06 3.21 3.20 99.9 1.7

SE 0.26 0.14 0.22 0.14 1.92 0.95 0.13 0.21

' Components of variance are additive genetic (o^a)» dominance digenic epiatasis of and (o'aa'O^dd/O^ad) ' interaction of these components by environment (a^^, <^AAEr O^DDB' < ade) » experimental error of the design III (o^j) and experimental error of S, progeny (ai^ei)'

Estimates and standard errors multiplied by 100.

*,** Chi-square lack of fit significant at the 0.05 and 0.01 probability levels, respectively.

Page 98: Triple testcross analysis to detect epistasis and estimate ...

Table 19. Cob diameter (cm), weighted least squares estimates (E) of variance components and their respective standard errors (SE) for six models, based on the combined analysis across five environments.

Variance Components* and Standard Errors

Model O^ae O^de < aa ® aae O^el o^e2

1 E*"

SE

1.32

0.13

0.05

0.06

1.38

0.05

1.93

0.10

98.2 25.3**

2 E 1.62 -0.18 -0.45 0.39 1.41 1.83 98.6 20.4**

SE 0.31 0.13 0.43 0.20 0.05 0.12

3 E 1.30 0.06 0.22 -0.03 1.38 1.93 99.2 7.7

SE 0.13 0.06 0.05 0.06 0.06 0.10

4 E 1.65 -0.20 0.23 -0.06 -0.54 0.43 1.43 1.82 99.8 2.0

SE 0.31 0.14 0.05 0.06 0.43

O^DD

0.21

O'dde

0.06 0.12

5 E 1.40 -0.04 -1.16 1.55 1.39 -1.61 1.41 1.80 99.9 1.3

SE 0.17 0.07 1.44 0.66 1.45

O^AD

0.67

®'ade

0.06 0.12

6 E 1.40

O 0 1 0.23 -0.06 -1.04 1.22 1.41 1.80 99.9 1.3

SE 0.17 0.07 0.05 0.06

CO o • 0.51 0.06 0.12

' Components of variance are additive genetic (ct a)' dominance (o^d)' digenic epistasis of and o^D (o^AA» ®^ddf » interaction of these components by environment (o^ae/ o^aae/ o^dde/ o^ade) » experimental error of the Design III (o^ei)/ experimental error of S| progeny (o^e2)'

'' Estimates and standard errors multiplied by 100.

*,** Chi-square lack of fit significant at the 0.05 and 0.01 probability levels, respectively.

Page 99: Triple testcross analysis to detect epistasis and estimate ...

Table 20. Kernel depth (cm), weighted least squares estimates (E) of variance components and their respective standard errors (SE) for six models, based on the combined analysis across five environments.

Variance Components* and Standard Errors

Model t a ® ae " de < aa aae o^e2 R'

1 £•>

SE

0.72

0.10

0.01

0.09

3.22

0.11

3.00

0.17

98.4 22.4**

2 E 0.54 0.04 0.29 -0.03 3.22 3.00 98.4 21.8**

SE 0.25 0.24 0.36 0.33 0.11 0.19

3 E 0.68 0.02 0.51 0.12 3.14 2.96 99.8 2.8

SE 0.10 0.09 0.12 0.14 0.12 0.17

4 E 0.62 0.13 0.51 0.14 0.09 -0.17 3.12 3.01 99.8 2.5

SE 0.25 0.25 0.13 0.14 0.36

O dd

0.35

dde

0.13 0.19

5 E 0.62 0.05 1.42 -0.33 -0.92 0.47 3.13 3.00 99.8 2.1

SE 0.13 0.12 1.18 1.02 1.18

O ad

1.04

ade

0.12 0.20

6 E 0.62 0.05 0.50 0.13 0.69 -0.35 3.13 3.00 99.8 2.1

SE 0.13 0.12 0.13 0.14 0.89 0.79 0.12 0.20

* Components of variance are additive genetic (o^a)' dominance (o^d)' digenic epistasis of and o'd (o aaf o'ad) » interaction of these components by environment o^def <^aae» <^DDEr o^ade) f experimental error of the Design III (o^ei)' experimental error of S, progeny (o^e2)*

** Estimates and standard errors multiplied by 100.

*,** Chi-square lack of fit significant at the 0.05 and 0.01 probability levels, respectively.

Page 100: Triple testcross analysis to detect epistasis and estimate ...

Table 21. Ear length (cm), weighted least squares estimates (E) of variance components and their respective standard errors (SE) for six models, based on the combined analysis across five environments.

Variance Components* and Standard Errors

Model O a °\E < DE < aa O'aae o'el °'C2 R' X'

1 E

SE

0.74

0.08

0.12

0.04

1.16

0.04

1.08

0.06

96.5 50.0**

2 E 0.43 0.32 0.55 -0.28 1.14 1.14 97.0 43.1**

SE 0.18 0.11 0.29 0.14 0.04 0.07

3 E 0.72 0.11 0.42 0.08 1.12 1.07 98.8 17.5**

SE 0.08 0.04 0.08 0.05 0.04 0.07

4 E 0.49 0.37 0.40 0.11 0.41 -0.36 1.09 1.15 99.3 10.1**

SE 0.18 0.11 0,08 0.05 0.29 0.15

0 dde

0.04 0.07

5 E 0.64 0.18 2.07 -0.60 -1.67 0.70 1.11 1.12 99.1 12.8**

SE 0.09 0.06 1.03 0.43 1.04

® ad

0.44

O^ade

0.04 0.07

6 E 0.64 0.18 0.40 0.10 1.25 -0.53 1.11 1.12 99.1 12.8**

SE 0.09 0.06 0.08 0.05 0.78 0.34 0.04 0.07

* Components of variance are additive genetic (o^a), dominance (o^d)* digenic epistasis of and a^O (o^aa/O^dd/'^ad) » interaction of these components by environment (o^ae/ °^DE> °^ME' "W/ <^ade)/ experimental error of the Design III (o^ei), and experimental error of S, progeny (0^52) •

*,** Chi-square lack of fit, significant at the 0.05 and 0.01 probability levels, respectively.

Page 101: Triple testcross analysis to detect epistasis and estimate ...

Table 22. Kernel-row number (no.)» weighted least squares estimates (E) of variance components and their respective standard errors (SE) for six models, based on the combined analysis across five environments.

Variance Components* and Standard Errors

Model < a O^ae O de O aa O aae o^e2

1 E

SE

1.03

0.09

0.002

0.01

0.34

0.01

0.47

0.02

97.6 34.0**

2 E 1.11 -0.05 -0.12 0.09 0.34 0.44 97.9 30.3**

SB 0.20 0.03 0.30 0.05 0.01 0.03

3 E 1.02 0.002 0.12 -0.01 0.34 0.47 99.6 5.6

SE 0.09 0.01 0.02 0.01 0.01 0.02

4 E 1.12 -0.06 0.12 -0.02 -0.17 0.10 0.35 0.44 99.9 0.6

SE 0.20 0.03 0.02 0.01 0.30

0 dd

0.05

O^dde

0.01 0.03

5 E 1.04 -0.02 -0.27 0.32 0.39 -0.34 0.35 0.44 99.9 0.4

SE 0.11 0.01 1.01 0.15 1.01

O ad

0.15

®'ade

0.01 0.03

6 E 1.04 -0.02 0.12 -0.02 -0.29 0.26 0.35 0.44 99.9 0.4

SE 0.11 0.01 0.02 0.01 0.76 0,12 0.01 0.03

* Components of variance are additive genetic (0^^)/ dominance {a^g), digenic epistasis of and cTp o^ad) ' interaction of these components by environment (o^ae, o^de/ ®^aae» <^ddb' ^ade) f experimental error of the Design III and experimental error of S, progeny (^^2)'

*,** Chi-square lack of fit, significant at the 0.05 and 0.01 probability levels, respectively.

Page 102: Triple testcross analysis to detect epistasis and estimate ...

Table 23. Ears plant"' (no.), weighted least squares estimates (E) of variance components and their respective standard errors (SE) for six models, based on the combined analysis across five environments.

Variance Components' and Standard Errors

Model O'ae O de O aa O aae O^el «^e2 R' X'

1 E**

SE

0.09

0.02

0.14

0.02

0.35

0.01

0.79

0.04

97.4 37.8**

2 E -0.01 -0.04 0.27 0.37 0.36 0.72 99.8 3.3

SB 0.04 0.05 0.08 0.09 0.01 0.05

3 E 0.09 0.14 0.00 0.03 0.33 0.79 97.6 33.8**

SE 0.02 0.02 0.01 0.02 0.01 0.04

4 E -0.01 -0.03 0.00 0.02 0.27 0.35 0.35 0.72 99.8 2.0

SE 0.04 0.05 0.01 0.02 0.08

O^dd

0.09

dde

0.02 0.05

5 E 0.08 0.11 1.16 1,25 -1.16 -1.23 0.34 0.71 99.7 3.7

SE 0.02 0.02 0.35 0.32 0.35

O ad

0.32

" ade

0.02 0.05

6 E 0.08 0.11 0.00 0.02 0.87 0.93 0.34 0.71 99.7 3.7

SE 0.02 0.02 0.01 0.02 0.26 0.25 0.01 0.05

' Components of variance are additive genetic (c a)' dominance (o^d)' digenic epistasis of and o'd (o^aa# o^ad) ' interaction of these components by environment (o ae/ o^de/ o aae? ®^dde» ® ade) / experimental error of the Design III and experimental error of S, progeny (^e2)*

^ Estimates and standard errors multiplied by 100.

*,** chi-square lack of fit significant at the 0.05 and 0.01 probability levels, respectively.

Page 103: Triple testcross analysis to detect epistasis and estimate ...

Table 24. Barren plants (%), weighted least squares estimates (E) of variance components and their respective standard errors (SE) for six models, based on the combined analysis across five environments.

Variance Components* and Standard Errors

Model o A ° AE 0^

ft)

O^AA ®^AAE <^e2 R'

1 E

SE

4.42

1.10

12.09

1.61

26.73

1.00

56.70

3.11

96.5 51.1**

2 E -1.77 -4.91 16.83 35.61 28.30 50.94 99.5 6.5

SE 2.46 3.68 5.51 6.98 1.30 3.26

3 E 4.48 12.62 -0.26 3.86 25.13 56.29 97.1 41.8**

SE 1.10 1.62 0.50 1.32 1.13 3.11

4 E -1.75 -3.38 -0.24 2.54 16.79 33.08 27.18 51.04 99.8 2.8

SE 2.46 3.76 0.50 1.34 5.51

0 DD

7.10

O^DDE

1.19 3.26

5 E 3.88 9.74 77.20 118.26 -77.44 -115.15 25.98 50.30 99.7 4.7

SE 1.14 1.74 24.51 25.59 24.53

O^AD

25.69

®^ADE

1.15 3.32

6 E 3.88 9.74 -0.24 3.11 57.91 87.51 25.98 50.30 99.7 4.7

SE 1.14 1.74 0.50 1.33 18.34 19.53 1.14 3.32

' Components of variance are additive genetic (o^a) / dominance (a^o), digenic epistasis of and (o^aa/O^dd'O^ad) ' interaction of these components by environment (o^ae/ <^aae» ' experimental error of the Design III (o^ei)' experimental error of S, progeny (0^2)*

*,** Chi-square lack of fit, significant at the 0.05 and 0.01 probability levels, respectively.

Page 104: Triple testcross analysis to detect epistasis and estimate ...

Table 25. Root lodging (%), weighted least squares estimates (E) of variance components and their respective standard errors (SE) for six models, based on the combined analysis across five environments.

Variance Componenta* and Standard Errors

Model O^AE O^DE O^AA O^AAE O^el

1 E

SE

0.15

0.09

-0.13

0.21

6.19

0.21

8.26

0.44

99.3 9.7

2 E 0.74 -0.08 -0.81 -0.18 6.13 8.70 99.9 1.3

SE 0.24 0.51 0.31 0.81 0.22 0.56

3 E 0.15 -0.13 0.00 0.05 6.17 8.24 99.3 9.6*

SE 0.09 0.21 0.11 0.26 0.24 0.45

4 E 0.74 -0.01 0.04 0.10 -0.82 -0.29 6.06 8.72 99.9 0.9

SE 0.24 0.53 0.11 0.27 0.31

O^DD

0.84

O^DDE

0.26 0.56

5 E 0.39 -0.15 -2.64 -0.75 2.68 0.83 6.11 8.76 99.9 0.01

SE 0.12 0.24 0.96 2.54 0.97 2.58

O^ADE

0.24 0.58

6 E 0.39 -0.16 0.04 0.07 -2.00 -0.63 6.11 8,76 99.9 0.01

SE 0.12 0.24 0.11 0.26 0.72 1.96 0.24 0.57

' Components of variance are additive genetic dominance (o^d)» digenic epistasis of and {®^aa»®^dd'®^ad) » interaction of these components by environment {o^ae» ®^de» o^aae» o^dde/ '^ade) » experimental error of the Design III (o^ei)» experimental error of S, progeny (<^52)*

*,** Chi-sc[uare lack of fit, significant at the 0.05 and 0.01 probability levels, respectively.

Page 105: Triple testcross analysis to detect epistasis and estimate ...

Table 26. Stalk lodging (%), weighted least squares estimates (E) of variance components and their respective standard errors (SE) for six models, based on the combined analysis across five environments.

Variance ComponentB* and Standard Errors

Model O^AE O^DE <^AAE <^e2

1 E

SE

4.96

0.71

1.40

0.81

23.19

0.80

26.74

1.52

99.4 7.8

2 E 6.60 2.31 -2.42 -1.48 23.00 27.37 99.6 6.4

SE 1.80 2.03 2.42 2.95 0.82 1.76

3 E 4.85 1.43 1.01 -1.45 23.73 27.00 99.8 2.3

SE 0.71 0.81 0.48 0.89 0.94 1.53

4 E 6.78 1.71 1.06 -1.37 -2.83 -0.49 23.59 27.32 99.9 0.8

SE 1.80 2.10 0.49 0.92 2.43 3.06

O^DDE

1.00 1.76

5 E 5.46 1.36 -6.61 -0.81 7,66 -0.63 23.70 27.10 99.9 1.3

SE 0.94 1.01 7.73 9.10 7.75

<^AD

9.24

O^ADE

0.96 1.77

6 E 5.46 1.36 1.05 -1.45 -5.73 0.48 23.70 27.10 99.9 1.3

SE 0.94 1.01 0.49 0.91 5.80 7.02 0.96 1.79

* Components of variance are additive genetic (o^a)/ dominance (o^d)/ digenic epistasis of and o^D (a^AA'®^dd/® ad)» interaction of these components by environment (o^ae o^de' ®^aae' o^dde» <^ade) » experimental error of the Design III (0^^)/ and experimental error of S, progeny (^52)*

*,** Chi-square lack of fit, significant at the 0.05 and 0.01 probability levels, respectively.

Page 106: Triple testcross analysis to detect epistasis and estimate ...

Table 27. Dropped ears (%), weighted least squares estimates (E) of variance components and their respective standard errors (SE) for six models, based on the combined analysis across five environments.

Variance Components* and Standard Errors

Model O^AE O DE ' 'AA ®^AAE < e2

1 &

SE

0.18

0.07

0.27

0.11

4.98

0.17

3.34

0.19

99.3 10.0

2 E 0.06 0.44 0.17 -0.24 4.97 3.38 99.3 9.4

SE 0.20 0.31 0.25 0.42 0.17 0.22

3 E 0.16 0.26 0.19 0.14 4.87 3.30 99.6 5.1

SE 0.07 0.11 0.11 0.21 0.19 0.19

4 E 0.10 0.54 0.18 0.20 0.09 -0.40 4.82 3.39 99.6 4.3

SE 0.20 0.32 0.11 0.22 0.26

O DD

0.45

O^DDE

0.20 0.22

5 E 0.11 0.34 0.77 -0.76 -0.60 0.95 4.85 3.36 99.7 4.2

SE 0.10 0.15 0.75 1.22 0.77

O^AD

1.26

®^ADE

0.19 0.22

6 E 0.11 0.34 0.17 0.18 0.44 -0.72 4.85 3.36 99.7 4.2

SE 0.10 0.15 0.11 0.22 0.57 0.96 0.19 0.22

* Components of variance are additive genetic (o^a)# dominance {ai^o), digenic epistasis of and o'd (®^AA'®^DDf ®^ad) ' interaction of these components by environment (o^ae/ "^dde' '^ade) » experimental error of the Design III experimental error of S, progeny {(^^2) •

*,** Chi-square lack of fit, significant at the 0.05 and 0.01 probability levels, respectively.

Page 107: Triple testcross analysis to detect epistasis and estimate ...

Table 28. Plant height (cm), weighted least squares estimates (E) of variance components and their respective standard errors (SE) for six models, based on the combined analysis across four environments.

Variance Components* and Standard Errors

Model O ae ® de ® aa ® aae <^el <^e2

1 E

SE

187.34

16.63

5.91

1.96

31.93

1.30

52.54

3.38

95.9 46.8**

2 E 162.42 5.53 45.26 0.64 31.96 52.35 96.0 46.1**

SE 34.66 4.47 55.21 6.71 1.33 3.74

3 E 185.94 6.02 20.73 4.07 30.37 51.87 99.3 8.5

SE 16.63 1.96 3.78 1.77 1.41 3.39

4 E 164.97 7.67 20.65 4.20 38.02 -2.74 30.22 52.48 99.3 7.9*

SE 34.66 4.54 3.78 1.80 55.22

®'dd

6.83

^dde

1.46 3.74

5 E 177.80 5.25 176.68 16.73 -156.00 -12.82 30.52 50.88 99.3 7.6*

SE 19.68 2.39 200.56 22.24 200.62

< ad

22.45

®'ade

1.43 3.78

6 E 177.80 5.25 20.68 3.91 116.14 9.75 30.52 50.88 99.3 7.6*

SE 19.68 2.39 3.78 1.79 149.35 17.06 1.43 3.78

" Components of variance are additive genetic (o a), dominance (o'p), digenic epistasis of and o'b (o^aa/®^dd»®^ad) ' interaction of these components by environment "^aae/ o^dde '^ade) r experimental error of the Design III (a^ei)' experimental error of S, progeny (0^52)*

*,** Chi-square lack of fit, significant at the 0.05 and 0.01 probability levels, respectively.

Page 108: Triple testcross analysis to detect epistasis and estimate ...

Table 29. Ear height (cm), weighted least squares estimates (E) of variance components and their respective standard errors (SE) for six models, based on the combined analysis across four environments.

Variance ComponentB* and Standard Errors

Model O\ O^AE O^DE "^AA O^AAE <^e2 R'

1 E

SE

145.91

12.92

4.67

1.56

30.14

1.21

36.47

2.38

96.2 43.7**

2 E 125.93 3.16 36.39 2.30 30.25 36.01 96.3 42.8**

SE 26.81 3.82 42.62 5.33 1.24 2.58

3 E 145.23 4.60 10.97 3.92 28.56 35.96 99.0 11.4*

SE 12.92 1.56 2.31 1.66 1.31 2.38

4 E 128.98 -3.90 10.90 3.66 30.99 6.78 29.44 36.93 99.1 10.8**

SE 26.81 3.88 2.32 1.69 42.63

O^DD

5.45

O^DDE

1.36 2.58

5 E 138.88 3.50 132.45 18.47 -121.47 -14.81 28.77 35.04 99.1 10.0**

SE 15.32 2.02 155.29 16.87 155.32

®^AD

17.09

®'ADE

1.33 2.60

6 E 138.88 3.50 10.98 3.66 90.42 11.26 28.77 35.04 99.1 10.0**

SE 15.32 2.02 2.32 1.68 115.62 12.99 1.33 2.60

* Components of variance are additive genetic {o^a)» dominance (o^d)? digenic epistasis of and interaction of these components by environment (a^^, <^aae» ^DDE> «^ade) / experimental error of the Design III t and experimental error of S, progeny (^e2)*

*,** Chi-square lack of fit, significant at the 0.05 and 0.01 probability levels, respectively.

Page 109: Triple testcross analysis to detect epistasis and estimate ...

Table 30, Anthesis (days from planting), weighted least squares estimates (E) of variance components and their respective standard errors (SE) for six models, based on the combined analysis across three environments.

Variance Components* and Standard Errors

Model " ae O de O aa € aae <^e2

1 E

SE

4.03

0.40

0.66

0.13

1.68

0.08

2.32

0.18

97.3 23.7**

2 E 3.05 0.26 1.93 0.67 1.71 2.22 97.9 19.0**

SE 0.81 0.29 1.37 0.44 0.08 0.18

3 E 4.00 0.68 0.46 0.08 1.61 2.31 99.5 4.3

SB 0.40 0.13 0.11 0.10 0.09 0.18

4 E 3.10 0.33 0.46 0.05 1.77 0.57 1.64 2.23 99.9 0.7

SE 0.81 0.30 0.11 0.10 1.36 0.45

O^dde

0.09 0.18

5 E 3.74 0.54 6.47 2.31 -6.00 -2.25 1.64 2.21 99.9 0.3

SE 0.46 0.16 4.96 1.51 4.96

ad

1.52

®\de

0.09 0.19

6 E 3.74 0.54 0.46 0.06 4.50 1.71 1.63 2.21 99.9 0.3

SE 0.46 0.16 0.12 0.10 3.72 1.16 0.09 0.19

' Components of variance are additive genetic (o^a)# dominance (o^d)/ digenic epistasis of and (c^AA/O'DDf <^ad) » interaction of these components by environment d^tm' ®^aae/ o^dde' o^ade)/ experimental error of the Design III (o^d)/ and experimental error of S, progeny (o^e2)-

*,** Chi-square lack of fit, significant at the 0.05 and 0.01 probability levels, respectively.

Page 110: Triple testcross analysis to detect epistasis and estimate ...

Table 31. Silk emergence (days from planting), weighted least squares estimates (E) of variance components and their respective standard errors (SE) for six models, based on the combined analysis across three environments.

Variance Components* and Standard Errors

Model a\ O^AE <^D ®^DE <^AA O^AAE <^c2 R'

1 E

SE

3.53

0.35

0.61

0.12

1.38

0.07

2.43

0.18

96.8 28.1**

2 E 2.92 0.51 1.16 0.17 1.38 2.40 97.0 26.9**

SE 0.73 0.26 M

CD

0.41 0.07 0.20

3 E 3.50 0.62 0.53 0.16 1.30 2.41 99.8 1.3

SB 0.35 0.12 0.12 0.09 0.07 0.18

4 E 2.98 0.61 0.53 0.16 0.97 0.02 1.30 2.40 99.9 0.6

SE 0.73 0.27 0.12 0.09 1.18

O^DD

0.41

O'DDE

0.07 0.20

5 E 3.33 0.60 3.94 0.60 -3.41 -0.45 1.30 2.38 99.9 0.5

SE 0.41 0.14 4.24 1.39 4.23

O^AD

1.40

®^ADE

0.07 0.20

6 E 3.33 0.60 0.53 0.15 2.55 0.34 1.30 2.38 99.9 0.5

SE 0.42 0.14 0.12 0.09 3.18 1.06 0.07 0.20

' Components of variance are additive genetic (o^a)? dominance (o^d)/ digenic epistasis of and o^t, (o^aa/°^DD'®^ad) » interaction of these components by environment (o^ae» ®'de» °^dde» '^ade) » experimental error of the Design III and experimental error of S, progeny (o?e2)*

*,** Chi-square lack of fit, significant at the 0.05 and 0.01 probability levels, respectively.

Page 111: Triple testcross analysis to detect epistasis and estimate ...

Table 32. Silk delay (days between anthesis and silk emergence), weighted least squares estimates (E) of variance components and their respective standard errors (SE) for six models, based on the combined analysis across three environments.

Variance Components* and Standard Errors

Model <^D < de O aa ° aae <^e2

1 E

SE

0.46

0.06

0.12

0.06

0.99

0.04

1.30

0.09

97.2 24.0**

2 E 0.43 -0.13 0.06 0.44 1.02 1.22 97.8 19.4**

SE 0.14 0.14 0.22 0.22 0.04 0.10

3 E 0.46 0.13 0.07 0.16 0.93 1.28 98.8 10.7*

SE 0.06 0.06 0.04 0.07 0.05 0.09

4 E 0.44 0.06 0.07 0.13 0.03 0.32 0.95 1.23 99.0 8.4*

SE 0.14 0.14 0.04 0.07 0.22

O dd

0.22

0 dde

0.05 0.10

5 E 0.46 0.04 0.05 1.80 0.02 -1.67 0.95 1.19 99.4 4.8

SE 0.08 0.07 0.77 0.70 0.77

O ad

0.71

® ade

0.05 0.10

6 E 0.46 0.04 0.07 0.13 -0.02 1.27 0.95 1.19 99.4 4.8

SE 0.08 0.07 0.04 0.07 0.58 0.54 0.05 0.10

' Components of variance are additive genetic (o a)' dominance (0 0), digenic epistasis of and (o^aaj / interaction of these components by environment (o ae» <^DE' " dde/ < ade) » experimental error of the Design III (o^ei)' experimental error of S, progeny •

*,** Chi-square lack of fit, significant at the 0.05 and 0.01 probability levels, respectively.

Page 112: Triple testcross analysis to detect epistasis and estimate ...

103

3. The increase in standard errors, as the number of

epistatic components increased, is likely unavoidable because

of the high correlation between coefficients of the first-

order variance components (a\ and a^u) and coefficients of

second-order components a\j,, (Chi et al., 1969).

For several traits decreased estimates of while

was not effected in model 4 compared with model 3. For

example, the estimate of for yield was decreased by 75% and

for ear length decreased by 32%. Decreases in resulted in

nonsignificant estimates for yield, ears plant"', barren

plants, and dropped ears in model 4. Dominance variance did

not differ from zero for ears plant"', barren plants, root

lodging, dropped ears, and silk delay. Additive genetic

variance was significantly greater than for cob diameter,

kernel-row number, root and stalk lodging, plant and ear

heights, days to anthesis and silk emergence, and silk delay

in model 4. Dominance variance was significantly greater than

for yield. When significant estimates of a^u, and

were observed in model 4, they did not differ from

corresponding estimates observed in model 3.

Inclusion of in model 5 generally gave

unrealistically large estimates of and large negative

estimates of which may indicate the model was inadequate.

Estimates of a\j) generally had no effect on estimates of a\

and a\ in model 6. Therefore, had a greater effect on

Page 113: Triple testcross analysis to detect epistasis and estimate ...

104

estimates of than did either a^oo model

5 is considered inadequate, estimates of a\ were generally not

biased by epistasis in the remaining models. Hallauer and

Miranda (1988) observed that the greatest bias on

estimates of and a\.

Estimates of digenic epistatic components from models 2,

4, 5, and 6 were often negative, smaller than their standard

errors, or unrealistically large compared with estimates of

and These results agree with those of Silva and Hallauer

(1975) and Wright et al. (1971) who also observed unrealistic

and negative estimates of digenic epistatic components. For a

few traits in the present study, however, positive epistatic

components, greater than twice their standard error, were

observed. This was true for the following traits and

variances; and for yield in models 2 and 6,

respectively (Table 17), o ade diameter in model 6

(Table 19) , ct aa length in model 2 (Table 21) , a^^oE

for kernel-row number in model 6 (Table 22) , ct aa/ o' aae/ o'\d»

and ct\oe ears plant"' (Table 23) and barren plants (Table

24) in models 2, 4, and 6, and a^AOE silk delay in model 6

(Table 32). These traits either had significant epistatic

effects, significant epistasis by environment interactions or,

both, detected in the TTC analysis (Tables 8, 9, and 10).

Page 114: Triple testcross analysis to detect epistasis and estimate ...

105

Heritabilitles

Heritability estimates and 90% confidence intervals of

TTC, Design III, and S, progeny are presented in Tables 33, 34,

and 35, respectively. Estimates were considered greater than

zero if the confidence interval did not overlap zero. Within

and among analyses estimates between traits were considered

different if their confidence intervals did not overlap.

Estimates in all analyses were significantly greater than zero

for all traits, except for root lodging of S, progeny which was

negative. In all three analyses kernel-row number and plant

and ear heights had the largest estimates (>0.91), which were

significantly greater than estimates for other traits.

Magnitude of triple testcross and Design III heritabilities,

based on half-sib progenies were similar and reflect the

relative importance of S, estimates were larger for

several traits, particularly for yield. Because the expected

genetic variance of S, progeny includes all the one-

fourth of the of the source population, heritabilities are

expected to be larger compared with those based on half-sib

progeny, which contain one-fourth of the

Correlations

Phenotypic

For TTC and S, progeny, grain yield was positively

correlated with ear traits, ears plant"', and plant and ear

Page 115: Triple testcross analysis to detect epistasis and estimate ...

106

Table 33. Estiiaates of heritability (h^) with confidence intervals based on half-sib progeny from the triple testcross analysis of variance across five environments*.

Confidence Interval''

Trait h^ Lower Limit Upper limit

Yield (g plant"') 0.43 0.25 0.57

Ear Diameter (cm) 0.77 0.70 0.82

Cob Diameter (cm) 0.85 0.80 0.89

Kernel Depth (cm) 0.60 0.48 0.70

Ear Length (cm) 0.68 0.58 0.76

Kernel Rows (no.) 0.96 0.95 0.97

Ears Plant(no.) 0.40 0.22 0.55

Barren Plants (%) 0.29 0.08 0.47

Root Lodging (%) 0.36 0.17 0.52

Stalk Lodging (%) 0.57 0.44 0.68

Dropped Ears (%) 0.37 0.18 0.53

Plant Height (cm) 0.96 0.95 0.97

Ear Height (cm) 0.95 0.93 0.96

Anthesis (days)' 0.87 0.83 0.90

Silk Emergence (days)' 0.88 0.84 0.91

Silk Delay (days)*" 0.57 0.42 0.68

* Plant and ear heights measured in four environments and anthesis, silk emergence and silk delay measured in three environments.

Exact 90% confidence intervals as defined by Knapp et al. (1987).

" Days from planting to 50% anthesis or silk emergence.

^ Difference between anthesis and silk emergence.

Page 116: Triple testcross analysis to detect epistasis and estimate ...

107

Table 34. Estimates of heritability (h^) with confidence intervals based on half-sib progeny from the Design III analysis of variance across five environments*.

Confidence Interval*"

Trait h2 Lower Limit Upper limit

yield (g plant"') 0.44 0.27 0.58

Ear Diameter (cm) 0.75 0.67 o

• 00

Cob Diameter (cm) 0.85 0.80 0.89

Kernel Depth (cm) 0.59 0.46 0.69

Ear Length (cm) 0.65 0.54 0.73

Kernel Rows (no.) 0.94 0.93 0.96

Ears Plant"' (no.) 0.40 0.22 0.55

Barren Plants (%) 0.30 0.10 0.48

Root Lodging (%) 0.24 0.01 0.43

Stalk Lodging (%) 0.56 0.43 0.67

Dropped Ears (%) 0.30 0.08 0.47

Plant Height (cm) 0.94 0.93 0.96

Ear Height (cm) 0.93 0.91 0.95

Anthesis (days)® 0.83 0.77 0.87

Silk Emergence (days)*^ 0.83 0.77 0.88

Silk Delay (days)** 0.50 0.32 0.63

* Plant and ear heights measured in four environments and anthesis, silk emergence and silk delay measured in three environments.

Exact 90% confidence intervals as defined by Knapp et al. (1987).

® Days from planting to 50% anthesis or silk emergence.

Difference between anthesis and silk emergence.

Page 117: Triple testcross analysis to detect epistasis and estimate ...

108

Table 35. Estimates of heritability (h^) with confidence intervals based on S, progeny analysis of variance across five environments'.

Confidence Interval''

Trait h2 Lower Limit Upper limit

Yield (g plant"') 0.81 0.75 0.85

Ear Diameter (cm) 0.84 0.80 0.88

Cob Diameter (cm) 0.83 0.78 0.87

Kernel Depth (cm) 0.74 0.66 0.80

Ear Length (cm) 0.89 0.85 0.91

Kernel Rows (no.) 0.95 0.93 0.96

Ears Plant'^ (no.) 0.66 0.56 0.74

Barren Plants (%) 0.59 0.48 0.69

Root Lodging (%) -0.12 -0.44 0.15

Stalk Lodging (%) 0.58 0.46 0.68

Dropped Ears (%) 0.39 0.22 0.54

Plant Height (cm) 0.96 0.95 0.97

Ear Height (cm) 0.96 0.95 0.97

Anthesis (days)® 0.87 0.83 0.90

Silk Emergence (days)® 0.86 0.81 0.89

Silk Delay (days)^ 0.58 0.44 0.69

* Plant and ear heights measured in four environments and anthesis, silk emergence and anthesis/silk delay measured in three environments.

Exact 90% confidence intervals as defined by Knapp et al. (1987).

® Days from planting to 50% anthesis or silk emergence.

^ Difference between anthesis and silk emergence.

Page 118: Triple testcross analysis to detect epistasis and estimate ...

109

heights (Tables 36 and 37). Grain yield was negatively

correlated with barren plants, silk emergence, and silk delay.

In general, ear traits had significantly positive correlations

with each other. In the TTC, days to silk emergence was

negatively correlated with several ear traits (Table 36),

while for S, progeny silk delay was negatively correlated with

several ear traits (Table 37). Therefore, late or delayed

silk emergence had a negative effect on ear development. In

both experiments plant and ear heights had significantly

positive and negative correlations with several traits. Days

to anthesis had positive and negative correlations with days

to silk emergence and silk delay, respectively. Correlations

for the Design III were similar to those of the TTC and are

presented in Table B4, of the appendix.

Genetic

Grain yield had negative associations with silk delay in

the TTC (Table 36) and barren plants, dropped ears, days to

anthesis and silk emergence, and silk delay in the S, progeny

(Table 37). Ear length had negative associations with ear and

cob diameters in both experiments and kernel depth in the TTC.

As would be expected, barren plants had a negative association

with ears plant"' in both experiments. Barren plants also had

negative associations with ear and kernel traits, stalk

lodging, and plant and ear heights (Tables 36 and 37). Root

Page 119: Triple testcross analysis to detect epistasis and estimate ...

Table 36. Phenotypic (above diagonal) and genetic correlations (below diagonal) among 300 entries of the triple testcross evaluated at five environments*.

Trait Yield (g/

plant"')

Ear Dicuneter (cm)

Cob Diameter (cm)

Kernel Depth (cm)

Ear Length (cm)

Yield 0.60** 0.28** 0.48** 0.72**

Ear Diameter 0.28 0.50** 0.77** 0.37**

Cob Diameter 0.07 0.80 -0.17** 0.18**

Kernel Depth 0.38 0.59 -0.02 0.29**

Bar Length 0.52 -0.47 -0.34 -0.33

Kernel Row No. 0.13 0.77 0.68 0.36 -0.51

Ears Plant'^ 0.36 -0.03 -0.01 -0.04 0.53

Barren Plants -0.03 0.13 -0.12 0.38 -0.36

Root Lodging 0.69 0.41 0.33 0.25 0.23

Stalk Lodging 0.55 0.40 0.30 0.25 0.36

Dropped Ears 0.17 0.23 -0.10 0.49 -0.36

Plant Height 0.48 0.40 0.27 0.31 0.34

Ear Height 0.68 0.47 0.29 0.41 0.44

Anthesis 0.40 0.31 0.25 0.19 0.68

Silk Emergence 0.14 0.29 0.23 0.18 0.54

Silk Delay -0.86 -0.09 -0.08 -0.05 -0.47

* Plant and ear heights measured in four environmnets and anthesis, silk emergence, and silk delay measured in three environments.

Days from planting to 50% anthesis and silk emergence.

" Difference between anthesis and silk emergence.

Estimate of genetic variance zero or negative.

*,** Significant and 0.05 and 0.01 probability levels respectively.

Page 120: Triple testcross analysis to detect epistasis and estimate ...

Ill

Kernel Rows

(no.)

Ears Plant"' (no.)

Barren Plants (%)

Root Lodging (%)

Stalk Lodging (*)

Dropped Ears (%)

0.27** 0.32** -0.33** -0.06 -0.01 -0.03

0.43** 0.08 -0.10 -0.04 0.00 -0.04

0.33** 0.02 -0.06 0.01 0.02 -0.04

0.24** 0.07 -0.07 -0.05 -0.01 -0.01

0.04 0.08 -0.12** -0.06 -0.01 0.00

-0.02 0.00 0.00 0.01 0.00

-0.30 -0.87** 0.00 0.01 -0.06

0.27 -0.98 0.00 -0.02 0.06

0.16 -0.18 0.23 -0.02 -0.01

0.10 0.65 -0.94 0.10 -0.03

0.31 -0.45 0.60 0.14 -0.26

0.01 0.34 -0.18 0.53 0.51 -0.19

0.00 0.53 -0.47 0.46 0.70 -0.28

-0.14 0.54 d -0.09 0.34 -0.88

-0.10 0.41 — -0.14 0.22 -0.94

0.13 -0.45 — -0.15 -0.40 -0.13

Page 121: Triple testcross analysis to detect epistasis and estimate ...

112

Table 36. (continued)

Trait Plant Height (cm)

Ear Height (cm)

Anthesis (days)*"

Silk Emergence (days)**

Silk Delay (days)"

Yield 0.20** 0.16** -0.12** -0.26** -0.20**

Ear Diameter 0.17** 0.14** -0.08 -0.16** -0.11*

Cob Diameter 0.13** 0.10 -0.02 -0.05 -0.03

Kernel Depth 0.10 0.09 -0.08 -0.15** -0.11*

Bar Length 0.16** 0.11* 0.00 -0.12** -0.17**

Kernel Rows 0.03 0.01 -0.15** -0.15** 0.00

Ears Plant'^ 0.08 0.12** 0.06 -0.03 -0.14**

Barren Plants -0.04 -0.08 -0.01 0.08 0.14**

Root Lodging 0.07 0.08 0.06 0.04 -0.03

Stalk Lodging 0.12** 0.17** 0.05 0.02 -0.05

Dropped Ears 0.00 1 o

• o

N)

-0.02 -0.03 0.00

Plant Height 0.84** 0.36** 0.30** -0.10

Ear Height 0.93 0.46** 0.36** -0.18**

Anthesis 0.74 0.83 0.79** -0.37**

Silk Emergence 0.68 0.70 0.95 0.28**

Silk Delay -0.24 -0.45 -0.22 0.09

Page 122: Triple testcross analysis to detect epistasis and estimate ...

Table 37. Phenotypic (above diagonal) and genetic correlations (below diagonal) among 100 S, progeny evaluated at five environments*.

Trait Yield (9/ .

plant"')

Ear Diameter (cm)

Cob Diameter (cm)

Kernel Depth (cm)

Bar Length (cm)

Yield 0.55** 0.28** 0.52** 0.65**

Ear Diameter 0.53 0.75** 0.70** 0.02

Cob Diameter 0.28 0.79 0.05 -0.05

Kernel Depth 0.S4 0.71 0.13 0.09

Ear Length 0.66 -0.05 -0.12 0.06

Kernel Row No. 0.15 0.73 0.68 0.41 -0.33

Ears Plant"' 0.73 0.14 0.04 0.18 0.67

Barren Plants -0.61 -0.12 -0.08 -0.10 -0.58

Root Lodging d — — — —

Stalk Lodging 0.51 0.37 0.17 0.40 0.41

Dropped Ears -0.15 -0.23 -0.21 -0.12 -0.16

Plant Height 0.37 0.24 0.16 0.19 0.41

Ear Height 0.43 0.27 0.17 0.21 0.38

Anthesis -0.08 0.08 0.21 -0.11 0.25

Silk Emergence -0.30 -0.05 0.12 -0.21 0.13

Silk Delay -0.61 -0.42 -0.33 -0.24 -0.41

* Plant and ear heights measured in four environments and anthesis, silk emergence, and silk delay measured in three environments.

** Days from planting to 50% anthesis and silk emergence.

' Difference between anthesis and silk emergence.

^ Estimate of genetic variance zero or negative.

*,** Significant at the 0.05 and 0.01 probability levels respectively.

Page 123: Triple testcross analysis to detect epistasis and estimate ...

114

Kernel Rows

(no.)

Ears Plant"' (no.)

Barren Plants {%)

Root Lodging (%)

Stalk Lodging (%)

Dropped Ears {%)

0.17 0.67** -0.56** -0.23* 0.36** -0.08

0.69«* 0.16 -0.14 -0.30** 0.27** -0.11

0.62** 0.06 -0.10 -0.23* 0.14 -0.14

0.36** 0.18 -0.11 -0.20* 0.26** -0.02

-0.29** 0.55** -0.46** -0.03 0.30** -0.09

-0.15 0.12 -0.14 0.02 0.03

-0.20 -0.90** -0.25** 0.41** -0.22*

0.17 -0.89 0.26** -0.35** 0.22*

— — — -0.03 0.11

0.04 0.66 -0.59 — -0.06

0.04 -0.41 0.45 — -0.15

-0.05 0.49 -0.47 — 0.61 -0.24

0.00 0.68 -0.65 — 0.71 -0.25

-0.12 — — — 0.41 -0.26

-0.14 — — — 0.24 -0.17

-0.01 — — — -0.63 0.34

Page 124: Triple testcross analysis to detect epistasis and estimate ...

115

Table 37. (continued)

Trait Plant Height (cm)

Ear Height (cm)

Anthesis (days)''

Silk Emergence (days)*'

Silk Delay (days)=

Yield 0.32** 0.37** -0.13 -0.29** -0.37**

Bar Diameter 0.22* 0.24* 0.04 -0.06 -0.24*

Cob Diameter 0.15 0.16 0.16 0.09 -0.20*

Kernel Depth 0.16 0.17 -0.11 -0.17 -0.13

Ear Length 0.38** 0.35** 0.17 0.07 -0.28**

Kernel Rows -0.04 0.00 -0.12 -0.14 -0.01

Ears Plant"' 0.37** 0.50** 0.28** 0.10 -0.49**

Barren Plants -0.33** -0.45** -0.22* -0.03 0.51**

Root Lodging — — — — —

Stalk Lodging 0.44** 0.53** 0.24* 0.15 -0.27**

Dropped Ears -0.13 -0.14 -0.16 -0.09 0.20*

Plant Height 0.93** 0.68** 0.61** -0.33**

Ear Height 0.93 0.71** 0.59** -0.46**

Anthesis 0.74 0.77 0.93** -0.41**

Silk Emergence 0.66 0.64 0.95 -0.03

Silk Delay -0.45 -0.61 -0.44 -0.15

Page 125: Triple testcross analysis to detect epistasis and estimate ...

116

and stalk lodging and plant and ear height had positive

associations with nearly all traits. Days to anthesis and

silk emergence had positive associations with most traits,

while silk delay was negatively associated with nearly all

traits.

Page 126: Triple testcross analysis to detect epistasis and estimate ...

117

DISCaSSION

Epistasis

Use of the TTC mating design in the F2 population of B73 x

Mol7 indicates that epistatic effects were important for

several traits. The F-test for epistasis from the TTC

analysis (Tables 8, 9, and 10) indicated that additive by

additive effects were present for ear length, kernel-row

number, ear height, days to anthesis and silk emergence, and

silk delay. Epistasis by male indicated that additive by

dominance and dominance by dominance effects were important

for grain yield, cob diameter, ear length, kernel-row number,

plant and ear heights, days to silk emergence, and silk delay.

Gamble (1962a and 1962b) reported in maize that additive by

additive and additive by dominance effects were important for

grain yield, while additive by dominance effects were detected

more frequently for plant height and ear length. Darrah and

Hallauer (1972) reported that additive by additive and

dominance by dominance effects were detected more frequently

for yield and plant and ear heights, while additive by

additive effects were more frequent for ear length.

Epistatic effects were more important for components of

yield, such as ear length, cob diameter, and kernel-row

number, than for yield per se. Darrah and Hallauer (1972) and

Page 127: Triple testcross analysis to detect epistasis and estimate ...

118

Martin and Hallauer (1976) reported that epistasis was

detected more frequently for components of yield (ear length,

ear diameter, kernel-row number) than for yield. Expression

and development of yield components occurs during short spans

of environmental conditions in early ontogeny and at

flowering. Yield is a composite of growth processes

throughout the growing season and likely to be more effected

by environment, possibly decreasing the detection of epistasis

across environments. This was likely true in the present

study because epistasis by environment was generally more

important for yield than for ear length, cob diameter, and

kernel-row number.

The expression of epistasis and epistasis by male was

significantly affected by environments. Across all traits

epistasis was affected more by environments than was epistasis

by male. For yield, ears plant"', barren plant, and dropped

ears, the epistasis by environment interaction was more

important than epistasis. Bauman (1959), Gorsline (1961),

Eberhart et al. (1964), and Martin and Hallauer (1976)

reported important epistasis by environment interactions in

maize. Gorsline (1961) suggested that the widespread and

unpredictable epistasis by environments interactions

reinforces the need for wide and repeated testing of maize

hybrids. Jinks et al. (1973) observed significant epistasis

by environment interactions in tobacco.

Page 128: Triple testcross analysis to detect epistasis and estimate ...

119

Epistatic deviation means, presented in Table 12,

indicate how epistasis was effected in different environments.

An obvious trend in Table 12 is that deviations in the two

stress environments of 1993 are generally larger than the

other environments. The two 1993 environments also had more

significant epistatic effects detected in the TTC analysis

(Table 11). Comparing the high yield environment of Ames

(1992) to the other two 1992 environments, the Ames

environment had more significant deviations and the deviations

generally were greater in magnitude than deviations from the

other environments. Epistasis seems to be more important in

the extreme environments, either high yield or low-yield

stress environments. Jinks et al. (1973) reported that the

frequency and magnitude of epistasis in tobacco was greater in

both extremes, of a range of environments.

Based on the theory presented by Kearsey and Jinks

(1968), the two parental inbreds (B73 and Mol7) have equal

opportunity to contribute to the expression of additive by

additive effects, when averaged across all possible F2

genotypes. Contributions of parental inbreds will be greater

than the Fj. Therefore, the testcross means in Table 7, will

indicate which parental testcrosses contributed to the

magnitude and sign (+/-) of the deviations. In general, the

performance level of 373 testcrosses for yield, kernel-row

number, barren plants, plant and ear heights, days to

Page 129: Triple testcross analysis to detect epistasis and estimate ...

120

anthesis, and silk delay resulted in desirable epistatic

deviations. The deviation for yield of 7.0 g plant' at 57,520

plants ha' is equivalent into about 0.40 Mg ha"'. Since Mol7

testcrosses often performed less than or similar to F,

testcrosses for these traits, they generally did not

contribute positively to the magnitude of the deviations.

Superior performance of Mol7 testcrosses for ear length

resulted in a favorable deviations. But, in general, B73

testcrosses seem to contribute significantly to the expression

of positive additive by additive effects for the majority of

traits. This agrees with Lamkey et al. (1995) who observed

that net positive epistatic effects were present in B73.

Expression of additive by dominance and/or dominance by

dominance effects can be observed in the individual epistatic

deviations of each Fj male. These effects differ in magnitude

and direction from male to male and it is difficult to

ascertain the relative effects of the F,, B73 and Mol7 testers.

For yield ranked correlations between deviations and testcross

means, however, may provide insight into the influence of each

tester (Table 38). F, testcross means had a highly significant

negative correlation (r=-0.61**) with deviation means,

indicating that for a given male a high F, testcross mean

resulted in either a negative or small positive deviation.

B73 (r=0.25*) and Mol7 (r=0.22*) testcross means had a postive

association with the deviation mean. Family means (combined

Page 130: Triple testcross analysis to detect epistasis and estimate ...

121

mean of F,, B73, and Mol7 testcrosses) had no association with

deviation means (r=0.08), indicating that individual Fj

genotypes may have large epistatic deviations from either

large or small family testcross means and vice versa. This

agrees with the observations of Eta-Ndu (1994). B73 and Mol7

testcross means had a negative association (r=-0.45**),

indicating for individual Fj genotypes, B73 and Mol7

testcrosses often had contrasting performance, which agrees

with the significant estimate of dominance variance for yield.

Ranks of deviation and testcrosses suggest that large

deviations, positive or negative, generally resulted from one

testcross having either a substantially greater or a lesser

yield than the other two testcrosses (Table D3).

Table 38. Rank correlations between means of F2 males across five environments for grain yield (g plant"*) . Means included are epistatic deviations, F,, B73, and Mol7 testcross means and family means (combined means across F,, B73 and Mol7 testcrosses for each male) .

Testcross Mean F, B73 Mol7 Family

Deviation -0.61** 0.25* 0.22* 0.08

F, testcross 0.17 0.21* 0.69**

B73 testcross -0.45** 0.46**

Mol7 testcross 0.47**

*,** Significant at 0.05 and 0.01 probability levels, respectively.

Page 131: Triple testcross analysis to detect epistasis and estimate ...

122

Variance Components

Pooni and Jinks (1979) indicated that estimates of

that use F, testcrosses will have a greater error, because of

greater variation due to genetic segregation in Fj testcrosses

opposed to parental testcrosses. An estimate of a\ based on

only parental testcrosses (Design III) should be more

reliable.

In the present study estimates of and rio't

differ between TTC and Design III analyses. The standard

error/estimate ratio for was similar for the TTC and Design

III. In addition, covariance analyses had a ratio similar to

TTC and Design III for all traits, with the exception of

yield. The standard error/estimate ratio for yield from

covariance was 0.66, while TTC and Design III had ratios of

0.36 and 0.34, respectively. The greater error associated

with estimation of from covariance analysis is not

unexpected, considering progenies from two different

experiments were used and the standard error of a covariance

was derived from mean squares of half-sib and S, progeny and

the mean product.

The estimates of the average level of dominance were

likely biased by linkage disequilibrium which will be at a

maximum in an F2 population. If coupling phase linkages

predominate, and will be biased upward. Repulsion phase

linkages will cause a downward bias of ®nd upward bias of

Page 132: Triple testcross analysis to detect epistasis and estimate ...

123

a\. Both types of linkage may cause an upward bias in the

average level of dominance. Han and Hallauer (1989) reported

that the average level of dominance for grain yield decreased

from 1.28 to 0.95 after five generations of random mating.

Linkage did not bias estimates of but a\ decreased by 40

percent with random mating. However, the two estimates of

average level of dominance did not differ from complete

dominance, indicating linkage may have only a small bias on

the average level of dominance. The average level of dominance

for yield from the present study was 2.44. This is a distinct

contrast to the estimate of 1.28. If a\ from the present

study is reduced by 40 percent, the level of dominance is

1.89, which is still greater than the majority of estimates

reported in previous studies (Gardner et al., 1953, Gardner

and Lonnquist, 1959 and Moll et al., 1961). The estimate of

level of dominance (2.44) supports the presence of

overdominant gene effects in the expression of yield.

A large difference in the estimate of the average level

of dominance was observed by Gardner and Lonnquist (1959) for

two samples of the single cross M14 x 187-2. Sample 1 had an

estimate of average level of dominance of 0.59 and sample 2

had an estimate of average level of dominance of 1.59; both

estimates deviated from complete dominance. Sample 1 had a

larger estimate of and they suggested the environments in

which sample 2 was grown may have suppressed the estimate of

Page 133: Triple testcross analysis to detect epistasis and estimate ...

124

increasing the level of dominance. Sample 1 estimate of

a\ was 67% of sample 2, and estimate of in sample 2 was

18% of that observed in sample 1.

The estimate of for yield in the present study was

greater than observed by Han and Hallauer (1989). The

ratio was 1.25 in the present study and 0.16 in the study of

Han and Hallauer (1989), whereas the ratio was o.io and

0.16, respectively. The estimate of a\ for yield was less

affected by environment than in the present study. The

range of environments in which this study were conducted may

have decreased the estimate of suggested by Gardner and

Lonnquist (1959). Estimates of ^nd were 17% and 61%,

respectively, of estimates reported by Han and Hallauer (1989)

indicating both have decreased in the present study. Other

traits between the two studies were less affected by

environments and average levels of dominance estimates were

consistent between studies.

Weighted Least Squares

Weighted least squares analysis was conducted to

determine the relative importance of epistatic variance

compared with and Triple testcross analysis indicated

epistatic effects were important for several traits. However,

estimates of digenic epistatic components were generally not

greater than their standard errors, negative or unrealistic.

Page 134: Triple testcross analysis to detect epistasis and estimate ...

125

Models which did not include digenic epistatic components

often provided an adequate fit and more precise estimates.

Therefore and were less important than and

for the majority of traits.

For a few traits the estimates of weighted least squares

suggest the importance of epistatic variance and support the

detection of epistatic effects in TTC analysis. Several

traits had digenic components greater than twice their

standard errors and for these traits the TTC analysis also

detected significant epistatic effects or interaction of

epistatic effects by environment. For traits in which the TTC

detected additive by additive effects or additive by additive

by environment effects, inclusion of 'the weighted least

squares model generally decreased estimates of The

decrease in generally did not result in nonsignificant

estimates or estimates different from the nonepistatic model

3. Therefore, although is biased upward if we assume

epistasis is absent, the magnitude of bias is small.

Generally, was not biased by epistasis in models 4 and 6.

Bias observed in model 5 is likely a result of an inadequate

model. Dominance variance was less important than most

traits and may be less likely to be biased by epistasis.

All models had a significant lack of fit for ear length

(Table 21). Models 2 and 4 increased the R-square values with

inclusion of compared with models i and 3. Estimate of a\

Page 135: Triple testcross analysis to detect epistasis and estimate ...

126

decreased by approximately 40 percent with inclusion of in

models 2 and 4. Estimates of fi^om models 2 and 4 were

greater than their standard errors and similar to estimates of

magnitude. These observations support the detection of

additive by additive effects in the TTC analysis. However,

standard errors did increase in models 2 and 4 and the

estimate of c^aae was negative, which may be unreasonable since

epistasis by environment was significant in TTC.

Ears plant"' and barren plants had significant epistasis

by environment interactions and epistatic deviations varied

among environments. Models 1 and 3 had a significant lack of

fit, while models 2, 4, and 6 improved the fit and increased

the R-square (Tables 23 and 24). Models 2 and 4 had small

negative estimates of and which were less than their

standard errors, while estimates of and o^aae were greater

than twice their standard errors for both traits. Model 6

gave positive estimates for which were

significantly smaller than estimates of and o^ade*

Therefore, were likely less important than

(t^aae f^^ADE these traits. The larger estimates

of a^AA/ ®^AAE» '^^AD °^ADE because of the epistasis by

environment interaction and the greater amount of among S,

progenies compared with half-sib progenies. Expectations for

Sj progenies have a coefficient of one for o^aa/ while half-sibs

have coefficient of 1/16 for ct^aa- Additive by dominance

Page 136: Triple testcross analysis to detect epistasis and estimate ...

127

epistasis is only present in the S, progeny mean square, so

of S, progeny would likely have a larger effect on this

estimate.

Model 4 improved the fit and increased the R-square

compared to model 3 for days to anthesis (Table 30) and silk

emergence (Table 31) . Positive estimates of

were obtained which had a magnitude similar to ct\ and

Although, estimates for days to silk emergence were not

greater than their standard errors, these results support the

importance of additive by additive epistatic effects as

observed in the TTC for these traits.

All traits had negative variance component estimates for

various models, with model 5 generally having at least two

negative estimates. By definition a variance is always

positive, but as indicated by Searle (1971) there is nothing

intrinsic about the analysis of variance to prevent negative

estimates from occurring. Negative estimates could arise from

an inadequate model, inadequate sampling, or inadequate

experimental techniques. Searle (1971) discussed possible

solutions to negative estimates. The best solution would be

to interpret them as zero and reestimate other components from

a reduced model.

Negative estimates in the present study were generally

small and not greater than their standard error. Also,

negative estimates often occurred for variance components

Page 137: Triple testcross analysis to detect epistasis and estimate ...

128

which were either nonsignificant or negative when estimated in

the Design III or S, progeny experiments. Generally, when a

model gave negative estimates another model for that trait had

positive estimates with greater precision, so negative

estimates were not a serious problem.

Model 5 had negative estimates that were often greater

than twice their standard errors. This is likely an

indication that model 5 was an inadequate model. Inadequacy

of model 5 may result because and have coefficients of

one in the expectation of the male by tester mean square. The

estimates of and seem to cancel each other, one being a

large positive value and the other a large negative value.

The only other mean square that contains is S,

progeny. Male by tester mean square generally had a smaller

variance than the S, mean square and will be weighted more in

the analysis. This may result in the canceling of a^j, and

estimates because they have the same coefficient.

To estimate genetic variance components it was assumed

that there was (1) diploid inheritance, (2) linkage

equilibrium, (3) no maternal effects, and (4) environmental

effects were additive to genotypic effects. Hallauer and

Miranda (1988) indicate that 1, 3, and 4 are valid assumptions

in maize. In an Fj population linkage disequilibrium will be

present. Cockerham (1956) and Schnell (1963) showed that the

effect of complete linkage is to increase the coefficients of

Page 138: Triple testcross analysis to detect epistasis and estimate ...

129

epistatic variance components in the covariances of relatives.

Larger coefficients will increase the correlation between

coefficients of first- and second-order variance components.

This would further decrease the ability to partition the

epistasis from (Chi et al., 1969). Standard errors

will be increased and significant estimates of digenic

components will be difficult to detect. Contribution of

linkage to covariances is difficult to determine, but we must

realize a bias is present. Sets of relatives whose

covariances are affected by linkage are those in which one is

not a common ancestor of the other such as half-sibs in the

present study (Cockerham, 1956). Han and Hallauer (1989)

determined that linkage did not affect and, therefore,

linkage bias of covariance of half-sibs may be relatively

unimportant in the present study.

Implications to Maize Breeding

Results of this study provide further evidence for the

presence of epistasis in elite inbreds or specific

combinations of elite inbreds, in agreement with the results

of Bauman (1959), Gorsline (1961), Sprague et al. (1962),

Schell and Singh (1978), Moreno-Gonzales and Dudley (1981),

and Lamkey et al., (1995). Presence of epistasis in elite

inbreds should not greatly effect commercial maize breeding

strategies. As discussed by Lamkey et al., (1995) commercial

Page 139: Triple testcross analysis to detect epistasis and estimate ...

130

maize breeding as commonly conducted is effective in selecting

favorable epistatic gene combinations. Simultaneous

inbreeding and hybrid evaluation, allow the fixation of

favorable epistatic effects in inbreds which have excellent

specific combining ability. Development of source populations

by crossing related inbreds and recycling elite inbreds to

form new source populations will help maintain and accumulate

favorable epistatic gene combinations, especially linked ones.

Recycling of inbreds to form new source populations could

result in the loss of epistatic gene combinations through

recombination, in particular if they are not tightly linked.

Loss of favorable epistatic combinations may explain why

breeders have difficulty developing improved recoveries of

some maize inbreds (Melchinger et al., 1988). A backcross to

the best parent may increase the ability to maintain favorable

epistatic gene combinations. However, Eta-Ndu (1994)

indicated no trend existed between epistasis and testcross

performance of Fj's and backcrosses to either parent and

suggests it is difficult to determine the best source

population when epistasis is present.

The presence of positive epistatic effects for yield in

B73 may explain why it has been a widely used and successful

inbred. It may also explain why some maize breeders have had

difficulty in obtaining improved versions of B73.

During inbreeding and hybrid evaluation, epistasis by

Page 140: Triple testcross analysis to detect epistasis and estimate ...

131

environment interaction may make it difficult to select inbred

lines, from a segregating population, which contain favorable

epistatic combinations if they are not expressed in the

environments of evaluation. Also, the tester used during

testcross evaluation will influence the expression of

epistatic effects. Gorsline (1961) and Eta-Ndu (1994)

observed variation in expression of epistasis with different

testers.

Commercial maize breeders use elite inbred testers for

early generation testing. As discussed by Sprague and Tatum

(1942), use of an inbred tester in early generation testing

will select for specific combining ability (dominance and

epistatic effects). Presently in commercial breeding, new

inbreds or hybrids are often identified by the first tester

used in early generation testing. Early identification of new

inbreds may result from favorable expression of epistatic

effects in the specific tester by line combination. Use of

the appropriate tester for a source population is important to

ensure maximum expression of specific combining ability in the

testcrosses. A tester may enhance or decrease the ability to

identify new inbred lines with excellent specific combining

ability when epistasis is present.

The large epistasis by environment interaction reiterates

the importance of widespread and repeated testing of

experimental hybrids. In this study epistasis seems to

Page 141: Triple testcross analysis to detect epistasis and estimate ...

132

provide yield stability to B73 testcrosses. Their greatest

yield advantage was in the stress environments, and they

maintained a competitive yield level in remaining

environments. The B73 testcrosses also had lower levels of

barrenness across environments, which likely helped maintain

their yield level. Epistasis could contribute to yield

instability as well. Expression of epistasis under certain

environmental conditions may provide higher yields, which are

lost under different environments.

Genotype by environment interactions also had a large

effect on variance component estimates in the present study

compared with previous studies. The presence of genotype by

environment interaction confirms the need to evaluate

progenies in several environments to determine the genetic

properties of a reference population.

Page 142: Triple testcross analysis to detect epistasis and estimate ...

133

SUMMARY AND CONCLUSIONS

The results of this study provide evidence for the

presence of epistasis in B73 x Mol7. Triple testcross

analysis suggested epistatic effects were important for

several traits in the Fj of B73 x Mol7. In the TTC analysis of

variance additive by additive effects were not significant for

grain yield, while additive by dominance and dominance by

dominance effects were significant. The additive by additive

by environment interaction was more important than additive by

additive effects per se for grain yield.

Epistatic deviations from the comparison of testcross

means indicate that B73 had favorable additive by additive

effects for grain yield, barren plants, kernel-row number, ear

heights, and silk delay. Inbred Mol7 had favorable additive

by additive effects for ear length.

Epistasis was detected more frequently and with greater

magnitude in the extreme environments in which the experiment

was conducted, indicating the importance of the epistasis by

environment interaction.

In both the Design III and weighted least squares

analysis a\ was more important than grain yield. For

the remaining traits was more important than a^j,- Average

level of dominance from Design III was in the overdominance

range for grain yield and partial to complete dominance for

Page 143: Triple testcross analysis to detect epistasis and estimate ...

134

the remaining traits. This supports the presence of

overdominant gene effects for grain yield. The average level

of dominance for grain yield may be biased upward due to

linkage. Additive variance for grain yield may have been

suppressed by a large interaction with environments. This

along with linkage effects may have increased the average

level of dominance.

Weighted least squares analysis indicated that inclusion

of the model decreased estimates of for several

traits. The magnitude of the decrease, however, was generally

not significant. Dominance variance was not effected by

inclusion of epistatic terms in the model. Generally, a^^A/

and were not greater than twice their standard errors

or negative. Therefore, epistatic variances are generally

less important than despite the detection of

significant epistatic effects in the TTC, and assuming

epistasis to be absent did not significantly bias estimates of

a\.

It is apparent that dominance variance was very important

in the expression of heterosis for grain yield in B73 x Mol7.

While epistasis was less important than dominance, the

presence of significant positive epistatic effects may have

contributed to the expression of heterosis and could explain

why B73 x Mol7 was an exceptional and widely grown hybrid.

Page 144: Triple testcross analysis to detect epistasis and estimate ...

135

REFERENCES

Anderson, R.L. and T.A. Bancroft. 1952. Statistical Theory in Research. McGraw-Hill Book Company, Inc. New York, New York.

Anderson, V.L. and O. Kempthorne. 1954. A model for the study of quantitative inheritance. Genetics 39:883-898.

Barker, J.S.F. 1979. Inter-locus interactions; A review of experimental evidence. Theor. Pop. Biol. 16:323-346.

Bateson, W. 1907. Facts limiting the theory of heredity. Science 26:649-660.

Bauman, L.F., 1959. Evidence of non-allelic gene interaction in determining yield, ear height, and kernel row number in corn. Agron. J. 51:531-534.

Bradshaw, J.E. 1983. Estimating the predicted response to S, family selection. Heredity 51:415-418.

Brim, C.A. and C.C. Cockerham. 1961. Inheritance of quantitative characters in soybeans. Crop Sci. 1:187-190.

Bruce, A.B. 1910. The Mendelian theory of heredity and the augmentatio of vigor. Science 32:627-628.

Chi, K.R., S.A. Eberhart, and L.H. Penny. 1969. Covariances among relatives in a maize variety (Zea mays L.). Genetics 63: 511-520.

Cockerham, C.C. 1954. An extension of the concept of partitioning hereditary variance for analysis of covariance among relatives when epistasis is present. Genetics 39:859-882.

Cockerham, C.C. 1956. Analysis of quantitative gene action. Brookhaven Symp. Biol. 9:53-68.

Cockerham, C.C. 1956. Effects of linkage on the covariances between relatives. Genetics 41:138-141.

Comstock, R.E., T. Kelleher, and E.B. Morrow. 1958. Genetic variation in an asexual species, the garden strawberry. Genetics 43:634-646.

Page 145: Triple testcross analysis to detect epistasis and estimate ...

136

Comstock, R.E. and H.F. Robinson. 1948. The components of genetic variance in populations of biparental progenies and their use in estimating the average level of dominance. Biometrics. 4:254-266.

Comstock, R.E. and H.F. Robinson. 1952. Estimation of average dominance of genes, p. 494-516. In J.W. Gowen, (ed.) Heterosis. Iowa State Univ. Press, Ames, lA.

Darrah, L.L. and A.R. Hallauer. 1972. Genetic effects estimated from generation means in four diallel sets of maize inbreds. Crop Sci. 12:615-621.

Devey, F.D., M.D. Hayward, M.J. Kearsey, N.J. McAdam, and M.P. Eggleston. 1989. Genetic analysis of production characters in Lolium II. Triple Test Cross analysis of drill and plot performance. PI. Breeding 103:63-72.

Dickerson, G.E. 1969. Techniques for research in quantitative animal genetics, p. 36-79. In Techniques and procedures in animal science research. Am. Soc. Anim. Sci., Albany, New York.

East, E.M. and H.K. Hayes. 1911. Inheritance in maize. Connecticut Agric. Exp. Stn. Bull. 167.

Eberhart, S.A. and C.O. Gardner. 1966. A general model for genetic effects. Biometrics 22:864-881.

Eberhart, S.A., and A.R. Hallauer. 1968. Genetic effects for yield in single, three-way, and double-cross maize hybrids. Crop Sci. 8:377-379.

Eberhart, S.A., R.H. Moll, H.F. Robinson, and C.C. Cockerham. 1966. Epistatic and other genetic variances in two varieties of maize. Crop Sci. 6:275-280.

Eberhart, S.A., W.A. Russell, and L.H. Penny. 1964. Double cross hybrid prediction in maize when epistasis is present. Crop Sci. 4:363-366.

Eta-Ndu, J.T. 1994. Epistatic gene action in breeding populations to develop inbred lines of maize. Ph.D. Dissertation. University of Minnesota, St. Paul, Minnesota.

Fisher, R.A. 1918. The correlation between relatives on the supposition of Mendelian inheritance. Trans. Royal Soc. Edinburgh 52:399-433.

Page 146: Triple testcross analysis to detect epistasis and estimate ...

137

Gamble, E.E. 1962a. Gene effects in corn (Zea mays L.) I. Separation and relative importance of gene effects for yield. Can. J. PI. Sci. 42:339-348.

Gamble, E.E. 1962b. Gene effects in corn (Zsa mays L.) II. Relative importance of gene effects for plant height and certain component attributes of yield. Can. J. PI. Sci. 42:349-358.

Gardner, C.O., P.H. Harvey, R.E. Comstock, and H.F. Robinson. 1953. Dominance of genes controlling quantitative characters in maize. Agron. J. 45:186-191.

Gardner, C.O. and J.H. Lonnquist. 1959. Linkage and the degree of dominance of genes controlling quantitative characters in maize. Agron. J. 51:524-528.

Goodwill, R. 1975. An analysis of the mode of gene action affecting pupa weight in Tribolium castaneum. Genetics 79:219-229.

Gorsline, G.W. 1961. Phenotypic epistasis for ten quantitative characters in maize. Crop Sci. 1:55-58.

Hallauer, A.R., and J.B. Miranda, Fo. 1988. Quantitative Genetics in Maize Breeding. Iowa State Univ. Press. 2nd ed. Ames, lA.

Hallauer, A.R. and W.A. Russell. 1962. Estimates of maturity and its inheritance in maize. Crop Sci. 2:289-294.

Han, Geng-Chen and A.R. Hallauer. 1989. Estimates of genetic variability in Fj maize populations. J. Iowa Acad. Sci. 96:14-19.

Hanson, W.D. and C.R. Weber. 1961. Resolution of genetic variability in self-pollinated species with an application to the soybean. Genetics 46:1425-1434.

Hayes, H.K. 1952. Development of the heterosis concept, p. 49-65. In J.W. Gowen (ed.) Heterosis. Iowa State Univ. Press, Ames, Iowa.

Hollander, W.F. 1955. Epistasis and hypostasis. J. Heredity 46:222-225.

Hull, F.H. 1945. Recurrent selection and specific combining ability in corn. J. Am. Soc. Agron. 37.:134-145.

Page 147: Triple testcross analysis to detect epistasis and estimate ...

138

Jinks, J.L. 1955. A survey of the genetical basis of heterosis in a variety of diallel crosses. Heredity 9:223-238.

Jinks, J.L., and J.M. Perkins. 1970. A general method for the detection of additive, dominance, and epistatic components of variation III. F2 and backcross populations. Heredity 25:419-429.

Jinks, J.L., J.M. Perkins, and H.S. Pooni. 1973. The incidence of epistasis in normal and extreme environments. Heredity 31:263-269.

Jones, D.F. 1917. Dominance of linked factors as a means of accounting for heterosis. Genetics 2:466-479.

Kearsey, M.J., M.D. Hayward, F.D. Devey, S. Arcioni, M.P. Eggleston, and M.M. Eissa. 1987. Genetic analysis of production characters in Lolium. I. Triple Test Cross analysis of spaced plant performance. Theor. Appl. Genet. 75.66-75.

Kearsey, M.J., and J.L. Jinks. 1968. A general method of detecting additive, dominance, and epistatic variation for metrical traits. I. Theory. Heredity 23:403-409

Kempthorne, O. 1957. An introduction to genetic statistics. John Wiley and Sons Inc., New York.

Ketata, H., E.L. Smith, L.H. Edwards, and R.W. McNew. 1976. Detection of epistatic, additive, and dominance variation in winter wheat (Titicum aestivum L. em Thell.). Crop Sci. 16:1-4.

Knapp, S.J., W.W. Stroup, and W.M. Ross. 1985. Exact confidence intervals for heritability on a progeny mean basis. Crop Sci. 25:192-194.

Knapp, S.J., W.M. Ross, and W.W. Stroup. 1987. Precision of genetic variance and heritability estimates from sorghum populations. Crop Sci. 27:265-268.

Lamkey, K.R., B.S. Schnicker, and A.E. Melchinger. 1995. Epistasis in an elite maize hybrid and choice of generation for inbred line development. Crop Sci. 35:(Sept-Oct, accepted March 21, 1995).

Martin, J.M. and A.R. Hallauer. 1976. Relation between heterozygosis and yield for four types of maize inbred lines. Egyptian J. Genet. Cytol. 5:119-135.

Page 148: Triple testcross analysis to detect epistasis and estimate ...

139

Mather, K. 1949. Biometrical Genetics. Methuen and Co. Ltd., London.

Mather, K. and J.L. Jinks. 1982. Biometrical Genetics. Chapman and Hall, New York.

Matzinger, D.F. 1968. Genetic variability in flue-cured varieties of Nicotiana tabacum L. III. Sc58 x Dixie Bright 244. Crop Sci. 8:732-735.

Matzinger, D.F. and C.C. Cockerham. 1963. Simultaneous selfing and partial diallel test crossing. I. Estimation of genetic and environmental parameters. Crop Sci. 3:309-314.

Matzinger, D.F., T.J. Mann, and H.F. Robinson. 1960. Genetic variability in flue-cured varieties of Nicotiana tabacum. I. Hicks Broadleaf x Coker 139. Agron. J. 52:8-11.

Melchinger, A.E. 1987. Expectation of means and variances of testcrosses produced from Fj and backcross individuals and their selfed progenies. Heredity 59:105-115.

Melchinger, A.E., H.H. Geiger, and F.W. Schnell. 1986. Epistasis in maize (Zea mays L.). 2. Genetic effects in crosses among flint and dent inbred lines determined by three methods. Theor. Appl. Genet. 72:231-239.

Melchinger, A.E., W. Schmidt, and H.H. Geiger. 1988. Comparison of testcrosses produced from Fj and first backcross populations in maize. Crop Sci. 28:743-749.

Mode, C.J. and H.F. Robinson. 1959. Pleiotropism and the genetic variance and covariance. Biometrics 15:518-537.

Moll, R.H., M.F. Lindsey, and H.F. Robinson. 1964. Estimates of genetic variances and level of dominance in maize. Genetics 49:411-423.

Moll, R.H., D.L. Thompson, and P.H. Harvey. 1963. A quantitative genetic study of the inheritance of resistance to brown spot (Physoderma maydis) of corn. Crop Sci. 3:389-391.

Moreno-Gonzalez, J. and J.W. Dudley. 1981. Epistasis in related and unrelated maize hybrids determined by three methods. Crop Sci. 21:644-651.

Page 149: Triple testcross analysis to detect epistasis and estimate ...

140

Mullln, T.J., E.K. Morgenstern, Y.S. Park, and D.P. Fowler. 1992. Genetic parameters from a clonally replicated test of black spruce (Picea mariana). Can. J. Forest Res. 22:24-36.

Nelder, J.A. 1960. The estimation of variance components in certain types of experiment on quantitative genetics, p. 139-158. In O. Kempthorne (ed.) Biometrical Genetics. Pergamon Press, New York.

Perkins, J.M. and J.L. Jinks. 1970. Detection and estimation of genotype-environmental linkage and epistatic components of variation for a metrical trait. Heredity 25:157-177.

Pooni, H.S. and J.L. Jinks. 1979. Sources and biases of the predictors of the properties of recombinant inbred lines produced by single seed descent. Heredity 42:41-48.

Pooni, H.S., J.L. Jinks, and N.E.M. Jayasekara. 1978. An investigation of gene action and genotype x environment interaction in two crosses of Nicotiana rustica by Triple Test Cross and inbred line analysis. Heredity 41:83-91.

Rawlings, J. and C.C. Cockerham. 1962. Triallel analysis. Crop Sci. 2:228-231.

Robinson, H.F. and C.C. Cockerham. 1961. Heterosis and inbreeding depression in populations involving two open-pollinated varieties of maize. Crop Sci. 1:68-71.

Robinson, H.F., R.E. Comstock, and P.H. Harvey. 1949. Estimates of heritability and the degree of dominance in corn. Agron. J. 41:353-359.

Russell, W.A. 1972. Registration of B70 and B73 parental lines of maize. Crop Sci. 12:721.

Russell, W.A. and S.A. Eberhart. 1970. Effects of three gene loci in the inheritance of quantitative characters in maize. Crop Sci. 10:165-169.

Satterthwaite, F.E. 1946. An approximate distribution of estimates of variance components. Biometrics Bull. 2:110-114.

Schnell, F.W. 1963. The covariance between relatives in the presence of linkage, p.468-483. In Statistical genetics and plant breeding. Natl. Acad. Sci. Natl. Res. Council Publ. 982.

Page 150: Triple testcross analysis to detect epistasis and estimate ...

141

Schnell, F.W. and I.S. Singh. 1978. Epistasis in three-way crosses involving early flint and dent inbred lines of maize. Maydica 23:233-238.

Sentz, J.C., H.F. Robinson, and R.E. Comstock. 1954. Relation between heterozygosis and performance in maize. Agron. J. 46:514-520.

Searle, S.R. 1971. Topics in variance component estimation. Biometrics 27:1-74.

Shull, G.H. 1908. The composition of a field of maize. Am. Breeders' Rep. 4:296-301.

Silva, J.C. and A.R. Hallauer. 1975. Estimation of epistatic variance in Iowa Stiff Stalk Synthetic Maize. J. of Heredity. 66:290-296.

Sing, C.F., R.J. Moll, and W.D. Hanson. 1967. Inbreeding in two populations of Zea mavs L. Crop Sci. 7:631-636.

Singh, S. and R.B. Singh. 1976. Triple testcross analysis in two wheat crosses. Heredity 37:173-177.

Singh, R.B., U.P. Singh, B. Rai, and R.M. Singh. 1986. Triple Test Cross analysis in Fj populations of four promising crosses of field pea. PI. Breeding 97:357-363.

Sprague, G.F., W.A. Russell, L.H. Penny, T.W. Horner, and W.D. Hanson. 1962. Effect of epistasis on grain yield in maize. Crop Sci. 2:205-208.

Sprague, G.G. and L.A. Tatum. 1942. General vs. specific combining ability in single crosses of corn. J. Am. Soc. Agron. 34:923-932.

Sprague, G.F., and W.I. Thomas. 1967. Further evidence of epistasis in single and three-way cross yields in maize. Crop Sci. 7:355-357.

Stuber, C.W., and R.H. Moll. 1971. Epistasis in maize (Zea mays L.) II. Comparison of selected with unselected populations. Genetics 67:137-149.

Stuber, C.W., R.H. Moll, and W.D. Hanson. 1966. Genetic variances and interrelationships of six traits in a hybrid population of Zea mays L. Crop Sci. 6:455-458.

Page 151: Triple testcross analysis to detect epistasis and estimate ...

142

Stuber, C.W., W.P. Williams, and R.H. Moll. 1973. Epistasis in maize (Zea mays L.) III. Significance in prediction of hybrid performance. Crop Sci. 13:195-200.

Watkins, R. and L.P.S. Spangelo. 1968. Components of genetic variance in the cultivated strawberry. Genetics 59:93-103.

Wright, S. 1922. The effects of inbreeding and crossbreeding on guinea pigs. III. Crosses between highly inbred families. USDA Bull. 1121.

Wright, J.A., A.R. Hallauer, L.H. Penny, and S.A. Eberhart. 1971. Estimating genetic variance in maize by use of single and three-way crosses among unselected lines. Crop Sci. 11:690-695.

Zuber, M.S. 1973. Registration of 20 maize parental lines. Crop Sci. 13:779-780.

Page 152: Triple testcross analysis to detect epistasis and estimate ...

143

ACKMOWLEDGEMENTS

I am indebted to Dr. Arnel R. Hallauer for his teaching

and guidance during this research and my education at Iowa

State University. For serving on my graduate committee and

for the advice they have offered, I thank Drs. Arden Campbell,

Albert Freeman, Paul Hinz, and Kendall Lamkey.

I would like to thank Paul White for the help he provided

in the collection of data. Thanks to the many graduate

students who have provided help and advice.

The encouragement and support I have received from my

parents, Robert and Irene Wolf, and family has been very

helpful throughout my education. I would like to thank my

wife Ann for the love and support she has provided. Her

encouragement and understanding is greatly appreciated.

Finally, a special thanks to Anns' parents and family for the

support they have provided.

Page 153: Triple testcross analysis to detect epistasis and estimate ...

144

APPENDIX A. TRIPLE TESTCROSS ANALYSES BY ENVIRONMENT

Page 154: Triple testcross analysis to detect epistasis and estimate ...

Table Al. Triple testcross mean squares, means, and coefficient of variation (CV) for six traits measured at Ames in 1992.

Mean Squares

Source of df yield Ear Cob Kernel Ear Kernel Row Variation Diameter Diameter Depth Length Number

g plant"' cm cm cm cm no.

Set (S) 9 1639.16 0.125 0.243** 0.394** 3.30 1.01*

Rep/S 10 795.28** 0.076* 0.029* 0.070* 1.57* 0.28

Tester(T)/S 20 1413.79** 0.891** 0.458** 0.103** 11.04** 50.61**

B73 vb Mol7 10 2465.39** 1.750** 0.902** 0.173** 19.38** 100.32**

Epistasis 10 362.19 0.032 0.015 0.033 2.70** 0.89**

Male(M)/S 90 464.60** 0.078** 0.032** 0.044 2.11** 2.03**

T x M/S 180 433.78** 0.050** 0.015 0.044* 1.36** 0.49**

B73vsMol7 x M 90 608.17** 0.058** 0.015 0.054** 1.97** 0.68**

Epistasis x M 90 259.39 0.042 0.014 0.033 0.75 0.29

Error 290 276.20 0.033 0.015 0.034 0.83 0.31

Overall mean 150.01 4.53 2.59 1.93 16.62 14.39

CV (%) 11.08 3.99 4.68 9.59 5.47 3.86

*.** Significant at the 0.05 and 0.01 probability levels respectively.

Page 155: Triple testcross analysis to detect epistasis and estimate ...

Table A2. Triple testcross mean squares, means, and coefficient of variation (CV) for six traits measured at Ames in 1992.

Mean Squares

Source of df Ears Plant"' Barren Root Stalk Dropped Variation Plants Lodging Lodging Ears

no • % % % %

Set (S) 9 0. 001 2. 61 24. 91* 89. 89 2. 25

Rep/S 10 0. 001 1. 83 6. 12 31. 87 6. 92**

Tester(T)/S 20 0. 001 2. 17 14. 75** 28. 74 4. 94*

B73 vs Mol7 10 0. 002* 3. 25 3. 41 48. 79* 5. 01

Epistasis 10 0. 001 1. 08 26. 09** 8. 70 4. 87*

Male(M)/S 90 0. 001 2. 42 6. 03 46. 77** 3. 08

T x M/S 180 0. 001 2. 54 6. 63 23. 35 2. 62

B73vsMol7 x M 90 0. 001 3. 25* 2. 97 24. 37 2. 99

Epistasis x M 90 0. 001 1. 82 10. 29** 22. 34 2. 25

Error 290 0. 001 2. 52 5. 70 27. 54 2. 74

Overall mean 1 .00 0. 10 0. 63 4. 82 0. 48

CV 3 ,30 1361 382. 03 108. 77 342. 64

*,** significant at the 0.05 and 0.01 probability levels respectively.

Page 156: Triple testcross analysis to detect epistasis and estimate ...

Table A3. Triple testcross mean squares, means, and coefficients of variation (CV) for five traits measured at Ames in 1992.

Mean Squares

Source of df Plant Ear Anthesis Silk Silk Variation Height Height Emergence Delay

cm cm days days days

Set (S) 9 878.02** 528.02* 63.85* 56.16** 1.97

Rep/S 10 106.65** 141.74** 13.44** 11.01** 1.74

Tester(T)/S 20 1834.22** 807.74** 22.35** 5.94** 8.24**

B73 vs Mol7 10 3591.67** 1567.80** 39.08** 8.15** 14.31**

Epistasis 10 76.77 47.68 5.63** 3.73* 2.17

Male(M)/S 90 332.90** 231.52** 10.94** 9.28** 1,42*

T X M/S 180 55.29** 45.52** 2.16** 1.81** 1.21

B73vsMol7 x M 90 58.72** 49.89** 2.34** 2.13** 1.29

Epistasis x M 90 51.87** 41.14 1.99* 1.49* 1.14

Error 290 32.42 33.11 1.41 1.04 1.04

Overall mean 219.71 106.11 82.10 84.94 2.84

CV 2.59 5.42 1.44 1.20 35.94

*,** Significant at the 0.05 and 0.01 probability levels respectively.

Page 157: Triple testcross analysis to detect epistasis and estimate ...

Table A4. Triple testcross mean squares, means, and coefficients of variation (CV) for six traits measured at Elkhart in 1992.

Mean Squares

Source of df Yield Ear Cob Kernel Ear Kernel Row Variation Diameter Diameter Depth Length Number

g plant"' cm cm cm cm no.

Set (S) 9 2175.70 0.228* 0.088** 0.119 2.60 2.88**

Rep/S 10 1088.05** 0.075* 0.012 0.049 3.17** 0.48

Tester(T)/S 20 735.31* 1.056** 0.420** 0.179** 29.27** 48.94**

B73 vs Mol7 10 1188.04* 2.054** 0.826** 0.309** 56.28** 97.30**

Epistasis 10 282.57 0.059* 0.013 0.048 2.26* 0.59*

Male(M)/S 90 346.91 0.092** 0.038** 0.051** 1.73** 2.16**

T x M/S 180 392.71* 0.039 0.016 0.036 1.27** 0.38

B73vsMol7 x M 90 551.38** 0.051** 0.015 0.044** 1.53** 0.46*

Epistasis x M 90 234.05 0.027 0.016 0.027 1.01 0.30

Error 290 291.35 0.032 0.015 0.030 0.91 0.32

Overall mean 111.20 4.21 2.66 1.56 15.14 14.18

CV 15.35 4.24 4.64 11.20 6.29 4.02

*.** Significant at the 0.05 and 0.01 probability levels respectively.

Page 158: Triple testcross analysis to detect epistasis and estimate ...

Table AS. Triple testcross mean squares, means, and coefficients of variation (CV) for five traits measured at Elkhart in 1992.

Mean Squares

Source of Variation

df Ears Plant"' Barren Plants

Root Lodging

Stalk Lodging

Dropped Ears

no. % % % %

Set (S) 9 0.001 11.77* 1.04 7.46 2.55

Rep/S 10 0.001 3.87 0.97 6.00

CM •

CM

Tester(T)/S 20 0.001 8.71 0.74 4.80 4.09**

B73 vs Mol7 10 0.001 8.01 0.59 5.64 6.76**

Epistasis 10 0.002* 9.40 0.88 3.95 1.42

Male(M)/S 90 0.001 9.47** 1.22** 8.47 1.89

T X M/S 180 0.001 8.37** 1.33** 6.17 1.91

B73vsMol7 X M 90 0.001 11.45** 1.43** 5.98 2.45**

Epistasis X M 90 0.001 5.29 1.22** 6.36 1.38

Error 290 0.001 5.11 0.80 6.70 1.65

Overall mean 1.00 0.40 0.18 1.22 0.32

CV 2.77 611.23 509.32 212.00 397.16

*,** Significant at the 0.05 and 0.01 probability levels respectively.

Page 159: Triple testcross analysis to detect epistasis and estimate ...

Table A6. Triple testcross mean squares, means, and coefficients of variation (CV) for six traits measured at Atomic Energy in 1992.

Mean Squares

Source of df Yield Ear Cob Kernel Ear Kernel Raw Variation Diameter Diameter Depth Length Number

g plant' cm cm cm cm no.

Set (S) 9 1545.33 0.234 0.197** 0.078 52.94** 0.98

Rep/S 10 1680.02** 0.096** 0.008 0.074** 2.63 0.49

Tester(T)/S 20 1556.44** 1.332** 0.645** 0.140** 88.33** 50.31**

B73 vs Mol7 10 2731.26** 2.654** 1.287** 0.265** 172.01** 100.13**

Epistasis 10 381.62 0.010 0.003 0.014 4.66** 0.48

Male(M)/S 90 571.71** 0.062** 0.041** 0.035* 5.32** 1.61**

T x M/S 180 599.82** 0.055** 0.014 0.039** 2.08* 0.42*

B73vsMol7 x M 90 899.08** 0.076** 0.015 0.050** 2.81** 0.54**

Epistasis x M 90 313.86 0.036 0.013 0.029 1.39 0.30

Error 290 311.44 0.028 0.012 0.025 1.56 0.31

Overall mean 119.92 4.43 2.70 1.73 13.90 14.25

CV 14.56 3.75 4.08 8.99 8.89 3.86

*.** significant at the 0.05 and 0.01 probability levels respectively.

Page 160: Triple testcross analysis to detect epistasis and estimate ...

Table A7. Triple testcross mean squares, means, and coefficients of variation (CV) for five traits measured at Atomic Energy in 1992.

Mean Squares

Source of Variation

df Bars Plant'' Barren Plants

Root Lodging

Stalk Lodging

Dropped Ears

no. % % % %

Set (S) 9 0.007 1.94 50.16** 18.07 0.60

Rep/S 10 0.005 2.17 7.82 7.60 0.47

Tester(T)/S 20 0.004 1.17 34.63** 10.13 0.33

B73 vs Mol7 10 0.005 1.25 64.92** 6.96 0.41

Epistasis 10 0.002 1.08 4.34 13.31 0.24

Male(M)/S 90 0.004* 1.06 10.77 10.95 0.58

T x M/S 180 0.003 1.17 12.68 9.64 0.50

B73vsMol7 x M 90 0.003 1.25 14.01 9.92 0.50

Epistasis x M 90 0.003 1.08 11.41 9.37 0.48

Error 290 0.003 1.20 12.59 8.48 0.54

Overall mean 1.02 0.10 1.23 2.01 0.11

CV 5.06 1276 286.12 144.14 649.89

*,** Significant at the 0.05 and 0.01 probability levels respectively.

Page 161: Triple testcross analysis to detect epistasis and estimate ...

Table AS. Triple testcross mean squares, means, and coefficients of variation (CV) for five traits measured at Atomic Energy in 1992.

Mean Squares

Source of df Plant Ear Anthesis Silk Silk Variation Height Height Emergence Delay

cm cm days days days

Set (S) 9 775.12 607.75 17.50 29.62 2.76

Rep/S 10 270.94** 247.86** 12.34** 11.83** 2.29

Tester{T)/S 20 977.38** 385.98** 12.81** 3.36 5.05**

B73 vs Mol7 10 1923.85** 744.61** 18.74** 3.31 8.33**

Epistasis 10 30.90 27.34 6.88* 3.41 1.76

Male(M)/S 90 332.72** 269.26** 8.73** 8.02** 2.07**

T X M/S 180 72.02** 55.75** 3.64** 3.41** 1.76*

B73vsMol7 x M 90 93.27** 67.93** 3.88* 3.75** 1.83*

Epistasis x M 90 51.72** 44,10* 3.42 3.09 1.70

Error 290 33.95 32.62 2.65 2.38 1.31

Overall mean 223.40 112.68 79.84 82.40 2.55

CV 2.58 5.02 2.01 1.84 44.24

*,** Significant at the 0.05 and 0.01 probability levels respectively.

Page 162: Triple testcross analysis to detect epistasis and estimate ...

Table A9. Triple testcross mean squares, means, and coefficients of variation (CV) for six traits measured at flmes in 1993.

Mean Squares

Source of df Yield Ear Cob Kernel Ear Kernel Row Variation Diameter Diameter Depth Length Number

g plant' cm cm cm cm no.

Set (S) 9 697.89 0.116 0.149** 0.137* 2.00 3.61*

Rep/S 10 310.27 0.078* 0.017 0.038 1.09 0.78*

Tester(T)/S 20 1445.63** 0.940** 0.766** 0.031 9.38** 55.59**

B73 vs Mol7 10 1922.50** 1.835** 1.524** 0.026 15.19** 109.83**

Epistasis 10 968.76** 0.046 0.009 0.037 3.58** 1.35**

Male(M)/S 90 531.02** 0.074** 0.040** 0.050** 3.12** 2.11**

T X M/S 180 403.01** 0.049* 0.019* 0.031 1.88** 0.44

B73vsMol7 X M 90 587.08** 0.061** 0.022** 0.033 2.43** 0.49

Epistasis x M 90 218.95 0.037 0.016 0.030 1.32 0.38

Error 290 231.23 0.038 0.014 0.030 1.13 0.40

Overall mean 88.20 3.97 2.55 1.42 14.62 14.68

CV 17.18 4.87 4.66 12.19 7.26 4.33

*.** Significant at the 0.05 and 0.01 probability levels respectively.

Page 163: Triple testcross analysis to detect epistasis and estimate ...

Table AlO. Triple testcross mean squares, means, and coefficients of variation (CV) for five traits measured at Ames in 1993.

Mean Squares

Source of df Ears Plant'* Barren Root Stalk Dropped Variation Plants Lodging Lodging Ears

no • % % % %

Set (S) 9 0. 007 55. 93 1. 36 293. 52** 17. 02

Rep/S 10 0. Oil 118. 14 0. 69 10. 58 23. 82*

Tester(T)/S 20 0. 022** 217. 81** 0. 48 124. 50** 88.

00 CD

B73 vs Mol7 10 0. 026** 266. 28** 0. 42 224. 69** 138. 33**

Epistasis 10 0. 018* 169. 35* 0. 54 24. 31 39. 43**

Male(M)/S 90 0. 012** 107. 80* 0. 58 48. 43 14. 41

T X M/S 180 0. 009 85. 64 0. 43 41. 60 14. 91*

B73vsMol7 X M 90 0. 009 93. 19 0. 29 44. 66 17. 96**

Epistasis X M 90 0. 008 78. 10 0. 57 38. 54 11. 87

Error 290 0. 008 75. 01 0. 52 41. 29 11. 95

Overall mean 0 .96 4. 90 0. 09 7. 15 2. 36

CV (%) 9 .33 175. 08 806. 51 89. 88 146. 24

*,** Significant at the 0.05 and 0.01 probability levels respectively.

Page 164: Triple testcross analysis to detect epistasis and estimate ...

Table All. Triple testcross mean squares, means, and coefficients of variation (CV) for five traits measured at Ames in 1993.

Mean Squares

Source of df Plant Ear Anthesis Silk Silk Variation Height Height Emergence Delay

cm cm days days days

Set (S) 9 446.56 449.60** 12.49** 12.24** 2.93*

Rep/S 10 148.40** 72.43* 1.96 2.14* 0.78

Tester(T)/S 20 1216.87** 584.69** 6.43** 2.51 5.03**

B73 vs Mol7 10 2197.55** 1008.72** 6.61** 2.64 8.21**

Epistasis 10 236.19** 160.66** 6.26** 2.37 1.84

Male(M)/S 90 250.49** 209.27** 4.41** 5.29** 1.79**

T x M/S 180 74.74** 60.43** 1.61** 1.97** 1.05**

B73vsMol7 x M 90 87.32** 71.15** 1.97** 2.28** 1.03*

Epistasis x M 90 62.16** 49.71* 1.26 1.66** 1.07*

Error 290 36.41 34.23 1.12 1.00 0.76

Overall mean 206.24 103.55 89.69 91.73 2.04

CV (%) 2.91 5.62 1.17 1.09 42.76

*,** Significant at the 0.05 and 0.01 probability levels respectively.

Page 165: Triple testcross analysis to detect epistasis and estimate ...

Table A12. Triple testcross mean squares, means, and coefficients of variation (CV) for six traits measured at Ankeny in 1993.

Mean Squares

Source of df Yield Ear Cob Kernel Ear Kernel Row Variation Diameter Diameter Depth Length Number

g plant"' cm cm cm cm no.

Set (S) 9 1226.20 0.121 0.053 0.253** 4.73* 4.80**

Rep/S 10 408.11* 0.072* 0.055** 0.018 1.29 0.31

Tester(T)/S 20 1843.51** 0.991** 0.638** 0.072* 10.05** 47.15**

B73 vs Mol7 10 2742.45** 1.924** 1.225** 0.113** 18.05** 94.00**

Epistasis 10 944.56** 0.058 0.051* 0.031 2.05* 0.30

Male{M)/S 90 503.73** 0.071** 0.035** 0.060** 2.44** 2.09**

T X M/S 180 355.41** 0.049** 0.024* 0.037 1.44** 0.50

B73vsMol7 X M 90 453.81** 0.051** 0.022 0.041 1.91** 0.55

Epistasis X M 90 258.11 0.048** 0.025* 0.033 0.98 0.44

Error 290 202.69 0.031 0.018 0.036 0.76 0.43

Overall mean 95.09 4.03 2.51 1.53 14.74 14.39

CV (%) 14.92 4.35 5.28 12.35 5.90 4.56

*.** Significant at the 0.05 and 0.01 probability levels respectively.

Page 166: Triple testcross analysis to detect epistasis and estimate ...

Table A13. Triple testcross mean squares, means and coefficients of variation (CV) for five traits measured at Ankeny in 1993.

Mean Squares

Source of Variation

df Ears Plant"' Barren Plants

Root Lodging

Stalk Lodging

Dropped Ears

no. % % % %

Set (S) 9 0.034** 316.53* 41.64 52.29 5.60

Rep/S 10 0.005 74.06 19.62* 40.15 4.98

Tester(T)/S 20 0.014** 140.61** 17.10* 84.71** 3.81

B73 vs Mol7 10 0.011* 109.74* 28.86* 139.45** 6.56

Epistasis 10 0.016** 171.48** 5.33 29.96 1.06

Male(M)/S 90 0.012** 111.92** 14.05** 56.50** 4.87**

T X M/S 180 0.006 54.04 10.34 28.91 3.95*

B73vsMol7 X M 90 0.005 49.37 13.79* 30.44 3.98

Epistasis x M 90 0.006 58.70 6.92 27.40 3.91

Error 290 0.006 55.81 9.53 31.68 3.17

Overall mean 0.96 4.60 1.01 6.69 0.69

CV (%) 7.98 160.80 305.48 83.91 258.03

*,** Significant at the 0.05 and 0.01 probability levels respectively.

Page 167: Triple testcross analysis to detect epistasis and estimate ...

158

Table A14. Triple testcross mean squares, means, and coefficients of variation (CV) for plant and ear heights measured at Ankeny in 1993.

Mean Squares

Source of Variation

df Plant Height

Ear Height

cm cm

Set (S) 9 1472.28* 1073.51**

Rep/S 10 305,83** 149.04**

Tester(T)/S 20 435.73** 285.71**

B73 vs Mol7 10 824.35** 517.29**

Epistasis 10 47.11 54.12

Male(M)/S 90 289.74** 200.37**

T X M/S 180 72.95** 45.09**

B73vsMol7 X M 90 84.51** 46.74**

Epistasis x M 90 61.52** 43.45**

Error 290 33.92 27.92

Overall mean 226.89 117.59

CV (%) 2.56 4.48

*,** Significant at the 0.05 and 0.01 probability levels respectively.

Page 168: Triple testcross analysis to detect epistasis and estimate ...

159

APPENDIX B. DESIGN III ANALYSES ACROSS ENVIRONMENTS

Page 169: Triple testcross analysis to detect epistasis and estimate ...

Table Bl. Mean squares, means, and coefficients of variation (CV) from the Design III analysis combined across five environments in 1992 and 1993, for six traits.

Mean Squares

Source of Variation

df yield Ear Diameter

Cob Diameter

Kernel Depth

Ear Length

Kernel Rows

g plant' cm cm cm cm no.

Env (E) 4 227748.99** 22.650** 2.316** 15.889** 415.84** 18.32**

Set (S) 9 1450.05 0.139 0.153 0.094 8.54 5.39**

B x S 36 1139.07* 0.136** 0.097** 0.186** 9.40** 1.06**

Rep/ExS 50 584.89** 0.059** 0.019* 0.042 1.65** 0.46

Tester(T)/S 10 3595.97 9.935** 5.621** 0.632** 208.68** 500.01**

E x T/S 40 1863.42** 0.071** 0.036** 0.064** 18.06** 0.39

Male(M)/S 90 595.72** 0.144** 0.096** 0.076** 4.66** 5.96**

E x M/S 360 333.41** 0.036 0.014 0.032 1.65** 0.33

T x M/S 90 1855.95** 0.152** 0.036** 0.084** 5.31** 1.48**

E x T x M/S 360 299.64 0.035 0.013 0.034 1.30** 0.31

Error 950 267.70 0.032 0.014 0.031 1.05 0.35

CV 14.35 4.25 4.53 10.84 6.77 4.09

Overall mean 114.06 4.23 2.60 1.63 15.11 14.43

*.** significant at the 0.05 and 0.01 probability levels respectively.

Page 170: Triple testcross analysis to detect epistasis and estimate ...

Table B2. Mean squares, means, and coefficients of variation (CV) from the Design III analysis combined across five environments in 1992 and 1993, for five traits.

Mean Squares

Source of Variation

df Ears Plant"' Barren Plants

Root Lodging

Stalk Lodging

Dropped Ears

no. % % % %

Env (E) 4 0.240** 1864.14** 114.38** 3318.04** 501.52**

Set (S) 9 0.005 46.91 19.35 43.76 7.16

E x S 36 0.009** 71.07** 15.93** 86.73** 5.60

Rep/ExS 50 0.003 25.25 6.46 25.57 7.92**

Tester(T)/S 10 0.022** 108.38 35.66* 159.08* 62.31*

E x T/S 40 0.006 70.03** 15.64** 66.61** 23.69**

Male(M)/S 90 0.007** 47.88* 7.87* 58.88** 7.65*

E x M/S 360 0.004** 33.34** 5.99 26.06 5.39

T x M/S 90 0.004 29.79 6.67 31.35** 6.95*

E x T x M/S 360 0.004 32.18* 6.26 20.81 5.22

Error 950 0.003 26.78 6.10 23.30 4.72

CV {%) 5.95 287.45 414.20 107.96 233.58

Overall mean 0.99 1.80 0.60 4.47 0.93

*,** Significant at the 0.05 and 0.01 probability levels respectively.

Page 171: Triple testcross analysis to detect epistasis and estimate ...

Table B3. Mean squares, means, and coefficients of variation (CV) from the Design III analysis combined across four environments in 1992 and 1993, for four traits.

Mean Squares

Source of df Plant Ear Anthesis' Silk* Silk* Variation Height Height Emergence Delay

cm cm days days days

Env (E) 3(2) 29716.43** 15669.89** 10601.49** 9213.79** 72.40**

Set (S) 9 1248.06** 1079.81** 28.00 36.87 2.16

E x S 27(18) 328.65* 243.35* 20.87** 16.89** 1.78*

Rep/ExS 40(30) 148.33** 116.80** 6.88** 5.19** 0.89

Tester(T)/S 10 7917.01** 3545.85** 52.08** 5.62 28.22**

E x T/S 30(20) 206.80** 97.52** 6.17** 4.24** 1.32

Male(M)/S 90 763.37** 587.64** 12.81** 11.75** 2.40**

E x M/S 270(180) 43.34** 41.04** 2.23** 2.01** 1.21**

T x M/S 90 203.75** 123.90** 4.52** 4.77** 1.65*

E x T x M/S 270(180) 38.33** 36.09** 1.75 1.61* 1-21**

Error 760(570) 29.28 27.38 1.63 1.29 0.91

Overall mean 2.47 4.74 1.52 1.31 39.85

CV (%) 219.42 110.45 84.06 86.45 2.39

*,** Significant at the 0.05 and 0.01 probability levels respectively.

' Anthesis, sillc emergence, silk delay were measured in three environments and degrees of freedom are listed in parentheses.

Page 172: Triple testcross analysis to detect epistasis and estimate ...

Table B4. Phenotypic correlations (above diagonal) and genetic correlations (below diagonal) based on 200 progeny of the Design III analysis across five environments.

Trait yield (g/

plant"')

Ear Diameter (cm)

Cob Diameter (cm)

Kernel Depth (cm)

Ear Length (cm)

yield 0.64** 0.32** 0.51** 0.75**

Ear Diameter 0.28 0.50** 0.79** 0.41**

Cob Diameter 0-05 0-77 -0.14* 0.22**

Kernel Depth 0.38 0.52 -0.15 0.32**

Bar Length 0.44 -0.48 -0.26 -0.38

Kernel Rows 0.09 0.72 0.62 0.29 -0.49

Ears Plant"^ 0.43 -0-05 0.14 -0.27 0.46

Barren Plants -0.04 0-14 -0.28 0.60 -0.21

Root Lodging 1.17 0.86 0.67 0.43 0.35

Stalk Lodging 0.55 0.33 0.26 0.17 0.42

Dropped Bars 0.05 0.30 -0.18 0.69 -0.35

Plant Height 0.51 0.34 0.25 0.22 0.35

Ear Height 0.67 0.41 0.25 0.33 0.47

Anthesis 0.47 0.33 0.29 0.14 0.73

Silk Emergence 0.17 0.26 0.22 0.13 0.62

Silk Delay -0.90 -0.24 -0.23 -0.07 -0-39

*,** Significant at the 0.05 and 0-01 probability levels respectively.

* Plant and ear heights measured in four environments and anthesis, silk emergence, and silk delay measured in three environments.

Page 173: Triple testcross analysis to detect epistasis and estimate ...

164

Kernel Rows (no.)

Ears Plant"' (no.)

Barren Plants (%)

Root Lodging (%)

Stalk Lodging (%)

Dropped Ears (%)

0.29** 0.32** -0.32** -0.08 -0.01 -0.04

0.46** 0.10 -0.12 -0.03 -0.02 -0.06

0.33** 0.06 -0.10 0.04 0.01 -0.08

0.29** 0.07 -0.07 -0.06 -0.03 -0.01

0.07 0.14* -0.15* -0.07 -0.02 -0.02

-0.01 -0.02 0.01 0.00 -0.01

-0.19 -0.87** 0.01 0.02 0.00

0.17 -0.96 0.01 -0.03 0.00

0.49 0.07 0.07 -0.02 -0.02

0.08 0.52 -0.65 0.28 -0.01

0.30 -0.63 0.66 0.32 -0.46

-0.04 0.20 0.01 0.65 0.58 -0.15

-0.05 0.40 -0.27 0.52 0.81 -0.26

-0.17 0.42 -0.61 0.29 0.41 -0.73

-0.15 0.21 -0.31 0.12 0.23 -0.65

0.09 -0.65 0.94 -0.51 -0.56 0,30

Page 174: Triple testcross analysis to detect epistasis and estimate ...

165

Table B4. (continued)

Trait Plant Ear Anthesis Silk Silk Height Height (days)* Emergence Delay (cm) (cm) (days)" (days)'

Yield 0.27** 0.19** -0.18* -0.33** -0.22**

Ear Diameter 0.25** 0.19** -0.13 -0.21** -0.11

Cob Diameter 0.20** 0.16* -0.03 -0.08 -0.07

Kernel Depth 0.14* 0.11 -0.14* -0.20** -0.08

Ear Length 0.21** 0.14* -0.04 -0.19** -0.23**

Kernel Rows 0.05 0.01 -0.18* -0.19** -0.01

Ears Plant"^ 0.09 0.13 0.04 -0.06 -0.14*

Barren Plants -0.04 -0.07 0.01 0.12 0.17*

Root Lodging 0.05 0.07 0.08 0.08 -0.01

Stalk Lodging 0.12 0.18* 0.08 0.03 -0.08

Dropped Ears -0.01 -0.02 0.01 0.00 -0.01

Plant Height 0.85** 0.31** 0.22** -0,15*

Ear Height 0.93 0.44** 0.31** -0.22**

Anthesis 0.74 0.85 0.79** -0.37**

Silk Emergence 0.66 0.70 0.94 0.28**

Silk Delay -0.30 -0.54 -0.29 0.05

Page 175: Triple testcross analysis to detect epistasis and estimate ...

166

APPENDIX C. S, PROGENY ANALYSES ACROSS ENVIRONMENTS

AND BY ENVIRONMENT

Page 176: Triple testcross analysis to detect epistasis and estimate ...

Table CI. Mean squares, means, and coefficients of variation (CV) from the Sj progeny analysis combined acroBS five environments in 1992 and 1993, for six traits.

Mean Squares

Source of Variation

df Yield Ear Diameter

Cob Diameter

Kernel Depth

Ear Length

Kernel Rows

g plant"' cm cm cm cm no.

Env (E) 4 86540.96** 7.775** 0.841** 5.943** 123.09** 3.59

Rep/E 5 1043.80** 0.132** 0.008 0.107** 2.77* 0.73

Genotypes (6) 99 1919.90** 0.262** 0.135** 0.115** 10.97** 9.84**

G X E 370 370.07** 0.041** 0.023** 0.030 1.26 0.53*

Error 458 251.02 0.032 0.018 0.030 1.12 0.44

CV 17.06 4,37 5.23 11.38 7.49 4.72

Overall mean 92.87 4.10 2.57 1.53 14.13 13.99

*,** Significant at the 0.05 and 0.01 probability levels respectively.

Page 177: Triple testcross analysis to detect epistasis and estimate ...

Table C2. Mean squares, means, and coefficients of variation (CV) from the S] progeny analysis combined across five environments in 1992 and 1993, for five traits.

Mean Squares

Source of df Ears Plant"' Barren Root Stalk Dropped Variation Plants Lodging Lodging Ears

no • % % % %

Env (E) 4 0. 414** 4532. 28** 54. 39* 1060. 34** 30. .69*

Rep/E 5 0. 008 83. 34 5. 50 89. 79** 4. .46

Genotypes (G) 99 0. 041** 283. 76** 7. 33 69. 34** 6.

« o

CM

G X E 370 0. 014** 115. 12** 8. 17 29. 33 3. .77

Error 458 0. 007 50. 28 8. 76 27. 10 3. .36

CV (%) 8 .67 165. 61 621. 98 113. 63 260. .43

Overall mean 0 .97 4. 28 0.

CD

4. 58 0. .70

*,** Significant at the 0.05 and 0.01 probability levels respectively.

Page 178: Triple testcross analysis to detect epistasis and estimate ...

Table C3. Mean squares, means, and coefficients of variation (CV) from the S, progeny analysis combined across four environments in 1992 and 1993, for five traits.

Mean Squares

Source of df Plant Ear Anthesis* Silk Silk Variation Height Height Emergence* Delay*

cm cm days days days

Env (E) 3(2) 14498. 57* 4286. 67 4911. 34** 3308. 20** •

00 in 27**

Rep/E 4(3) 1150. 78** 1152. 96**

CO in 72** 38. 90** 3. 06

Genotypes (G) 99 1612. 42** 1245. 88** 32. 09** 26. 80** 4. 63**

G X E 272(86) 68. 20** 49. 49** 4. 18** 3. 82* 1. 97*

Error 360(79) 50. 88 35. 04 2. 21 2. 39 1. 19

CV (%) 3. 55 6. 02 1. 75 1. 76 35. 90

Overall Mean 200. 76 98. 28 84. 83 87. 87 3. 04

*,** significant at the 0.05 and 0.01 probability levels, respectively.

* Anthesis, silk emergence, and silk delay were measured in three environments and degrees of freedom are listed in parentheses.

Page 179: Triple testcross analysis to detect epistasis and estimate ...

Table C4. Mean squares, means, and coefficients of variation (CV) from the S| progeny analysis for six traits measured at Ames in 1992.

Mean Squares

Source of Variation

df Yield Ear Diameter

Cob Diameter

Kernel Depth

Ear Length

Kernel Rows

g plant' cm cm cm cm no.

Reps 1 855.21 0.069 0.00 0.062 2.25 0.01

Genotypes 98 611.07** 0.081** 0.04** 0.049** 2.65** 2.86**

Error 98 225.18 0.018 0.009 0.021 0.61 0.34

CV (%) 12.79 3.05 3.74 8.06 5.17 4.10

Overall mean 117.34 4.36 2.55 1.81 15.13 14.15

*,** significant at the 0.05 and 0.01 probability levels, respectively.

Page 180: Triple testcross analysis to detect epistasis and estimate ...

Table C5.

Source of Variation

Mean squares, means, and coefficients of variation (CV) from the Sj progeny analysis for ten traits measured at Ames in 1992.

df

Mean Squares

Ears Plant -1

Barren Plants

Root Lodging

Stalk Lodging

Dropped Ears

Replications

Genotypes

Error

1

98

98

no.

0.000

0.003**

0.002

%

12.63

13.15**

7.52

%

23.35

11.11

10.50

%

374.76**

60.49**

37.64

%

0.45

7.04*

4.96

CV {%) 4.49 493.75 571.85 97.63 191.26

Overall mean 1.01 0.56 0.57 6.28 1.16

Plant Height Ear Height Anthesis Silk Silk Emergence Delay

cm cm days days days

Replications 1 317.17** 497.01** 172.85** 109.14** 7.29**

Genotypes 98 520.98** 440.53** 19.70** 15.42** 3.44**

Error 98 31.99 23.51 1.65 1.47 1.00

CV (%) ' 2.75 4.95 1.54 1.40 30.79

Overall mean 205.47 98.04 83.45 86.69 3.24

H

*,** Significant at the 0.05 and 0.01 probability levels, respectively.

Page 181: Triple testcross analysis to detect epistasis and estimate ...

Table C6.

Source of Variation

Mean eguares, means, and coefficient of variation (CV) from the Si progeny analysis for eleven traits measured at Elkhart in 1992.

Mean Squares

df Yield Ear Diameter

Cob Diameter

Kernel Depth

Ear Length

Kernel Rows

Replications

Genotypes

Error

1

98

98

g plant'

661.84

684.76**

268.98

cm

0.158*

0.100**

0.029

cm

0.020

0.040**

0.015

cm

0.065

0.048*

0.033

cm

0.64

2.57**

1.19

no.

1.53

2.37**

0.60

CV (%) 17.20 4.11 4.73 11.98 7.72 5.61

Overall mean 95.33 4.13 2.61 1.53 14.11 13.84

Ears Barren Root Stalk Dropped Plant' Plants Lodging Lodging Ears

no. % % % %

Replications 1 0.009 69.14 0.78 4.40 4.31*

Genotypes 98 0.008* 58.77** 1.09 13.29** 2.38**

Error 98 0.005 31.27 0.80 6.48 1.04

CV (%) 7.34 328.54 467.89 142.84 282.92

Overall mean 0.99 1.70 0.19 1.78 0.36

to

*,** Significant at the 0.05 and 0.01 probability levels, respectively.

Page 182: Triple testcross analysis to detect epistasis and estimate ...

Table C7. Mean squares, means, and coefficients of variation (CV) from the Si progeny analysis for six traits measured at Atomic Energy in 1992.

Mean Squares

Source of Variation

df Yield Ear Diameter

Cob Diameter

Kernel Depth

Ear Length

Kernel Rows

g plant' cm cm cm cm no.

Replications 1 494.73 0.115 0.005 0.071 4.41 0.00

Genotypes 97 748.74** 0.071** 0.043** 0.040* 3.79** 2,42**

Error 95 309.89 0.034 0.013 0.028 1.29 0.30

CV {%) 16.22 4.36 4.23 10.83 7.71 3.99

Overall mean 108.54 4.21 2.66 1.54 14.74 13.82

*,** Significant at the 0.05 and 0.01 probability levels, respectively.

Page 183: Triple testcross analysis to detect epistasis and estimate ...

Table C8. Mean squares, means, and coefficients of variation (CV) from the Sj progeny analysis for ten traits measured at Atomic Energy in 1992.

Source of Variation

Mean Squares

df Ears Plant -1

Barren Plants

Root Lodging

Stalk Lodging

Dropped Ears

Replications

Genotypes

Error

1

97

95

no.

0.001

0.004*

0.003

%

9.19

4.46

4.56

%

3.03*

0.58

0.60

%

1.76

13.16*

8.37

%

1.51

2.53

2 . 2 2

CV (%)

Overall mean

Replications

Genotypes

Error

1

97

95

5.09

1.02

985.92

0.22

Plant Height Ear Height

621.89

0.12

Anthesis

cm

1112.65**

488.49**

44.72

121.75

2.38

Silk Emergence

cm

750.90**

357.25**

31.97

days

1.02

15.30**

3.89

days

0.13

12.89**

4.05

343.91

0.43

Silk Delay

days

0.42

3.61**

1.78

1-*

CV (%)

Overall mean

3.24

206.62

5.62

100.63

2.44

80.78

2.38

84.59

35.07

3.80

*,** Significant at the 0.05 and 0.01 probability levels, respectively.

Page 184: Triple testcross analysis to detect epistasis and estimate ...

Table C9. Mean squares, means, and coefficients of variation (CV) from the Sj progeny analysis for six traits measured at Ames in 1993.

Mean Squares

Source of Variation

df Yield Ear Diameter

Cob Diameter

Kernel Depth

Ear Length

Kernel Rows

g plant' cm cm cm cm no.

Replications 1 3200.94** 0.315** 0.00 0.332 6.11* 2.12*

Genotypes 90 610.24** 0.090** 0.055** 0.054 4.17** 2.38**

Error 86 264.82 0.043 0.028 0.037 1.54 0.40

CV (%) 24.97 5.38 6.70 14.19 9.42 4.50

Overall mean 65.17 3.86 2.51 1.35 13.18 14.11

*,** Significant at the 0.05 and 0.01 probability levels, respectively.

Page 185: Triple testcross analysis to detect epistasis and estimate ...

Table CIO. Mean squares, means, and coefficients of variation (CV) from the Sj progeny analysis for ten traits measured at Ames in 1993.

Source of Variation

df

Mean Squares

Ears Plant -1

Barren Plants

Root Lodging

Stalk Lodging

Dropped Ears

Replications

Genotypes

Error

1

90

86

no.

0-001

0.038**

0.018

no.

38.64

322.29**

147.06

%

0.00

1.00

1.08

%

12.06

55.20

45.52

%

14.03

7.45

6.87

CV (%)

Overall mean

Replications

Genotypes

Error

1

90

86

14.84

0.92

118.80

10.21

Plant Height Ear Height

840.79

0.12

Anthesis

cm

2448.38**

451.84**

77.19

112.00

6 .02

Silk Emergence

cm

3233.62**

357.70**

47.68

days

2.30

6.38**

0.98

days

7.45*

7.07**

1.59

233.90

1.12

Silk Delay

days

1.47

1.54**

0.76

H -o o\

CV (%)

Overall mean

4.70

186.94

7.54

91.62

1.09

90.79

1.36

92.77

44.02

1.98

*,** Significant at the 0.05 and 0.01 probability levels, respectively.

Page 186: Triple testcross analysis to detect epistasis and estimate ...

Table Cll. Mean squares, means, and coefficients of variation (CV) from the Sj progeny analysis for six traits measured at Ankeny in 1993.

Mean Squares

Source of Variation

df yield Ear Diameter

Cob Diameter

Kernel Depth

Ear Length

Kernel Rows

g plant"' cm cm cm cm no.

Replications 1 6.28 0.003 0.012 0.003 0.44 0.00

Genotypes 86 876.53** 0.100** 0.064** 0.050* 3.54** 2.57**

Error 81 176.88 0.040 0.028 0.033 1.00 0.54

CV (%) 18.35 5.16 6.67 13.29 7.53 5.22

Overall mean 72.48 3.87 2.49 1.37 13.29 14.05

*,** Significant at the 0.05 and 0.01 probability levels, respectively.

Page 187: Triple testcross analysis to detect epistasis and estimate ...

Table C12. Mean squares, means, and coefficients of variation (CV) from the Sj progeny analysis for seven traits measured at Ankeny in 1993.

Mean Squares

Source of Variation

df Ears Plant

Barren Plants

Root Lodging

Stalk Lodging

Dropped Ears

no. % % % %

Replications 1 0.030 287.13 0.36 55.96 2.02

Genotypes 86 0.048** 395.42** 28.79 48.11 2.06

Error 81 0.008 75.89 34.00 41.71 1.86

CV (%) 10.08 86.30 394.64 93.90 309.71

Overall mean 0.91

Plant Height

10.10

Ear Height

1.48 6.88 0.44

cm cm

Replications 1 724.92** 130.33

Genotypes 86 463.73** 328.62**

Error 81 53.04 39.18

CV (%) 3.59 6.08

Overall mean 203.07 102.88

*,** significant at the 0.05 and 0.01 probability levels, respectively.

Page 188: Triple testcross analysis to detect epistasis and estimate ...

179

APPENDIX D. TESTCROSS AND EPISTATIC DEVIATION MEANS OF TRIPLE

TESTCROSS PROGENY, BY ENVIRONMENT AND ACROSS ENVIRONMENTS.

Page 189: Triple testcross analysis to detect epistasis and estimate ...

180

6LOSS2^Y FOR APPENDIX D

Abbreviations used in appendix D are described as

follows:

YD =

grain yield (g plant"').

ED =

ear diameter (cm).

CD = cob diameter (cm).

KD =

kernel depth (cm).

EL = ear length (cm).

RN =

kernel-row number (no.).

EP =

ears plant"' (no.).

BP =

barren plants (%).

RL =

root lodging (%).

SL = stalk lodging (%).

DE = dropped ears (%) .

PH =

plant height (cm).

EH ear height (cm).

AN = days from planting to 50% anthesis (days)

SE = days from planting to 50% silk emergence

SD = silk delay (AN-SE) (days) •

20519 = triple testcross experiment, environment Ames 1992.

20619 = triple testcross experiment, environment Elkhart 1992.

21619 = triple testcross experiment, environment Atomic Energy

1992.

30519 = triple testcross experiment, environment Ames 1993.

30619 = triple testcross experiment, environment Ankeny 1993.

Page 190: Triple testcross analysis to detect epistasis and estimate ...

Hale

88301 88303 88306 88701 88703 88704 89101 89102 89103 89104 89105 89107 89501 89502 89503 89506 89507 89901 89902 89903 89904 90301 90302 90303 90306 90701 90703 91101 91103 91104 91501 91502 91503 91504 91505 91901 91902 91903 91904 91905 91906 92301 92302 92303 92305

Triple testcross male epistatic deviation means across environments.

YD ED CD KD EL RH EP BP RL SL DE PH EH AN SE SO

g/plant cm cm cm cm no. no. X X X X

-25.9 ^^U4 ^5726 ^06 0.12 -0.82 ^^714 4T6 2724 OTM TIS" 11.6 0.20 0.04 0.22 1.36 0.58 -0.04 1.2 -1.24 7.70 1.50 -3.0 -0.32 -0.32 0.00 0.80 -0.48 -0.02 1.0 -2.52 2.50 0.46 1.2 -0.20 -0.10 -0.08 0.02 -0.12 -0.02 -1.8 2.50 -2,36 2.10

14.7 -0.08 -0.04 -0.06 1.92 0.32 0.00 4.2 0.84 -0.66 0.96 -1.8 0.02 -0.02 0.04 -0.18 0.36 -0.04 3.2 -1.32 4.10 -0.42 7.9 -0.10 -0.14 0.04 0.22 -0.12 0.06 -2.0 -1.90 -1,10 -0.82

-8.8 -0.18 -0.04 -0.16 0.62 -0.28 0.02 2.0 0.00 2,48 1.00 -13.5 0.06 0.20 -0.14 -1.18 0.20 0.02 2.0 -3.34 3.06 0.66 -5.8 -0.20 -0.04 -0.16 -0.30 1.00 0.00 -1.4 0.84 1.06 1.16

-12.1 -0.16 -0.16 0.00 0.74 -0.12 -0.08 6.0 0.00 -1.26 -0.38 37.0 0.10 0.04 0.06 1.24 0.84 0.16 -13 -0.42 -3.54 -0.02 0.3 0.04 -0.12 0.20 1.32 0.02 0.00 -1.0 0.00 1,92 1.36

-8.1 -0.12 -0.16 0.06 0.00 -0.08 -0.02 1.1 0.00 -3.24 1.56 19.7 0.00 -0.32 0.32 -0.66 0.80 0.06 0.0 0.00 1.18 0.82 2.5 0.08 0.06 -0.02 1.12 1.08 0.02 -2.0 1.26 0.70 -0.34

18.6 0.24 0.04 0.20 1.18 0.06 0.00 -2.2 1.68 4.66 2.40 -15.2 -0.26 -0.16 -0.16 -1.24 1.00 0.02 -3.1 -2.08 -3.02 0.84 -7.5 -0.14 0.08 -0.24 0.36 0.44 -0.04 3.0 -1.66 -1.30 2.26 -0.1 0.5 2.5 1.7 -0.8 H -8.8 - 0.02 - 0.12 0.08 -1.16 0.08 - 0.08 5.3 0.88 -1.48 2.18 8.7 5.5 2.7 0.7 - 2.0 Oo 30.8 0.14 -0.18 0.36 1.98 0.50 0.04 -1.7 -1.24 -1.76 -0.60 17.5 11.3 2.5 0.2 -2.3 16.9 0.18 0.04 0.14 1.18 0.04 0.04 -6.4 0.42 -0.48 1.88 -7.0 -0.12 0.12 -0.24 0.98 1.12 0.00 -1.9 5.08 -4.18 1.26 11.9 -0.26 -0.18 -0.08 -0.12 1.06 0.00 -1.7 1.38 2.82 3.42 23.9 0.02 -0.02 0.08 0.60 0.60 0.00 -4.0 0.34 6.64 -3.42 5.9 0.15 0.08 0.05 0.03 -0.20 0.05 -5.0 -1.58 7.68 -0.43

-3.0 0.08 0,14 -0.06 1.34 -0.14 0.02 -2.0 0.00 1.58 1.70 15.3 0.16 0.06 0.06 1.14 1.08 0.12 -10 -0.84 1.44 0.06 -6.5 -0.02 -0.10 0.08 0.30 -0.20 0.04 -4.0 -7.94 1.34 -0.84 14.3 -0.18 -0.18 -0.02 2.18 0.32 0.00 -0.6 0.42 0.28 1.14 9.4 -0.06 0,12 -0.16 0.12 0.28 0.00 -3.4 0.92 1.36 -0.12

34.6 0.46 -0.02 0.48 0.70 0.48 0.04 -10 0.08 -0.40 2.26 8.5 -0.08 -0.02 -0.06 1.06 0.04 0.02 -1.0 2.16 -5.08 0.56

11.8 -0.02 0.04 -0.02 1.68 -0.44 0.06 0.0 -2.50 12.08 0.00 0.6 -0.10 0.12 -0.24 -1.80 0.32 0.04 -1.6 0.00 -1.72 0.00

17.3 0.12 0.10 0.06 2.34 0.70 -0.02 1.0 0.70 2.00 2.10 3.9 0.16 -0.10 0.30 0.66 0.56 0.06 -1.0 0.28 1.16 1.80 4.5 -0.10 -0.06 -0.02 1.10 -0.26 0.00 -4.0 -0.76 1.62 0.88

25.5 0.50 0.24 0.22 0.16 1.12 0.18 -17 -0.42 -2.68 1.20 8.8 -0.10 -0.08 -0.10 1.28 -0.05 0.00 -5.0 0.00 0,33 1.98

28.0 0.28 0.00 0.26 1.30 0.36 0.06 -4.0 -1.68 -0.28 0.46 1.0 -0.14 -0.10 -0.02 -0.20 0.50 0.08 -7.4 0.94 -0.64 -0.10 5.1 -0.22 -0.06 -0.18 -0.34 0.12 0.04 -4.4 0.40 -3.02 1.94

-21.1 -0.32 -0.24 -0.12 -1.40 -0.34 0.04 -1.0 0.42 -2.70 1.26 0.5 -0.20 0.18 -0.38 1.04 0.52 0.02 1.0 0.84 2.94 1.72

cm cm days days days

3.2 1.3 0.7 1,3 0.7 6.2 4.8 0.3 1,3 1.0

13.5 7.8 1.7 0,3 -1.3 -6.5 -2.1 -0.7 -3,7 -3.0 6.2 8.4 -0.5 -0.3 0.2 2,1 3,5 0.0 1,0 1.0

-0,1 3,5 2.5 1,7 -0.8 7,2 9,8 1.3 -0,5 -1.8 1,6 4,2 3,7 3.8 0,2

11,9 6,0 0,8 1,5 0.7 -4,3 -2.0 0,0 0,8 0.8

-10,6 -5.6 -2,3 -3,8 -1.5 1,2 -5.1 -1,3 -0.5 0.8

15,5 16.8 1,5 1,0 -0.5 7,4 7.8 3,5 4,3 0.8

17.7 7.8 1,7 3,2 1.5 7.7 8.0 0,7 2,2 1.5

-23.2 -20.7 -4,3 -3,0 1.3 -0.1 0,5 2,5 1,7 -0.8 8.7 5.5 2,7 0,7 -2.0

17.5 11.3 2,5 0,2 -2,3 -8.1 2.8 -0,2 -0.5 -0,3

-34.8 -22.2 -0,2 0.0 0,2 19.6 15.4 0,7 0.2 -0,5 1.9 4.7 -1,0 -0.8 0,2 5.9 2.9 0,3 1.5 1,3

14.2 8.4 -0,3 0.0 0,3 8.0 7.3 0,3 -0.2 •0,5

-7.7 -2.4 0.0 -0.2 -0.2 -7.2 -9.3 -1.8 -0.8 1.0 10.6 8.5 -2.3 -2.5 -0.2 3.1 -1.9 -0,7 2.0 2.7

-6.1 -2.2 0,5 1.2 0.7 11.6 14.7 0,2 -1.3 -1.5 7.9 6.2 3,2 2.0 -1.2

-6.5 -6.3 2.2 1.0 -1.2 3.6 1.9 0,8 -2.3 -3.2

-3.7 -1.4 2,3 1.5 -0.8 -6.2 -5.4 -0,2 -1.5 •1.3 10.3 12.0 0.3 -0.3 -0.5 11.9 9.8 3,5 2.5 -1.0 4.9 -2.7 1,5 1.5 0.0 2.8 3.4 1,3 -0.2 -1.5

-2.4 1.4 -1,2 -0.5 0.7 3.9 1.0 2,5 1.7 -0.8

Page 191: Triple testcross analysis to detect epistasis and estimate ...

Table D1. continued.

Hale YD ED CO KD EL RN EP

g/plant cm cm cm cm no. no.

92306 23.7 0.10 0.13 0.00 0.85 0.75 -0.03 92307 0.2 0.24 -0.10 0.30 -0.10 0.04 0.08 92701 11.3 -0.10 0.02 -0.08 0.74 -0.30 0.06 92702 12.8 0.06 0.16 -0.10 1.00 -0.34 0.04 92703 -14.2 0.00 0.04 -0.06 -0.08 0.34 0.02 92704 -10.8 0.10 0.00 0.10 0.10 0.50 -0.02 92706 8.5 -0.04 -0.02 -0.04 0.80 0.30 -0.04 92707 7.2 0.06 -0.04 0.08 0.58 1.10 0.02 92708 25.5 -0.06 -0.14 0.08 0.30 0.10 -0.06 93101 -4.8 -0.02 -0.06 0.04 0.22 0.12 -0.06 93102 24.1 0.22 0.24 -0.04 0.38 0.82 0.04 93104 3.5 0.08 0.20 -0.10 0.04 1.02 -0.06 93105 21.1 0.10 0.02 0.08 1.80 0.72 0.02 93501 8.1 0.08 0.00 0.06 1.46 0.32 0.02 93502 -0.3 0.28 0.14 0.10 1.22 1.00 -0.04 93504 -6.8 -0.02 -0.06 0.06 -1.14 0.18 0.00 93505 9.9 0.02 -0.14 0.18 0.64 -0.26 -0.02 93506 -3.8 -0.04 0.16 -0.18 0.08 -0.02 0.02 93901 -28.2 -0.16 -0.02 -0.20 -1.60 0.46 -0.04 93902 18.3 0.14 0.16 0.00 1.96 0.70 0.00 93903 28.9 0.14 0.14 0.04 2.04 1.74 -0.04 93906 -28.9 -0.00 0.14 -0.12 -0.90 -0.16 -0.10 94301 3.0 -0.06 0.08 -0.14 0.88 0.94 0.02 94302 22.0 0.26 0.20 0.08 1.84 0.48 -0.04 94303 -0.5 -0.58 -0.38 -0.20 -0.24 -0.20 0.06 94304 3.9 -0.00 -0.02 0.04 0.52 1.36 0.06 94305 18.1 0.10 0.15 -0.10 0.33 0.20 0.18 94701 12.4 0.00 0.06 -0.08 1.38 0.30 0.04 94702 13.5 -0.22 -0.08 -0.16 1.42 0.48 0.04 94705 17.7 0.14 0.14 -0.02 0.12 -0.86 0.04 95503 -9.5 -0.18 -0.20 -0.04 -1.02 0.12 0.06 95505 33.6 0.14 0.10 0.04 1.48 1.28 0.14 95901 20.1 0.06 -0.22 0.28 0.00 0.28 0.04 95902 7.8 0.06 -0.04 0.14 0.74 0.96 -0.06 95904 7.9 0.10 -0.06 0.14 1.54 0.50 -0.12

226308 15.1 0.04 -0.06 0.10 0.58 -0.60 0.10 226309 -1.9 -0.18 0.06 -0.22 0.58 0.54 0.06 226720 21.8 0.34 0.16 0.34 1.62 0.02 0.06 227110 27.4 0.14 0.24 -0.08 2.22 -0.08 0.08 227511 14.8 0.06 0.08 -0.06 1.22 -0.58 0.06 227512 36.0 0.22 0.06 0.18 2.38 0.42 -0.06 228313 5.7 0.00 0.26 -0.24 0.20 -1.22 -0.04 228714 7.2 0.08 0.24 -0.18 0.68 0.66 0.04 229115 9,4 0.08 0.12 0.02 1.54 0.00 -0.06 229524 13,0 0.12 0.32 -0.14 1.66 0.44 0.00

BP RL SL OE PH EH AN SE SD

X X X X cm cm days days days

-3.8 -6.0 -4.2 -9.0 -1.0 1.8

-1.0 -1.0 2.9 3.2

-4.0 6.0 1.0

-2.9 3.0 1 . 1 1.0

-2.0 4.2 1.0 4.1 7,0

-2.0 3.0

-6.0 -1.8 -18

-2.0 -2.4 -3.0 -4.2 -4.0 -4.0 3.0 8.0

-7.0 -3.0 -0.8 -3.2 -5.0 -2.0 1.0 0.0 7.0 1.0

1.05 0.00 0.00

-0.84 0.92

-0.76 0.00

-2.90 1.26 1.26 0.56 0.00

-0.36 0.00 0.44

-0.84 -0.50 0.62

-1,66 -1.54 0.42 0.42

-0.54 0.22 O.OO

-3.32 2.65 0.00

-2.56 0.00

-0.84 0.52

-3.34 0.90

-3.30 3,36

-2.92 2.10 0.84

-1.40 2.10

-3.76 0.96 0.44

-0.70

1.58 0.74

-1.00 -0.84 4.66

-1.48 3.80 3.32

-0.82 0.90

-0.00 -1.14 -1.24 4.14

-2.74 -0.72 7.82

-1.48 -3.56 1.56

-0.32 1,74 5,20

-1.40 1,84 4,28

-3.05 3.94 7.14

-4.96 -4.62 0,34

-6,68 -0,88 -0,90 -8,18 -1,74 2,58 2.78 4.14 1.94 2.52 1.64

10.62 -4.60

0.08 2.62

-3.24 -1.66 -0.58 1.04 0.50 1.08

-2.52 1.32 0.46 0.00 3.38 1,84 1,20 0.94

-0.18 0.00 1.46 0.92

-1.92 1.20

-1.74 0.34

-0.42 3.88 1.00

-0.82 1.30 1.26 0,96 1.28 1.90 0.42 3.24 0.00

-1.54 1.36

-0.66 2.62 2.12 1.14 3.40 0.54 0.60

2.8 2.8

-0.1 9.2 4.2 7.4 6.0

-6.4 S.O 4.5

11.8 -0.5 1.3 8.4

-3.2 11.9 3.5 3.4 3.3 3.2

-2.7 3.5 6.3

-7.8 2.5 1.3 6.3 5.2 4.2 7.3 3.9

14.6 -6.3 -6.2 5.7 9.6

-3.8 -3.0 -9.7 4.9 4.0 6.3 2 .1

-2.5 -3.5

1.8 3.3 4.3 3.2 2.9 2.3 6.6

-4.4 1.3 4.1

11.4 0.9

-3.6 6.2

-4.3 9.0

12.0 0,4

-0.5 2.6

-0.1 5.5

10.6 -2.9 4.6 4.0

10.3 -2.5 9.8

11.7 6.0

10.8 -5.7 2.6 0,8 9,8

-2.9 3.1

-9.7 2.2 7.8 5.4 5.3 1.7 0.3

0.3 0.2 1.8

-0.3 3.5 2.0 2.7 0.7 1.0 1.5 2.8 0.3 1.5 1.3 3.2 0.7 3.8 1.3 3.5

-0.5 -0.3 -0.3 0.7 3.3 1.2 5.3 2.3 1.3 2.8 2.8 2.0 3.3 3.2 3.5 1.0 1.3

-1,2 -0 ,2 -1.0 0.5 0.2 2.2 2.2 1.5 1.0

0.8 0.3 0.2

-1.5 2.7 0.5 1.7

-0.5 0.3 0.2 1.2 0.3

-0.3 0.0 1,5 1,5 0,5 0.3 3.7 1.3

-1.7 0.8 0.3

-0.2 3.2 2.0 1.8 0.8 1.3 1.2 2.0 1.0 3.5 2.5 0.5 0.5

-1.5 0.5

-1.7 0.2 0.7 1.0 0.0 2.0

-0 .2

0.5 0.2

•1.7 -1.2 -0,8 -1.5 -1.0 -1.2 -0.7 -1.3 -1.7 0.0

-1.8 -1.3 -1.7 o.a

-3.3 -1.0 0.2 1.8

-1.3 1.2

-0.3 -3.5 2.0

-3.3 -0.5 -0.5 -1.5 -1.7 0.0

-2.3 0.3

-1.0 -0.5 -0.8 -0.3 0.7

-0.7 -0.3 0.5

-1.2 -2.2 0.5

-1 .2

00 to

Page 192: Triple testcross analysis to detect epistasis and estimate ...

Table 01. continued.

Male YD ED CD KD EL RN EP BP RL SL DE PH EH AN SE SO

9/plant cm cm cm cm no. no. X X X X cm cm days days days

229921 3.6 -0.12 -0.04 -0.14 1.24 0.92 0.08 0.0 2.78 5.94 0.62 1.6 7.0 3.0 1.8 -0.5 230322 23.7 0.26 -0.04 0.28 2.20 0.58 0.02 -1.0 1.68 -3.42 1.14 12.4 15.2 4.7 3.5 -1.2 230323 20.1 0.04 0.06 -0.02 -0.12 0.82 0.10 -5.6 -5.42 •0.68 1.44 -26.6 •12.1 2.2 2.5 0.3 230701 17.6 -0.04 0.14 -0.18 1.24 0.26 -0.04 0.8 3.12 -5.18 1.78 0.1 2.0 -0.5 -1.2 -0.7 231103 -7.4 -0.20 0.02 -0.24 1.02 -0.88 -0.06 4.3 -2.90 -0.88 -0.76 5.4 1.3 0.0 1.3 1.3 231104 8.3 -0.14 0.02 -0.20 1.20 -0.04 0.00 -2.0 0.42 -1.66 4.38 -2.5 -1.6 -0.8 1.0 1.8 231905 1.8 0.00 -0.08 0.12 0.36 -0.30 0.00 -6.0 0.00 -3.06 2.74 -8.9 -1.6 -0.7 -1.0 -0.3 231916 2.5 -0.06 -0.08 0.02 0.26 -0.22 -0.02 2.0 0.42 -0.40 -0.80 -3.9 -4.4 1.7 0.5 -1.2 232306 -3.4 -0.04 -0.08 0.08 0.76 0.44 -0.04 2.8 -1.24 7.54 4.88 1.8 4.4 -1.2 -1.7 -0.5 232707 14.0 -0.28 -0.06 -0.30 0.18 0.20 0.10 -9.0 2.92 1.66 •0.40 3.6 12.2 0.8 •0.8 -1.7

00 u

Page 193: Triple testcross analysis to detect epistasis and estimate ...

ro to ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o V/1 Ut Ln cn UI UI UI UI UI UI UI UI UI UI UI UI wn UI UI UI UI UI UI UI UI Ul UI Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul m* ..A Mi* a* "O 'O *o 'O O «o •o >o •O o •o *o <o O <o >o *o "O <0 "O "O "O O o <0 *o <o <o "O «o o -o o «

*O'O<O*O<O'O^'O^«O>O^^<O'O«O'O^O'O«O>0^^0909000903000)000>000000000900Q9 09 Q0mmm j \ j r o f \ j r o — ^ — * — » — * — * — * ^ ^ ^ * ^ ~ * « - * o o o o o o o ^ ' O o > o ^ o ^ ' 0 ^ ^ o * o * o ^ o O i S o o i 5 S S wu4uiw«0^»0'0«0>0viviuiviui—e—•-*-«.4->jWUJUi<l/I^^^^V1V1VnV1U'l^—•-«J-«J«>JU4U4U4 o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o viu4ro-*ovi.f"~U4ru—*vi^U4rv^^Uii-*U4^o«.Ujix)»*#<ujixj»*-i«40^UiirM»**Nvi^Ui<rxj^*^w^ChU<'-*

oo*ooov/iro<o-P">M-^

O i * » o * ^

to Ul ro *o

ro o M 09

1 Ul

M — M ro

o 1 o o 1 o o o

.20

o o o

.20

o

\ *^-*1 • i->iuj'00<r<*'00o-*o^-^>oo--»oo-^uio«,^vn^rorocy«ouirorv)->ir\>o ^^ro^^a«cn^*^oo-^o»i/>*OfN>oo*s^vn4N^vibDb»^uJo^^olA^obe

I o t o o o » o o o o o > * O » O I o

o i * o O * O 1 1 1 O o * o o 1 o o • o o o 1 o 1 1 o < o 1 o o I I I 1 o » o 1 o o * o ro 1* o o o

r 0

0 ,2

0 ,0

0

Ul o

,30

,20

,10

ro o o

,30

,20

U4 o

,30

o o

•A o

,30

.10

k) o

M* o

,10

.20

,70

.10

.30

.20

ro o

ro o

o o o

.60

.20

.30

o o ro o

M o

.20

ro o

o o

.00

.30

• o o o o o o o o o o o O I o o o o • o o 1 1* o M o fo ro Ul M o* u Ul o* IM Ul V Ul lii* o M M OJ o M Ul o o o o o o o o o O o o o o o o o o o o o o o o o o o o o o o o o o

ro o UJ o*

» I I I I a i t fo-»-»o-»w—•foo-*-^ouj-»-»-»o-^-*oo-*roooro-*-*-i»p\)-^u ui^M0j»Ar0Oii4rNj^i/i00'0"NiMm*si0»r\j*^'0^^-^0B^M^^w!»»V OOOOOOOOOOOOOOOOOOOOOOOOaaoAooof-

ro fO o Ul Ul Ul OI ro o o o o o o

o r » - * w i \ j « A f M o o ^•o^<r>-AOB^M'^c^w«-»V|0»uiMoiorob^uiro o o o o o o o o o o o o o o o o o o o o o o

o o o o o ro o

o o • M o

o o o

M o

M o o

u « w « « ^ O D ^ M 3 r \ « w i v i ^ — A o o o - ^ o i O O O O O O O O O O O O O O O l

o o o o o o o o o o o o o o o o o o o o o o O i O 1 o o o o o o o o o o o o o o o o o o o o o o o ro o o fo o o o o o o o o o o o Lk o o o o o o o * ro o o * •1 o * , o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

o o o o

o o o o

O O O O U 1 0 0 0 0 0 0 0 0 0 0 0 o o o o o o o o o o o o o o o o

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

o o 09 o o o o ro UJ o o o o o o o o

oor\>ooooooooo^^o^O)oi\}oooioo>>oooo-fr*oooooooo^oorooo i-oo—fcoujwwujoorooooooooorooo-^oo ' O O O O O O O O O O O O O O O O O O O O O O O O O

^ * 1 I 1 . A I I I ^ l « ^ • ocnop<r^ro^oo«oo«ro^^oo-*ro^o»o»oo^i\»o»(Noo MM^rooo—*00* • rouiuiMvnuii\>oro-*4ui »OOOOOOOOOOOUIO^OOOOOOOOOOO

>1 I , i o ^ o r o o o o * " » o o o r o o r o o o o o o r o r o o o a » 4 > r o r o ^ c > o o r o 4 N o o o * » o r o r o o o o o • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

'O^^oo^ro^->4roo»oororooooroor\>-*oo*»' • o o o o o o o o o o o o o o o o o o o o o o o o o

ro o ro o ro Ul o •>* o o o o o o o

oi -g c ^ o I

•>J 00 -» wro bo

r o r o 1 ^ ( — k t 1 r o o • M o o ^ M - o Ul o» Ul r o Ul

r o U4 ^ Ul -* bo bo o o M o»

Ul ro ro 1 Ul 1 Ul Ul Ol ro to o t o o

bo bo IM O o Ul bo Ul

o •>! -s o ro -A ro ui vn

-» ro ui • M bo ro I

ro 1* to

f O * I O J ^ f O « ^ i * w J i ^ i ^•>-»o^oo«oo«oi^ooo^oio-*ooo~*.^uio -g ui ^uiuir^CM\>M-*o^OiQk^KiKi«b^Mroo^»M^roroM

Ul ro Ul -ft ro o «»• -* ro o o o O ^ M Ul ro ro Ul Ol ro ro -* o 1

«>» ro M M ro •PA o o Ul o o o o o Ul Ul o o o o Ul Ul O Ul O Ul o o o o o Ul Ul o o o o o Ul b b Ul b Ul b Ul

• o Ul b

• Ul Ul

r* r* r* Ul ro ^ o ro ro o — M o o o ro o ro Ul Ul M o o ro o o o Ul o o Ul b b b b Ul b Ul Ul Ul o b b Ul b b b Ul Ul b In Ul b Ul b b ut o b Ul Ul Ul b b b b O Ul Ul b Ul Ul

o ro r \n UI V

I 04 o o I O O O U I o

•A ro ro • o o Ol (

ro o o o o to ro Ul o Ul -ft to o o o Ul o Ul Ul o o Ul Ul o Ul Ul Ul In

I O U4 -A M ro O

frST

Page 194: Triple testcross analysis to detect epistasis and estimate ...

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o mv/iv/iuii/iv/ii/iv/ii/iui^i/itni/iuiuii/ii,/imi/ii/ii/ii/it/imuiiinv/ii/ii/ivnuiuiui\/ii/<i/iv/ivii</iuii/iv/ii/iwi ••* ai* ok mJk «pk aijk adk

• V > W I W IW I V t w I W I V I W i W turo^ruiur\jrof\ji>jrv)«o*o*o«0'0*o^^^^^«o<o^^«o<o*o<oo^^o^o<0'0^o<o^^^^^ ^<O00p0^^*QO^O^O^UIU1UIU)U1^^^^^^^^MUJI,,»JMMUIUllMI,MO4O4O4MCUt\iCSII^^COf^)l^4t^>(^) vn^>tMvnvn^««4MUj«o>o*o^vn«>i*>j">juiMi,HUiui«o^^owiuicnijii,n->*^^-i*«g«g*>i«ig^"<i4^MM ^ • ^ ^ T ^ ^ ^ ^ r x J Q O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

rororoui4<«-*-A • ^

O • O O I o o o

-»o vn ro U» M ro iM M It \Ji iM *«»

OB k> 1A o> CO lO •M iM 'o ro

-»ro iM ro -» iM ro o o iM Ok iM M b b 1a [M Ui injMr\>o^ocowooo»0'

O O O O O O O t o • ^rororvi>*oot»JMuioM^orouJoor\jo* tjiuiro^o^—»Ch*«j^-*oiMO*-*r\>04rufv)o^U4roorv} o o o o o o o o o o o o o o o o o o o o o ^ o o o o o o o o o o o o o o o o o o o o o o o o

o • o o o o o o o o I o • o 1 o 1 O t r o r o r o b b r o b b 0 4 b i -b * > o o o o o o o o o o o o o O o o o o o o

o o o o o o o o o o o o o o o o o o * 1 o o iM (O 0 4 b lO t o 1 A k > o f o iM fO IM b o b \M o r o \M b rv> b o o o o o o o o o o o o o o o o o o o o o o o o

o o o o i i o o • o o o o o o o o o o • o • 1 o o o 1 o 1 1 1 o t 1 1 o 1 • 1 1 1 o p ro o o o

b o o

20

ro o o o k) o o o vn o ki o

M o o o vn o fo o

b o o o

Ul o fo o .9

0

Ul o

.70

is. o

M o b o o

b o b o

.30

.20

02

- b o

.20

o

.20

OI o

.20

o* ^ o o

.20

o fo o

fo o

»«AO-*oooooo«^o^w«^-^ 'C:^S^S^^2:*9^S^^cao^rooo^^<>boMo^U4rs)V»fv> » o o o o o o o o o o o o o o o o o o o o o o o o o o o

O M ^ I oui'N4ruuio^-j>cnNor\)Oi/i'>i^KjCAj< o o o o o o o o o o o o o o o o o c

oooo^K>*^oo-*^ooroooo^oO"^^ooro—*«^0-'0—koo-^oo^oooo-*ooo

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o <

p o ^ i o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o » o o o o o o O«**^^*AOO^OOOO-*ooooooo< o o o o o o o o o o o o o o o o o o o o t

o o o o o o o o

r o o o r o r o o o r o 1 * b o o

o o o O

o o

b o o

O O O N

o o o o o o o o • o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

• • I < I I I 009i^00)000090^0900^00r\)00^^0000000 ox'^^iNiO'T^ooouJorouioorNjooujMrvi^ooooooo

r>jrN>osooo9r>j->*rMO^uir\)^roocO'^090Q»«>o^o-^o^roc^-»oo»-AO»v/i • ••• • • r\)M» • •• • • • • • • • • • • o* • • o* • • * i 'o ' iMO vnMrNsrvoojMMiM* rouio * cnrvi* oji/i o o o o o o c n o o o o o o o o o o o o o o o ^ o o o ^ o o o ^ o o

o o o o o o o o o o o o o o o o o o

o p « o o o o o o o f o b b b b b b o o o o o o o o

MOsO-»GOr\l-k|NJ • • • l\) • • IN) • -k M M • 0> -* • -* • ooovioouiovn

ooooN^oo^cn4Nooroooooroorur>j^rv>oooooo^fs>^^ooooaoo^rooooo ~~ •ooo-»^-*-*ro-*oo*»ooro«*roivo-»o*

i o o o o o o o o o o o o o o o o o o o o o <

^ o IS) *o

OI I r\) J

Ul 04 o o vn ro o vn r d 0 9 vn U4 r o b 04 1>| *«« vn b b f o b l-» b b Ul >rN)hj*<qoo-AM00^^(hi/i«^oui0^^««4O00

O l r o b b fo IsJ f o

o>- 04 ro iM

u b Ik

» - •

> i/l o IN> -k O Ol O

^^r\)Ujoo*^oui^ o o o o l n o u i u i o o

ro IN) ui a> ru -» k) 9 **4 o o tn

yi M pv p lU o I n o o O i b o

o o vn b In

o ro -k ui vn In

^ o ^ < ui o in o o I

ro -k r o b b b b L n

I ro o ui ro -» o 04 ) vn vn vn o ui o ui

U4 b b

o o o vn vn o

o lO o -• o o ro ro o Ol o Ol ro -• -* v n v n v n b I n b v n v n b I n b In b o b v n

- - - • ^ I I I ^ ^ r o i i < o-«'Ovnooro^-AO^ooo^'S-^^ioo~*ooo^Ch ui.r«09ui^fobbL4Mui^bbro^^vnbui II 11 o-«oojU40ifo<r«-*Moro<-*rorouiooui-^ u i u i o v n o o v n v n b u t v n v n v n b i n b b b b b

* > I I I -*«*roo^uj-A^oro^oroui-kro^«^oo o v n v n v n o v n v n o v n o o u i o o o v n o v n o w i

> i i i i 1 i i i i ^oro^-»o«*Mo^oroo-*-*ro-^^Mo v n o v n o o v n o v n u i v n u i o v n b l n l n o v n b v n

•o 01 3

O* ST o

i 3

fr

a a -<

981

Page 195: Triple testcross analysis to detect epistasis and estimate ...

SSSSSSSSSSS9SS52^5^^5®®®®®®®®oooooooooooooooo O^ O^ 2 O^ O^ ON O^ 0> O^ ^ O* ^ O^ Qk Qt Qk UI UI UI UI UI UI UI UI UI UI

0 «o 0 0 <0 <3 3 *0 «o a* «-k 0 0 0 0 0 0 UI UI UI UI UI •N -g UI UI UI UI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 UI UI 10 UI m A UI 0 UI ro m*

ro M f\i ro N ro lo ro oa<ACooaoocno»ooosa>oooa90oODQocDaacDtta>v*iMViMMMMMWi\i

o p o o o o p o o o o o o o o o o o o o o o o ^ S o o o i o r o i o

I UI ro UI 1 (O 1 1 to UI UI 00 ro UI UI UI 00 •«o 0 00 UI to U4 *«•

^ 1* UI UI UI c^ 0 UI UI CO 0 UI

, , 1 0 , , 1 1 , 0 , 1 • 1 , 1 •

00 Ow to to ro o» ro to ro UI UI UI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

^ ro ro ro UI > UI f •^COU4OIOU1^0>< « o o - - * o o ' O a v n M <

UI to 1 *«» > ro to ro 1 f O • A 0 *»« o». o» U I w ' O U I 0 Ul 0 U I

UI U I 1 0 c » UI fo 0 » U I 0 0 0 M UI 0

0 0 1 0 1 0 0 « , « 0 0 0 1 t • •

U I ro 0 U I 0 UI 0 UI UI ro 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

^ UI ro -»

0 ^ * ^ > 0 0 ^ < ^ i ( ^ » 0 > l O * I • O t O i O i O O O O O O i O * • i O O * O O i O i O i O t

:iKKli:i«DiDsJ«C^iiisJK5£fDii5f5Si:±tiiSyzf^^-^^**'^'^wo404rororol»fol*oojofooro o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

I I t 0 t 0 * 0 0 * i ( t O i i t • • * 0 * 0 0 0 0 I » 0 > 0 0 I • i O O O * • l O O *

M ^ ^ ^ M r o M ^ o -k-*-AUio^^«<>roui<^*^roouiroV«>fo««>^^V»uj^ M b ^ujkil*l*uirorooroui o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

>«>|O.OkfsiOOCOO>A'O^U10P

>000000

-ft 0 -* 0 0 0 — 0 -» 0 0 0 0 0 to 0 0 0 0 UI 0 U I UI 0 0 ro 0 ro <0 U I 0 0

» 0

U I 0

0* 0 0 0 0

wn 0

0 0 0 0

—ft 0

<3 0

*<» 0

b' 0 0

U4 0 0

to 0

0 0 0 0

IM 0

U4 0 s

UI 0

0 0

k > 0

U I 0

1 1 0 -ft 0 0 0 0

t 0

1 0 0

t 0 -ft 0

1 0 0

1 1 0

1 0 0 0

1 0

1 0 0 0 0

00 ^ 0 0

—ft 0

0 0

ro 0

0 0 0

to 0

M 0

0 0

to 0

—ft 0

U I 0 0

ca 0

UI 0

0 0

U I 0

V". 0 0 0 0

UI 0

0* 0

t» 0 3

to 0

U I 0

is 0

k) 0

00 I 0000000 • 0000000000 • 0000 i 0000 < o * 000000 »ooooo*i.»ooooooooooojoooo^^ooo--*^oro^o-^^-*o * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

O O O O O O U I O O O O O O O U I O O O O O O O O

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

I o o o o r o i ^ o o o o o o o o o o o o o o o o o o o o o u i r o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

- A I » I I I I I I orojso^oooo^i\joooo*^o^ooro«^ro^o ^OMO^OOOOO^^OOOOOO*SM-^^-^000 o o o o o o o o o o o o o o o o o o o o o o o

ooo^oroooooo^oroo90^oo>iroooo ooofooooooooo(oo*^roo^^ocKUiooo o o o o o o o o o o o o o o o o o o o o o o o

0 0 0 0 0 0 0 Ok UI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b b b 0 0 b b b b 0 0 b b b b 0 b b 0

00

*0

00

*0 0

.00

-4.3

0

0

0 0

-9.5

0

00

*0

00

*0

00

*0

0

b 0

0

b 0

2.8

0

t o

0

-12

.5

0

0 0

-4.2

0

0.0

0

0

0 0

is 0

2.1

0

2.1

0

*s

s

00

*0

0

0 0

-3.3

0

0.0

0

00

*0

is 0

*«•

r o 0

-10

.0 -1

0,1

0

0 0

2.5

0

2.8

0

0

s

12

.50

-3

.60

5.2

0

2.1

0 -7

.90

•6

.10

-2

.20

-7

.40

-1

.30

3.0

0

0.0

0

0 0 0

t o

0

0

b 0

0.0

0

UI 0

0.0

0

2.4

0

0

b 0

0 b 0

6.3

0

0.0

0

0 b 0

0.0

0

2.1

0

0.0

0

f O is 0

0

b 0

0

b 0 O

O'O

0 0 0

« I I t -ft -» UI • ^uiui^roro^io'o^ ^^U1UI'>|*^(#I««4^«0

I I -k I fO -A -A • • f\l I ui«OforouiO'^Moo b » f o b o ^ l < » ^ b o b 9 « V 4

-«l00<^k00<-*04*>4ch U I U I U 1 0 0 0 0 I U I U 1 U I

I I I I ^roooro^<-*ro-^iui O U I U l U t U I O U I U l O O

I I I I I I r o o - * - f t r o - * M - k O - A vnoouiuiooouivn

98T

Page 196: Triple testcross analysis to detect epistasis and estimate ...

0 ® O O O O O O O O O O O O O O O O O O O O O O O Q O O O O O O O O O O O O O O O O O O O

o o * o o « o •O 'p • O - O O o •o o o o « o < o « o < o O * o U T U l U1 u t U1 *«• iM M M 04 M UJ M M 04 U l «o ^ * o cn v/t ->4 04 M 04 04 * o <o *o o vn Ul Ul vn vn o o o o o o o o o O O O O O o o o s o o o o 1 o ^ r o V/l M v n IM w n *»• M r o o* M r o s Ul r o _ A Ul 1 M

IK; I "O *o ) o o o o o • vn M i\> «*

Ul M UJ o

M • p» ^ 09 Ul

*0 O OB M Ul Ul b o

o o o o o o 1 1 o 1 t o o o o o o o o o o o o o 1 o o o o o o o o

In o

80

o k) o o

mA o

o o

10 20 20

o o K> o

,20 .20 .20 .30

o o

.20

k) o o

.20

o o o M o M o kj o

k> o k) o o u o 09

- .7

0

o o

.60

.10

o k> o o o ro o

O * O 1 O O O O O O i O O 1 • 1 1 o o 1 o O O O O O * O O O * o o < o • O O O O 1 o ruuio^-*f»oro—• o o o o o o o o o O M o o ro -A ro O O O O

.00 .00 .30 .30 .00 .10

O M O o

.20 .10 .20 .00

-ft O kj M O O O O

.20

.60

.20

.10

.60

.00

.00

.00

.00

.20

k> o

O O I o I I I • O O O I O O • O O O O O ' O O O O • • t O O O O O ^ O

l O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

7^7*7*;-*^Jo^wrs»of\j^^r\>wroo-»oo-»N)-fcOfuroporNj-*fuoo*^MO-*-*wo-*-*oorNJM lOONlil'-AOOO^VnOvrxJO^O^M'O^OflMMrNi^'^iUIUIoV^^V^UIwlA^ • o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

• I I I I I I ooo~*>^^o-*o^oo-*o^ o -ft o o o ro o o

o ha o M o Ul o Ul o o o o o u o o o

o o o -ft o ro o -ft ro bo o 'o o o o

k» o

IM o

bo o o

o o

O O O O O O O O O O O O O O O O O O O O O O O O O • O O ' o o o o o o o o o o o o o o o • • • • • • • • • • • • " • • • • • • • • • • • • • • • • • • • • • • • • • » • » # » « o o o o o o o o o o o o - * o o i \ j o o o o o o o o o o o o o - ^ - * o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o woo—f c O O O O O O O O O O oooooooooooooo

c n o o o o o o o o o o o o o o o o o o o o o o o o o o o

O O O O O O O O O O O O U 1 0 0 U I O O O O O O O O O O O O O O o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

ooohJoo^ooooooo-P»-ooow^Nroo*'^oorvioooo4Nooooooo»oooooo 9S2^t22i522222295i?S®®®^'^'^o^'®®-^®ooo<^oooooooV'Oooooo o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o — — — — — — — ~ ~

< i ( I I I I I • ^o^09*o|^*«4^^roo^ruor\>or\jM-g< • • • • • • • • • • • • • • • • • • • < > O 00 «* • I o o o e o < 1

u i o w o o o ^ ^ r x j o n j o o o o o r o o o o o o r o o o o o o o o o o o o o o o o w o o M o o ^ i£J25iJ9222^5£J:i2i£f229®®-*®®®®^^®®oooooooooooool*ool*oow ® ® ® ® ® o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

•B* o ro w o o Ul o o o o be o o o ro o o o k)

o

Z.8T

Page 197: Triple testcross analysis to detect epistasis and estimate ...

[^^^^ryforNJrvjf\jrorv»roroi\ji\)f\>f\jrNjr\jror\jrv>yv)rorofvjfv>f\jf\jrofororMr\jrv)fv)rof\jr\jrNji\)rui\)rorofM

U4 Ul Ul M « 0 0 0 0 CO CO 0 0 CD CO 03 o> 03 OS o» CD 00 CO

0 *0 NO 0 <0 "O •0 "O <0 03 00 5 Ca 1/1 tn vn Ln Ul m* •>4 ->i 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0^ M ro -J (/I M ro U 4 0*

tmo«04uiuiu<MMU404T\>rorororuroruroi\>roru >o9rui\>-A-^-^^ooooo*o<ooooo^^'>jc>«o^o« > o o o ^ o o o o | \ ) r N ) r u f M * * ^ « ^ * « — • • - f t r u o o

^ Ua tVJ Ul * UJ ' —* Ul N m ^ I I r\j —k fo ^1 ijj I ^ u) ^ I M. I >. I oyioooyi^o»^N^^p«^^o^^.kOO»-*«o^^o^->ioocnos^o«Mi/i^^Q»oC9^^o^MSooto »ro-»o»-«groo^v/iuioo*>j->jfv>UJi-n*.no-»->4»o—•^lnroc»ujr>j^w<>b9^olnoln^l*r\iuj^oc>

0 0 • I 0 » 0 1 0 • 1 1 0 0 0 0 0 1 1 0 1 0 0 0 * 0 ON (> 0 0

.30

ro 0

UJ 0 0

ro 0 OS

0

.20

,10

.20

0 0 0 0 0

0 0

.50 .30

Ul 0 0 0

ro 0

ro 0

.2

0

.1

0

0 0 0 « 0 0 1 1 0 0 1 1 1 0 0 0 0 0 1 0 1 0 1 0 1 0

0 0 0 ro 0

m-M 0

0 0

.10 .20

0 0

0 0

.20 .30 .20

U l 0

0 0

ro 0

ki 0 0

.20

0 ro 0 0

.1

0

ro 0

.2

0

.1

0

o o o o » > o » o »(UUIOM1A1AUIU1^

• O O O O t

o o o o

0 0 0 0 0 0 0 0 0 0 0 0 0 0 * 0 1 1 0 0 0 0 0 0 M iN. U l V - r o _ k M k i 0 0 ro M 0 0 L » r o U l U l f o U l U l 1 * U l r o 0 ••*

• U l O N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

r o r o -* 0

0 U l k> u U l 0 0 0 0 0

o-*r\Joo-^^—*vi^^4>uiuj<^iv^oivoo«<^*^^—*-^o«^o-*ou4o-*viixj—• irMO«-^-~»->iro<ooouix>ov/ioujo«—kU40<»jM« • o o o o o o o o o o o o o o o o o o o o <

—* —• ro —* o o o o o !

0 0 0 —A 0 -• 0 0 -• 0 0 0 0 0 0 i- 1A On CO •M ro On ro U l bo 0 U l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

> 0 0 0 0 0 0 0 0 0 0 0 0 0

> 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 • I o I 0 0 0 0 0 0 0 0 000000 0 0 0 0 0 0 0 0 0 0

o o o < o o o <

s ro 1 ro ro ro 0

0 0 0 0 0

0 0

o r o o o

> o ro < k o ro I

r o o o o o o o o • o o o o o <

!iS22SCiiCtf2S2iif®®~**^®*^o®®o®o©-^'^^>o-*oooooo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

^ ro • 0 0 0 0 0 0 0 0 0 0 0 I o • u t o u i o o o o o o o » 0 0 0 0 0 0 0 0 0 0

> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

I II «» I I >roooooroo«o^ro-c^o-^o«Qooooooooooor\>oooooooo^ i - ^ o o o o - * r o o r o ^ r o ^ > » « r o x ^ o o o o o o o o o o o o o o o o o o o o k i L O O O O O O O O O O O O - S L O O O O O O O O O O O O O O O O O O O O O O

^ * * I • I I I I I I I I '0^fooororo^^roo*'*'^roro^jN.r«-ofooro^roooroo*-*ooui^*«>otn-»4 !W'^oo^^foro^y^-*-*roro^ol*olfcUJrororochoc»l*^rv)foorol^ * 0 ^ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

« I » O O O O O O O O O O O O O O O O r O i J ) ^ O O O O O O O O O O ^ O O O O f O !222222222222o^oo'^^^ooooooooooroooooo ' O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

• • r o r o r o ^ A t o i * * ^ i i - A r o i — 1 f \ j <t*uiuiMuiuiouio(>«uirouio«>MOi-^09^*oujvnvn*>|i/i ooui0>vnuiui^UJ^ocn00^it>>^0»09vn^Lft0jV*V«^'

I I I - * * r o t o i l ^ t ^ t ^ I ^ 1 1 ^ c^-^J•^M^oo*otoc^(^l/l^>oox<-o<^>UJ>^>UJroul-**^|r\)ul *00—»-«JWOOVn«*Ov*>«.09000*0»-^*»U4"»4^*00»~»J^roWl'

' I I I I I I I I - * v n o r o ^ ^ r o ^ ^ r o v i - * > A - A M O u T O o o - » u i - ' j N O J ouiuiuiouiuiwnouiuiouivrii/ivnoi'iooownuiuio*

I I I I I ! j<*^^>*^ra-kro^«s^ooujoo^o-»-*^o^-*.^oi o c n o o v / i o o L n o o v / i o o u i i J i w n o o w i o o o v n o c n '

' I I I I I I i i i i i i M^ui^foui^roui^—*«*-*ro^o-*o^-*roroooo o o u i u i u T L n u i o o < J i o o u i o o o o O i l n o o v / i o u i v n *

rp o

8

5

Ol a •< tn

8-

8-•<

881

Page 198: Triple testcross analysis to detect epistasis and estimate ...

Table 02. contitxied.

Env. Hale YD ED CO KD EL RN EP

g/plant cm ctn cm cm no. no.

21619 90701 . • , . . , 21619 90703 40.0 0.00 0.20 -.20 2.20 0.70 0,00 21619 91101 15.7 -.10 0.30 -.40 1.30 0.20 0,00 21619 91103 -75.8 0.00 -.20 0.20 -1.70 -0.80 0,00 21619 91104 18.9 -.20 -.20 -.10 5.60 -0.30 -,10 21619 91501 5.7 -.10 0.00 -.10 -0.30 -0.80 -.10 21619 91502 -26.7 0,40 0.00 0.40 -3.20 0.60 -.20 21619 91503 6.7 -.10 -.10 0.10 2.40 0.10 0.10 21619 91504 3.0 0.10 -.10 0.40 0.70 -0.80 0.00 21619 91505 -7.7 0.10 0.20 -.10 -1.80 1.60 0.10 21619 91901 -32.0 -.50 -.10 •.30 0,70 •0.40 0.00 21619 91902 -26.5 -.10 0.00 0.00 -0.40 -0,90 0.20 21619 91903 -17.6 -.20 0.20 -.40 1.60 -0,10 -.10 21619 91904 -17.6 0.20 0.30 -.10 1.10 0.30 0.00 21619 91905 21619 91906 15.7 0.10 -.10 0.20 -2.10 -0.30 0.00 21619 92301 -18.6 0.20 0.10 0.10 -3.20 -0.10 0.00 21619 92302 15.3 0.10 -.10 0.10 -0,40 1.60 0.00 21619 92303 -35,5 -.30 -.10 -.30 -3,90 0.90 0.10 21619 92305 -31,3 -.20 0.20 -.40 -0.50 0.60 0.10 21619 92306 . . • . . 21619 92307 -0,8 0.60 -.10 0.60 -0.80 -2.00 0.00 21619 92701 -38.1 -.50 0.00 -.40 -2.20 -0.60 0,10 21619 92702 1.5 0.00 0.30 -.30 0.40 1.00 0,00 21619 92703 -58.1 0.00 0.40 -.40 -2.60 1.20 0,00 21619 92704 -25.5 -.20 0.20 -.40 -2.00 -0.20 0.00 21619 92706 3.9 -.30 0.10 -.40 -1.40 0.00 0.00 21619 92707 -16.7 0.20 0.20 0.00 -1.50 0.40 0.00 21619 92708 19.4 0.00 -.20 0.20 4.20 0.30 0.00 21619 93101 -90.5 -.60 -.30 -.30 -4.20 -2.40 0.00 21619 93102 -1.1 0.30 -.10 0.30 -2.40 0.90 0.00 21619 93104 -7.3 0.00 0.10 -.10 -0,40 0.20 0.00 21619 93105 32.0 0.20 0.00 0.30 2,90 2.00 0.10 21619 93501 67.6 O.SO -.10 0.60 4.20 0.30 -.10 21619 93502 1.9 0.00 -.20 0.00 0.10 0.30 0.10 21619 93504 8.3 0.60 -.10 0.70 -0.30 0,20 0.10 21619 93505 0.2 -.40 -,30 -.10 0.90 0,10 0.00 21619 93506 -6.9 0.70 0,60 0.20 0.10 0,10 0.00 21619 93901 -70.9 -.40 -,10 -.30 -2.80 0.60 0.00 21619 93902 -14.7 0.00 0,00 0.00 -0.10 -0.70 0.00 21619 93903 35.3 0.00 -,20 0.20 1.50 1.30 0.10 21619 93906 -28.3 0.70 0,40 0.40 -0.90 0.70 -.10 21619 94301 1.5 -.10 0,10 -.20 1.80 0.50 0.00 21619 94302 19.5 0.10 0.20 -.10 1.40 -0.20 0.00 21619 94303 -4.2 -.20 -.20 0.00 -0.80 0.30 -.10

BP RL SL DE PH EH AN SE SO

X X X X cm ctn days days days

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.00 0.00 2.00 0.00 0.00 0.40 6.30 0.00 0.00 9.40

-4.20 -4.20 -4.20

2.10 2.10 0.00 0.00

-2.10 -6.30 4.20

15.50 -2.10 13.60 -2.10 -2.10 -2.10

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10 0.00 0.00

-11.5 16.5

-10.8 -36.8 21.6 9.5

-2.0 10.2 6.2

-27.9 4.6

-13.3 -11.2

-5.8 20.9 -1.3

-37.8 13.0 •4.0 5.9 6.0

-5.1 -21.9

2.5 0.4

-9.6

0.0 0.5 1.5

-6.0 -5.5 -2.0 0.0

-1.5 1.5 2.0 0.5 6.5

-2.5

-1.0 1.5 0.0

-2.5 -5.0 3.0 2.0

-5.0 2.5 3.0

-5.0 6.0

-1.5

-1.0 1.0

-1.5 3.5 0.5 5.0 2.0

-3.5 1.0 1.0

-5.5 -0.5 1.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-4.20 0.00 0.00 0.00 2.10

0.00 0.00

-4.20 0.00

-0.10 0.00

-8.30 0.00 2.10 0.00 0.00 2.40 0.00 0.00 0.00

-4.20 0.00 0.00

-10.0 0.00 2.10

-6.90 1.10 0.00

2.10 -4.20 -4.20 -6.20 -8.40

0.00 -6.30 6.30

-2.20 -4.20 -4.20 -10.4 0.00 2.10

-4.20 -4.20 0.30 0.00

-8.30 6.30 0.20

-6.40 2.10 0.00

-4.20 2.10

-6,90 4.80 0.00

0.00 0,00 0.00 0.00 0.00

o!oo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.20 0.00 0,00 0,00

-2,10 0,00 0,00 0,00 0,00 0,00 0.00 0.00 0.00 0.00 0.00

-4.20

1.8 -10.4 -0.9 9.6 2.0

-5.5 5.3 6.6 7.8 7.3 2.8

-16.7 1.1

11.9 10.0

-10.3 1.6

19.6 -24.9

11.1 3.9 1.8

13.3 -5.3

-10.0 0.5 8.2

13.4 0.6

6.1 -18.1

1.1 8.6 4.1

2.3 8.7 5.9 7.0

12.3 3.7

-15,4 -5.6 11.8 7.8

-6.2 -15.5

0.9 -21.0

4.4 14.0 5.4 8.6

-2.0 -4.7 -8.8 7.7

20,3 -2,4

4,5 1,5 6.0

-3.5 5,5

2!O 2,5

-1,5 4.5 2.0 0.0 1.5 2.5 3.0 3.5

-1.0 -1.0 0.5 5,0

-3.5 3.0 2.5 7.0

-2.5 -0.5 -4.0 0.0 4.5

-0.5

1.0 -1.0 2.0

-2.0 3.0

1.5 1.5

-3.0 5.5

-1.0 -1.0 -1.0 1.0 2.0 3.0 1.5

-1 .0 •1.0 2.5

-2.5 0.5

-1.0 6.5

-2,0 -2,5 -3,0 0,0 1,5 4,0

-3,5 -2,5 -4,0 1,5

-2,5

-ois -1,0 -1,5 1,0

-3.0 -1.0 -2.5 -1.5 -1.0 -0.5 2.5 0.0

-1.5 -2.5 1.0

-2.5 -3.5 -0.5 0.5

-2.0 1.0 0.0

-3.0 4.5

03 VO

Page 199: Triple testcross analysis to detect epistasis and estimate ...

190

S

>> (0 •o

>. <0 •o

s

8

E u

4D

Q . O)

ooomoeiAinmooinini o o O O in d CM d CM CM

o O I •«4' (

k o t\i oj o T-

o i n O i n o o i n i n i n o i n i n i n i n T-» CM o *— *- d CM d

I in o ( • o •- <

moinoooooinoinoin o o o o o ro

inoininoointnoeminoinoo I o o in

o in o ^ o M

o in in cnI in

in o o in m o o in *- o K»

in in o in o o in CM o o

o in o m tn o «- m ro

o o < o«

> in o • CM in

N . r o O ' i n C O C M m C O *

Is! o h- CM O

CM in CM 1 CM • d

in o I Kl -* I

O* 00 I •>« CM I

> tn in in o o o in in in o in o i n ^ ^ * - C M C M « - ^ f M i n O C M

i n i n o o

in o •sj- CM

in <

I <i I r^ o •4- in QO o CM O h-

1 d d in CM 1 in CM

CM K»

o '>4' fo eo ^ ro CO

•" N»>0>J'KlN»*-«r-O00*0inr0*0"' * * • • • • • • • • • • • • • N.h-^ON.CMinOCMN.OinsfOC • I I •- I r- CM I *

O o in r o f o r o d CM 1 • CM

N-<NjinfwinN.N.o»roN.«-. ' o I • t

r o 0 0 * 0 in CM 1 CM CM

» o o o o o o o o o o o o o o o o o o o < ' ^ O O O O O C M O O r v i O O O O O O O « ~ icMooooo«>^oostooooooooooooo^oo(M(MinfM>o>fCMeo

o r o

o o

o •»*

o 0 0

o o r o o

o 0 0 p o h o t n

CO i n CM t n CM r o t n CM

o CM '<^<o«<^^r\ia)^oocM*.^*.f«o^c>«<^cMcd^

• i n o o o o o o o o o o o o o o o I •«-*oroino'r-w-fs.rooo»-rM«—>Trvj O O O > 0 O O O < M O O ro "O o o ^ C O O ^ o ^ O O C M C O O * I I I

o o o o r ^ o o o o o o o CO in •- • o r\i CM CM ro o • • • • C M " * « » » « » rsi vj- ro '

O <

o <

o p r o o i n r o N . r o

C M C M C O C O T " C O

• o o o o o o o o o o o o o o o o • 0 ^ f M « ^ C M v - K l « - ^ O C > O O O O O O f O io^cM«>t(M*0(Moooooc>aoed

o o o o

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

o o o o o o o i n o o O O O O O O O N . * - C >

O O O o • • • ro in >o o o o o • «- *- *- CM

o o o o o o ^ o o o o CM O O O O (M

CM o o o o o I o I in o in

_ o o o o o •- o o o o «- o o o o o o o o o o o o o o o o * o o » - ^ w - f M « — • - m » — c M O o r o o o o o o o o • o o o o • I o o o o • O I o o o o o o

o

.30

.1

0

o o

o o O *r-

d • o d d d

r o I ' CD « do

p o o o o o o o o o o o o o o r«- CO ro h- ro "-CM ro o h- in 0 0 s» C> d o d •-^ d OJ o o CM o o

o CM o o o CM o o N. d ' ro o CM

oooo«»<^«-«»«»o^^ov*oo«~oooooooo«-o«-'«->o • • I t i l l

I p O O O O O O O O O O O O O O O O O O O O O O O O O O w w w * mf\j'«TO'00»r^o^or«-coinmrM*oinooi

•opMO«MCMoooroo*-oj^orO'-ONj''r-«-or«jfvit-^drJ>arodd*--dioo«--ro^ro

.30

o

.10

o

.20

.3

0

.40

.3

0

.50

O CM o O o CM o o 0 0 .0

0

.10

o CM o CM o r o

o CM o o N. CM o i n

o o o i n

o CM o r o ,5

0

.10

o o

30

.0

0

,20

o r o

o o o o CM r o o o

o i n

o o *— «— • ' d o 1 o O ( d d d O 1 d d d d d d o d 1 1 d o I o d d d i ' d d d d

o o o o o o o o o o o o o o o o o o o o o o o O o o o o o o o o o o o ro o fO ro o CM o «- ro CM o *- in CM CM C M o C M "sJ- o ro CM d d d d 1 d d d d d d d d d i'd d 1 d d d t d d o 1 * 1 l' d *' i" d

o o o o o o o o *" CM CM o s o 1* d 1* i'd d d 1*

o o o o o o o o o o o o p o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o ro o ^ o ro •>» in ho o ro '>4' CM fv. CM NO ro OO ro o in o CM «o *— ro CM o ro sr «- in d d o »* d d » 1 o o d •* 1 d d d d d * d d d 1 d d 1 d 1 1 d 1* r o 1 d d 1* d 1 o o d 1*

CO in o f oo o oo in <M ro«- sj-

ho o C M s r ho o O CM O' N . i n ro -sa-r o CM CM r o o 00 CM •<r r o r o r o CM r o CM • r o CM CM CM *— «— •—

C O h * N O 0 0 r iinfMroN.Nj'>oo»or^fMin*—cM^oo-^^oo^ iroo»^oo*-o»ooino»«.»N»oin'0^*oc\i

« Nt-sj- I roc\j*-«-cM I ro»o>tCMro*-«-

CM r o i n h . CM r o o o o o o o o o o

i n i n i n o o- o» c s o o o* CO CO CO CO 0 0 CO 0 0 CO CO

i5-ro««»in'iONOr«»^ro'»o^f Ip000'»-000000< >^«-«-o^o^ror»-rororoN.r JO^^w-T-'CMCMCOeOflOCOC ..irororororororottaaoc CMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCM

^^*0^^>0*0^^*0^jO^*0^^^«0*0«0»0*0'0*o5555SSininininSintnSinSS^iLnu^intn CMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMIMCMCMCMrMCMCMCMCMCMCMCMCMfMmm^^M^mm^^m^Mm^

Page 200: Triple testcross analysis to detect epistasis and estimate ...

191

O t A l A i n O O l A l A O l A i n i A O O O O O O O O t A O O l A O l A I A O O l A l A O t A O O O O i n i r v i T k O O O t r t O

• ( t 1 1 1 ( 1 1 ( l i t t i l l I I i i i i i i

u>>nooointniAiAinininoiAOOOirteoiAmioiA4/\intntnoootnmtnotnoinmininooinm o*~'~Kifvi«-*-*-inocMw-r-K»«-M*-m«-(v«-^roos3-{\jcuot-^*^*-^ruooooi^rorNJor\jw^t^¥-'o^ • I I I I 1 1 I I I I I I I I I

i n o i n i A O i n o o i n o o o o m o o o t n o o o i n m o i A o o m o i n i n i n o i n o t n o o o o i n o o o i A • * • • • < • • • I I I I I t i

oi r>j •ji rM • •" I •* CM I I I I *-»

^lMeorkl(^»-coeato<»m.Olno^-cMr^•(^tn^^-to(Mealnc^r^llneo(^K)o^oea•-.T^(Mo^->o>4'0^oaN • • • • • • • • • • • • • • • • • • • • • Ml i>j • f*I r\i sx I ro I I I I I

S ^ O O O O O O O C O O O O O O O O O O O O O O O O O O O O O O O C X J i n O O O O O O O O O O O o'**^^ooooocNi».*^h«»s»ioooo'OfMeoooo»o»"«i»o»*oo«oiAfo*oooo» • •oom^o«>^>7OG0mh« omc>JO-»tintnsreo«-«-«oooooin<MOO^«0'x^ro«-ooIin>ooo«-oo^^in«-^ojo«orMc>joinoto

» II • I I I I I

o o o r o o o o e o o o o o o o c o o o m o o o o o o o o o o o o o o o o o o o o o o o o o o o '^•~'^*U^"»y^*^0*f0f0in>0 • ">0 •<Oa*\J»OCO*—•CMK>^^0*00^0»<>f0^h>»tOCMC\J^OOin^O * * * P O • • • • • • • • • • • • • • • • C M N O h - C V J O O K I ^ " > ^ O w - * - > 0 * 0 * — > O f M < \ J 0 0 ^ C 0 O » h ^ h ^ ^ r O ( M m N ^ f M C 0 ' > O

I I I I « — | | « _ | | | « « . I I I • I I

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o •«* o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o (NJ o o CM o o o o o o o o o d d d d d d d o d d o d d d d o o d d d o d d d d

o « - m o m i n o o c o o o i n m o o o i n o o o o o o o o i n o t \ j o o o o * — o o m o o * o o o o o o o • • K l " I M f M • • • s j • • a f V J v • • a r * • • • C M ^ I T I •

' < > O j ^ * O i i n » t o * i i n ^ i o i i o r o m i o * i l o o i i n o t n i • i O » l O i ^ o o L n i i n

000000000000000000000000000000000000000000000 ^ ^ ^ O f 0 ^ f O « * " f O f M O C N J m ^ « - - O f \ J ^ * - * — ( M « — 0 > T * — C \ J * — * - O C M « — i n O r O ^ O r - ^ O f N J O J f M r O * * * * * • • • • • • « « • • • • • • • • • • • • • • • • • • • • • • • • • • • • • . « «

0 0 0 0 1 i O O O O O O O O • O O O O O • O O O O O O O • I O O O O O O I O O I O I I o •

^ ^ ^ S ^ S ^ O P O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O <«<9'0^roosreooioK>mro*.«-inmcMmoo*.»«~«-roofOCMOk«otncMro'Oco^cvtro^>0'<fh><'«c\jmtnm<«f • • • • • • • • • • • • • • • • • • • • • • • • • • • # # • # • • • • • • • » « « , • • • f O O ^ ^ O O O ^ O * — O O C \ I O O O O ^ O r - T - ( V | * - O ^ ^ O O O r - 0 0 0 0 0 0 0 * — 0 ^ ( \ J * - 0 0 « — • • I I I I I I I I I I 1

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o rohteOO<*—^moinK>oomotcNjii>^roo9ro^oinh>»cMCMCMtnN>ooos>rocMhta«-f\jroooo^h««.y«-ooiocM o " O

o N .

o o o CO

O O to CM

r J d o CM d

O CM O O r o o

o N J-

o o <> s .5

0

1.2

o o

o

.30

.10 o o

CM »- .10

.80 o

o o

.30

.20

.20

.10

.70

.20 o o

C M r o o o O .6

0 .3

0 ,1

0 o o ,2

0 ,2

0 o

,20 o 20

00

10

o CM

o r o

o o m CM

d d d d d d O t d d 1 1 1 1 • o d d 1 o O » O 1 d •* d o 1 o d I O d o 1 O 1 d o d d

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o cMCMrorooc>JO»-'0^«-r^.roo*-«-m»-rviromfMrMro^rMorof>JK>«—ooj*—*—•—po>3'»—rvj>*oo^ro O * * 0 0 ( 0 1 I t l O O O l I l O O O O O * * * 0 0 < < O i O i O > O i • « l O O O O O

O O O O O O O O C O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O •«**~fo«—ojr^om •»-iniAC\irvjfM«—m»-ro«-'0««*fomroinv}'fvjrNjfO"»3'«f-*-ojoJN.Nt^r>jio«—forviro^otn 0 ( i O O O O l ( O O O t I ( O O O O O O i O t O t I I f l O i t O O l • I l O O O O O

%^m<r*0»(M^^«OCMstOO^«»OCKN>^>»eO<^10^0lAO>C^<MCMl/^OO^N•^»•OrO^OOC^JrOlAGOO^^OOO^^>-'OiAeoo^^ro%f<^(M^o>eocM^CNJOoeQiArooo^o«rw«Oo»K.o«ooeoeoo»vo»m«-^«-rNjo^rNico^ T- I I N> K. i 1— m^ro • • intvm^ • i i i m rvj *— i ro «— «—

r o T - r o o o p p r o CM r o •4- in CM r o in o CM r o in •O N. CM K l sO OO CM in •— (M r o T - r o o o p p o o o o O o O o o o o o o o o o o o o o o O o o o o o o o o o o o r o r o *- tn in in in in o > o* c^ o o r o r o r o r o r o r o N. h - r w N . r w m in s s s s 5

CM O

CM o

CM CM O

CM O

CM O

CM CM c^

CM CM CM o

CM O '

CM o > 5 o » 5 5 o » 5 o * r o r o o> Ch

^^^^^^tA^^^ininiAiAmiAiAiAiAminiAmmiAiAtniAtOLntnmtnmtninm^^tniA^^^In o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o forororororofOMKirofOKiK)fOK>KiroK)roroforororoK)roroporowroroforofOforoforofororoK»fOfo

Page 201: Triple testcross analysis to detect epistasis and estimate ...

192

lA in o o in in in o in o o in in o in o in in o • in in in o o o o in o o o in O O in o in in o in o O fo OJ in d ro ro (V d d OJ OJ OJ d T~ d OJ •r~ IP" d d d ro OJ OJ «r— «. *-• ro CM w* OJ

O lA in o o o in in o o in o o in o o in in o o • in O o o in o in in o in in O o o in o in in o in K» d in in o d d CVJ OJ OJ

"

ro ro d ro d OJ OJ OJ o OJ OJ d CM -># d d

inoinoioinoiAinoinininintnoooomomooiAOomoiooootnmtnommtn

* I I I I I I I I

tA»OOQOCOrOOOKC>J^O^«-^«^fOIO(M«-COOe«-0'K^moOCNJv-«4-«-h..*OOON>N.CXCKv-0»K)OrO«-^ ^N.«^K»oc\JN.N>0'..**-M^roooMinfNJ'»a'»-^otMrorginc\JO^o^Of\jOv«^inrs!^fvjo»OMeoropoo • *" *" •—m» *"CM *•*—^fMi»-CNJ ^ CM I ^ C\] I CM I • CM «— *—w- i I I I I I ,

o««>.^ooijn>tf>JOi*^too^o^«^«^(oo>«->v-«.»^roK'>^«~o>too^>o^rM^incorM-stN.N-oomoineot*>«s»o rMinocMM'«#o««-'»4'>o*-tMm*-^cMOOooo^roho>0'<f'Oo«-co«—roo^fMO^Chro-«^h^oins*cdvo«j'

• II *-CNI i«~«-^*-CMrvl II*- |<M IIIPO i^iv-«-i^«->i(

ss o o o o in o 3 o o CO g o OJ o ro o o o o CM o CO o >o o CM o CM o in o '»* o in o oo

o o o c^ S O o o

in o o

o o o CM

o CO

o o r o o fw

o r o o CO o CM o o

in o o

o o *- CO

CO d d *- o i Ch 00 r o t o OJ >»• •4* f O >6 r o " O in r o ' O tn sr r o r o r o r C CM Ch r o r o in o l o CM N3-*

in o l CM N3-

o o o O o o o s o o o o o O o» p o in o o o >o o o o o o o o o o o o in o o o o o o o o o o « — r o f O oo in CO CO ro CO r o in

CO • o

CM OJ OJ "C

CO in •>4' CM CM 00

ro in CM in • o CO o> CO CM

CM OJ 'O CO f O CM o in OJ d ro CM

CM N ! OJ CM CO o in d d CM

N! in N! N! * 7 r o in OJ in OI CO in -O 1

S S S H S S S S S S S S S S S S ^ S S e S S S S S S o o o o o o o c j o o o o o o o o o o o O O F O O O O O O O O O C N J O O O O L A O O O O O O O O O O O F M O O O O O O O O O O O O O O V O

o o N . o o o o o o o o c M o o o o « ^ o o o o o o o o o o o c M o o o o o o d o c > o o o d o (Mo

o o o O CM

o CO

o o o o

Q O O O ro in NT

o o > o « - o

o OJ d d d ro o d d ^roinoo>rocMco>3"*—*ocM«oo>co*oi^mO'sjmo*'Oi/^*o*s*>oo>j'CO>o

000*~00^000*~000*~00*-0^CM0*— 0«—O*— OOCMOO * ' I I I I I I I I I I

2 2 S S P P 2 9 2 S ® 2 ® 2 ^ ^ ® ® ® ^ ® ® ® S ® ® ® ® o ® o o o o o o o o o o o o o o o •^^^^N»h>*00OO0i«^Q0«*03-»^^0u>«.*^0^«*<»9?n00mc0C0C0mo*oirk*>9^«->cMtrvtnc000>00«CM^0Q ^oo(\JOCMO<i~roooooocMK>or-ocMCM«-ororMoo«-orocMcMo«--d«—dod^-ocModcM l l l l I l l l l l l I I I I I l l l l

o r o o o o OJ o o .40

o r o o r o o o o o o o o CM .60

o «»*

o o o r o o o o o ^ CM O o o o o i n o •4- ,30 o o o ,20 O o o o 30

6

0

30

,2

0 o o o o 60

3

0

o o o r o d 1 d 1 o • d o o o 1 1 o d I I* o o d o 1 * — d o o 1 1 d o 1 o d 1 1 1 o d d 1 1 o d

o N T o <r~

o OJ .2

0

o CM

o r o o i n .30

.2

0

o o o r o .30

.2

0 O o •— o o «— *"• o « o o o o o •4- o r o ,10 o r o o

CM o «— o

CM o o •— CM

o CM ,3

0 o CM

o CM

o CM 7

0

o CM 6

0

o o T- O

d d o 1 d d d t o d d 1 1 d o d 1 d d d d d 1 d d o d 1 * d d 1 d d d 1 1 1 1 d

o OJ o o o o o N T o i n o OJ o CM o r o o CM o o r o .50

.1

0

.30

.1

0

o r o o CM o o o o * o o o i n ,10

,00 O o o fO o o o o r o o •>» o 00

.1

0 o r o o •— 30

9

0

o o r«- ro o o d d d d d d d • ' d 1 * I O d d d d d d d t o d d d d d / / o * d d 1 t d » '

*- o o in o rw o in K ro CM ^ ro N. •s* ro N. r^ O CM N. o* *- CM o o ro o» ro ro o o in OJ o CO >*• ro o CM OJ ro o in in «o 00 r^ o» ^ in •— CM in v— ro fO d d ro •— Kl « ro d f*— *-• *-• QQ Oi fs! ro ro OJ in » ro 1 CM t CM ro ro 'KJ' OJ CM "4 ro •J-•— Kl « ro d CM OJ ro >* in

!S; CM ro CM ro vT in CM in ro in o o o o O o O o o O o o o 5 ro ro ro ro ro N. r- in in ro ro ro «4' •»* •4- •st m in O* Ok O o o i>0'0*Oh-h^N.eocoo«o»»'Ooo^^^*-cMCMcoeoeococo 'CM^fMfMCMfMrvjtMCMcMrvjfnrororof>OforofOKico««wco

(MCMOJCMrviCMIMCMCMCMrMCMCMCMrvjCMrMCMCMCM

ffi5£5lQ5Q!Gif51G!Q!£5!C5QSGiOi£51GlCi£JK5iG!GiDCi£}*£>55^^^^*^*^''^*A5\inStninin55SSS o o o o o o o o o o o o o o o o o o o O O O O O O O O O O O O O O O O O O O O O O O O O O rOKifOforoKiK)roforornKiK)Kirororopor<iroroKiforofororoK)KiroKirnt>oroKirorornroromroroKiK)

Page 202: Triple testcross analysis to detect epistasis and estimate ...

Table D2. continued.

Env. Hale YD ED CD KD EL RN

g/plant cm cm cm cm no.

30619 88704 -2.5 -.30 -.10 -.20 -0.10 -0.60 30619 89101 -12.2 0.00 -.50 0.50 -0.60 -0.30 30619 89102 -14.7 -.30 -.10 -.20 -0.10 -1.50 30619 89103 -8.6 0.10 -.40 0.40 0.40 0.10 30619 89104 -42.9 -.50 0.00 -.50 -1.00 0.60 30619 89105 -36.7 -.40 -.20 -.20 0.50 0.40 30619 89107 66.7 -.40 -.30 -.20 0.40 0.10 30619 89501 -6.4 -.20 -.40 0.20 0.70 -1.00 30619 89502 -1.3 -.10 -.40 0.40 1.20 -0.50 30619 89503 50.2 0.10 -.70 0.80 1.20 2.60 30619 89506 10.8 0.40 0.50 -.20 0.80 2.10 30619 89507 34.9 0.50 0.10 0.40 2.00 0.70 30619 89901 5.5 0.30 0.20 0.10 -1.90 1.80 30619 89902 -48.1 -.50 -.20 -.40 -2.50 0.30 30619 89903 1.8 0.10 -.10 0.20 -1.00 -0.10 30619 89904 29.8 -.10 -.40 0.30 2.10 -1.50 30619 90301 39.9 0.30 0.00 0.30 3.30 -0.10 30619 90302 13.5 -.10 0.20 -.30 3.10 2.30 30619 90303 -31.2 -.60 -.40 -.20 -3.40 1.50 30619 90306 53.8 0.20 -.30 0.50 2.40 -0.20 30619 90701 6.9 0.20 -.10 0.20 0.10 -0.10 30619 90703 -57.2 0.00 0.00 0.00 2.30 -0.20 30619 91101 35.8 0.50 -.20 0.50 0.40 0.90 30619 91103 22.4 0.30 -.10 0.30 1.70 0.80 30619 91104 4.0 -.10 0.10 -.10 -0.30 1.20 30619 91501 27.4 0.20 0.30 0.00 -1.30 1.40 30619 91502 71.1 0.80 0.00 0.70 0.40 1.30 30619 91503 30.9 0.40 0.30 0.10 0.60 1.50 30619 91504 14.9 0.30 0.20 0.10 2.00 -0.80 30619 91505 -27.2 -.70 -.20 -.50 -3.30 1.00 30619 91901 11.9 0.50 0.10 0.40 1.70 0.70 30619 91902 22.2 0.10 0.00 0.10 1.00 -1.10 30619 91903 33.4 0.10 0.00 0.20 2.80 -0.60 30619 91904 66.1 0.60 0.70 -.20 0.50 0.40 30619 91905 -0.8 -.10 0.00 -.30 2.50 -0.50 30619 91906 16.4 0.10 -.10 0.30 0.70 -0.60 30619 92301 29.2 -.20 -.40 0.20 2.00 1.40 30619 92302 21.3 -.40 0.00 -.30 2.20 -1.70 30619 92303 10.8 -.10 -.20 0.10 -1.80 -1.60 30619 92305 1.9 -.10 0.00 -.10 0.20 2.00 30619 92306 38.9 0.70 0.50 0.20 2.80 0.20 30619 92307 7.9 0.10 0.10 0.00 -0.50 1.50 30619 92701 -2.0 -.30 0.10 -.30 -0.80 -1.10 30619 92702 38.6 0.60 0.70 -.10 6.70 -2.20 30619 92703 8.1 0.40 0.00 0.30 1.30 -0,60

EP BP RL

no. X %

SL

%

DE

X

PH

cm

EH AH SE SO

ctn days days days

0.10 -.20 0.10 0.00 -.10 -.10 0.60 0.00 -.10 0.10 0.00 0.00 0.00 -.20 0.00 0.20 0.00 0.10 -.20 0.00 0.20 -.10 0.10 0.20 0.20 0.10 0.30 -.10 0.00 0.00 0.00 0.10 0.00 0.50 -.10 0.10 0.30 0.10 0.20 0.10 0.10 0.20 0.20 -.30 0.00

0.0 20.0 0.0 0.0 5.0

10.0 -56 0.0 5.5 5.0 0.0 0.0

-6.0 15.0 5.0 -20

-2.0 -4.5 19.0 0.0 -20 5.0

-5.0 -20 -20 -12 -25 5.0 0.0

-5.0 0.0 -10 -20 -45

10.0 -5.0

-29 -10 -20

-5.0 -20 -10 -10 5.0

-5.0

0.00 4.20 0.00 2.10 0.00 0.00

-2.10 0.00 0.00 0.00 0.00 0.00

-2.10 0.00 0.00 4.20 0.00 4.20 4.20

14.80 -4.20 0.00 0.00 4.20 6.30 2.10 0.00 4.50

-12.5 0.00

-5.90 5.60 0.40 0.00

2.10 4.20 0.00 0.00 0.00 0.00

4.80 -8.10 23.00 -2.10 5.00 2.10

-7.10 5.80 0.20

-4.60 -6.00 9.20 4.20 9.90

-4.20 -8.10 0.40

-2.10 10.50 3.10

14.60 5.50

11.20 0.00

18.40 0.00 0.50 1.70

29.40 1.00

-1.60 4.20

-2.30 -4.20 -4.70 12.60 -9.50 -10.5 -2.00 6.10 4.10

10.50 -10.2 -2.70 -9.00

0.00 0.00 0.00

-1.50 0.00 0.00

-8.30 0.00 2.10 0.00 0.00 0.00 0.00 9.00

-2.10 -6.20 2.30 0.00 0.00

-4.30 0.00 2.10 0.00

-4.20 0.00 0.00

-1.80 0.00 0.00 0.00 2.10 0.00 0.00 0.00 4.20 2.30 4.20 4.20 0.00 0.00 2.10 4.20 0.00 4.20 0.00

4.7 -14.1 13.4 4.7

-6.4 -4.0

-22.2 2.7

21.5 -3.5 5.7 5.1

-14.6 15.7 22.4 -2.3 11.8

-51.3 44.8 15.6 16.0 15.7 9.3

-3.2 0.6 1.4 2.4

-6.1 9.4

10.7 2.4

-2.3 0.3

-5.9 27.8 7.9

-1.0 -18.9 -21.9 24.1 14.4 13.5 0.5

-11.2 -5.5

0.8 -6.1 16.6 14.4 -5.9

-10.2 -12.8

0.1 21.9 -3.3 2.0 1.1

-9.0 5.8

13.9 -5.9 17.7

-38.2 34.4 12.3 12.7 19.7 6.6 1.5

-0.7 8.8 4.9

-9.4 17.5 12.2 -3.4

-13.7 -7.2 0.0

21.1 6.2 2.3

-8.2 -6.9 16.2 11.0 15.4 -1.4

•10.0 •10.8

M

U

Page 203: Triple testcross analysis to detect epistasis and estimate ...

Table D2. continued.

Env. Hale YD ED CO KD EL RH

g/plant cm cm cm cm no.

30619 92704 -15.5 -.30 -.10 -.10 -1.30 0.60 30619 92706 28.0 0.40 -.30 0.70 2.20 1.30 30619 92707 -2.6 -.10 -.20 0.10 -0.10 2.10 30619 92708 43.7 -.70 -.40 -.30 -3.30 •0.40 30619 93101 14.3 0.20 -.10 0.30 1.10 0.50 30619 93102 71.4 0.80 0.60 0.20 2.20 -0.60 30619 93104 -8.0 0.10 0.70 -.60 -1.50 0.80 30619 93105 5.0 -.40 -.10 -.40 0.50 -0.60 30619 93501 -39.4 -.50 -.20 -.30 1.20 -0.50 30619 93502 27.4 1.00 0.60 0.50 2.20 1.50 30619 93504 4.3 -.20 0.00 -.10 -2.50 0.80 30619 93505 23.3 0.10 0.00 0.00 2.20 0.20 30619 93506 9.6 0.00 0.20 -.10 -0.50 -0.60 30619 93901 -4.0 -.10 0.50 -.70 -2.30 -0.40 30619 93902 26.9 0.10 0.30 -.10 3.30 0.50 30619 93903 -16.0 0.20 0.40 -.20 0.40 1.20 30619 93906 -17.2 -.10 0.00 -.10 0.70 -1.30 30619 94301 -14.5 0.10 -.10 0.20 -1.00 2.30 30619 94302 31.6 0.30 0.40 -.10 1.40 0.90 30619 94303 24.5 -1.1 -1.0 -.10 •1.00 -0.70 30619 94304 17.0 0.30 0.00 0.20 1.30 2.70 30619 94305 18.2 -.20 0.00 -.30 -0.10 -0.10 30619 94701 •19.1 -.60 -.30 -.50 1.40 -1.60 30619 94702 18.5 -1.0 0.00 -1.0 1.70 0.90 30619 94705 28.2 0.30 0.50 -.20 -0.30 -1.60 30619 95503 30.0 0.30 -.20 0.40 -0.20 0.60 30619 95505 54.0 0.30 0.30 0.00 3.40 1.10 30619 95901 54.0 0.30 -.30 0.50 0.80 0.50 30619 95902 -9.6 0.40 0.20 0.30 -0.50 0.90 30619 95904 36.0 0.80 0.40 0.50 2.60 1.40 30619 226308 29.6 -.20 -.20 0.00 0.70 -0.50 30619 226309 -6.4 -.20 -.10 -.10 -1.00 0.10 30619 226720 -3.4 0.20 0.00 0.20 1.20 0.30 30619 227110 67.6 0.30 0.40 0.00 3.40 -0.30 30619 227511 67.4 1.00 0.50 0.50 1.90 0.70 30619 227512 19.6 0.30 0.20 0.10 0.30 -0.30 30619 228313 -1.0 -.10 0.30 -.40 -0.20 -3.80 30619 228714 3.5 -.20 0.10 -.40 -0.20 -0.90 30619 229115 27.2 0.10 0.20 -.10 2.00 -0.50 30619 229524 8.9 -.30 0.50 -.70 2.60 0.40 30619 229921 22.5 0.30 0.00 0.10 1.20 0.20 30619 230322 51.9 0.50 0.10 0.40 2.90 0.60 30619 230323 45.3 0.40 0.30 0.10 1.00 1.30 30619 230701 34.7 0.00 0.00 0.00 3.70 -0.10 30619 231103 4.2 0.20 0.40 -.20 1.20 -0.50

EP BP RL SL DE PH EH AH SE SO

no. cm cm days days days

-.20 -.10 0.10 -.30 -.10 0.20 -.10 0.20 0.00 0.00 0.00 -.10 0.10 0.20 -.10 -.20 -.10 -.10 0.00 0.50 0.00 0.10 0.10 0.10 0.10 0.20 0.20 0.20 -.10 0.00 0.30 0.10 -.20 0.20 0.20 0.00 0.00 0.10 0.00 0.10 -.10 0.00 0.00 -.10 0.00

9.0 5.0

-5.0 25.5 10.0 -20

10.0 -10

-4.5 0.0 0.5 5.0 -10 -14 5.0

15.5 10.0 10.0 0.0 -50 1.0 -10 0.0 -10

-5.0 -15 -20 -15 5.0 0.0 -30 -10

10.5 -11 -15 0.0

-5.0 0.0 0.0 0.0

10.0 -5.0 -5.0 5.0 0.0

13.00 0.00 0.00 6.30 2.10 2.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.30 0.00 0.00 0.00 0.00

-8.30 4.20 0.00 0.00 0.00

-4.20 -4.20 0.00

-4.20 0.00

12.50 -2.10 8.40 0.00

-9.10 8.40

-12.5 0.00 0.00 0.00 8.90 0.00

-8.30 2.10

-8.30

-8.40 10.60 18.70 -3.00 -5.40 -2.10 6.30 2.20 1.00 4.70

-18.2 7.00 6.30

-8.40 -9.50 0.00 2.10

20.90 -5.10 18.20 4.80

-2.00 -4.00 6.80

-13.1 -10.4 6.90 0.10 9.30 2.00

-12.5 -6.20 -14.6 -0.80 14.90 4.30

12.50 -0.90 13.40 6.30

19.10 -0.40 10.30 -4.10 4.30

0.00 0.00

-4.20 -4.20 0.00 0.00 0.00 4.20 7.60 0.20 0.00 0.00 0.00

-2.10 2.10 0.00

-5.90 -4.50 -4.20 -4.80 6.30 2.10

-4.20 0.00 0.00 0.00 0.00 0.00

-2.10 2.20 0.00 0.00 0.00

-4.80 4.20

-4.20 0.00 2.10

-1.80 0.00 0.00 2.10 0.00 2.10

-8.30

6.4 -0.8

-14.3 0.6 0.2

14.7 1.4

-15.3 10.4 1.7

15.7 -7.1 6.6

11.2 1.5 2.1

-3.5 7.7

-28.0 -3.7 0.3

-9.7 31.6 12.8 5.5

10.2 33.0 -5.2 -4.0 5.4 7.6

-3.7 -3.0

-19.2 0.7

-11.9 11.6 -0.3 -7.7 -1.3 -2.9 1.2

-14.6 15.0 13.5

-2.9 -6.5

-11.4 -11.2

0.2 13.2 5.8

-7.2 8.8

-1.1 8.7 1.2 2.3 4.6 2.0 0.5 0.2

20.9 -30.4

0.4 -1 .2 -4.5 26.8 25.3 15.2 10.9 19.1 5.9 3.8 0.3 5.8 2.4 2.7

-14.5 2.5

-3.6 -2.2 -1.9 •1.3 4.7

13.9 2.5 7.4 7.4

16.5

H VO 4^

Page 204: Triple testcross analysis to detect epistasis and estimate ...

Table D2. continued.

Env. Hale YD ED CO KD EL RH EP BP RL SL DE PH EH AN SE SD

g/plant cm cm cm cm no. no. X X X X cm cm days days days

30619 231104 31.9 -.10 -.10 0.00 0.60 -0.10 0.20 -15 4.20 -10.4 10.50 -1.3 -2.0 30619 231905 9.4 0.10 -.10 0.30 -0.30 -1.10 0.10 -20 4.20 -6.20 0.00 -4.7 3.2 30619 231916 -3.9 -.50 -.50 0.00 -0.70 -1.30 0.00 0.0 0.00 7.40 0.00 9.4 2.9 30619 232306 •29.0 -.40 -.40 0.00 -0.70 0.40 0.00 0.0 0.00 8.50 8.40 -1.3 -1.3 30619 232707 11.3 -.60 -.10 -.60 -0.30 0.00 0.40 -35 10.40 -8.40 -8.30 0.5 1.7

Page 205: Triple testcross analysis to detect epistasis and estimate ...

Table D3. By male, for grain yield (g/plant): Means across environments of epistatic deviations, families (coirbined mean of F1, B73 and Mo17 testcrosses), Fl, B73, and Ho17 testcrosses. Ranks of means are also presented. Ranks for F1, and Ho17 testcrosses are presented both among the 100 means for a given tester and across the 300 mean of all testcrosses.

Male Deviation Mean Rank

Family Mean Rank

Fl Rank among Mean Fl means

B73 Hean

Rank among B73 means

Ho17 Hean

Rank among Hoi7 means

Ranks among 300 testcrosses Fl B73 Mo17

88301 •25.94* 3 108.08 22 116.73 83 93.90 1 113.62 61 209 10 167

88303 11.60 61 110.69 30 106.83 29.5 111.71 32 113.55 60 83.5 138 166

95902 7.84 49 106.11 11 103.50 16 101.33 5 113.51 58 53 34 164

88306 -3.00 24 111.60 39 112.60 63 105.80 16 116.40 72 155 76 201

88701 1.23 34 106.72 15 106.31 28 108.79 23 105.06 30 79 103 67

95904 7.89 50 103.08 4 100.45 7 105.72 15 103.07 25 29 73 47

88703 14.66 70 115.10 67.5 110.22 46 127.60 83 107.50 38 117 277 88

88704 -1.79 26 106.23 12 106.83 29.5 121.47 66 90.40 6 83.5 243 6

228714 7.23 48 106.48 13 104.07 19.5 112.59 36 102.78 23 59.5 154 44

89102 -8.83 11 111.49 37 114.43 72 98.04 3 122.01 83 178 20 246

89103 -13.54 7 112.23 41 116.75 84 101.99 7 117.97 77 210 39 221

89104 -5.78 19 105.58 10 107.51 33 122.13 68 87.11 2 89 249 2

89105 -12.11 8 105.22 8 109.26 42 106.53 18 99.88 18 108 80 28

229115 9.38 58 113.50 51 110.38 47 118.16 58 111.98 54.5 118 222 144.5

89501 0.29 30 109.42 26 109.33 43 108.01 19 110.94 48 110 91 124

89502 -8.07 13 116.92 82 119.61 91 127.43 81 103.72 28 230 275 56

89503 19.65 81 114.76 64 108.21 35 129.48 85 106.59 35 93 280 81

231916 2.51 37 121.36 97 120.53 94 110.99 28 132.58 99 235 125 287

229524 12.99 66 103.42 5 99.09 4 102.28 8 108.89 43 24 41 105

89506 2.49 36 112.25 42 111.42 52 119.66 60 105.67 32 129 231 71

89507 18.62 80 115.14 69.5 108.94 40 117.94 57 118.56 78 106 220 223

89901 -15.15 5 114.12 58 119.17 90 114.62 42 108.57 41 228 182 99.5

Page 206: Triple testcross analysis to detect epistasis and estimate ...

Table D3. continued.

Male Deviation Mean Rank

Family Mean Rank

F1 Rank among Mean F1 means

B73 Mean

Rank among B73 means

Hoi 7 Mean

Rank among Hoi7 means

Ranks among 300 testcrosses F1 B73 Mo17

89902 -7.50 14 104.91 7 107.41 32 109.55 24 97.77 15 87 113 19

89903 -8.83 11.5 118.50 88 121.45 96 138.10 97 95.97 11 242 296 13

89904 30.81* 96 111.17 33 100.90 8 136.46 95 96.15 12 30 294 14

90301 16.85 74 107.83 21 102.22 11 122.81 69 98.48 16 40 256 22

90302 -7.03 16 119.68 92 122.03 97 105.88 17 131.15 97 247 77 283

229921 3.56 40 126.53 100 125.35 98 115.73 46 138.53 100 267 194 297

230323 20.06 82 116.28 78 109.60 45 127.69 84 111.57 49.5 114 278 133.5

226720 21.84 85 120.53 95 113.25 69 125.56 77 122.78 90 163 269.5 255

90306 23.93 89 118.68 89 110.71 49 133.50 90 111.85 53 120 289 141.5

230322 23.74 88 107.04 16 99.13 5 116.38 49 105.62 31 25 200 70

230701 17.63 76 119.06 90 113.19 68 121.93 67 122.08 84 162 245 248

231103 -7.40 15 116.30 79 118,77 89 125.25 75 104.89 29 225 266 66

232306 -3.43 22 111.51 38 112.66 65 116.18 48 105.71 33 157 198 72

231905 1.83 35 116.77 81 116.16 80 116.87 54 117.28 75 197 211 214

231104 8.32 53 114.62 62 111.85 57 117.46 55 114.56 66 141.5 216 180

91101 15.28 73 111.24 34 106.15 27 103.46 10 124.12 93 78 52 260

232707 14.03 68 108.95 25 104.28 21 113.84 38 108.75 42 63 171 102

91103 -6.55 18 106.66 14 108.85 39 99.17 4 111.98 54.5 104 26 144.5

91104 14.28 69 109.61 28 104.85 23 135.90 94 88.08 4 65 293 4

226309 -1.92 25 110.85 31 111.49 54 103.16 9 117.90 76 132 48 219

91501 9.36 57 114.52 61 111.40 51 116.55 50 115.61 70 128 204 192

91502 34.56* 98 113.02 47 101.50 9 121.36 64 116.20 71 35 240 199

91503 8.45 54 118.21 87 115.40 77 116.74 53 122.51 86 188.5 209 251

Page 207: Triple testcross analysis to detect epistasis and estimate ...

Table D3. continued.

Hate Deviation Fafflily F1 Rank among B73 Rank among Mo17 Rank among Ranks among 300 testcrosses Mean Rank Mean Rank Mean F1 means Mean B73 means Mean Ho17 means F1 B73 Hoi 7

91504 11.82 62 120.00 93 116.06 79 115.27 43 128.67 95 196 186 279

227110 27,36* 93 114.87 65 105.75 26 115.29 44 123.57 91 74 187 257

91901 17.32 75 120.56 96 114.79 75 134.87 92 112.03 56 184 291 148.5

91902 3.92 42 114.29 59 112.99 67 121.34 63 108.56 40 160 238 98

91903 4.50 43 113.41 49.5 111.91 58 134.17 91 94.15 9 143 290 11

227511 14.76 71 113.41 49.5 108.49 36 101.93 6 129.81 96 97 38 281

227512 36.02** 99 111.37 35 99.37 6 103.54 11 131.22 98 27 54 284

91906 27.95* 94 107.75 19.5 98.44 3 137.81 96 87.02 1 21 295 1

92301 1.02 33 114.10 57 113.76 71 115.78 47 112.76 57 170 195 158

228313 5.73 45 113.39 48 111.48 53 103.86 12 124.83 94 131 57 262

92303 -21.06 4 109.60 27 116.62 82 111.25 29 100.93 20 206 127 32

92305 0.46 31 108.72 24 108.57 37 110.91 27 106.69 36 99.5 123 82

226308 15.06 72 116.12 75 111.10 50 117.82 56 119.44 80 126 218 229

92307 0.22 29 102.58 2 102.51 12 111.68 31 93.56 8 42 137 8

92701 11.27 60 112.48 44 108.73 38 141.16 99 87.57 3 101 299 3

92702 12.75 65 116.25 77 112.00 59 114.10 40 122.65 87 146.5 175 252

95901 20.07 83 114.02 55 107.33 31 113.07 37 121.66 82 85 161 244

92704 -10.84 9 117.73 84 121.35 95 108.22 21 123.64 92 239 94 259

95505 33.59* 97 123.81 98 112.62 64 147.26 100 111.57 49.5 156 300 133.5

92707 7.19 47 114.69 63 112.30 62 135.26 93 96.53 13 153 292 16

92708 25.48* 91 112.56 45 104.07 19.5 110.87 26 122.75 89 59.5 122 254

93101 -4.81 20 118.17 86 119.78 92 112.09 35 122.66 88 233 150 253

95503 -9.48 10 111.44 36 114.60 74 125.52 76 94.20 10 181 268 12

Page 208: Triple testcross analysis to detect epistasis and estimate ...

Table 03. continued.

Hale Deviation Mean Rank

Family Mean Rank

F1 Rank among Mean F1 means

B73 Rank among Mean 873 means

Hoi7 Rank among Mean No17 means

Ranks among 300 testcrosses F1 B73 Ho17

93104 3.51 39 102.82 3 101.65 10 96.88 2 109.93 47 37 17 116

93105 21.09 84 116.44 80 109.41 44 125.13 73 114.78 67 112 264 183

93501 8.14 52 105.43 9 102.72 13 104.25 14 109.33 44.5 43 62 110

93502 -0.32 28 125.98 99 126.09 100 140.08 98 111.78 52 273 298 140

94705 17.66 77 111.08 32 105.20 24 125.01 72 103.05 24 68 263 46

93505 9.89 59 108.63 23 105.34 25 104.16 13 116.41 73 69 61 202

94702 13.51 67 115.00 66 110.50 48 127.17 80 107.34 37 119 274 86

93901 -28.18* 2 107.52 17 116.92 85 116.60 51 89.06 5 212 205 5

93902 18.32 79 115.14 69.5 109.04 41 114.04 39 122.36 85 107 174 250

94701 12.40 64 111.77 40 107.64 34 114.15 41 113.53 59 90 176 165

94302 21.98 86 101.10 1 93.78 1 108.45 22 101.09 21 9 96 33

93906 -28.87* 1 115.93 74 125.56 99 123.61 70 98.64 17 269.5 258 23

94301 2.95 38 112.61 46 111.63 55 110.81 25 115.40 68 135 121 188.5

89101 7.93 51 115.62 72 112.98 66 124.16 71 109.73 46 159 261 115

94303 -0.51 27 114.31 60 114.48 73 125.20 74 103.25 27 179 265 50

94304 3.88 41 116.99 83 115.70 78 121.43 65 113.85 63.5 193 241 172.5

89107 36.98** 100 115.17 71 102.85 14 133.35 89 109.33 44.5 45 288 110

90303 11.89 63 107.65 18 103.69 17 127.47 82 91.80 7 55 276 7

91505 0.61 32 112.31 43 112.11 60 119.06 59 105.77 34 151 226 75

90703 -3.03 23 113.98 54 114.99 76 126.03 79 100.92 19 185 272 31

92302 5.10 44 113.83 52 112.13 61 115.51 45 113.85 63.5 152 191 172.5

92703 -14.24 6 113.89 53 118.64 88 125.87 78 97.17 14 224 271 18

92706 8.52 55 120.14 94 117.30 86 131.35 87 111.77 51 215 285 139

Page 209: Triple testcross analysis to detect epistasis and estimate ...

Table D3. continued.

Male Deviation Hean Rank

Family Hean Rank

F1 Rank among Hean F1 means

B73 Hean

Rank among B73 means

Mo17 Hean

Rank among Hoi7 means

Ranks among 300 testcrosses F1 B73 Ho17

93102 24.05 90 119.67 91 111.66 56 131.94 88 115.43 69 136 286 190

9350A -6.79 17 118.13 85 120.40 93 130.83 86 103.18 26 234 282 49

93506 -3.81 21 116.21 76 117.48 87 112.00 33 119.15 79 217 146.5 227

93903 28.88* 95 114.05 56 104.43 22 120.64 62 117.10 74 64 237 213

91904 25.52* 92 104.86 6 96.36 2 116.63 52 101.61 22 15 207 36

92306 23.67 87 115.67 73 113.66 70 119.74 61 113.63 62 169 232 168

91905 8.78 56 107.75 19.5 103.39 15 111.44 30 108.44 39 51 130 95

94305 18.05 78 110.08 29 103.88 18 112.03 34 114.34 65 58 148.5 177

90701 5.87 46 115.10 67.5 116.54 81 108.18 20 120.58 81 203 92 236

*,** Deviation significantly different from zero at 0.05 and 0.01 probability levels respectively. to O O

Page 210: Triple testcross analysis to detect epistasis and estimate ...

Table 04. Triple testcross progeny means across environments.

ENTRY HALE Tester YD ED CD KD EL RN EP BP RL SL DE PH EH AN SE SD

g/plant cm cm cm cm no. no. cm cm days days days

1 88301 F1 116,7 2 88301 B73 93,9 3 88301 Mol7 113.6 4 88303 F1 106,8 5 88303 873 111,7 6 88303 Hoi 7 113.6 7 95902 F1 103,5 8 95902 B73 101,3 9 95902 Hoi 7 113,5

10 88306 F1 112.6 11 88306 B73 105.8 12 88306 Hoi 7 116.4 13 88701 F1 106.3 14 88701 B73 108.8 15 88701 Hoi 7 105.1 16 95904 F1 100.5 17 95904 B73 105.7 18 95904 Hol7 103.1 19 88703 F1 110.2 20 88703 B73 127.6 21 88703 Hoi 7 107.5 22 88704 F1 106.8 23 88704 B73 121.5 24 88704 Hol7 90.4 25 228714 F1 104.1 26 228714 B73 112.6 27 228714 Ho17 102.8 28 89102 F1 114.4 29 89102 B73 98.0 30 89102 Hoi 7 122.0 31 89103 F1 116.8 32 89103 B73 102.0 33 89103 Ho17 118.0 34 89104 F1 107.5 35 89104 B73 122.1 36 89104 Hoi 7 87.1 37 89105 F1 109.3 38 89105 B73 106.5 39 89105 Hoi 7 99.9 40 229115 F1 110.4 41 229115 B73 118.2 42 229115 Hoi 7 112.0 43 89501 F1 109.3 44 89501 873 108.0 45 89501 Hoi 7 110.9

4.A8 4.26 4.24 4.26 4.50 4.22 4.38 4.60 4.28 4.38 4.30 4.16 4.40 4.56 4.10 4.16 4.48 3.98 4.26 4.56 3.94 4.14 4.44 3.90 4.26 4.56 4.08 4.44 4.44 4.30 4.16 4.34 4.08 4.36 4.60 3.94 4.18

,30 .88 .28 .60 ,06

4.26 4.54 4.08

2.76 2.70 2.60 2.66 2.80 2.52 2.72 2.90 2.56 2.76 2.74 2.58 2.70 2.84 2.52 2.64 2.74 2.44 2.56 2.70 2.36 2.52 2.72 2.26 2.60 2.88 2.56 2.72 2.82 2.58 2.48 2.70 2.46 2.68 2.84 2.44 2.58 2.72 2.32 2.56 2.80 2.44 2.66 2.84 2.42

1.78 1.62 1.70 1.68 1.80 1.74 1.68 1.80 1.78 1.66 1.60 1.68 1.72 1.78 1.60 1.64 1.76 1.60 1.78 1.90 1.60 1.70 1.76 1.68 1.72 1.74 1.54 1.78 1.66 1.74 1.74 1.66 1.70 1.74 1.80 1.54 1.62 1.62 1.64 1.76 1.84 1.66 1.64 1.78 1.70

14.36 12.78 16.10 14.58 14.30 16.18 14.08 12.74 16.20 14.28 13.14 16.22 14.44 13.58 15.26 14.08 13.60 16.08 14.54 14.58 16.40 15.18 15.04 15.12 14.32 13.76 15.66 14.62 13.28 16.60 15.64 13.66 16.42 15.42 14.84 15.68 15.12 14.26 16.70 14.92 14.42 16.90 14.32 13.32 16.62

14.80 15.60 13.16 13.90 15.68 12.70 14.34 16.72 12.90 14.84 15.80 13.34 14.58 15.96 13.12 14.18 16.22 12.64 14.24 16.28 12.52 13.40 15.36 11.82 13.56 15.40 12.38 14.56 15.54 13.32 13.82 15.10 12.72 13.56 15.92 12.18 13.34 14.42 12.14 14.18 15.60 12.76 14.12 15.56 12.68

1.04 1.02 0.96 1.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.02 1.00 1.04 1.00 0.96 0.96 1.02 1.06 1.00 1.00 1.02 0.94 1.02 1.04 1.02 1.00 1.04 1.02 1.02 1.08 1.00 1.04 1.06 1.00 1.00 0.98 0.98 1.00 1.00 0.96 1.00 1.02 0.98

2.4 2 .1 7.3 1.0 1.0 2.2 0.0 3.0 0.0 0.0 0.0 1.0 2.4 2.0 1.0 2.0 6.0 6.0 0.0 1.0 3.2 2.2 1.0 6.6 0.0 0.0 0.0 0.0 1.0 1.0 1.0 2.0 2.0 1.2 0.0 1.0 0.0 2.0 4.0 0.0 2.0 5.0 2.0 0.0 3.0

0.00 1.68 0.56 0.84 0.42 0.00 0.42 1.74 0.00 1.48 0.00 0.42 0.00 2.50 0.00 2.10 0.46 0.42 0.42 1.26 0.42 0.88 0.42 0.00 0.00 0.96 0.00 0.00 0.00 0.00 2.12 0.42 0.42 0.00 0.84 0.00 0.00 0.00 0.00 0.00 0.00 0.44 0.00 0.00 0.00

3.30 1.30 5.28 1.32 4.54 5.76 4.66 3.80 4.68 0.84 0.84 3.36 5.40 2.10 6.34 3.00 2.14 2.96 2.82 2.14 2.80 1.94 3.38 4.60 4.88 5.86 5.52 5.84 5.06 9.08 1.26 1.76 3.82 3.70 2.52 5.96 2.32 1.68 1.68 2.94

10.72 5.76 3.14 2.30 5.90

1.70 3.78 0.84 0.00 0.00 1.50 0.42 0.00 1.26 0.00 0.00 0.46 0.42 0.42 2.52 0.00 0.92 2.34 0.78 0.90 1.60 0.44 0.44 0.00 0.00 0.00 3.40 0.00 0.00 1.00 0.42 0.96 0.54 0.00 0.00 1.16 0.42 0.00 0.46 0.42 0.00 1.38 0.00 0.50 0.86

214.8 214.7 218.0 217.3 228.3 212.4 210.1 212.3 201.8 203.9 217.5 203.8 217.2 222.3 205.5 216.1 223.0 214.9 216.7 229.5 210.0 210.4 225.9 197.0 224.5 232.6 218.6 219.2 226.6 219.0 223.0 227.8 219.7 219.4 238.8 211.9 213.2 217.5 204.6 229.7 240.7 216.3 206.4 211.5 202.5

106.6 105.8 108.6 109.8 118.3 106.1 100.9 105.4 99.0

100.6 109.9 99.0

104.8 109.2 98.3

104.7 107.5 102.6 106.1 116.5 104.1 100.0 110.3 93.2

111.2 119.2 108.6 110.8 117.6 113.9 112.6 118.9 110.4 107.8 119.5 102.1 102.6 105.9 97.3

117.3 128.6 107.8 100.2 99.5 95.7

84.0 85.3 83.3 85.7 87.0 84.7 82.2 84.8 83.0 83.2 85.2 82.8 83.5 85.0 81.3 83.2 84.5 82.8 84.5 85.3 83.2 84.0 84.3 83.7 84.8 85.8 86.0 85.8 87.5 85.5 83.8 87.3 84.0 84.5 85.0 84.8 83.7 84.2 83.2 84.5 86.0 84.5 83.0 83.5 81.2

86.3 88.0 86.0 87.5 88.7 87.7 85.3 86.7 86.5 86.2 86.8 85.8 87.3 87.0 84.0 86.7 87.5 86.3 87.0 87.0 86.7 86.5 86.0 88.0 87.8 87.2 88.5 88.5 89.3 87.2 86.5 89.2 87.7 87.3 87.8 88.3 86.3 87.0 86.5 87.2 87.8 88.5 85.0 85.5 84.0

2.3 2.7 2.7 1.8 1.7 3.0 3.2 1.8 3.5 3.0 1.7 3.0 3.8 2.0 2.7 3.5 3.0 3.5 2.5 1.7 3.5 2.5 1.7 4.3 3.0 1.3 2.5 2.7 1.8 1.7 2.7 1.8 3.7 2.8 2.8 3.5 2.7 2.8 3.3 2.7 1.8 4.0 2.0 2.0 2.8

to O H

Page 211: Triple testcross analysis to detect epistasis and estimate ...

Table 04. continued.

ENTRY HALE Tester YD ED CD

g/plant cm cm

KD

cm

EL

cm

RN

no.

EP

no.

BP RL SL

X

DE PH

cm

EH AN SE SD

cm days days days

46 89502 F1 119.6 47 89502 B73 127.4 48 89502 Hoi 7 103.7 49 89503 F1 108.2 50 89503 B73 129.5 51 89503 Mo17 106.6 52 231916 F1 120.5 53 231916 873 111.0 54 231916 Mo17 132.6 55 229524 F1 99.1 56 229524 B73 102.3 57 229524 Hoi 7 108.9 58 89506 F1 111.4 59 89506 B73 119.7 60 89506 Ho17 105.7 61 89507 F1 108.9 62 89507 B73 117.9 63 89507 Hoi 7 118.6 64 89901 F1 119.2 65 89901 B73 114.6 66 89901 Hoi 7 108.6 67 89902 F1 107.4 68 89902 B73 109.6 69 89902 Hoi 7 97.8 70 89903 F1 121.5 71 89903 B73 138.1 72 89903 Hoi 7 96.0 73 89904 F1 100.9 74 89904 B73 136.5 75 89904 Hoi 7 96.2 76 90301 F1 102.2 77 90301 B73 122.8 78 90301 Hoi 7 98.5 79 90302 F1 122.0 80 90302 B73 105.9 81 90302 Hoi 7 131.2 82 229921 F1 125.4 83 229921 B73 115.7 84 229921 Hol7 138.5 85 230323 F1 109.6 86 230323 B73 127.7 87 230323 Hoi 7 111.6 88 226720 F1 113.3 89 226720 B73 125.6 90 226720 Hoi 7 122.8

4.26 4.44 3.90 4.24 4.50 3.98 4.32 4.38 4.18 4.28 4.54 4.12 4.30 4.66 4.00 4.26 4.52 4.16 4.30 4.44 3.96 4.28 4.48 3.96 4.34 4.62 4.00 4.06 4.48 3.86 4.10 4.44 3.94 4.40 4.38 4.26 4.40 4.38 4.28 4.24 4.48 4.02 4.32 4.68 4.24

2.58 2.72 2.28 2.64 2.60 2.38 2.68 2.74 2.56 2.56 2.98 2.46 2.66 2.86 2.48 2.64 2.86 2.50 2.72 2.86 2.52 2.66 2.88 2.46 2.64 2.76 2.40 2.58 2.68 2.32 2.56 2.74 2.42 2.74 2.86 2.66 2.72 2.76 2.62 2.60 2.78 2.44 2.68 2.88 2.60

1.68 1.74 1.68 1.66 1.94 1.66 1.70 1.72 1.68 1.76 1.64 1.70 1.68 1.80 1.60 1.66 1.74 1.74 1.64 1.66 1.48 1.72 1.68 1.56 1.76 1.94 1.64 1.52 1.84 1.58 1.60 1.74 1.56 1.74 1.56 1.70 1.74 1.76 1.68 1.68 1.72 1.62 1.68 1.84 1.68

15,78 15.40 16.18 15.24 14.54 15.30 15.42 14.26 16.84 13.88 13.62 15.76 14.30 13.78 15.92 14.76 13.76 16.88 16.12 14.68 16.34 13.98 13.08 15.24 14.92 14.32 14.48 14.46 15.36 15.44 14.56 14.52 15.82 15.14 13.84 17.44 15.34 14.16 17.66 15.40 14.42 16.30 15.00 14.22 17.40

13.44 15.02 11.78 14.18 16.08 13.02 15.04 16.64 13.22 14.34 16.36 12.76 14.30 16.62 13.02 14.74 16.38 13.14 14.02 16.22 12.80 14.32 16.36 12.70 14.46 16.54 12.50 13.14 14.88 11.92 14.42 16.16 12.70 14.20 16.14 13.38 14.56 16.20 13.84 13.86 15.80 12.74 14.90 16.40 13.42

1.00 1.00 1.00 0.98 1.04 0.96 1.00 0.98 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.02 1.00 1.02 1.00 1.00 1.00 1.00 1.00 0.98 1.04 1.04 1.00 0.98 1.04 0.98 0.98 1.00 0.96 1.02 1.00 1.00 1.02 1.06 1.02 0.98 1.04 1.00 0.98 1.06 1.00

1.0 1.1 2.0 3.0 1.0 5.0 0.0 2.0 0.0 1.0 2.0 1.0 2.0 2.0 0.0 1.1 0.0 0.0 4.1 5.1 0.0 0.0 1.0 2.0 0.0 0.0 5.3 3.4 1.0 4.1 5.2 0.0 4.0 2.0 0.0 2.1 1.0 0.0 2.0 4.0 1.0 1.4 2.0 2.1 1.1

0.00 0.00 0.00 0.42 0.42 0.42 0.00 0.00 0.42 0.84 0.42 0.56 0.00 1.26 0.00 0.00 1.68 0.00 1.26 0.00 0.42 1.68 0.84 0.84 0.00 0.42 0.46 1.26 1.26 0.00 0.00 0.00 0.42 0.00 5.08 0.00 1.44 3.76 1.88 3.36 1.26 0.00 0.84 3.78 0.00

6.02 2.94 5.82 4.94 4.02 7.00 5.04 3.46 6.18 4.44 2.10 2.10 5.64 5.22 6.78 3.92 7.54 5.02 5.94 5.06 3.82 5.50 2.16 7.46 3.78 2.28 3.82 4.28 2.94 3.94 3.36 2.16 4.06 4.62 2.10 2.94 2.98 3.12 8.76 3.38 2.28 3.74 5.98 5.88 8.70

0.50 0.78 1.80 0.68 1.72 0.46 0.96 1.10 0.00 0.00 0.00 0.60 0.42 0.00 0.50 0.00 0.00 2.40 0.42 0.86 0.84 0.84 0.84 3.10 0.90 0.96 3.02 1.56 0.00 2.48 0.00 0.00 1.88 0.00 0.42 0.84 0.00 0.00 0.62 0.00 0.00 1.44 0.00 0.42 0.94

208.5 223.5 209.0 211.4 222.7 207.5 214.9 216.7 209.2 215.3 216.6 210.5 206.2 224.0 206.1 213.1 226.4 207.6 221.8 218.1 202.2 217.2 227.6 206.7 219.4 236.2 211.2 218.5 242.5 212.0 211.0 217.6 196.3 229.8 212.9 212.0 222.3 226.8 219.4 234.6 235.3 207.3 230.7 233.4 225.0

99.6 110.9 105.2 103.4 112.0 102.6 109.1 108.3 105.6 100.2 103.0 97.6

106.0 116.6 103.2 106.3 116.3 104.4 113.4 106.3 99.9

109.0 116.2 102.3 111.8 121.6 107.5 108.6 122.6 105.9 100.8 110.1 94.3

114.2 103.0 103.2 112.3 121.9 109.6 118.5 123.9 101.0 119.7 125.6 116.9

83.3 84.0 84.2 82.0 84.0 83.5 83.7 84.8 84.2 84.2 85.5 83.8 83.5 83.8 84.8 83.5 84.0 83.7 84.3 82.3 82.0 81.0 83.7 80.8 83.0 84.5 84.2 82.5 84.0 83.5 82.3 83.2 81.3 84.0 84.5 83.3 82.0 85.2 81.8 82.8 84.7 83.2 84.8 85.3 84.2

85.5 2.2 85.7 1.7 86.3 2.2 83.8 1.8 85.5 1.5 86.5 3.0 86.0 2.3 86.5 1.7 86.0 1.8 87.7 3.5 87.8 2.3 87.3 3.5 85.0 1.5 85.7 1.8 87.5 2.7 84.8 1.3 85.8 1.8 86.0 2.3 86.5 2.2 84.7 2.3 85.3 3.3 83.7 2.7 85.8 2.2 83.2 2.3 86.2 3.2 85.7 1.2 87.3 3.2 85.5 3.0 85.2 1.2 86.0 2.5 84.8 2.5 85.3 2.2 83.8 2.5 86.3 2.3 86.8 2.3 85.8 2.5 84.3 2.0 86.0 0.8 84.5 2.7 85.3 2.5 86.5 1.8 86.7 3.5 86.8 2.0 87.0 1.7 87.2 3.0

O to

Page 212: Triple testcross analysis to detect epistasis and estimate ...

Table D4. continued.

ENTRY MALE Tester YD ED CD KD

g/plant cm cm cm

91 90306 F1 110,7 4.32 2.62 1 .70 92 90306 B73 133.5 4.60 2.76 1 .90 93 90306 Mo17 111.9 4.02 2.44 1 .66 94 230322 F1 99.1 4.14 2.58 1 .58 95 230322 B73 116.4 4.50 2.78 1 .78 96 230322 Hoi 7 105.6 3.98 2.36 1 .66 97 230701 F1 113.2 4.30 2.60 1 .74 98 230701 B73 121.9 4.56 2.82 1 .76 99 230701 Hoi 7 122.1 4.02 2.50 1 .58

100 231103 F1 118.8 4.32 2.62 1 .76 101 231103 B73 125.3 4.46 2.80 1 .72 102 231103 Hoi 7 104.9 4.02 2.48 1.60 103 232306 F1 112.7 4.20 2.62 1 .66 104 232306 B73 116.2 4.42 2.76 1 .70 105 232306 Hoi 7 105.7 4.06 2.40 1 .68 106 231905 F1 116.2 4.24 2.58 1 .70 107 231905 B73 116.9 4.46 2.70 1 .82 108 231905 Hoi 7 117.3 4.08 2.48 1 .62 109 231104 F1 111.9 4.32 2.62 1 .74 110 231104 B73 117.5 4.50 2.86 1 .68 111 231104 Hoi 7 114.6 4.10 2.44 1 .70 112 91101 F1 106.2 4.28 2.76 1 .58 113 91101 B73 103.5 4.42 2.86 1 .64 114 91101 Hoi 7 124.1 4.30 2.68 1 .68 115 232707 F1 104.3 4.36 2.78 1 .66 116 232707 B73 113.8 4.38 2.88 1 .56 117 232707 Hoi 7 108.8 4.04 2.62 1 .48 118 91103 F1 108.9 4.18 2.64 1 .58 119 91103 B73 99.2 4.40 2.80 1 .62 120 91103 Hoi 7 112.0 3.92 2.48 1 .54 121 91104 F1 104.9 4.26 2.62 1 .68 122 91104 B73 135.9 4.58 2.78 1, .86 123 91104 Hoi 7 88.1 3.82 2.34 1 .50 124 226309 F1 111.5 4.26 2.62 1 .64 125 226309 B73 103.2 4.32 2.82 1, .56 126 226309 Ho17 117.9 4.08 2.54 1, .58 127 91501 F1 111.4 4.34 2.64 1, .76 128 91501 B73 116.6 4.48 2.84 1, .64 129 91501 Hoi 7 115.6 4.12 2.54 1, .64 130 91502 F1 101.5 4.08 2.66 1, .46 131 91502 B73 121.4 4.54 2.82 1, .80 ' 132 91502 Hoi 7 116.2 3.96 2.48 1, .52 133 91503 F1 115.4 4.36 2.68 1, .74 134 91503 B73 116.7 4.48 2.86 1, .68

EL

cm

RN

no.

EP

no.

BP RL SL DE

X

PH

cm

EH AN SE SD

cm days days days

14.64 14.38 15.46 13.54 13.62 15.58 14.84 14.24 16.72 15.36 14.80 16.92 14.78 13.94 16.26 15.50 14.32 17.04 14.56 14.22 16.08 14.24 13.06 16.58 15.08 14.24 16.10 14.68 13.32 16.38 14.48 15.06 15.96 14.92 13.46 16.98 15.04 14.06 16.20 14.92 14.00 16.58 14.60 14.26

13.78 15.40 12.70 13.92 15.44 12.96 13.98 15.76 12.46 14.56 15.76 12.50 14.34 16.04 13.08 14.36 15.66 12.72 14.04 15.50 12.50 15.00 17.30 13.78 15.24 17.38 13.26 13.92 15.30 12.34 13.98 16.20 12.06 14.36 15.98 13.26 14.46 15.94 13.26 13.34 14.98 12.14 14.30 15.66

1.02 1.00 1.00 1.02 1.04 1.00 1.06 1.04 1.04 1.02 1.02 0.98 1.00 1.00 0.98 1.04 1.00 1.00 1.02 1.02 1.00 0.96 1.00 0.98 0.96 1.00 1.00 0.96 1.00 0.98 1.00 1.00 0.94 1.00 1.02 1.00 1.02 1.02 1.00 0.96 1.00 0.96 1.02 1.04

2.0 0.0 0.0 1.0 0.0 1.0 1.1 2.0 1.0 1.0 0.0 6.3 1.1 0.0 5.0 3.0 0.0 0.0 2.0 0.0 2.0 7.0 2.0 2.0 5.0 0.0 1.0 4.0 2.0 2.0 5.0 0.0 9.4 2.0 1.0 0.0 2.2 0.0 1.0 8.0 1.0 5.0 1.0 1.0

1.72 2.94 0.88 0.00 1.26 0.42 0.96 4.60 0.42 2.52 2.10 0.00 1.26 0.42 0.84 0.42 0.84 0.00 0.42 1.26 0.00 0.42 0.00 0.00 0.00 2.08 0.84 5.44 2.92 0.00 0.42 1.26 0.00 1.68 0.42 0.00 0.00 0.42 0.50 0.42 0.92 0.00 0.00 1.68

2.54 3.36 8.36 6.72 3.80 6.24 6.90 5.70 2.94 5.88 4.66 6.24 2.52 3.42 9.14 5.88 3.02 5.66 4.36 2.36 4.70 2.94 1.26 6.02 6.76 8.86 6.30 3.36 4.26 3.84 2.28 1.68 3.14 5.24 2.96 5.80 4.06 3.36 6.08 2.66 2.66 2.28 7.06 5.04

2.00 0.00 0.54 0.00 0.42 0.72 0.00 0.42 1.36 0.84 0.42 0.48 0.00 1.26 3.62 0.42 0.00 3.58 0.00 0.46 3.94 0.84 0.42 1.30 0.84 0.00 1.26 0.42 0.00 0.00 0.84 0.00 2.80 1.02 0.00 0.48 0.90 0.84 0.86 0.84 0.78 3.16 0.00 0.00

222.4 232.1 214.5 216.8 237.0 208.9 237.0 247.7 226.4 228.1 244.9 216.8 223.2 231.8 216.4 230.3 233.4 218.3 222.6 227.4 215.4 213.9 219.6 216.2 223.7 235.9 215.1 222.9 223.6 214.6 222.4 231.3 206.4 219.1 222.0 212.4 214.0 223.8 214.9 215.1 218.9 214.4 215.9 213.2

116.5 126.4 111.4 106.0 126.3 100.9 121.6 131.9 113.2 117.1 127.6 107.8 110.9 117.6 108.7 117.5 120.5 113.0 115.0 116.8 111.6 106.4 110.1 110.0 109.8 122.0 109.9 114.7 116.6 110.3 111.0 115.5 97.1

110.3 112.S 104.8 106.3 114.0 107.1 104.3 105.1 101.7 106.0 104.3

83.5 83.7 82.3 81.7 85.0 83.0 85.2 86.0 83.8 84.0 84.5 83.5 84.2 84.5 82.7 85.2 85.7 84.0 84.7 84.8 83.7 83.0 84.7 81.7 84.5 86.2 83.7 84.0 84.8 83.2 85.0 84.7 83.5 83.3 83.5 82.0 84.2 83.0 83.0 81.7 81.2 81.5 82.3 83.3

85.8 85.5 85.3 84.5 86.7 85.8 88.0 87.8 87.0 86.3 86.5 87.5 86.7 86.3 85.3 87.5 87.3 86.7 86.3 86.8 86.8 85.7 86.5 84.7 88.3 88.3 87.5 86.2 86.3 85.8 87.3 86.7 87.2 85.7 86.5 83.3 86.7 85.3 85.5 83.3 83.7 85.0 84.5 85.2

2.3 1.8 3.0 2.8 1.7 2.8 2.8 1.8 3.2 2.3 2.0 4.0 2.5 1.8 2.7 2.3 1.7 2.7 1.7 2.0 3.2 2.7 1.8 3.0 3.8 2.2 3.8 2.2 1.5 2.7 2.3 2.0 3.7 2.3 3.0 1.3 2.5 2.3 2.5 1.7 2.5 3.5 2.2 1.8

(O O U

Page 213: Triple testcross analysis to detect epistasis and estimate ...

Table D4. continued.

ENTRY MALE Tester YD ED CD KD EL RN EP BP RL SL DE PH EH AN SE SD

g/plant cm cm cm cm no. no. cm cm days days days

135 91503 Hoi 7 122.5 136 91504 F1 116.1 137 91504 873 115.3 138 91504 Hoi 7 128.7 139 227110 F1 105.8 140 227110 B73 115.3 141 227110 Hoi 7 123.6 142 91901 F1 114.8 143 91901 B73 134.9 144 91901 Hoi 7 112.0 145 91902 F1 113.0 146 91902 873 121.3 147 91902 Hoi 7 108.6 148 91903 F1 111.9 149 91903 B73 134.2 150 91903 Ho17 94.2 151 227511 F1 108.5 152 227511 B73 101.9 153 227511 Hoi 7 129.8 154 227512 F1 99,4 155 227512 B73 103.5 156 227512 Hoi 7 131.2 157 91906 F1 98.4 158 91906 B73 137.8 159 91906 Hoi 7 87.0 : 160 92301 F1 113.8 161 92301 B73 115.8 . 162 92301 Hoi 7 112.8 163 228313 F1 111.5 . 164 228313 B73 103.9 . 165 228313 Ho17 124.8 ' 166 92303 F1 116.6 ' 167 92303 B73 111.3 ' 168 92303 Hoi 7 100.9 : 169 92305 F1 108.6 ' 170 92305 B73 110.9 1 171 92305 Hoi 7 106.7 . 172 226308 F1 111.1 ' 173 226308 B73 117.8 . 174 226308 Ho17 119.4 i 175 92307 F1 102.5 1 176 92307 B73 111.7 ' 177 92307 Hoi 7 93.6 i 178 92701 F1 108.7 ' 179 92701 B73 141.2 ' 180 92701 Hoi 7 87.6 :

4.20 4.36 4.48 4.18 4.28 4.60 4.12 4.38 4.72 4.12 4.28 4.66 4.06 4.18 4.48 3.80 4.40 4.50 4.26 4.32 4.54 4.30 4.14 4.68 3.82 4.44 4.66 4.14 4.28 4.38 4.18 4.36 4.48 3.96 4.38 4.58 4.02 4.32 4.60 4.10 4.24 4.58 4.08 4.14 4.60 3.62

2.54 2.68 2.88 2.50 2.66 2.90 2.60 2.70 2.98 2.50 2.66 2.78 2.46 2.58 2.78 2.38 2.78 2.96 2.62 2.74 2.86 2.58 2.58 2.84 2.36 2.78 2.86 2.62 2.66 2.88 2.58 2.72 2.80 2.46 2.56 2.82 2.56 2.72 2.86 2.54 2.74 2.84 2.52 2.54 2.80 2.30

1.70 1.72 1.68 1.74 1.68 1.72 1.60 1.70 1.80 1.70 1.64 1.92 1.66 1.62 1.82 1.42 1.68 1.60 1.72 1.64 1.70 1.80 1.58 1.88 1.52 1.68 1.82 1.58 1.70 1.60 1.62 1.70 1.72 1.58 1.86 1.76 1.52 1.68 1.78 1.64 1.56 1.74 1.60 1.64 1.84 1.36

15.90 14.94 14.22 17.34 14.10 13.68 16.78 14.34 14.30 16.62 14.84 14.14 16.14 15.64 15.98 16.36 14.76 13.08 17.54 13.80 13.02 16.88 14.08 14.74 14.78 14.66 13.30 15.88 15.16 13.30 17.20 15.46 13.90 15.70 14.24 13.36 16.10 14.96 13.74 16.74 14.28 13.44 15.04 14.96 15.20 15.46

12.94 14.26 15.34 12.76 15.32 17.40 13.14 14.68 16.76 13.28 13.94 15.78 12.64 12.96 14.16 11.42 15.38 16.42 13.76 14.68 16.22 13.60 14.16 16.24 12.44 14.94 16.56 13.80 14.10 14.84 12.14 14.74 15.62 13.54 14.62 16.64 13.14 14.86 16.32 12.78 15.10 16.72 13.48 14.04 15.42 12.32

1.02 1.02 1.04 1.04 1.00 1.02 1.00 1.00 1.00 0.96 0.96 1.02 0.96 1.02 1.04 1.00 1.00 1.02 1.00 1.04 0.98 1.02 1.00 1.00 1.00 0.94 1.00 0.98 1.04 1.02 0.98 0.98 1.02 1.00 1.02 1.04 1.02 0.98 1.00 1.02 0.96 1.00 0.98 1.02 1.02 1.02

0.0 0.0 0.0 0.0 3.1 1.0 2.0 2.0 0.0 5.0 5.0 5.0 4.0 2.0 0.0 0.0 3.0 1.0 0.0 3.0 3.0 1.0 3.0 1.0 1.0 6.0 1.4 3.2 1.0 0.0 3.0 2.0 1.0 2.0 1.0 1.0 2,0 4.0 0.0 1.0 5.0 0.0 4.0 2.1 0.0 0.0

0.48 1.26 0.00 0.00 0.00 0.84 0.00 2.52 5.28 0.42 0.90 0.84 1.26 1.02 0.42 0.84 0.92 0.42 0.00 0.00 1.26 0.84 0.84 0.00 0.00 1.26 3.44 0.00 2.10 0.42 0.00 0,00 0.42 0.00 0.00 0.84 0,00 1.26 5.02 0.84 0.00 0.00 0.00 0.00 0.00 0.00

4.00 4.16 8.34

12,02 3.22 4.12 5.10 6.76 5.64 9.86 1.34 0.72 3.12 4.28 3.78 6.42 5.36 8.90 6.00 5.46 7.38 5.44 4.26 3.38 4.88 4.88 5.82 3.26 5.00 6.24 6.30 6.58 4.24 6.14 2.26 4.20 3.24 8.12 3.36 4.70 2.28 2.14 3.16 5.64 1.44 8.82

0.56 0.00 0.00 0.00 0.90 0.00 1.14 1.28 0.78 3.86 0.00 0,00 1,80 0.00 0.00 0.88 0.42 1.26 2.20 0.84 0.62 3.18 0.00 0.00 0.46 1.86 0,62 2.98 0.00 0.72 0.42 0.00 0.00 1.26 0.00 0.00 1.72 0.92 0.00 1.84 0.00 1.76 0.86 2.34 0.00 1.46

212.4 226.8 237.7 227.5 224.6 223.7 215.9 225.0 228.7 214.8 206.9 211.9 205.3 216.1 226.4 202.2 222.3 229.4 220.1 227.6 232,8 226.3 210.5 229.1 203.8 215.3 221.6 213.9 233.2 243.1 229.6 222.0 226.3 215.2 219.0 227.5 214.4 233.9 247.9 229.5 213.1 223.0 206.1 206.7 211.2 202.2

105.6 119.1 130.2 122.6 112.6 109.7 105.7 115.5 115.4 109.4 101,9 104.3 101.5 110.0 117.8 100.9 118.0 122.5 115.8 116.6 124.4 116.5 105.3 117.4 102.9 109.6 109.5 106.9 120.8 127.8 119.0 113.9 118,0 111.2 107.4 111.1 104.7 120.8 134.3 117.2 106.3 114.5 101.3 99.5

103.4 99.9

81.8 84.8 85.5 84.3 84.2 84.2 83.2 82.8 85.2 82.7 82.3 84.0 81,5 82.8 84,3 83.7 85.5 86.8 84.7 84.7 86.2 83,3 83.2 85.0 84.8 82.7 83.8 83,0 85,0 87.0 85.2 85.2 84,7 84.5 82.2 82.5 84.3 84.2 85.7 84.0 83.3 84.8 82.0 81.3 81.7 82.8

85,0 87.0 86.8 85.8 86.3 85.8 85.2 85.3 86.7 85.0 85.7 85.7 83.3 85,5 86.2 86,3 87.3 88.0 86.8 86.5 87.7 86.0 86.0 86.5 88.0 85.2 85.8 86.0 87.2 88.0 87.3 87.0 86.5 87.0 85.5 86.0 86.7 86.8 87.2 87.0 86.2 86.8 85.8 84.2 82.8 85.7

3.2 2.2 1.3 1.5 2.2 1.7 2.0 2.5 1.5 2.3 3.3 1.7 1.8 2.7 1.8 2.7 1.8 1.2 2.2 1.8 1.5 2.7 2.8 1.5 3.2 2.5 2,0 3,0 2.2 1.0 2,2 1.8 1.8 2.5 3.3 3.5 2.3 2.7 1.5 3.0 2.8 2.0 3.8 2.8 1.2 2.8

to O > 1 : ^

Page 214: Triple testcross analysis to detect epistasis and estimate ...

Table D4. continued.

ENTRY HALE Tester YD EO CD KD EL RN EP BP RL SL DE PH EH AN SE SO

g/plant cm cm cm cm no. no. cm cm days days days

181 92702 F1 112.0 182 92702 B73 114.1 183 92702 Ho17 122,7 184 95901 F1 107.3 185 95901 B73 113.1 186 95901 Hoi 7 121.7 187 92704 F1 121.4 188 92704 B73 108.2 189 92704 Hoi 7 123,6 190 95505 F1 112.6 191 95505 B73 147.3 192 95505 Hoi 7 111.6 193 92707 F1 112,3 194 92707 B73 135.3 195 92707 Hoi 7 96.5 196 92708 F1 104,1 197 92708 B73 110.9 198 92708 Hoi 7 122.8 199 93101 F1 119.8 200 93101 B73 112,1 201 93101 Hoi 7 122,7 202 95503 F1 114.6 203 95503 B73 125.5 . 204 95503 Hoi 7 94.2 : 205 93104 F1 101.7 . 206 93104 B73 96.9 ' 207 93104 Ho17 109.9 -208 93105 F1 109.4 / 209 93105 B73 125.1 ' 210 93105 Hoi 7 114.8 ' 211 93501 F1 102.7 ' 212 93501 B73 104.3 i 213 93501 Ho17 109.3 1 214 93502 F1 126.1 ' 215 93502 B73 140.1 ' 216 93502 Ho17 111.8 -217 94705 F1 105.2 ' 218 94705 873 125.0 -219 94705 Hoi 7 103.1 : 220 93505 F1 105.3 ' 221 93505 B73 104.2 ' 222 93505 Hoi 7 116,4 ' 223 94702 F1 110.5 ( 224 94702 B73 127.2 ' 225 94702 Hoi 7 107.3 :

4.44 4.68 4.20 4.24 4.44 4.16 4.40 4.60 4.32 4.26 4.66 4.02 4.20 4.60 3.86 4.34 4.56 4.04 4.34 4.58 4.12 4.36 4.60 3.90 4.22 4.38 4.14 4.36 4.62 4.20 4.18 4.28 4.08 4.40 4.76 4.34 4.18 4.50 3.96 4.32 4.50 4.14 4.38 4.64 3.90

2.66 2.92 2.58 2.76 2.84 2.44 2.68 2.90 2.42 2.64 2.86 2.52 2.62 2.88 2.38 2.76 2.90 2.48 2.74 2.86 2.58 2.64 2.82 2.26 2.60 2.84 2.60 2.64 2.88 2.48 2.62 2.70 2.48 2.74 2.96 2.64 2.66 2.88 2.56 2.80 2.88 2.56 2.68 2.84 2.44

1.80 1.84 1.68 1.58 1.64 1.74 1.76 1.74 1.92 1.62 1.82 1.58 1.62 1.74 1.56 1.60 1.76 1.58 1.66 1.78 1.62 1.78 1.86 1.66 1.64 1.64 1.60 1.72 1.82 1.74 1.60 1.58 1.62 1.74 1.86 1.72 1.56 1.66 1.48 1.60 1.70 1.64 1.76 1.86 1.54

13.86 12.82 15.90 14.96 13.26 16.64 14.86 13.60 16.22 14.96 15.78 15.56 15.08 15.08 15.64 14.86 13.68 16.34 14.80 13.10 16.74 15.22 14.12 15.32 14.48 13.48 15.58 14.70 14.70 16.44 14.26 13.96 15.98 14.66 15.18 15.30 15.46 14.96 16.10 14.42 13.46 15.96 14.84 14.66 16.48

15.58 17.12 13.66 14.32 15.90 13.04 15.40 16.94 14.32 13.72 16.10 12.60 14.10 16.56 12.74 14.50 16.28 12.76 15.04 16.68 13.50 14.06 15.82 12.42 13.94 15.82 13.08 13.98 15.98 12.72 14.16 15.70 12.90 15.60 17.84 14.34 14.14 15.16 12.26 14.34 15.48 12.92 14.12 16.24 12.48

0.98 1.00 1.00 1.00 1.00 1.00 0.98 0.96 1.00 0.98 1.08 1.02 1.02 1.02 1.00 0.94 0.94 0.92 1.04 1.02 1.00 0.98 1.00 1.00 1.00 0.98 1.00 0.98 1.00 1.00 1.00 1.00 1.02 1.02 1.02 0.98 1.00 1.00 1.00 1.04 1.02 1.00 0.98 1.00 0.98

5.0 0.0 1.0 4.0 2.0 2.0 4.1 5.0 5.0 2.0 0.0 0.0 1.0 0.0 1.0 7.8 8.0

10.5 0.0 1.0 2.2 3.1 2.0 0.0 0.0 5.0 1.0 2.0 1.0 4.0 3.0 1.1 2.0 2.0 3.0 4.0 2.0 0.0 1.0 1.0 2.0 1.0 3.2 0.0 4.0

0.42 0.00 0.00 2.10 0.84 0.00 2.10 2.60 0.84 0.88 1.84 0.42 1.68 0.00 0.42 0.00 1.26 0.00 0.00 0.42 0.84 0.42 0.00 0.00 0.00 0.00 0.00 0.42 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.44 0.00 0.00

.00

.84

.18

.00

.30 0.00 0.00

3.02 1.26 3.90 5.38 1.76 2.28 4.36 2.66 4.54 3.16 3.10 3.54 3.78 3.80 7.10 3.98 1.68 5.48 2.52 2.56 3.36 6.80 3.50 5.46 2.94 1.62 3.10 5.44 4.42 5.18 1.82 4.56 3.22 5.44 2.10 6.02 5.08 1.86 3.36 4.50 5.38

11.38 2.60 5.90 6.48

1.26 0.00 0.84 0.00 0.00 1.90 0.44 0.00 1.92 0.00 1.28 0.00 0.42 0.42 1.50 1.26 0.00 0.00 0.54 1.26 1.12 0.00 0.00 0.96 0.42 0.00 0.84 0.00 0.68 2.70 0.92 1.88 1.80 0.84 0.44 2.46 0.42 0.00 2.10 0.44 0.68 0.00 1.30 0.42 3.48

221.2 234.4 217.3 216.4 216.2 210.3 223.1 232.1 221.4 212.2 230.8 208.3 219.0 226.6 205.0 223.5 233.4 218.7 219.7 229.1 214.8 205.9 217.7 198.1 218.8 222.8 214.3 216.6 226.6 207.9 213.8 225.7 210.2 224.8 226.9 219.5 219.1 228.1 217.4 232.7 236.8 232.2 220.7 229.2 216.3

111,5 116.9 109.4 106.7 105.2 102.5 113.5 118.7 110.7 103.9 117.4 101.1 111.6 115.3 103.5 111.2 115.9 107.8 112.1 119.9 108.4 99.0

106,3 97.7

107.5 111.5 104.3 110.6 117.8 99.8

107.1 116.8 103.7 116.7 116.6 112.5 105.7 115.4 107.8 120.3 127.1 125.4 107.0 115.5 108.3

82.7 83.0 82.0 81.5 83.5 82.7 82.8 85.5 82.2 81.7 84.8 81.8 83.3 83.5 83.8 83.5 84.3 83.7 82.5 84.0 82.5 82,0 82,5 83,5 83.2 84.7 82.0 83.5 83.5 85.0 83.5 86.2 82.2 82.7 85.0 83.5 84.7 86.3 85.8 84,7 87.0 86.2 82,3 83.5 84.0

85.8 85.3 84.8 83.3 85.2 85.0 86,2 87.5 85.3 84.5 85.8 84.2 86,7 85.7 87.2 87.2 87.3 87.3 84.8 85,5 84.3 85.0 85.5 86,5 86.0 86,5 85.8 86.3 85.2 87.2 86,5 87.7 85.3 85.8 86.2 87.0 88.3 88.7 89.2 88.3 88.7 88.5 85.3 85,5 86.5

3.2 2.3 2.8 1.8 1.7 2.3 3,3 2.0 3.2 2.8 1,0 2.3 3,3 2,2 3.3 3,7 3,0 3.7 2,3 1.5 1.8 3.0 3.0 3.0 2.8 1.8 3.8 2.8 1.7 2 .2 3.0 1.5 3.2 3.2 1.2 3.5 3.7 2.3 3.3 3.7 1.7 2.3 3.0 2.0 2.5

to o U1

Page 215: Triple testcross analysis to detect epistasis and estimate ...

Table 04. continued.

ENTRY HALE Tester YD ED CD

g/ptant cm cm

KD

cm

EL

cm

RH

no.

EP

no.

BP

X

RL

X

SL

X

DE

X

PH

cm

EH AN SE SD

cm days days days

226 93901 F1 116.9 227 93901 B73 116.6 228 93901 Hoi 7 89.1 229 93902 F1 109.0 230 93902 B73 114.0 231 93902 Hoi 7 122.4 232 94701 F1 107.6 233 94701 B73 114.2 234 94701 Hol7 113.5 235 94302 F1 93.8 236 94302 B73 108.5 237 94302 Hoi 7 101.1 238 93906 F1 125.6 239 93906 B73 123.6 240 93906 Hoi 7 98.6 241 94301 F1 111.6 242 94301 B73 110.8 243 94301 Hoi 7 115.4 244 89101 F1 113.0 245 89101 B73 124.2 246 89101 Hoi 7 109.7 247 94303 F1 114.5 248 94303 B73 125.2 249 94303 Hoi 7 103.3 250 94304 F1 115.7 251 94304 B73 121.4 252 94304 Mo17 113.9 . 253 89107 F1 102.9 254 89107 B73 133.4 255 89107 Hoi 7 109.3 : 256 90303 F1 103.7 257 90303 B73 127.5 • 258 90303 Hol7 91.8 . 259 91505 F1 112.1 . 260 91505 873 119.1 . 261 91505 Hoi 7 105.8 . 262 90703 F1 115.0 ' 263 90703 B73 126.0 ' 264 90703 Ho17 100.9 : 265 92302 F1 112.1 ' 266 92302 B73 115.5 . 267 92302 Hoi 7 113.9 : 268 92703 F1 118.6 ' 269 92703 B73 125.9 -270 92703 Hoi 7 97.2 :

4.20 4.48 3.80 4.22 4.48 4.14 4.22 4.44 3.96 4.28 4.70 4.18 4.32 4.72 3.92 4.18 4.26 4.02 4.36 4.60 4.10 4.52 4.42 4.04 4.26 4.44 4.08 4.16 4.40 3.92 4.44 4.70 4.00 4.40 4.54 4.10 4.14 4.40 3.92 4.32 4.46 3.98 4.22 4.42 3.98

2.58 2.82 2.34 2.62 2.86 2.50 2.62 2.86 2.50 2.76 3.04 2.60 2.68 3.00 2.48 2.64 2.80 2.56 2.72 2.78 2.46 2.72 2.72 2.42 2.66 2.80 2.42 2.50 2.72 2.38 2.72 2.90 2.40 2.66 2.82 2.54 2.54 2.78 2.40 2.66 2.86 2.48 2.64 2.84 2.46

1.70 1.70 1.52 1.68 1.68 1.70 1.62 1.62 1.56 1.60 1.66 1.60 1.70 1.80 1.50 1.54 1.50 1.48 1.72 1.82 1.66 1.80 1.80 1.68 1.68 1.68 1.70 1.66 1.82 1.62 1.78 1.88 1.64 1.80 1.78 1.64 1.64 1.68 1.54 1.66 1.62 1.56 1.66 1.70 1.58

15.26 13.74 15.12 14.52 14.30 16.74 14.42 14.12 16.06 12.92 12.82 14.82 15.84 14.88 15.88 15.42 14.92 16.78 14.68 13.76 15.80 15.80 15.06 16.28 15.62 14.64 17.14 15.50 15.66 16.54 13.96 13.84 13.94 15.88 14.06 15.90 15.58 15.60 16.84 15.44 14.22 16.32 15.56 15.52 15.52

13.94 16.24 12.10 13.42 14.58 12.96 14.28 15.74 13.10 14.80 16.76 13.30 14.60 16.54 12.52 14.00 16.02 12.90 15.16 17.02 13.20 15.06 16.76 13.18 13.96 16.00 13.28 13.14 15.00 12.14 14.32 17.02 12.68 14.32 16.12 12.84 13.62 15.22 11.92 13.94 15.26 12.76 13.74 15.52 12.32

0.96 0.98 0.94 1.00 1.02 0.98 1.00 1.02 1.02 0.98 0.98 0.98 1.02 1.00 0.94 0.98 0.98 0.98 0.98 1.02 0.98 0.98 1.02 0.98 0.98 1.04 0.96 0.94 1.02 0.98 1.00 1.00 0.94 1.00 1.02 1.00 0.98 1.02 0.96 1.00 1.00 1.00 1.00 1.02 1.00

4.0 4.1 8.1 1.0 0.0 3.0 1.0 0.0 0.0 2.0 4.0 3.0 0.0 0.0 7.0 3.0 2.0 2.0 4.0 1.0 5.0 5.0 0.0 4.0 3.0 0.0 4.2 7.7 0.0 2.2 5.4 1.0 8.1 2.0 1.0 1.4 3.5 0.0 5.0 2.2 0.0 0.0 1.0 0.0 1.0

0.84 0.00 0.00 1.00 0.00 0.46 0.00 0.00 0.00 0.42 1.06 0.00 0.42 0.84 0.42 0.90 0.00 1.26 1.38 0.00 0.84 0.00 0.00 0.00 1.68 0.00 0.00 0.84 0.00 1.26 0.00 0.54 0.84 0.00 0.00 0.00 0.00 0.00 0.00 0.84 2.08 0.00 0.00 0.42 0.50

3.44 1.44 1.88 2.52 3.06 3.50 5.26 9.02 5.46 2.52 1.64 2.02 2.90 2.00 5.56 3.42 6.56 5.48 5.62 5.64 4.46 3.34 2.20 6.34 1.40 1.28 5.80 4.54 0.00 5.50 3.62 2.28 7.76 7.90 6.06 8.02 3.56 2.98 5.70 6.12 2.94 6.28 4.70 6.86 7.24

0.84 0.00 3.14 0.00 0.50 0.42 1.70 0.44 2.10 0.84 0.00 2.02 0.60 1.12 1.26 1.30 0.42 0.42 1.30 0.00 1.76 1.32 0.50 1.72 0.42 0.42 4.32 0.84 0.00 1.64 0.00 0.00 3.42 0.00 0.00 0.00 0.00 0.00 1.70 0.50 0.42 2.52 0.50 0.00 0.42

215.2 226.8 207.0 222.3 232.9 214.9 213.4 227.9 204.2 215.3 215.1 207.6 225.1 231.9 221.8 221.3 228.9 220.0 222.1 232.1 212.0 215.2 224.0 208.9 213.6 220.2 208.4 225.5 228.6 211.8 219.3 236.5 221.6 211.2 220.6 209.7 205.7 220.8 204.8 220.4 226.1 217.5 211.8 224.8 203.2

104.7 110.3 98.5

111.9 120.6 105.8 106.4 113.7 96.5

101.0 103.2 96.0

111.7 119.8 109.1 107.4 114.1 111.3 111.4 120.6 105.7 103.9 113.2 99.2

106.3 113.2 103.2 114.1 115.7 106.8 109.7 120.7 114.0 102.7 108.1 103.4 103.3 111.8 103.2 109.1 114.4 107.3 111.0 116.9 108.0

82.0 83.7 83.8 85.2 86.3 83.5 81.7 84.2 80.5 82.0 84.8 82.5 86.3 87.0 85.3 83.3 84.0 83.3 83.3 85.5 83.7 82.3 83.8 82.0 82.5 85.5 84.8 86.2 85.7 84.3 84.8 85.0 85.3 81.2 83.0 82.5 84.7 84.8 84.2 83.2 84.0 83.7 84.0 85.8 85.7

84.2 85.7 86.3 86.5 88.2 86.2 84.7 86.0 84.2 86.0 86.3 85.5 88.5 88.5 89.3 85.5 85.8 85.5 85.5 86.0 86.7 84.5 86.5 85.7 86.2 87.5 86.8 88.7 86.8 86.7 88.0 87.2 89.0 84.3 86.2 84.5 86.7 87.0 86.3 86.2 86.3 85.8 86.8 87.B 88.5

2.2 2.0 2.5 1.3 1.8 2.7 3.0 1.8 3.7 4.0 1.5 3.0 2.2 1.5 4.0 2.2 1.8 2.2 2.2 0.5 3.0 2.2 2.7 3.7 3.7 2.0 2.0 2.5 1.2 2.3 3.2 2.2 3.7 3,2 3.2 2.0 2.0 2.2 2.2 3.0 2.3 2.2 2.8 2.0 2.8

to O a\

Page 216: Triple testcross analysis to detect epistasis and estimate ...

Table 04. continued.

ENTRY HALE Tester YD ED

g/plant cm

271 92706 F1 117.3 4.32 272 92706 B73 131.4 4.52 273 92706 Hoi 7 111.8 4.04 274 93102 F1 111.7 4.24 275 93102 B73 131.9 4.56 276 93102 Hoi 7 115.4 4.12 277 93504 F1 120.4 4.24 278 93504 B73 130.8 4.52 279 93504 Hoi 7 103.2 4.04 280 93506 F1 117.5 4.34 281 93506 B73 112.0 4.40 282 93506 Hoi 7 119.2 4.22 283 93903 F1 104.4 4.20 284 93903 B73 120.6 4.36 285 93903 Ho17 117.1 4.16 286 91904 F1 96.4 4,02 287 91904 B73 116.6 4.50 288 91904 Hoi 7 101.6 4.04 289 92306 F1 113.7 4.24 290 92306 B73 119.7 4.40 291 92306 Hoi 7 113.6 4.12 292 91905 F1 103.4 4.28 293 91905 B73 111.4 4.38 294 91905 Hoi 7 108.4 4.16 295 94305 F1 103.9 4.34 296 94305 B73 112,0 4.48 297 94305 Ho17 114,3 4.30 298 90701 F1 116,5 4.30 ; 299 90701 B73 108.2 4.36 : 300 90701 Hoi 7 120.6 4.18 :

CD

cm

KD

cm

EL

cm

RH

no.

EP

no.

BP RL

X

SL

X

DE

X

PH

cm

EH AN SE SO

cm days days days

2.64 2.82 2.48 2.54 2.78 2.58 2.60 2.72 2.34 2.64 2.88 2.58 2.54 2.76 2.44 2.52 2.74 2.46 2.52 2.74 2.46 2.58 2.70 2.50 2.70 2.82 2.62 2.76 2.78 2.58

1.74 1.76 1.66 1.78 1.86 1.64 1.78 1.82 1.74 1.70 1.60 1.64 1.70 1.64 1.74 1.58 1.76 1.58 1.78 1.74 1.70 1.74 1.76 1.68 1.70 1.72 1.74 1.64 1.62 1.64

15.48 15.54 16.24 15.28 14.94 16.04 15.66 14.72 15.54 15.98 14.76 17.30 15.12 15.06 17.18 14.48 13.66 15.42 15.34 14.42 16.26 14.28 13.76 15.96 14.26 13.74 15.74 15.30 13.72 16.50

14.04 15.92 12.42 14.04 16.04 12.88 14.08 15.94 12.40 14.48 15.84 13.08 13.34 15.56 12.88 14.54 17.02 13.18 14.30 16.24 13.24 14.34 16.18 12.84 15.40 17.30 13.38 14.84 16.42 13.10

1.02 1.00 1.00 0.98 1.00 1.00 1.00 1,02 1.00 1,00 1,00 1.00 1.00 1.02 0.98 0.92 1.00 0.98 1.04 1.02 0.98 1.00 0.98 1.00 0.94 1.00 0.98 0.98 1.00 1.00

1.0 0.0 1.0 3.0 1,0 1.0 1.0 1.1 2.0 1.0 0.0 0.0 1.0 2.1 4.0

10.0 0.0 3.0 3.0 0.0 3.0 3.0 2.0 0.0 8.0 0.0 2.0 2.0 0.0 0.0

0.00 0.00 0.00 0.00 0.00 0.56 0.42 0.00 0.00 0.42 0.88 0.60 0.42 1.26 0.00 0.42 0.42 0.00 0.42 1.68 0.00 0.00 0.00 0.00 0.42 2.12 0.00 0.84 0.42 0.00

5.04 4.64 9.18 4.20 5.80 2.60 6.60 2.10

10.28 7.14 7.04 5.74 4.20 3.40 4.66 4.46 3.10 3.14 3.98 2.10 6.42 3.48 2.94 4.82 4.24 1.68 2.76 1.26 2.10 7.12

0.00 0.00 0.50 0.42 1,32 0.00 0.42 1.30 0.48 0.00 0.00 0.00 1.26 0.00 0.60 0.00 0.42 0.78 0.62 0.88 0.42 0.90 1.26 1.30 1.34 1.34 2.14 0.44 0.00 0.54

225.6 233.2 223.9 203.3 218.6 199.8 209.5 222.1 208.8 227.9 235.6 223.6 224.0 232.2 213.1 214.1 215,6 206.3 216.0 220.5 211.0 203,9 208.1 206.9 210.6 215.0 210.5 208.1 209.1 211.5

117.0 122,6 118.1 97,1

109.3 96.4

104,9 114.1 104.6 121.2 123.5 119.4 113.3 119.7 106.7 102.6 102.3 97.5

110.3 113.2 106.2 99.7

104.9 102.8 99.0

105.1 102.5 102.5 101.8 105.0

84.8 85.8 86,5 82.0 84.8 82.0 82.8 83.2 83.2 85,7 87,5 85.2 85.5 86.3 84.3 83.7 84.5 82.7 83.3 85.8 83.3 82.8 83.0 83.0 81.3 83.2 82.7 84.0 83.8 84.5

87.5 88.0 88.7 85.2 87,0 84,5 84.8 84,8 86.3 88.3 89.2 87.8 88.0 88.0 86.3 87,5 87.2 86.3 86.0 88.5 86.7 86.3 85.7 86.0 84.0 86.3 86.2 86.2 86.5 87.3

2.7 2.2 2.2 3.2 2.2 2.5 2.0 1.7 3.2 2,7 1,7 2,7 2.5 1.7 2.0 3.8 2.7 3,7 2.7 2.7 3.3 3.5 2.7 3.0 2.7 3.2 3.5 2.2 2.7 2.8

n) o -J

Page 217: Triple testcross analysis to detect epistasis and estimate ...

Table D5. Triple testcross progeny means by environment.

Env. Entry Hale Tester YD ED CD KD EL RN EP

g/plant cm cm

20519 1 88301 F1 159.8 4.80 2.70 20519 2 88301 B73 128.0 4.60 2.70 20519 3 88301 Hoi 7 160.8 4.60 2.50 20519 4 88303 F1 143.2 4.80 2.60 20519 5 88303 B73 146.4 4.70 2.80 20519 6 88303 Ho17 138.0 5.10 2.50 20519 7 95902 F1 128.8 4.80 2.60 20519 8 95902 B73 162.6 4.90 2.90 20519 9 95902 Mo17 147.0 5.00 2.50 20519 10 88306 Fl 149.0 4.70 2.70 20519 11 88306 B73 135.4 4.70 2.60 20519 12 88306 Hoi 7 144.8 4.40 2.40 20519 13 88701 Fl 149.4 4.70 2.60 20519 14 88701 B73 147.3 4.80 2.70 20519 15 88701 Hoi 7 153.5 4.60 2.60 20519 16 95904 Fl 139.2 4.50 2.80 20519 17 95904 B7S 149.8 4.90 2.50 20519 18 95904 Hoi 7 136.3 4.20 2.40 20519 19 88703 Fl 141.4 4.70 2.40 20519 20 88703 B73 183.9 5.00 2.70 20519 21 88703 Hol7 130.9 4.30 2.30 20519 22 88704 Fl 148.4 4.40 2.60 20519 23 88704 B73 169.5 4.80 2.70 20519 24 88704 Hoi 7 122.2 4.80 2.20 20519 25 228714 Fl 141.1 4.40 2.60 20519 26 228714 B73 139.2 4.80 2.70 20519 27 228714 Ho17 118.8 4.30 2.60 20519 28 89102 Fl 140.4 4.70 2.70 20519 29 89102 B73 128.2 4.70 2.80 20519 30 89102 Hol7 158.5 4.60 2.50 20519 31 89103 Fl 147.6 4.30 2.40 20519 32 89103 B7S 157.6 4.60 2.60 ; 20519 33 89103 Ho17 135.3 4.20 2.40 20519 34 89104 Fl 137.8 5.00 2.70 ; 20519 35 89104 B73 159.1 4.90 2.90 ; 20519 36 89104 Hoi 7 103.8 4.10 2.30 20519 37 89105 Fl 149.5 4.50 2.70 20519 38 89105 B73 155.8 4.50 2.80 20519 39 89105 Hoi 7 138.4 4.20 2.20 : 20519 40 229115 Fl 141.9 4.70 2.70 : 20519 41 229115 B73 164.6 4.90 2.80 ; 20519 42 229115 Hoi 7 147.4 4.40 2.50 20519 43 89501 Fl 148.8 4.70 2.70 ; 20519 44 89501 B73 141.5 4.70 2.80 : 20519 45 89501 Hoi 7 151.7 4.40 2.30 ;

cm cm no. no.

1 15.10 1 .00 1 15.40 1 .00 1 13.00 1 .00 1 13.50 1 .00 1 15.60 1 .00 1 12.70 1 .10

14.50 1 .00 16.80 1 .00

1 13.10 1 .00 14.70 1 .00 15.90 1 .00 13.70 1 .00 14.60 1 .00 15.70 1 .00 14.40 1 .10 14.20 1 .00 16.80 1 .00 12.60 1 .00 14.20 1 .10 16.30 1 .00 12.80 1 .00 13.90 1 .00 15.90 1 .00 11.90 1 .00 13.50 1 .10 15.80 1 .00 12.10 1 .00 14.40 1 .00 14.60 t .10 13.10 1, .10 14.30 1, .00 15.20 1, .20 12.70 1, .00 13.10 1, .00 16.70 1, .10 11.90 1, .00 13.60 1, .00 13.70 1.00 12.40 1. .00 14.50 1. .00 15.30 1. .10 13.10 1. .00 15.30 1. .00 15.90 1. ,00 12.60 1. ,00

2.20 2.00 2.10 2.20 2.00 2.60 2.20 2.10 2.50 2.10 2.10 2.10 2.10 2.10 2.10 1.90 2.40 1.90 2.40 2.40 2.00 2.00 2.20 2.70 1.90 2.10 1.70 2.10 2.00 2.10 2.10 2.00 1.80 2.30 2.00 1.80 1.80 1.80 2.10 2.10 2.20 1.90 2.00 2.00 2.10

16.20 14.40 17.70 16.40 16.00 17.30 15.10 15.70 17.70 17.10 14.30 17.30 16.60 15.20 16.70 16.20 15.90 17.60 16.00 17.40 16.60 17.10 17.40 13.50 16.50 15.30 16.10 15.60 15.30 18.40 16.60 16.50 17.30 17.60 16.30 15.20 17.80 16.70 17.90 15.70 16.90 17.80 15.90 15.30 18.30

BP RL SL DE PH EH AN SE SD

XX X X cm cm days days days

0.0 0.00 0.00 0.00 220.1 106.6 82.5 85.0 2.5 0.0 0.00 0.00 6.30 230.3 110.4 85.0 88.0 3.0 0.0 0.00 10.50 2.10 215.3 103.1 80.5 83.0 2.5 0.0 0.00 2.20 0.00 230.9 115.4 85.0 86.5 1.5 0.0 0.00 6.30 0.00 234,9 118.7 85.5 87.5 2.0 0.0 0.00 8.70 0.00 217.9 108.8 83.0 86.5 3.5 0.0 0.00 14.60 0.00 214.9 100.1 81.0 85.0 4.0 0.0 0.00 4.20 0.00 226.9 107.8 85.0 86.0 1.0 0.0 0.00 2.10 0.00 202.5 93.6 80.0 84.5 4.5 0.0 0.00 2.10 0.00 213.2 102.4 81.0 85.5 4.5 0.0 0.00 2.10 0.00 233.0 114.3 85.0 86.0 1.0 0.0 2.10 8.40 0.00 209.2 101.7 81.0 85.5 4.5 0.0 0.00 10.50 0.00 227.1 109.5 82.5 86.5 4.0 0.0 0.00 4.20 0.00 229.7 109.7 84.5 85.5 1.0 0.0 0.00 10.70 2.10 209.1 98.0 81.0 84.0 3.0 0.0 2.10 8.40 0.00 225.3 104.2 82.0 85.5 3.5 0.0 0.00 2.10 0.00 231.5 105.0 84.5 87.5 3.0 0.0 0.00 2.10 4.20 218.8 101.2 81.5 86.0 4.5 0.0 0.00 0.00 0.00 223.7 105.3 85.0 87.0 2.0 0.0 0.00 0.00 0.00 233.6 114.7 86.0 87.5 1.5 (O 0.0 0.00 2.20 2.20 217.7 105.3 83.0 86.5 3.5 O 0.0 2.10 0.00 0.00 222.3 103.6 83.0 85.5 2.5 " 0.0 0.00 0.00 0.00 229.4 109.5 83.0 85.5 2.5 0.0 0.00 6.30 0.00 193.7 88.8 80.5 86.0 5.5 0.0 0.00 6.30 0.00 234.4 113.5 84.0 87.5 3.5 0.0 0.00 6.30 0.00 244.5 121.1 84.0 86.5 2.5 0.0 0.00 6.30 0.00 224.1 109.7 85.0 88.0 3.0 0.0 0.00 4.20 0.00 223.9 110.6 84.5 87.5 3.0 0.0 0.00 4.20 0.00 241.1 120.8 87.0 89.0 2.0 0.0 0.00 10.40 0.00 217.7 112.4 85.5 86.0 0.5 0.0 0.00 2.10 0.00 234.3 122.1 82.5 85.5 3.0 0.0 0.00 4.20 0.00 240.2 123.3 86.5 88.5 2.0 0.0 0.00 6.30 0.00 218.1 100.7 82.5 86.5 4.0 0.0 0.00 6.60 0.00 217.0 98.2 84.0 85.5 1.5 0.0 0.00 2.10 0.00 244.5 122.6 86.0 88.0 2.0 0.0 0.00 12.60 0.00 207.3 90.2 84.5 89.0 4.5 0.0 0.00 2.20 2.10 209.8 98.2 80.5 84.5 4.0 0.0 0.00 0.00 0.00 231.4 110.9 84.0 86.5 2.5 0.0 0.00 2.10 0.00 205.6 94.1 81.0 84.5 3.5 0.0 0.00 2.10 0.00 236.4 114.9 85.0 87.5 2.5 0.0 0.00 10.40 0.00 248.0 129.9 85.5 88.0 2.5 0.0 0.00 4.20 0.00 217.0 100.9 83.0 88.0 5.0 0.0 0.00 4.30 0.00 211.5 100.0 82.0 84.5 2.5 0.0 0.00 4.40 0.00 212.1 93.4 84.0 85.5 1.5 0.0 0.00 12.50 0.00 200.6 91.5 79.5 83.0 3.5

Page 218: Triple testcross analysis to detect epistasis and estimate ...

Table D5. continued.

Env. Entry Hale Tester YD ED CD

g/ptant cm cm

KD

cm

EL

cm

RN

no.

EP

no.

BP

X

RL

X

SL

X

DE PH

cm

EH AH SE SO

cm days days days

20519 46 89502 F1 142.6 20519 47 89502 B73 164.8 20519 48 89502 Ho17 137.3 20519 49 89503 F1 122.2 20519 50 89503 B73 165.9 20519 51 89503 Hoi 7 123.8 20519 52 231916 142.8 20519 53 231916 B73 157.7 20519 54 231916 Hoi 7 148.7 20519 55 229524 F1 128.8 20519 56 229524 B73 129.1 20519 57 229524 Hoi 7 148.5 20519 58 89506 F1 151.7 20519 59 89506 B73 169.4 20519 60 89506 Hoi 7 135.6 20519 61 89507 F1 152.8 20519 62 89507 B73 174.6 20519 63 89507 Hoi 7 159.3 20519 64 89901 F1 175.1 20519 65 89901 B73 165.9 20519 66 89901 Hoi 7 152.7 20519 67 89902 F1 142.7 20519 68 89902 B73 174.6 20519 69 89902 Hoi 7 137.6 20519 70 89903 F1 140.0 20519 71 89903 B73 168.6 20519 72 89903 Hoi 7 140.6 20519 73 89904 F1 131.1 20519 74 89904 B73 169.7 20519 75 89904 Ho17 124.3 20519 76 90301 F1 147.9 ^ 20519 77 90301 B73 158.0 . 20519 78 90301 Ho17 131.3 . 20519 79 90302 F1 167.1 . 20519 80 90302 B73 161.1 i 20519 81 90302 Hoi 7 171.3 20519 82 229921 F1 165.7 . 20519 83 229921 B73 166.1 . 20519 84 229921 Hoi 7 179.0 . 20519 85 230323 F1 147.5 . 20519 86 230323 B73 178.4 ' 20519 87 230323 Ho17 140.5 i 20519 88 226720 F1 162.0 ' 20519 89 226720 B73 166.5 . 20519 90 226720 Hol7 155.3 ^

4.50 4.60 4.20 4.20 4.80 4.20 4.40 4.70 4.40 4.50 4.60 4.70 4.60 4.90 4.30 4.30 4.70 4.50 4.70 4.70 4.30 4.40 4.60 4.20 4.50 5.00 4.40 4.40 4.60 4.40 4.30 4.60 4.20 4,90 4.80 4.50 4.90 4.90 4.40 4.60 4.90 4.20 4.50 4.80 4.50

2.60 2.80 2.40 2.60 2.70 2.50 2.60 2.90 2.50 2.50 2.80 2.60 2.70 2.80 2.40 2.60 2.80 2.60 2.80 2.80 2.50 2.60 2.80 2.50 2.70 2.70 2.60 2.50 2.60 2.20 2.20 2.70 2.40 2.80 2.80 2.50 2.70 2.60 2.60 2.60 2.70 2.30 2.60 2.70 2.60

1.90 1.90 1.80 1.70 2.10 1.70 1.90 1.90 2.00 2.00 2.00 2.30 1.90 2.10 1.90 1.80 2.00 2.00 2.00 2.00 1.80 2.00 1.90 1.80 1.90 2.40 1.80 1.90 2.10 2.20 2.10 1.90 1.80 2.20 2.10 2.00 2.20 2.40 1.80 2.00 2.20 1.90 1.90 2.10 1.90

16.50 16.70 17.80 15.30 16.20 15.60 16.60 16.50 17.50 16.10 14.70 17.60 15.60 16.10 17.30 16.40 15.90 17.60 17.90 17.10 18.60 15.70 16.60 17.00 15.50 15.60 16.80 15.50 16.40 15.30 16.60 15.90 17.10 16.80 16.00 18.90 16.90 17.70 18.90 16.50 16.80 17.50 15.80 15.40 18.30

13.30 15.10 12.10 13.80 16.50 12.50 14.90 16.80 13.30 14.40 15.60 12.60 15.30 15.70 13.20 15.30 16.40 13.30 14.20 16.20 12.80 14.60 16.70 12.20 14.30 16.40 13.00 12.80 15.10 12.00 14.10 16.30 12.90 14.80 16.60 13.50 15.00 16.70 14.10 13.50 15.80 12.60 15.10 16.40 13.50

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.00 1.00 1.00 1.00 1.00 1.10 1.00 1.00 1.00 1.10 1,00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.00 1.00 1.10 1.00

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.00 0.00 0.00 2.10 0.00 0.00 0.00 0.00 0.00 2.10 2.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.20 0.00 0.00 4.20 0.00 2.10 0.00 0.00 2.30 4.20 0.00 0.00 0.00 0.00 0.00 0.00 2.10 0.00 0.00 0.00 4.60 0.00 2.10 0.00 2.10 2.10 0.00

10.50 4.20 4.20 8.40 8.70

22.80 10.50 4.20

13.20 4.20 6.30 2.10 8.40 4.20

10.50 2.10 8.40 2.70

12.60 10.50 10.50 4.20 2.10

14.70 2.10 4.20 4.40 4.20 4.20 2.10 8.40 0.00 2.10 2.10 6.30 6.30

12.80 6.30

17.90 4.30 2.10 4.20 2.10

12.60 10.50

0.00 0.00 0.00 0.00 4.40 2.30 0.00 0.00 0.00 0.00 0.00 0.00 2.10 0.00 0.00 0.00 0.00 2.70 0.00 2.10 0.00 0.00 2.10 2.10 0.00 2.10 4.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

208.8 218.8 211.6 220.2 228.1 207.8 220.6 219.9 205.7 222.0 225.9 210.9 209.9 225.4 206.4 219.2 228.6 213.8 227.4 221.5 200.4 224.7 231.7 208.4 228.9 238.2 215.8 220.6 243.8 212.2 218.2 218.9 195.2 233.7 216.3 211.4 226.8 236.7 212.0 239.1 237.3 208.1 237.6 238.8 225.5

99.9 105.2 100.8 102.2 112.1 101.9 114.9 105.2 101.8 100.7 107.7 100.9 102.9 112.5 101.8 106.8 116.9 106.0 115.7 105.7 95.1

108.7 118.7 99.6

113.7 119.4 106.9 110.3 119.0 105.8 105.1 108.2 92.9

115.3 107.9 96.2

115.5 127.3 103.1 119.6 117.8 97.6

118.5 127.0 114.4

82.5 83.0 83.0 82.5 84.0 83.0 84.0 84.0 83.5 84.0 85.0 82.0 81.5 84.0 83.0 81.0 82.0 82.0 83.0 81.0 79.0 79.0 82.5 79.0 81.5 83.5 83.0 81.0 83.0 83.0 79.5 81.0 80.0 83.0 82.0 82.0 78.5 84.0 79.5 80.0 84.0 79,5 83.0 85,0 82.0

85.0 85.0 85.5 84.0 85.5 86.0 85.5 85.5 86.0 87.0 87.5 86.0 83.0 85.5 85.5 84.0 83.5 85.5 85.5 82.5 83.0 83.0 85.0 82.0 84.5 84.5 86.5 84.5 84.5 85.0 83.0 84.0 83.0 85.5 84.5 84.0 81,5 84,5 83.5 83.5 85.5 84.0 85.5 86.5 85.5

2.5 2.0 2,5 1,5 1,5 3.0 1.5 1,5 2,5 3,0 2,5 4,0 1,5 1,5 2,5 3,0 1,5 3,5 2,5 1,5 4.0 4.0 2.5 3.0 3.0 1.0 3.5 3.5 1.5 2.0 3.5 3.0 3.0 2.5 2.5 2.0 3.0 0.5 4.0 3.5 1.5 4.5 2.5 1.5 3.5

to o u>

Page 219: Triple testcross analysis to detect epistasis and estimate ...

Table D5. continued.

Env. Entry Hate Tester YD ED CD KD EL RN EP

g/ptant cm cm cm cm no. no.

20519 91 90306 F1 155.2 4.60 2.50 2 .10 16.60 13.90 1 .10 20519 92 90306 B73 191.5 4.90 2.80 2 .30 17.00 15.50 1 .00 20519 93 90306 Hoi 7 138.6 4.10 2.50 1 .70 17.00 12.90 1 .00 20519 94 230322 F1 132.8 4.50 2.60 2 .00 15.70 14.20 1 .00 20519 95 230322 B73 149.1 4.70 2.80 1 .90 15.30 15.70 1 .10 20519 96 230322 Ho17 124.6 4.20 2.30 1 .90 16.50 12.70 1 .00 20519 97 230701 F1 134.6 4.50 2.70 1 .90 16.30 13.70 1 .00 20519 98 230701 B73 161.7 4.90 2.80 2 .10 16.40 15.10 1 .00 20519 99 230701 Hoi 7 161.7 4.40 2.60 1 .90 18.10 12.40 1 .10 20519 100 231103 F1 185.0 4.80 2.80 2 .10 18.20 14.90 1 .00 20519 101 231103 873 169.2 4.90 2.80 2 .10 16.70 16.00 1 .00 20519 102 231103 Mo17 155.8 4.40 2.50 1 .90 18.70 12.70 1 .00 20519 103 232306 F1 167.5 4.50 2.60 1 .90 17.30 14.20 1 .00 20519 104 232306 B73 171.8 4.80 2.80 2 .00 17.20 15.40 1 .00 20519 105 232306 Hoi 7 138.3 4.50 2.50 2 .00 18.30 13.50 0.90 20519 106 231905 F1 168.6 4.60 2.60 2 .10 16.90 14.10 1 .20 20519 107 231905 B73 137.7 4.60 2.70 1 .90 14.70 15.80 1 .00 20519 108 231905 Ho17 156.2 4.50 2.50 2 .00 18.20 12.90 1 .00 20519 109 231104 F1 153.7 4.70 2.60 2 .10 16.50 14.00 1 .00 20519 110 231104 B73 156.4 4.70 2.80 1 .90 16.30 15.70 1 .10 20519 111 231104 Hoi 7 150.8 4.40 2.50 2 .00 17.70 12.50 1 .00 20519 112 91101 F1 166.5 4.50 2.60 2 .00 15.30 14.80 1 .00 20519 113 91101 B73 133.5 4.80 2.60 2 .30 14.10 17.00 1 .00 20519 114 91101 Hoi 7 170.1 4.60 2.70 2 .00 18.10 14.60 1 .00 20519 115 232707 F1 123.6 4.50 2.90 1 .70 16.30 15.00 1 .00 20519 116 232707 B73 149.7 4.90 3.00 1 .90 16.00 17.40 1 .00 20519 117 232707 Hoi 7 127.1 4.20 2.60 1 .70 17.00 12.60 1 .00 20519 118 91103 F1 132.2 4.40 2.60 1 .80 15.30 14.20 1 .00 20519 119 91103 B73 149.0 4.70 2.80 1, .90 15.90 15.30 1 .00 20519 120 91103 Hoi 7 159.0 4.40 2.60 1, .90 18.50 12.30 1 .00 20519 121 91104 F1 148.3 4.50 2.70 1, .90 17.00 14.00 1 .00 20519 122 91104 B73 168.9 4.80 2.80 2, .00 16.90 16.00 1 .00 20519 123 91104 Ho17 135.1 4.20 2.40 1, .80 17.90 11.90 1 .00 20519 124 226309 F1 157.6 4.60 2.60 2 .00 16.60 14.90 1 .00 20519 125 226309 B73 145.4 4.70 2.90 1, .80 15.80 15.80 1 .00 20519 126 226309 Hoi 7 158.6 4.30 2.60 1, .90 18.00 13.20 1 .00 20519 127 91501 F1 151.7 4.70 2.60 2, .10 16.20 14.70 1 .00 20519 128 91501 B73 154.2 4.70 2.80 1, .90 15.40 15.60 1 .00 20519 129 91501 Ho17 162.3 4.40 2.60 1, .80 18.30 13.90 1, .00 20519 130 91502 F1 148.5 4.40 2.60 1, .80 17.30 13.50 1, .00 20519 131 91502 B73 176.5 4.80 2.80 2. .10 17.10 15.70 1, .00 20519 132 91502 Hoi 7 166.6 4.40 2.70 1, .70 18.90 11.80 1. .00 20519 133 91503 F1 152.9 4.60 2.70 2. .00 16.90 14.50 1, .00 20519 134 91503 B73 155.3 4.70 2.80 1, .90 16.40 15.50 1, .00 20519 135 91503 Hoi 7 145.5 4.30 2.40 1. .90 17.10 12.90 1, .00

BP RL SL DE PH EH AN SE SD

XX X X cm CI!) days days days

0.0 6.50 0.00 0.00 220.4 108.6 S2.0 84.0 2.0 0.0 4.20 4.20 0.00 231.2 123.3 82.0 84.S 2.5 0.0 0.00 6.50 0.00 204.1 95.4 79.0 82.5 3.5 0.0 0.00 8.40 0.00 206.3 95.3 78.5 82.0 3.5 0.0 0.00 4.20 0.00 243.5 124.9 83.0 85.5 2.5 0.0 2.10 5.30 0.00 218.2 106.7 81.5 85.5 4.0 0.0 4.80 9.30 0.00 244.0 119.6 83.0 87.0 4.0 0.0 2.10 8.40 0.00 246.8 126.3 84.5 87.0 2.5 0.0 0.00 4.20 0.00 221.9 105.1 83.0 85.5 2.5 0.0 4.20 8.40 0.00 231.5 114.3 83.0 86.0 3.0 0.0 8.40 0.00 0.00 247.6 127.6 84.0 85.5 1.5 0.0 0.00 9.00 2.40 218.0 100.6 82.0 85.5 3.5 0.0 6.30 4.20 0.00 229.4 108.3 83.0 85.5 2.5 0.0 0.00 10.40 0.00 234.2 113.7 83.0 85.0 2.0

10.0 0.00 10.50 0.00 209.6 93.8 80.5 83.5 3.0 0.0 0.00 6.30 0.00 229.7 110.4 83.5 85.5 2.0 0.0 0.00 2.10 0.00 239.9 122.1 84.0 86.S 2.5 0.0 0.00 12.50 0.00 220.7 110.7 82.0 85.0 3.0 0.0 2.10 2.10 0.00 224.5 108.3 83.0 84.5 1.5 0.0 0.00 5.30 0.00 234.2 121.4 84.0 86.5 2.5 (o 0.0 0.00 4.20 2.10 217.4 110.4 82.0 85.0 3.0 h 0.0 2.10 8.40 0.00 214.4 106.8 81.5 84.0 2.5 O 0.0 0.00 0.00 0.00 216.8 102.7 83.5 85.0 1.5 0.0 0.00 2.10 0.00 214.7 106.0 79.0 82.0 3.0 5.0 0.00 6.30 0.00 222.5 104.1 83.0 87.5 4.5 0.0 0.00 10.70 0.00 238.8 117.1 85.0 88.0 3.0 0.0 2.10 8.40 0.00 210.6 104.9 82.5 86.0 3.5 0.0 23.00 2.10 0.00 226.3 109.9 82.5 84.0 1.5 0.0 0.00 10.50 0.00 234.2 116.2 83.0 85.5 2.5 0.0 0.00 4.20 0.00 212.6 101.6 81.0 85.5 4.5 0.0 0.00 2.20 0.00 221.0 109.8 83.0 86.0 3.0 0.0 0.00 0.00 0.00 227.0 110.2 83.5 86.0 2.5 0.0 0.00 2.10 2.10 208.9 95.1 82.0 85.0 3.0 0.0 0.00 0.00 2.10 211.1 98.8 79.5 83.0 3.5 0.0 0.00 2.10 0.00 224.1 107.7 82.0 84.5 2.5 0.0 0.00 6.30 0.00 203.4 93.2 81.0 81.0 0.0 0.0 0.00 0.00 0.00 210.3 98.2 81.0 84.0 3.0 0.0 0.00 4.20 0.00 224.0 108.7 81.0 84.0 3.0 0.0 0.00 0.00 0.00 210.6 99.3 81.5 84.5 3.0 0.0 0.00 2.10 0.00 214.5 100.2 79.0 82.0 3.0 0.0 0.00 5.00 0.00 214.7 96.7 79.0 82.0 3.0 0.0 0.00 2.10 2.10 209.2 93.4 79.0 84.0 5.0 0.0 0.00 12.50 0.00 217.3 102.3 81.0 84.0 3.0 0.0 0.00 8.40 0.00 212.2 93.9 80.5 83.5 3.0 0.0 0.00 2.10 0.00 207.9 99.3 79.5 82.5 3.0

Page 220: Triple testcross analysis to detect epistasis and estimate ...

Table D5. continued.

Env. Entry Male Tester YD ED CD KD EL rh EP BP RL SL DE PH EH AH SE SD

9/plant cm cm cm cm no. cm cm days days days

20519 136 91504 F1 152.3 4.60 20519 137 91504 B73 175.0 4.80 20519 138 91504 Hoi 7 168.1 4.50 20519 139 227110 F1 142.0 4.60 20519 140 227110 B73 149.4 4.80 20519 141 227110 Hoi 7 153.9 4.40 20519 142 91901 F1 167.6 4.90 20519 143 91901 B73 202.9 5.10 20519 144 91901 Mo17 161.4 4.50 20519 145 91902 F1 155.5 4.60 20519 146 91902 B73 162.8 5.00 20519 147 91902 Hoi 7 122.8 4.20 20519 148 91903 F1 151.7 4.50 20519 149 91903 B73 191,4 4.70 20519 ISO 91903 Ho17 123.4 4.10 20519 151 227511 F1 152.1 4.70 20519 152 227511 B73 154.7 4.90 20519 153 227511 Ho17 166.2 4.50 20519 154 227512 F1 153.9 4.80 20519 155 227512 B73 171.6 4,80 : 20519 156 227512 Hoi 7 178.6 4,60 20519 157 91906 F1 135.1 4,50 : 20519 158 91906 B73 196.6 5,00 : 20519 159 91906 Ho17 118.1 4,10 20519 160 92301 F1 154.7 4,80 20519 161 92301 B73 160.8 5,00 : 20519 162 92301 Hoi 7 161.1 4.50 ; 20519 163 228313 F1 153.5 4.60 : 20519 164 228313 B73 164.4 4.80 : 20519 165 228313 Hoi 7 180.7 4.50 : 20519 166 92303 F1 166.2 4.70 ; 20519 167 92303 B73 153.7 4.70 i

20519 168 92303 Hoi 7 138.9 4.40 : 20519 169 92305 F1 126.7 4.40 : 20519 170 92305 B73 151.2 4.80 : 20519 171 92305 Hoi 7 147.0 4.30 ; 20519 172 226308 F1 157.7 4.70 : 20519 173 226308 B73 162.1 5.00 : 20519 174 226308 Ho17 153.4 4.30 : 20519 175 92307 F1 143.9 4.50 ; 20519 176 92307 B73 146.4 4.80 : 20519 177 92307 Hoi 7 119.6 4.20 ; 20519 178 92701 F1 128.4 4.30 : 20519 179 92701 B73 185.1 4.80 : 20519 180 92701 Ho17 114.8 3.90 :

2.70 2.90 2.60 2.70 2.80 2.60 2.90 3.00 2.50 2.70 2.90 2.40 2.70 2.80 2.40 2.80 3.00 2.70 2.80 3.00 2.60 2.70 3.00 2.40 2.80 3.00 2.70 2.80 2.90 2.70 2.80 2.90 2.60 2.60 2.80 2.60 2.80 3.10 2.60 2.80 2.90 2.50 2.50 2.70 2.20

1.90 1.90 2.00 1.90 2.00 1.90 2.00 2.10 2.00 1.90 2.20 1.90 1.90 2.10 1.70 2.00 1.90 1.80 2.00 1.80 2.00 1.90 2.10 1.70 2.00 2.10 1.90 1.90 2.00 1.80 2.00 1.90 2.00 1.90 2.00 1.70 2.10 1.90 1.80 1.80 1.90 1.80 1.80 2.10 1.70

16.60 16.80 18.70 15.30 14.80 17.80 16.30 17.60 18.10 16.30 17.40 16.20 18.20 18.60 17.90 16.50 15.90 19.00 16.30 16.70 19.30 15.70 17.90 16.00 15.80 15.90 18.20 17.50 16.60 19.50 16.60 15.80 16.80 15.50 14.90 18.30 16.70 15.90 18.30 16.00 14.90 15.70 15.40 17.20 16.60

13.70 15.40 13.20 15.60 17.30 12.80 15.10 16.90 13.40 14.20 16.50 12.70 12.90 14.00 11.40 15.80 16.00 13.10 15.50 16.40 13.60 14.40 16.50 12.00 15.00 16.40 13.60 13.60 14.90 12.30 14.60 15.30 13.50 14.40 16.70 12.20 14.80 16.00 11.90 15.10 16.30 13.20 13.30 15.40 12.10

1 1.00 0.0 1 1.20 0.0 1 1.00 0.0 1 1.00 0.0 1 1.00 0.0 1 1.00 0.0 1 1.00 0.0 1 1.00 0.0 1 1.00 0.0 1 1.00 0.0

0.90 15.0 1.00 0.0 1.00 0.0 1.10 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.10 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.10 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.10 0.0 1.00 0.0 1.00 0.0

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10 0.00 0.00 0.00 0.00 4.20 0.00 0.00 0.00 2.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6.30 4.20

12.60 0.00 0.00 6.30

10.50 2.10 6.30 0.00 0.00 2.10 6.70 2.10

14.70 10.50 10.60 8.40 4.20 6.30 4.20 6.30 2.10 4.30 2.10 4.20 0.00 2.10 2.10 4.20 4.20 8.40 0.00 2.10 2.10 4.40 2.10 2.10 0.00 0.00 2.10 0.00 8.40 0.00 4.20

0.00 0.00 0.00 0.00 0.00 0.00 2.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10 0.00 0.00 0.00 0.00 2.10 0.00 0.00 0.00 6.30 0.00 2.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

226.3 235.9 224.0 220.8 219.7 212.6 229.0 234.0 214.7 199.5 213.7 194.9 214.9 219.2 190.5 222.1 232.6 214.9 226.5 236.2 220.1 210.7 228.1 203.6 208.4 225.1 214.4 230.7 239.3 228.7 227.2 223.9 213.5 222.1 227.0 211.8 229.9 248.1 225.5 212.1 215.9 201.2 207.6 204.2 195.4

113.2 125.4 112.7 103.0 101.8 100.1 111.2 114.5 105.1 90.8

101.8 91.1

104.9 107.2 89.9

113.8 118.3 107.6 112.3 119.8 106.0 99.6

110.1 96.3

100.8 106.5 105.2 112.3 113.8 113.5 112.7 109.8 107.5 104.7 105.6 96.5

113.2 125.0 106.6 102.9 105.0 94.0 97.1 95.1 90.6

83.0 84.0 83.0 82.5 82.0 81.5 82.0 83.5 81.0 79.0 81.5 79.0 81.5 82.0 80.0 82.5 85.0 82.0 82.5 83.0 81.0 81.0 83.5 82.5 79.0 80.0 80.0 82.0 85.0 83.5 83.0 83.0 82.0 80.5 80.0 81.5 82.0 83.0 82.0 82.0 82.0 79.0 79.0 78.5 79.5

85.5 86.0 85,0 85.0 85.0 84.0 84.5 84.5 83.0 82.0 83.5 82.0 84.5 84.0 84.0 85.0 86.5 85.0 85.0 85.5 84.5 83.5 85.0 86.0 81.5 84.0 84.0 85.0 86.0 85.5 85.0 85.5 86.0 84.0 84.0 85.0 84.5 86.0 85.5 84.5 85.5 83.5 82.0 79.5 83.0

2,5 2.0 2.0 2.5 3.0 2.5 2.5 1.0 2.0 3.0 2.0 3.0 3.0 2.0 4.0 2.5 1.5 3.0 2.5 2.5 3.5 2.5 1.5 3.5 2.5 4.0 4.0 3.0 1.0 2.0 2.0 2.5 4.0 3.5 4.0 3.5 2.5 3.0 3.5 2.5 3.5 4.5 3.0 1.0 3.5

h (-»

Page 221: Triple testcross analysis to detect epistasis and estimate ...

Table D5. continued.

Env. Entry Hale Tester YD ED CD KD EL

g/plant cm cm cm cm

RN

no.

EP

no.

BP

X

RL

X

SL

X

DE

X

PH

cm

EH AN SE SD

cm days days days

20519 181 92702 F1 159.0 20519 182 92702 B73 147.7 20519 183 92702 Hoi 7 153.4 20519 184 95901 F1 153.9 20519 185 95901 B73 174.0 20519 186 95901 Ho17 166.5 20519 187 92704 F1 163.6 20519 188 92704 B73 132.2 20519 189 92704 Ho17 152.3 20519 190 95505 156.5 20519 191 95505 B73 196.1 20519 192 95505 Hoi 7 148.6 20519 193 92707 F1 146.7 20519 194 92707 B75 179.3 20519 195 92707 Hoi 7 116.6 20519 196 92708 F1 147.7 20519 197 92708 B73 172.6 20519 198 92708 Hoi 7 157.9 20519 199 93101 F1 155.0 . 20519 200 93101 B73 162.8 20519 201 93101 Hol7 149.4 . 20519 202 95503 F1 130.8 < 20519 203 95503 B73 191.4 . 20519 204 95503 Mo17 110.0 ' 20519 205 93104 F1 133.3 . 20519 206 93104 B73 148.9 / 20519 207 93104 Hoi 7 149.1 • 20519 208 93105 F1 143.4 i 20519 209 93105 B73 178.1 1 20519 210 93105 Hoi 7 143.0 i 20519 211 93501 F1 135.2 < 20519 212 93501 B73 131.2 • 20519 213 93501 Hoi 7 125.9 . 20519 214 93502 F1 165.1 ' 20519 215 93502 B73 155.8 • 20519 216 93502 Ho17 148.3 < 20519 217 94705 F1 122.3 -20519 218 94705 B73 143.7 -20519 219 94705 Ho17 134.1 ' 20519 220 93505 F1 121.7 ' 20519 221 93505 B73 130.7 ' 20519 222 93505 Hoi 7 153.5 ' 20519 223 94702 F1 143.9 ' 20519 224 94702 873 161.2 1 20519 225 94702 Hoi 7 137.9 i

4.80 4.90 4.40 4.70 4.80 4.50 4.70 4.70 4.60 4.70 5.10 4.30 4.50 4.90 4.00 4.50 4.90 4.30 4.60 4.90 4.30 4.40 4.90 4.00 4.50 4.70 4.30 4.60 5.00 4.40 4.50 4.50 4.30 4.60 4.90 4.70 4.40 4.80 4.20 4.30 4.80 4.50 4.60 4.90 4.20

2.80 2.80 2.60 2.80 2.80 2.50 2.70 2.90 2.50 2.80 2.90 2.50 2.60 2.90 2.40 2.70 3.00 2.40 2.80 2.90 2.60 2.70 2.80 2.30 2.60 2.80 2.60 2.50 2.80 2.50 2.60 2.70 2.60 2.80 2.90 2.70 2.80 2.80 2.70 2.70 2.90 2.60 2.70 2.80 2.50

2.00 2.10 2.00 1.90 2.10 2.00 2.00 1.90 2.20 1.90 2.20 1.80 1.90 2.00 1.60 1.80 2.10 1.90 2.00 2.00 1.80 1.80 2.30 1.70 1.90 1.90 1.70 2.10 2.20 1.90 1.90 1.90 1.70 2.10 2.00 2.00 1.70 2.00 1.70 1.70 1.90 2.00 1.90 2.10 1.80

16.60 14.90 17.00 16.90 16.70 18.60 16.80 15.60 17.20 16.80 18.60 17.50 16.90 17.50 17.10 17.20 16.60 18.80 16.10 15.50 17.60 15.70 17.50 16.40 16.80 16.50 18.10 16.10 16.00 17.20 16.00 14.50 16.70 16.40 15.40 16.40 16.20 15.60 17.80 16.10 15.60 17.60 16.40 16.00 18.20

16.00 16.60 14.10 14.40 15.80 13.10 15.40 16.10 14.70 13.60 16.50 12.90 13.90 16.00 12.60 14.10 16.90 12.40 15.10 17.40 13.70 14.00 16.30 11.90 13.90 15.80 13.00 14.30 16.30 12.60 14.40 15.90 13.20 15.50 18.00 14.50 13.60 15.00 12.00 13.50 15.20 13.10 13.80 16.10 12.20

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.00 0.00 0.00 6.30 4.20 0.00 8.40 0.00 0.00 0.00 0.00 0.00 4.20 0.00 2.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10 2.30 0.00 4.20 0.00 0.00

2.10 0.00 2.10 4.20 2.10 0.00 6.30 0.00 0.00 2.10 5.60 4.20 2.10 6.40 4.20 0.00 2.10 0.00 4.20 4.20 9.60 4.20 4.20 2.10 8.40 0.00 2.10 6.30 4.20 2.10 0.00 6.30 4.20 6.30 0.00 2.10 0.00 2.10 2.10 0.00 0.00

12.50 4.20

14.80 6.30

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.20 0.00 2.80 0.00 0.00 0.00 0.00 4.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.20 0.00 4.20 0.00 0.00 0.00 2.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

216.9 237.3 221.2 221.9 213.9 214.9 221.9 232.0 219.2 220.3 237.9 205.4 217.8 225.6 206.9 220.9 237.7 216.5 219.1 230.7 216.1 205.0 219.7 190.1 217.7 222.6 211.5 221.5 234.7 209.0 217.5 227.7 201.0 220.7 231.5 211.0 221.3 235.2 213.3 231.0 242.9 231.1 213.5 232.4 207.4

102.4 113.6 113.1 105.6 93.8

101.2 108.9 116.0 104.0 104.4 115.1 97.1

104.5 108.5 101.5 99.2

116.6 99.7

105.5 115.3 101.9 93.4

103.2 85.6

104.0 105.0 96.7

107.4 115.3 98.4

102.4 113.4 90.4

109.0 120.2 99.9

106.2 118.6 101.2 116.1 128.6 119.1 98.6

112.0 98.4

80.0 81.0 79.0 79.0 79.5 79.0 80.0 83.5 79.0 79.5 80.5 78.5 80.5 81.5 81.0 80.5 82.0 81.5 80.0 80.5 80.0 79.0 80.0 79.5 80.0 82.0 79.0 80.0 81.5 83.0 81.5 85.5 80.0 82.0 85.0 82.0 85.5 86.5 85.0 84.5 87.0 85.5 81.5 84.0 84.0

84.0 85.0 82.0 81.5 82.0 82.0 83.5 86.0 82.0 83.0 82.0 82.5 83.5 83.5 85.5 85.0 85.0 85.5 82.5 83.0 83.0 82.5 83.5 83.5 83.5 84.0 83.5 84.0 84.0 85.0 85.5 88.0 84.5 84.5 86.0 86.5 88.5 89.0 89.0 89.0 89.0 88.5 85.0 86.0 86.5

4.0 4.0 3.0 2.5 2.5 3.0 3.5 2.5 3.0 3.5 1.5 4.0 3.0 2.0 4.5 4.5 3.0 4.0 2.5 2.5 3.0 3.5 3.5 4.0 3.5 2.0 4.5 4.0 2.5 2.0 4.0 2.5 4.5 2.5 1.0 4.5 3.0 2.5 4.0 4.5 2.0 3.0 3.5 2.0 2.5

(o

ro

Page 222: Triple testcross analysis to detect epistasis and estimate ...

213

m O o O O in o in in in o o in in in O o o O in O O in O O o o o in in o in o o o in O in o O in o in tn o N rsS in tg OJ m CM m w d Kl N rn CM Kl rn rn >» m OJ m CM rn rn d (0 m sf ro ru OJ •- rn C*J rn m rn CM CM in in e o in in o in in in o o in in in o O in in in o o in o o in o o tn in o in o o o tn o tn o o in in in in o in 00 oi m 00 s CO in ro 00 00 in CM 00 00 in oo in 00 :SSSS rn 00 in 00 CM CO CM OO tn oo N* in Q CO in in oo 00 CO oo in ^ 00 » m tn 00 00 CM CO in CO CO CO in 00 in 00 m oo in CO o in o o in o o o o o o O O o o o o in in o o o o o o in o o o o o o o o o o o o o o o in o o o s OJ oo CM 00 4

in CO CM pa CO ^ SK CM 00 in 00 d in 00 oo s in oo 00 CM OO R 00 in 00 SK rn 00 CO oo rn CM CO CO in «o 00 « rn CM 00 CO m d CO Oo CM Ni CO d CO m CO cS CO m CO CM OO o CO CM CO in -st CO o

CO fO rw in N- 00 in in «0 o T- «r— •4' o O; sf K in N. m Oo •- CO tn oo »- OO *— •- Oo >o o O T- m (M o in o s

«o o CO in O o oo in O 00 m o

tn oo CO o fn (M m o «— tn o d *o o

>o o

•>* Oo 00 o

d CM o o d n! O' d *- CM t— *— CM

o* o oo ho! O Oo oO o o^ d o

to o d d r- O

r\i CM tn o M tn o o r\j o >o *o o o *0 00 h- m m in in CO tn oo N3- O o N. Oo in CM •si* Oo CO ^

rsj in CM C\J

CM O CM o CM CM Kl CM

CO o •-CM CM (> 00 CM CM

in CM CM

*o O CM CM CM rn N* (M CM

fs! CM

o m CM tn CM CM CM

CM m CM o CM N in CM CM

o in ^ CM

CM in CM o CM CM tn *o CM m CM CM

to O CM CM CM ^ d m CM CM CM

^ d *— CM CM CM in o CM

•O o CM rn sa? CM O CM CM

o! CM

CO CM CM CO r3

rn CM

d d CM O CM CM

o o O O O o o O o O O O O O O o o O o o o o o •- o o o O O o o O o o o o o CM o o o o o o o O CM o o o o O O CM O o o o *— O O o o O o O o O O O O O o O o o o o o O O o o o CO o o o o o d d d CM O d CM d CM CM d o CM d CM CM d d d CM d d CM d d d d d d d d d d d CM

o m o o o o o o o o ^ o o o m CM o o o o «- CM o o O CM o CM o vT O m o CM o •o o m o m o CM O O o o o O CM o o m o O O •— in o o m CM p o h» CO o o CM o o CM o sf o s» o m o o p o r- CM

CVJ o CM o o %o CM CM CM d •»» CO oO NJ- CM CM CM d d >» >d d CM CM sC St >6 CO CM Sf CM Sf OO d d d

o r\j o o o o o o o o o o m o o o o o O o o o o o o o o o o o o o o o o CM O o o o o o o o O o O o O CM o o o o o o o o o o o o o o o o o o o o o o O o o o o o o o o o o

o o o o o o S* o o o o CM O d d o d d d d d d d •»» o o o o d d d d d d d d d o o d d d d d CM d d d d d

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o •-o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o T- O *- «- «- •- •-

o <3 o o CM o s s s o o in o o» o in o o in in o N. o o tn o o >o o CM o o oO o in o in o o >3- m o o m CM o o o o o •- m o o in oo o o O CM o h- o m o o «0 Oo o CM o CM o in o tn o o CM in

K5 CM 52 •s* CM rn •— in m •»» s! m «o CM >t in OJ in rn in o6 *—

m T— V CM rn in «— *— CM •»* •— «— CM sO rO in •-r-

in CM rn tn CM «—

o «4' o fO o o o nJ- o o CM O o o •- !>»- o CM o m o o CO m o o o o o o o o vT o in o oo o o Kl O o o CM o o oo o o m o o o •O Oo o o *- OQ o in o >a o o m *- O in g o oo o o o >o o

in «o •—

*6 CO tn in *o **"

«o oO ir~

in CO d *o CO <r» w— CO O in «-• in in •— r-

oQ in *— tn NO to in in IS! d d

O oo o e s o o o o o oo o o CO o o CO o o o o o o o o o N- o o o rv. o "O O CM o o O O* o m

o h- o o «- o O o O CM o o O w- p o N> 00 O O CM *- o o o o o 00 o 00 o o o CO o o o o S o o o o CO *— CM tfm CM CM CM CM CM CM CM w— CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM

e o 00 o o o O' O O ^ h- o o Qs >0 o 00 O o p so N> o OS o o o 00 e s O CO o o o o 00 o o in *o o o Kl o o in -o o o ^ >o O O 0» tn o o in CO o in o >o o o o >o o CO o >»

O r««- O O 00 ->«-CXJ (M CM CM CM CM CM CM CM CM rn CM CM IM CM CM CM CM CM CM CM rn CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM

o m o o O o o CM g O O in O O N- m o tn o o o >o O tfo o CM O O in O CM g o CO O in o m

o o o *0 •vj' O o ««0 •N* o o tn m O O O •>* O O o in o o in N. o m

o ^a-

o o «0 CM o oO o O o O O O nj- in

st in •va­ •»# Nj- in s# m >* ^a• >» •sa­ >*

CO Kl in IM m •- o h. N* (M in Oo 00 r>^ CO h- in oo •- CO CM in CO in m m ^ «- rn m CO m N. in in in «- o m oT CM Ch N! CM in in rn in in CO in in «o CM d «o m "O in in CO CM m CM tn tn IS

in «o CM CM in >}• ^ T— CM CO >o m Ch. in tn m m in N. m «— t—

in Os CM >T *— T— CM d m >3- m •.»

*— sf CM CM tn d Oo

U. B73

H

oi 7

u. 873

Ho

i 7

F1

873

Ho

i 7

U. c CO

r^ O E u. B

73

Ho

i 7

R CO Ho1

7

1^ 873

Ho1

7

u. B73

N.

X U> 873

Ho

i 7

^R U_ CO

N-^ r-X u. 87

3 H

oi 7

^R U. CO Ho1

7

u. 873

Ho

i 7

11. R CO Ho

i 7

u. 873

Ho1

7

9390

1 93

901

9390

1 93

902

9390

2 93

902

9470

1 94

701

9470

1 CM O m o 94

302 90

6E6

Z0EV

6

9390

6 93

906 o m

9430

1 94

301

8910

1 89

101

8910

1 94

303 m o m •Nf

Ch 9430

3 94

304

9430

4 94

304

8910

7 89

107

8910

7 90

303

9030

3 90

303

9150

5 91

505

9150

5 90

703

9070

3 90

703

9230

2 92

302

9230

2 92

703

9270

3 92

703

«o rvi OJ N. CM CM

CO CM CM o CM CM

o rn CM CM m m CM CM

m <<r m m CM CM

tn m CM o m CM

h- CO fn m CM (M Oo m (M

o CM CM

CM vT CM m •J-CM CM

in >4-CM '«4' CM h-•»* CM

CO NT CM Oo o in CM CM

f- CM in in CM CM tn I* tn in CM CM

in oC in tn CM CM h. CO in tn CM CM

o in >o CM CM CM CM oO CM

ro -t CM CM

in CM

o oO CM N. O CM

00 •o CM

Oo o oO fo. CM CM

o m o CNJ

o in o CM

in o CM in o CM

O in o CM

^ o« tn tn o o ru CM

•— in in o o CM CM

o in o CM

in o CM in in o o CM CM

o in o CM

Oo tn o CM

O in o CM

Oo tn o CM

Oo in o CM

o> in o CM

Oo in o CM

Oo in o CM

O in o CM

Oo in o CM

Oo «— in in o o CM CM

Oo Oo in in o o CM CM

O o tn in o o CM CM

0> Oo in in o o CM CM

o> in in o o CM CM

O Ch in in o o CM CM

Oo tn o CM

O in o CM

o o» *-• *— tn in o o CM CM

O' tn o CM

o> in o CM

O tn o CM

c^ tn o CM

Oo Oo in m o o CM CM

Page 223: Triple testcross analysis to detect epistasis and estimate ...

214

<0 •o

>. -g

a •v. o>

•M (A 01

41 ds X

L. *•» c

o o o in in o in o o o o m o O in o in o tn in O in o o m o in o in in (>J rA oj fO cO ro CM nj CM ro ro ro cO CM N* fO lO sr ro ro ro ro c\i cv ro " '

in in in in o o tn o o in o tn in o in o in o o in o in in in o o m o o tn in CO S & CM 00 in

00 CM CO CO S 3 c8 a s

in CO in CO ei tn CO in CO s

CM CO ro CO ro CO

CM 00 3 CM CO s ci 3

in in in o in o o o o in o o in o o o o o in o o o in in in o o o m o s

ro in OO CO R CM 00 o CO 00 S o8 s s s ro OO o CO ro 00 o 00 5 ni CO o 00 N. s s R CM 00 00 CO N. 00 <«o CO CM N. CM OO CM K in o« CM N. in «- Oo 00 CM in CM <o in O r—

«— CNJ ^ «— CM o> 1

9 K S si w— ed in

•— CM in f- o ^ •" 1

CM O

N! a s

CM O

ro o i in <y ro o> nj <y O o c> cd o

(M fXJ 00 ro N. in 9 h- ro o CM CM CM 00 in o •J- «-

CM (\J 00 fO f\J CM CM

o CM

in sis *- CM CM *-

00 CM ro CM CM

Ch CM CM CM

ro CM

od o CM

CM

CM «— CM 1 CM

od *— CM

CM O CM

O o CM

od o CM 1

CM o CM

in o CM

in o CM

in o CM

rs! o CM

o CM

O o O O O O o T— o CM

o o o •- O O o o o o o o O O O O o o o o O o O o o o O O O o O o o o O o o O o O o o O O O O o o O O o ro o o o o o o o o o o o o o o o o o o o o o o o o o o

o O O CM Nt O CM o o o o c:> o o o o o o O o o o o CM o o CM O O o o NO o o o o o o o o o o o o o

o o p •»* N. O ro o «o O O ro ro o o

CM Ch o o ««»ro o o

CM O o o o ro o o o o o O o o «— o o o O ro o

ro o *— O O O

CM o o CM O

o o o CO

o o o in o o o o o o o o o o o o o o o o o o O o CO 00 00 st yr- 00 "O ^ o o «o o o CM od CM CM CM o "O CM C4 CM ^ O o CM o CM o o o o o o o in o o

o o O O O O o o o o o o o o O O o o o o *- o o o o o o o o o o o o o o o o o o o o o o o o o o o o O

CM O o o «-• o o o o o o o o o

CO o o o o o o o o o o o o o o o o o o o o o o o o

o o o o o o o o o CM O o o o o o CM o o o o o o o o o CM o o o o CM o o o o o o o o o o o o

o o o o o o o o o o o o o o o o o o o o o o o o o o o O o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o O o o o o o o o o o o o o o o o in o

o o o o o o o o o o o o o o o o o o o o O o o o o o o o o o o o

o o o o o

CM o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

r- *— *— *— r— *— «— *- «— •- *- *- *—

O c^ O o O CM

o CO o o o o CM ro p o ts. CO o p ro rv. o o ^ o o CO

o o o o in o CM

O o o

o CO o o* o sr o fs. o ro o in o vO o NO o *— o o

CO o tn o rw o

o o ro o o o ON o o ro o o

GO CO o CO

o in o o CO NO

ro "O nj to CM tn CM •>* in ro ro tn ro ro ro in N ro CM in ** ro -J- "6 ro in Od ro NO CM ro NO CM ro CM •N* in CM

o o o o O 00 o 00 o » o o CO o o o ro o o o o o of in o ro o ro o

in o '>0 o o o fw o >o o o o o o o o «o o ro o o

CM o o in CM

o CM

o CO

o CM

o 00 o CM

o ro o NO

o o o o in ro o *— o CO

o o ro CO •-*

Ni in >d m «o rC^o ed >6 t-" od "O in >6 in in in in «-•

•J" cd ^ ro NO *—

in ro N! in ro NO in CM NO

o ro o o

CM O o ro o

CM o o o* ro o o

CM *-o o in •— o o o o o o o ro o

Ch o ro o o» O O

o o o o> o o o o o o CM

o ro o >3- o

CM o CO

o o o in o in o NO o tn o in o in o CO

o in o o NO CM

o in o in o o CO in OJ (M nj CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM «-• CM Ifmm • •

«— «—

o in o o ootn o O N. o o •«» p O ro O O '»» "O o o in tn g o •J- o ST

o o m O in o o o in o O GO

o in O N. o <3 O >o o sS- o NO

o o in r^ o CO g o h- o o o

NO o CO

o CO o '•O o o CO OO

o fN- o 00 o o CO in ru CM CM CM CM nj CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM (M CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM

o 60 o o <> o in O 00 o o

CM o o CO sr Sg o o in in S o -o O

CM s o vT o •<r O "O o

CM O O CO o •NT O

CO O OO

o o O tn o fO o o in nj- o CM o o ro o

•NT O o o ro O NO

o o o o ^ o» o o o CM

o o in o sT •<r •vj- •»» «» •sj- •N* HJ- ^a' N.* ro •NJ* •»*

ro in O o« in in in in N. fN. o o ro CO ro ON m ro ro ON ro 00 00 o ro CO o 0^ 00 in in tn ro in ro tn R od ro ro •N* «r- vn

NO ro NO *-•

ro in tn 5

O NO ON •sa- in *— in ro in ro in in in to o ro ro in o >» Ch CM

CM •N» CO CM ro >o in in •N* o in NO ro o >o

ir~

CM o SP o o cd o

sj" cd o

CM CO in CO ro in >*• IP •>0 od CM On b- 0 0 0

««•

- R ' S ^ R ' S ^ R " 5 ^ R o - R ' 5 ^ R " 5 ^ R " 5 ^ R " 5 ^ R ' S ^ R o ^ P " 5 - P o - R o - P o r - R o u.cdx^cszu.(nxu.cdx^qqzu.eqxtfettx^fioxu>cozta«caz^cazt^a3xt^gdzu.cazu.gax

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o m^^mk>mwkiwr<ikik>fomki^r-^oj(\irxi^^w—^y^-n^oooeocococoeocolninmadcococof* — o*o^oo.o«o«o^o*<>^c>o><>^oo»o*o*o>o*o^o»o»o^o*o^o»o^o^eoeococoeoooo«o«o»sjcococo<

in N. fi ON 0 CM ro •»» in NO N- CO 9* 0 CM ro Vj" in •o N. CO 0* 0 CM ro m CO n CO CO on Oo on <y 0 0 0 o» 0 On 0 T— CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM ro 0 o on on 0^ 0 on o> 0 o« 0^ o> On 0 on ON 0 c^ on 0 on 0 0 on c>> 0

«— *— *— tn in tn in in in in in tn in in in in in in tn no no no no NO nO no no nO nO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CM CM CM CM CM CM CM CM CM CM CM fVJ CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM

Page 224: Triple testcross analysis to detect epistasis and estimate ...

Table D5. continued.

Env. Entry Hale Tester YD ED CD

g/plant cm cm

KD EL RN EP BP RL SL DE PH EH AN SE SD

cm cm no. no. % X X X cm cm days days days

20619 16 95904 F1 97.8 20619 17 95904 B73 67.0 20619 18 95904 Hoi 7 110.8 20619 19 88703 F1 92.3 20619 20 88703 B73 105.8 20619 21 88703 Hoi 7 85.4 20619 22 88704 F1 113.3 20619 23 88704 B73 99.8 20619 24 88704 Ho17 80.0 20619 25 228714 F1 97.5 20619 26 228714 B73 103.3 20619 27 228714 Hoi 7 111.3 20619 28 89102 F1 113.5 20619 29 89102 B73 75.0 20619 30 89102 Hoi 7 131.5 20619 31 89103 F1 73.5 20619 32 89103 B73 81.2 20619 33 89103 Hoi 7 97.5 20619 34 89104 F1 117.9 20619 35 89104 B73 129.5 20619 36 89104 Hoi 7 94.0 20619 37 89105 F1 86.3 20619 38 89105 B73 97.0 20619 39 89105 Hoi 7 95.8 20619 40 229115 F1 99.8 20619 41 229115 B73 89.8 20619 42 229115 Hoi 7 91.8 : 20619 43 89501 F1 110.3 20619 44 89501 B73 99.8 . 20619 45 89501 Hoi 7 116.3 ' 20619 46 89502 F1 126.5 ' 20619 47 89502 B73 113.4 . 20619 48 89502 Hoi 7 83.9 : 20619 49 89503 F1 100.0 ' 20619 50 89503 B73 115.0 . 20619 51 89503 Hoi 7 107.9 1 20619 52 231916 F1 114.3 . 20619 53 231916 B73 87.8 • 20619 54 231916 Hoi 7 132.5 ^ 20619 55 229524 F1 104.0 < 20619 56 229524 B73 100.0 ' 20619 57 229524 Hoi 7 107.5 i 20619 58 89506 F1 122.5 < 20619 59 89506 B73 112.8 1 20619 60 89506 Hoi 7 111.5 '

4.10 4.10 4.00 4.00 4.30 3.90 4.10 4.20 3.70 4.10 4.50 4.10 4.40 4.30 4.30 3.90 4.30 4.00 4.00 4.60 4.00 4.00 4.20 3.90 4.10 4.50 3.90 4.20 4.40 4.10 4.30 4.40 3.70 4.20 4.40 4.00 4.30 4.30 4.20 4.40 4.60 4.00 4.50 4.60 4.00

2.80 2.90 2.50 2.70 2.60 2.40 2.50 2.80 2.50 2.50 3.00 2.80 2.70 2.80 2.70 2.30 2.80 2.40 2.60 2.70 2.70 2.50 2.70 2.40 2.60 2.80 2.50 2.70 3.00 2.50 2.60 2.70 2.30 2.60 2.70 2.40 2.70 2.60 2.60 2.60 3.00 2.60 2.80 2.80 2.60

1.40 1.20 1.50 1.40 1.70 1.50 1.60 1.50 1.20 1.60 1.50 1.30 1.70 1.50 1.60 1.60 1.50 1.60 1.50 2.00 1.40 1.50 1.60 1.70 1.60 1.70 1.40 1.60 1.50 1.60 1.70 1.70 1.50 1.70 1.70 1.70 1.60 1.70 1.60 1.80 1.70 1.40 1.70 1.80 1.60

14.80 13.30 17.50 14.80 14.10 16.20 16.60 14.90 15.80 14.60 13.70 17.30 15.90 12.50 17.30 13.90 13.00 14.50 15.70 15.10 17.00 14.10 14.50 17.00 15.50 13.90 16.50 15.70 14.30 17.40 16.90 14.80 15.20 15.30 14.50 16.10 15.30 13.60 17.60 14.60 14.30 16.50 15.90 13.70 16.90

14.00 15.30 12.60 14.10 15.80 12.50 13.00 14.80 11.50 13.20 14.70 12.60 14.10 15.30 13.40 13.10 15.10 12.20 13.40 15.50 12.00 13.90 13.90 12.10 13.60 15.00 12.20 13.40 14.40 12.10 13.30 15.10 11.60 14.40 15.40 13.00 14.70 16.30 12.90 14.40 16.50 12.30 14.30 17.10 12.60

1.00 0.80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.20 1.00 1.00 1.00 1.00 1.00 1.00 0.90 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 1.00 1.00 1.00 1.00

0.0 25.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10.0 0.0 0.0 0.0 0.0

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.80 0.00 0.00 0.00

2.40 0.00 0.00 5.10 0.00 0.00 0.00 2.10 2.10 2.20 5.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.00 0.00 2.70 0.00 0.00 0.00 2.10 5.20 0.00 0.00 0.00 0.00 2.40 0.00 0.00 0.00 2.40 0.00 0.00 0.00 0.00 4.40 0.00 2.10 4.20 2.30 5.00

0.00 2.30 3.00 0.00 2.40 0.00 2.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.50

H

Page 225: Triple testcross analysis to detect epistasis and estimate ...

Table D5. continued.

Env. Entry Hale Tester YD ED CD KD EL RN EP

g/plant cm cm cm cm no. no.

20619 61 89507 F1 110.3 4.40 2.70 1 .70 15.70 14.60 1 .00 20619 62 89507 B73 91.3 4.30 2.90 1 .40 13.60 15.50 1 .00 20619 63 89507 Hoi 7 106.1 4.10 2.60 1 .60 17.60 13.30 1 .00 20619 64 89901 F1 117.1 4.40 2.80 1 .60 16.30 14.30 1 .00 20619 65 89901 B73 126.3 4.50 3.00 1 .60 15.60 15.90 1 .00 20619 66 89901 Hoi 7 110.7 4.00 2.60 1 .40 16.70 12.20 1 .00 20619 67 89902 F1 124.0 4.40 2.80 1 .70 14.90 14.00 1 .00 20619 68 89902 B73 113.7 4.50 3.00 1 .60 13.20 16.00 1 .00 20619 69 89902 Ho17 92.5 4.10 2.70 1 .50 16.20 13.00 1 .00 20619 70 89903 F1 127.6 4.40 2.70 1 .70 15.70 14.50 1.00 20619 71 89903 B73 140.6 4.50 2.60 1 .90 14.80 16.00 1 .00 20619 72 89903 Hoi 7 80.3 3.80 2.40 1 .40 14.20 11.70 1 .00 20619 73 89904 F1 101.6 4.20 2.60 1 .60 14.90 12.80 1 .00 20619 74 89904 873 124.7 4.40 2.60 1 .90 14.90 15.20 1 .00 20619 75 89904 Hoi 7 81.5 3.70 2.40 1 .30 15.20 11.30 1 .00 20619 76 90301 F1 116.8 4.30 2.70 1 .60 15.40 14.30 1 .00 20619 77 90301 B73 123.8 4.50 2.80 1 .80 14.50 16.10 1 .00 20619 78 90301 Hoi 7 87.8 3.90 2.50 1 .40 15.50 12.40 1 .00 20619 79 90302 F1 108.2 4.20 2.80 1 .60 15.60 14.00 1 .00 20619 80 90302 B73 89.3 4.10 2.80 1.30 13.30 15.60 1 .00 20619 81 90302 Ho17 123.8 4.20 2.90 1 .40 17.80 12.90 1 .00 20619 82 229921 F1 120.0 4.30 2.80 1 .70 15.80 13.90 1, .00 20619 83 229921 B73 92.8 4.10 2.70 1 .50 13.60 16.00 1 .00 20619 84 229921 Hoi 7 111.3 4.40 2.70 1 .70 17.10 13.70 1 .00 20619 85 230323 F1 117.9 4.40 2.70 1 .70 16.00 13.90 1 .00 20619 86 230323 B73 107.1 4.30 2.80 1 .50 14.20 15.10 1, .00 20619 87 230323 Ho17 103.9 4.00 2.50 1 .50 16.70 11.80 1 .00 20619 88 226720 F1 91.3 4.30 2.70 1 .70 14.00 14.50 1, .00 20619 89 226720 873 138.1 4.80 3.00 1 .90 15.60 15.90 1 .00 20619 90 226720 Hoi 7 114.3 4.10 2.70 1 .40 17.40 13.10 1.00 20619 91 90306 F1 118.6 4.50 2.80 1 .70 14.90 14.00 1, .00 20619 92 90306 873 114.8 4.50 2.70 1 .80 13.70 15.60 1.00 20619 93 90306 Hoi 7 106.0 4.10 2.50 1 .60 15.20 12.60 1, .00 20619 94 230322 F1 105.7 4.30 2.80 1, .50 14.10 13.70 1.00 20619 95 230322 B73 120.3 4.50 2.80 1 .80 13.90 14.70 1, .00 20619 96 230322 Ho17 115.7 4.10 2.40 1 .70 16.20 12.70 1, .00 20619 97 230701 F1 115.1 4.40 2.60 1, .80 14.90 13.90 1.00 20619 98 230701 B73 124.8 4.50 2.80 1, .80 14.10 15.50 1. .00 20619 99 230701 Hoi 7 120.9 4.10 2.60 1, .50 16.80 12.60 1. .00 20619 100 231103 F1 103.6 4.20 2.70 1, .50 15.70 14.20 1. .00 20619 101 231103 B73 103.2 4.40 2.80 1, .70 14.60 15.20 1, .00 20619 102 231103 Ho17 117.3 4.10 2.50 1, .60 17.90 12.30 1, .00 20619 103 232306 F1 98.1 4.20 2.60 1. .70 13.80 14.50 1. .00 20619 104 232306 B73 105.6 4.40 2.70 1, .80 13.60 15.80 1. .00 20619 105 232306 Hoi 7 96.4 4.00 2.40 1, .60 16.10 12.60 1. .00

BP RL SL DE PK EH AN SE SD

XX X X cm cm days days days

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0

0.00 0.00 o.oo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2.80 0.00 3.60 ^>.20 0.00 0.00 0.00 2.40 2.30 0.00 0.00 0.00 4.60 0.00 2.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.20 0.00 2.20 0.00 0.00 0.00 0.00 0.00 0.00 2.40 4.20 2.10 0.00 2.20 0.00 0.00 0.00 2.10 0.00 0.00 2.50 2.20

0.00 0.00 3.60 0.00 0.00 0.00 2.10 0.00 2.30 2.40 0.00 4.20 0.00 0.00 8.20 0.00 0.00 2.10 0.00 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.20

Page 226: Triple testcross analysis to detect epistasis and estimate ...

Table D5. continued.

Env. Entry Hale Tester YD ED CD KD EL RH EP BP RL

g/plant cm cm cm cm no. no. X %

SL DE PH EH AN SE SD

X X on cm days days days

20619 106 231905 F1 112.4 20619 107 231905 B73 117.8 20619 108 231905 Mo17 116.1 20619 109 231104 F1 120.7 20619 110 231104 873 109.9 20619 111 231104 Hoi 7 104.7 20619 112 91101 F1 100.7 20619 113 91101 B73 91.0 20619 114 91101 Hoi 7 106.8 20619 115 232707 F1 107.4 20619 116 232707 873 106.6 20619 117 232707 Ho17 117.3 20619 118 91103 F1 118.1 20619 119 91103 B73 96.3 20619 120 91103 Hoi 7 104.0 20619 121 91104 F1 120.6 20619 122 91104 B73 126.5 20619 123 91104 Ho17 116,2 20619 124 226309 F1 111.9 20619 125 226309 B73 104.9 20619 126 226309 Hoi 7 110.9 20619 127 91501 F1 112.5 . 20619 128 91501 B73 113.4 20619 129 91501 Hoi 7 114.8 20619 130 91502 F1 118.3 ' 20619 131 91502 B73 137.4 . 20619 132 91502 Hoi 7 121.7 • 20619 133 91503 F1 134.3 ' 20619 134 91503 B73 109.5 ' 20619 135 91503 Hoi 7 100.7 ' 20619 136 91504 F1 115.2 ' 20619 137 91504 B73 95.1 . 20619 138 91504 Hoi 7 92.2 : 20619 139 227110 F1 110.8 . 20619 140 227110 B73 104.2 ' 20619 141 227110 Hol7 114.2 ' 20619 142 91901 F1 96.1 ' 20619 143 91901 B73 115.5 ' 20619 144 91901 Ho17 113.8 ' 20619 145 91902 F1 125.8 ' 20619 146 91902 B73 138.0 ' 20619 147 91902 Hoi 7 112.0 1 20619 148 91903 F1 105.6 : 20619 149 91903 B73 127.8 i 20619 150 91903 Ho17 80.6 ;

4.30 4.40 4.00 4.40 4.50 4.00 4.30 4.40 4.10 4.20 4.30 4.20 4.30 4.30 3.70 4.40 4.60 4.00 4.30 4.20 4.00 4.30 4.40 4.10 4.20 4.60 4.00 4.40 4.30 4.00 4.50 4.40 3.70 4.30 4.40 4.10 4.20 4.50 4.00 4.20 4.80 4.10 3.90 4.40 3.50

2.60 2.80 2.50 2.70 2.80

,40 .90 00

.60

.70 2.90 2.70 2.70 2.70 2.50 2.70 2.70 2.40 2.60 2.80 2.60 2.70 2.90 2.60 2.70 3.00 2.50 2.70 2.90 2.50 2.70 2.90 2.40 2.80 2.90 2.60 2.60 3.00 2.50 2.90 2.80 2.50 2.50 2.80 2.30

1.70 1.70 1.50 1.80 1.80 1.60 1.50 1.50 1.60 1.60 1.50 1.60 1.70 1.60 1.40 1.70 1.90 1.60 1.70 1.50 1.40 1.70 1.50 1.50 1.60 1.80 1.50 1.70 1.60 1.50 1.80 1.70 1.40 1.60 1.60 1.60 1.60 1.70 1.60 1.30 2.00 1.70 1.40 1.70 1.20

15.80 14.40 17.90 14.80 14.50 16.50 14.10 13.20 16.30 15.50 14.10 16.90 15.20 13.00 16.70 15.40 14.20 17.30 14.30 14.10 16.80 15.50 14,80 16.70 14.90 14.30 16.90 15.40 13.90 15.00 15.10 13.40 16.20 14.00 13.10 16.00 14.20 13.90 17.00 16.50 14.50 16.30 16.20 16.20 16.00

14.00 15.80 12.70 13.80 14.90 11.90 14.90 16.70 12.90 15.40 16.60 13.10 13.60 15.20 11.40 14.00 16.20 12.40 14.10 16.00 13.30 14.10 15.40 13.00 13.30 14.70 11.90 14.10 15.60 12.70 14.40 15.60 11.90 15.00 17.00 13.00 13.80 16.30 13.30 13.90 16.60 12.70 12.00 13.90 10.90

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.00 1.00 1.00 1.00

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2.10 0.00 2.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10 3.10 8.60 0.00 7.20 0.00 0.00 0.00 2.20 0.00 0.00 0.00 7.80

00 10 00 00 50 00

2.40 0.00 0.00 0.00 0.00 0.00 2.30

0.00 0.00 4.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.80 0.00 0.00 0.00 0.00 0.00 0.00 2.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Page 227: Triple testcross analysis to detect epistasis and estimate ...

218

S

•s

o a» !q

m •d

>> o T3

a ol

4-> co «» h-« (0 z

L. •j c

o o o o o o o O o o o o o o o o o o O o o o o O o o o o o o O o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o 00 o o o o o o o o o o o ro o o o o o o o o o d o d CM d o o d d d M d d o o d d d d d d d d CM d d d d d d o o d d d CM d d d d d d d d d

o o o O o o o o o o O o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o CM o IM o o o o o o m rvi in o m o «o o o •o o o o o o o o o o r- o o o o o ro o o o o >* o r\j o o o o o o •sj- CM -J- o CM o tn o o CM ro o o o o o o o CM o o (M CM o d o d d in d CM CM d d

o o o O o o o o o o o o o o o o o o o o o o o o o o o o o o o o o O o o o o o o o o o o o o o o O o o o o o o o o o o o o o o o o o o CM o o o o o o o o o o o o o o o o o o o o d d d d d d d d d d d d o o d d d d d d d d d d d d d d d o d d d d d d d d d d CM d d d

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o d d d d d d d d d d d d d o d d d d d d d d d d d d d d d d o d d o d d d in «r- d d d d d d d

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o 4 o o o o o o o o o o o o o o o o o o o o o o o o o* o o o o o o *"

<i~ *r- «>* *- •- •- *—• •- *- *- '- d *-•

o o o O O o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o to >*• h" o rvj >o CM in in CO CO *— h. 00 o> CM h- o 'O CM 'O S3 N* o o CM •o 00 CO in ro CM ro aa CM m h-in "O fO in tn K) "O CM y) m ro •»r CM in CM >6 CM in CM in N! fO ro in in s! ro in CM N* ro in CM vO IM *" •— V r- IT" «- «— *•

o o o O o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o f \ j N" CO m o N. CM rn in in •o 00 rvj m in CO (> CM CO o o o tn »o ro ro in in »«- h- 00 ro oo in o N. CM in ro >6 CM CM ro in »o tn in ro N! in in >» in •»* ro S3 in in ro in CM X* «.» in •N* «o >o «— •—

*" r— *" r- •*• «-

o o o o P o o o o o o o o o p O o o o o O o O o o o o o o o o o o o O o o o o o o o o o o in f*** >* M 00 ^a 9> >r CO «o •« M o CO ro in o CO •o in h- 00 CO N. in n o o in (> in in >0 S3 • • • • • • • t • • • • •

•— *— (M •— CM •- *- «- T— CM *• CM *—

o o

o o h.

o 00

o S9

o o 00

o in

o 00 g s

o S3

o o* o S3 s

O Oo o in

o S3

O o

O O

o CO

o h- g O

C o CO

o N.

O O Ch O in

o a*

O O O OO

o O o

O ro

o CO

o CO

O in s

o o o O S3

o o o in

ro CM CM CM CM CM ru CM CM CM CM (M CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM ro CM CM CM CM (M CM CM CM CM CM CM ro CM

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o m<ofm»~m^o>^oo>*'0*-««*^k»irvinh«.inh«.cocm>o^ro>ofoon.»o^n.*ofo>^ro«»*r»-mrvjcooo*oo^

kj^«»^co>i'k)n-^ocomeo^ki*--»*eoo*oro'»tcoocvj^inr\jo» o CO O CO O" »- o ro o -NJ- ro CM a»

ro CM CM ro CO o CM

ro CM *—

CO o

oo ro CO o tn h.!

IT"

ro ro -st 0>

i^cdxu.c09cu.cax^aqzu.mzt^cqxu.cqx^caxu.caxu.caxll.cqxi^cqz<^cdxu.c0xlkcqz

o o o o o o ^ ^ ^ o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o |alaiair>|nin^<>.o^rnkikifornk>kifnrnfornkik>f<»kikik»ror«-.n.n.rwr»-is.o^o»o»h-h»k.in4oinn.rs.n. iM tNJ OJ r>J <\l f\J (MfMCNJ OJfMCM

•-cmkl««.»m^s.cooow-f\jki'4'ir> <9 a O CM h-

T- *—

C> o» *— r~ S3 S3 «o S3 <3 o O o o O O CM CM CM CM CM CM

r gr r -s & o CO 00

CM CO

ro CO 60 00

*—

O a< o o o o> o O Os O CM

o o CM CM

o CM

o CM

o o CM CM

o o CM

o CM

o CM

o CM

Zo o o CM CM

Sn-coo*o^c\jfo«^iri ooooeoo^c^^o^o^o'

Page 228: Triple testcross analysis to detect epistasis and estimate ...

rvj ro ro ro ro ro ro ro ro ro ro ro ro ro ro r\j ro ro ro ro ro ro ro ro ro rv> ro ro ro ro ro rvj ro ro ro ro o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o» c> o* o- o o o o o* o o c^ o o- ON ON Ok CN c^ On CXN C>N o« ON CN O" ON ON o —A •Jk _A wmk —A •.A ••A «A «A •A <o HO o •o «o "O «o •o <o "O •o *o NO o NO nO o NO o o NO 3 NO NO o NO "O o NO NO ro ro ro ro ro ro ro ro ro ro ro ro rv ro ro ro rvi ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro 04 UJ M M OJ ut UJ Ul ro fXJ ro ro ro r\> ro ro ro ro ••A o o o o o o O 00 •Nj o Ul M ro o •O 00 c^ Ul *N. Ul ro o 00 •sJ c^ Ul Ul ro o NO 00 -J Os Ul

•O NO «o o 'O 'fi :o :<> :o NO *o NO »o nO NO «o NO O -o o <o «o <o o NO o o «o NO M U4 Ul **• *»• *>• Ul Ul Ul Ul Ul Ul *«• Ul UJ Ul Ul Ul Ul Ul Ul Ul UJ U4 Ul Ul Ul Ul !S !S o U4 M U4 -o «o >o •o <o "O -si Ul Ul Ul •M •sJ •si Ul Ul Ul Ul Ul Ul o o o O o o o o o o o o o o o o O o o O o O O O o o o o o o o o o o o o o» a» o ro ro ro m* ro ro ro ro ro ro Ul Ul Ul Ul Ul Ul ro to ro Ul ut

X 00 z CO z 09 •n X CD T1 X CD -71 X 00 X CD •n X 00 tl X 09 Ti X 00 •n X 09 •n X 00 •n o a o a o SI o Di o a -* o a O _* a o ol O Dl •A o Dl

fliA o .A a •>1 •s •>J *s| ol ->l Dl Dl 's4 a

-* M* . •p* . > «A _Jk . •A . -»o 04 ro ro ro o O Ul •o ro ro ro _k o ro NO ro _d. Ul ro nO o ro o o nO o ro CO 04 ro o •Nj o Ul CO •s *«• <o ro ro <> NO ro *«• 00 c» Ul Ul 00 -s| Ul NO -»4 Ul Ul •ok O- 04 o. «o •o o 09 ro Ul «o CN o ro •sj ro UJ *S o ON 00 o o NO ro Ul b Ul <o bo

OJ 4> Ul Ul Ul is Ul *s Xs *»• *s is <c 1/1 *<• ro b o* Ul Lk b Ul Ul 'o b Ul b Ki 1A ^N. Vn. --g u ro is b b 1A ro ro ki Ul Ul ro ro 1^ o o o o o o o o o o o o o o o o o O o o O o O o o o o o o o o o o o o O

ru ro ro ro Ol ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro Ul ro ro ro ro ro ro ro ro ro ro l/i l/i oo •>j ro NO o* ->i o 00 NO •>1 ON 00 CD Ul 00 00 o» NO 00 -s| o 00 Ul ON ON b •o b •si 00 o o o o o o o o o o o o o o o O o o o o O o o o o o o o o o o o o o o o

r — -k — -4 «A •A -k -» -> _» MA _A -A lit --4 U! b b bv b b Ul b •N Ul Ul b b ro Ul Ul b to b b is b b -•J Ul

» ON Ul is O O o O o o o o o o o o o o O o o o o o o o o o o o o o o o o o o O o o

-» _» _j, •i^ «A «A . . •A . -sj ro o 1/1 M UJ Ul *»• M -g Ul Ul o Ul Ul *N. Ul cs UJ Ul Ul Ul 0^ Ul ON pk Ul >1 *«• M 1* o -si bv b fo b ro Ul VN. Ul b Ul u Ul b Ni 1A •A •A b b b k> Lfc 00 o •si -s| o o o o o o o o O o o o o o o o o o o o o o o o o o o o o o o o o o O O •A -» _» . >A ro <N vn OJ Ul ro UJ c^ JS ro Ul Ui *s to *N. Ul to Ul UJ ro Ul Ul ro Ul Ul ro In Lk ro 1* b Ul V- b -M b 1A b b i-b b *'0 1A b O •>* b b i" Ul 'o •Sj •si is Ul o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

-A r* — — — -k — -* -> -A -k -k -A -k -A o o o o o o o b o o b o o o o o b o o o O O o o o b b o o o o o o o o o o o o o o o o o o o o o o o o o o o o O o o o o o o o o o o o o o o o o

o o o o o o o o o p o o o o o o o o o o o o p o p o o o o o o o p p o p b b b b b b b b b b b b b b b b b b b b b b b b b b b b b o b o o b b o

o o o o o o o o o o o o o o o o o ro o Ul o o o o ro o o o o o o o ro o o o b b b b b b b b o b b b b b b b b Ul b b b o b o b b o o o o b * > o o o o o o o o o o o o o o o o o o o o o o O o o o o o o o o o o o o o o o o

o o o o o ro o o o o o ro o ro ro o o o «s o o «N> ro o Ul o to o o o o to o b b b o b b Ul o o b b b Ul 1a b b _A b o b b ro b Ul o 1A o o o o 00 o o o o o o o o o o o o o o o o o o o O o o o o o o o o o o o o o o o o o

p p o o o o o o IV) p o o ro o o *». o o o O o o o o o o p o o o ro o o o o o b b o o b o b o ro b o b 1a o b b b b b o b b o b o b o o o b -g o o o o o o o o o o o o o o o o o o o O o o o o o o o o o o o o o o o o o o o o o

1 1 / 4 m ru rv > i v • ^ ^ -si >00000

» ^ o 04 03

I ^ < * o <

6XZ

Page 229: Triple testcross analysis to detect epistasis and estimate ...

Table D5. continued.

Env. Entry Male Tester YD ED CD KD EL RN EP

g/plant cm cm cm cm no. no.

BP RL SL DE PH EH AN SE SD

XX X X cm cm days days days

20619 241 94301 F1 103.1 20619 242 94301 B73 102.7 20619 243 94301 Ho17 104.2 20619 244 89101 F1 121.7 20619 245 89101 B73 111.8 20619 246 89101 Hoi 7 127.5 20619 247 94303 F1 110.4 20619 248 94303 B73 116.7 20619 249 94303 Hoi 7 112.5 20619 250 94304 F1 122.3 20619 251 94304 B73 123.7 20619 252 94304 Hol7 119.4 20619 253 89107 F1 91.7 20619 254 89107 B73 129.5 20619 255 89107 Hoi 7 112.1 20619 256 90303 F1 118.6 20619 257 90303 B73 127.5 20619 258 90303 Hoi 7 100.9 20619 259 91505 F1 110.0 20619 260 91505 B73 118.0 20619 261 91505 Hoi 7 100.0 20619 262 90703 F1 121.3 20619 263 90703 B73 122.7 20619 264 90703 Ho17 92.0 20619 265 92302 F1 119.2 20619 266 92302 B73 115.0 20619 267 92302 Hol7 118.9 20619 268 92703 F1 105.3 20619 269 92703 B73 112.8 20619 270 92703 Hoi 7 90.1 20619 271 92706 F1 105.1 20619 272 92706 B73 113.4 20619 273 92706 Hoi 7 112.0 20619 274 93102 F1 112.3 20619 275 93102 B73 131.7 20619 276 93102 Ho17 105.2 20619 277 93504 F1 119.2 20619 278 93504 B73 139.1 20619 279 93504 Hoi 7 100.7 20619 280 93506 F1 107.6 20619 281 93506 873 107.4 20619 282 93506 Ho17 104.7 20619 283 93903 F1 108.7 20619 284 93903 B73 131.7 20619 285 93903 Hoi 7 121.4

4.00 4.10 3.70 4.30 4.50 4.20 4.30 4.40 4.00 4.40 4.60 4.10 3.90 4.50 3.90 4.50 4.70 4.10 4.30 4.40 4.10 4.20 4.40 3.80 4.30 4.50 4.00 4.10 4.30 3.80 4.10 4.50 4.00 4.40 4.70 4.00 4.30 4.70 3.90 4.30 4.30 4.00 4.20 4.50 4.10

2.70 2.80 2.60 2.80 2.80 2.60 2.50 2.80 2.60 2.80 2.90 2.60 2.50 2.80 2.40 2.80 3.00 2.60 2.80 2.90 2.60 2.70 2.80 2.40 2.70 2.90 2.60 2.70 2.80 2.50 2.60 2.80 2.50 2.80 3.00 2.70 2.80 2.80 2.30 2.80 3.00 2.60 2.70 3.00 2.60

1.30 1.30 1.20 1.60 1.70 1.60 1.80 1.70 1.60 1.60 1.70 1.50 1.40 1.80 1.60 1.70 1.90 1.60 1.60 1.60 1.50 1.50 1.60 1.40 1.60 1.70 1.40 1.50 1.50 1.30 1.50 1.70 1.60 1.70 1.80 1.50 1.70 1.90 1.60 1.50 1.50 1.40 1.60 1.60 1.50

14.70 14.00 16.60 14.90 12.60 17.30 15.10 15.00 17.50 15.40 14.30 16.50 13.70 15.50 17.10 14.00 13.20 14.60 15.60 13.50 15.90 15.80 15.50 16.50 16.30 13.30 16.30 15.10 15.20 15.20 14.60 14.50 16.60 13.30 13.80 15.60 15.00 14.10 15.80 15.20 14.30 17.20 14.50 15.10 17.70

13.30 15.50 12.30 15.10 16.90 13.70 14.80 16.40 13.10 14.00 15.80 13.60 12.70 15.00 12.00 14.30 16.90 12.80 14.70 15.70 12.90 13.20 14.70 12.00 13.80 15.70 12.80 13.50 15.00 12.10 13.80 15.30 12.70 13.70 15.70 12.70 13.80 15.40 12.20 14.90 16.50 12.80 13.10 15.90 12.10

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.00 0.00 0.00 4.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10 2.50 0.00 0.00 0.00 0.00 0.00 0.00 2.10 0.00 0.00 0.00 0.00 0.00 2.10 0.00 0.00

0.00 2.10 0.00 4.80 2.10 0.00 0.00 0.00 0.00 2.10 2.20 4.40 0.00 0.00 0.00 4.50 0.00 0.00 2.10 4.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10 0.00 0.00 0.00 0.00 5.00 0.00 3.00 0.00 8.70 2.10 4.90 2.30 4.20 4.20 0.00 2.40 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.30 0.00 0.00 0.00 0.00 0.00 3.00 0.00 0.00 4.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Page 230: Triple testcross analysis to detect epistasis and estimate ...

ro r\) ro ro nj ro ro ro ro ru ro ro ro ro tu ro ro ro •A 0 0* Os 0^ c^ 0 0 Oo Ch 0 0 0 0 -pj» <0 ^ >0 <0 •0 •0 <0 0 "O "O *0 0 0 <0 0 <0 >0 <0

ui ro ro fO ro ro ro ro ro ro ro _k ,, . . 0 00 •s 0^ U) KM ro —* 0 0 03 •Sj UI UI

ro ro ro 09 09 00 ro ro ro S? Q? 09 9 & & 0 <0 <0 9 >o 0 "O CO 09 09 S S 09 09 S S UI UI UI S m S •>4 -g -J •M •M <3 <0 <0 -si •si ->4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ro ro ro *«• UJ UI UI

Z 00 -n z 03 "Tl X m *T1 z 00 Tl Z CD •n z 00 Tl 2.a 0 D1 -* 0 Dl —* 0 Dt •** 0 DJ 0 Di

•s DJ Di

•>* . . 0 -» 0 0 ro UI ro ro ro ro 0 09 09 P" —* UI ro H5 4N UI UI 0 UI UJ «o UI M 0 nj OJ ro UI 09 •N UI bo ro

4>- iN *«• 4N 4N UI *>• UI M CO -si M <0 UI 0 Ui 0 •0 ow _* 0 09 *s 0 Ov 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ro UI ro ro M ro ro ro ro ro UI ro ro UI ro ro U4 ro -g 0 bo U1 0 00 *<» b» *>» 0 09 UI 0 0* bo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 _« M* _» ro ro -* ro ro «p>* -sj CO *0 CO 0 09 09 0 Os *0 «o •s 09 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ^ ok _J, M rs> ro m —* ro 0 ro ro 0 —* ro •p". UI ro -k 09 Ivj v/1 •jk UI IN UI UI UI ->k UI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -* •* , . . vk . .

UI 0. ro 0 UI ro UI UI ro 0 UI ro ro 0 UJ 0 c^ 0 0 UI UI UI lik 0 -s| In 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

r* -* — r* — — _k -k -k -k 0 0 0 0 ro 0 0 0 0 0 UI 0 0 .i* 1* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 UI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 ro ro ro Ov ro ro ro CO 0 0 0 0 0 0 0 09 0 0 UI UI UJ is 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 ro 0 ro ro ro 0 0 00 ro ro 0 0 0 ro 0 0 0 *•» 0 0 is ro 0 0 0 * • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ro ro r\> ro ro ro ro ro IV> ro rvi ro ro ro ro ro ro ro ro ro ro ro ro 0 ro 0 rvi ro ro _k ui a» -* v/1 09 p 0 JN 0 ••A «o 0 UI w ro UI C^ IM UI UI bo 0 is bo

-* . fo ro 0 _* <0 0 ro •a* 0 0 0 0 0 IM —» *»• 0^ U1 0 0 00 00 o- 0 0 UI 0^

• •t* 0 •<3 l\) 0 00 03 0 UI ro 09 bo

0 "O CO w UI -r^

00 09 s UI •0 UI 0 UI s s s UI UI <0 UJ UI UI 0 0 0 0 0 0 0 0 0 0 ro ro ro UI UI UI

ro 0 Ov ro 0 0

ro ro 0 0 Ok o» ro rvi ro r\j ro r^o 0 0 0 0 0 0 0* ^ 0* 0* 0

NJ ro

"O <1 *0 « 0 0 0 "O 0 <0 UJ 10 r\j ro ro ro ro ro ro ro ro ro 0 00 -s **J "W "W "W 0 UI UJ ro •-* 0 0

i ^ x 3t td

•>» ->i

»«o^cnr\>orv>^0»-i*^i t o <o I V/1 4> iuioino«co-aooo^m-krn>oo»0'siv)oi^^

l O O O O O O O O O O O O O O O O O O O O O

)l/l«0*>l09*»jcdc>k0>"s"^o>o^^m^a(>^b^cdui l O O O O O O O O O O O O O O O O O O O O O

_k _k UI ro ro 0

_k UI *S 0^ ro UI UI UJ UI *s UI UJ

3 0 0 0 UI 0 ro

0 *»• 0 0 0 0 bo 0 0 0 M 0 0 0

UI 0 0 0 0 0 bo 0

UI 0 bo 0 0 0

is 0

UI ro »• 9>- it _k

UJ Mk

UI 0 UI 0 3

«.* 0 UI 0 0 0 0 UI

0 M 0

ro 0 0

io*^rovi-r«wv/i^i

o o o o o o o o - ^ o - * r o o o o o o o o o o o o o o o o

> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10000000

o o o o o o o o o o o o o o o o o o o o o o o o <

o o o o o o o o o o o o o o o o o o o o o o o o o t v j o o o o o o o o o r o o

> o o o < > -* 04 r jojo^rovn«ok»<o6^o-*

»o«ooro-^—»-^o

00 CO 09 00 09 00 -s| i\> ro ro UJ UJ 0 I® 0 UI 0 0 0 UI UI UI

•si "M 09 00 ->4 09 "O "O r\) o o o g^l U1 o o O U1 o <

00 0 0» -s4 oa 0 "O 0 00 ->j p

00 ro 00 ro 8 UI UI UI 0 UI UI 0 0 UI 0

o o u1 o o u1 < 00 00 00 09 03 09 00 10 ro ^ UI -* UI CO CO 00 CO CO UJ 0 UI ^ ro 0 0 0 0 UI 0 0 0 0 0 UI 0

i 00 -m > o «o

u i o u i m o o o u i m o o UI UJ 4N r* ro UI ro UI -k UI UJ UJ ro *S ro ro fO ro UJ UI -k M UI 0 0 0 UI In UI 0 0 UI UI 0 0 0 In 0 In UI UI 0 UI 0 UI 0 UI UI 0 0

<p •o

5

I" 8 Vi

o* ro

s.

TZZ

Page 231: Triple testcross analysis to detect epistasis and estimate ...

222

in o o O o o in in in in in in o in o in o o in o o o e in in o o o in o in in in o o o o tn o in O in o o in ro CNi to to CM to CM CM to c^l rv CM CM to to CM st to st CM CM rd d CM CM CM st rd CM CM to fM to •- fM in tn in in tn o m in o o in in in o o o in in in o in o o tn o in o o O o tn in in o in o o o o O o o o in o S c8 £ to 00 lO CO M CM O CO CM CO to CO CM to 00 00 sS o CO •— o CO 00 CM 00 CO CM ps CO CO CM 00 ^ CM CO OO CM CO s CO 00 in CO s5 CM 00 d OO fM d CO OO T— 00 d 00 CM OO R CM OO s

sr» O CO 00

O >r— 00 CO

o in m in tn O O o in tn o o in in o in tn m o o in o o o in in o o in o o o o o tn o o in o in O in o in in 3 S o 00 si R Ris s s R o K o OO K. CO si CO d ho CO CO R 00 d 00 R s

f\] CO si d CO R d CO CO ho fcfc o^ ho fc s d 00 Sfc Rg

N" « in N. CO in -o Os CM^ CV *- T- to 00 in in CO so st 00 o to to in st «— to in o st to o in to CM CO c> O O CM CM O CM «—•

to in ^ o CO o to o CM CM to *— tZ o *-• s T"

<r" 00 CM r\J O *- CM hs! o OS d o *—• T—

ro CO o CM o to o OS CM o o •— hs! h>!

c^ to so o CO Os CM CM CM *—

to st CM o in ^ o "r-CO tn CM o ^ r"

O to CM CM ^ N. N. St so to CM CM O to ^ CO ro to ro CM 00 w— CO o sO CO to ho CM Os 00 CM <y in fM o st st Os ro "O in ro ro CM CM

o ro CM CM CM CM CM

K N! CM •" CM CM £ CM

in o CM s* so CM CM

o CM CM O CM

C» ^ CM O CM CM Ch CM

O ro CM o in o •- *- to CM CM CM

sd CM

d d CM CM CM CM in CM CM

ot CM

00 CM

sd CM CNJ d to fM

sd CM

in CM lO CM 1

st CO CM CM CM in o CM CM OJ

fM ro CM

• *—

CM CM st CM

d <1- CM CM CM

d to in CM CM

o o o o o o O o O O O O O O O o O o o o o o O o O o O O O O O O o o o o o o o o o o o o O O o o O o o o o o o o O O O o o o O o o o O O O O o o o o o o o o o o O o o o «- o o o o o o o o o o O O o o o o o o o o o o o o o d d d d d d d d d d d d d d d d d d d d d CM d d d

o o o *- o o o o o O O o CM o o o o CM T- o fO o o o o to o ro o o o o o •— CM o ro o o <M *- o o o o o o o o O o o o o o Sf o o o *- o o o CM o o o o o o o o o O CM o o in fM O CM o CM o CM CM o sf CM sO CM o <o sd o CM ^ St st St CM CM CM d d d d d CM d CM CM d CM st d CM d o d st d fM

o o CM o o o o o O O o o

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o O O o o o o o o o to o o o o o st o o o o o o o o o CM o fM o O o o o o o •- o o o

CM o o CM c> o o o o o o o o c> o o o o d CM d d CM CM d d d sd d d CO d d d d st st fM d CM o CM fM d

O O o o o o o o o o o o o o o o o o o o o o o o o o o o O o o o o o o o o o O O O o o o o O O o o o o o o o o o o o o o o o o d d d o o d d d d d d d d d d d d d o d d d O d d d d

o o O r-o o o o CM o o o o o o o o o o o o o o o o o *- o o o o o o o o o o *- o o o o o o o o o o o o o o o o O o o o o o o o o o o •- o o o o o o o o O o o o «— o o o «- o «— •- •- •-

«— T— w— «*- *- •-*— ««•

•- »— T-'

o o o> o o o to

o o CM S. o o o o o to 00 s o o

o o Ch CO o sO o Os o o o to Os st o

o o o Os to o o CM o in o h- o in o so o Os o CO o o o ho O O in O o o o o o> o in O fM o ho o o

to o O o GO •-CM ro tn CM CM *— tr- CM to tn CM in CM to st T- st sO CM st sd to •— st sd CM st sd CM st CM to in CM st in CM st sd CM rd st fM

O O o s# o >o o CM o o CO Nf o in o o o <o o o CO o CO o o 0« sf o CO o o> o o o CM in CO o CM o o o st o so o to O ho o o O OO o ro o in o ho o o O o p o ho tn o ho o o o in O SO O Os o o o o st in o o o o «0 Ch to urn. ro »— K CM O <r~' T- CM O^ so in fn- to ho in CM sd st fM fM d in to st ro h-I to *— st OS st st fO in st st sd T-"

o o s o 00 o o o o O N. o CO o >o o o !*>» O o tn s o o Os 00 s o CO o o o CO CO o^ o CO o o Os ho o Os o so o ho o N- o CO o o o "O o CO o o h«- o o CO ho o st o so o Os O SO o o o o> o o so so o o o in *" CM T~ fM <r"

•- *— fM T— *— *-• CM fM ^ o o "O CO s o CO o o o o "O h- o o o >»• O O SO O o SO o CO o o O sO O r- o CO o o o ^ CO ho o in o o CO o o so o CO o o sO o CO o o o >o o CO o o o NO o o OO o o SO o GO o o O st O ho o o o o in so o o CO in CM CM CM CM to CM CM CM CM fM CM CM CM to CM CM CM fM CM CM CM CM to CM CM to fM OJ to OJ (M to CM CM to OJ CM to CM fM fM CM CM CM CM O O ro m o

>* o in o o O O «- ro s o o O O to a» o •• o in o o o» to o S* o so o o o *- in so o (M o o •o tn o st o s» o CO O ro o in o o o o so o o to o o so h- o o O st o o O O O SO o ho o o OJ O o CO o

S* -sf Nf vr S# S* St St St st ^ St st st st st st st st st st in st St st st st st st st st st st st

to "O in "O CM o ro in to to st CM ho so 00 CM CO OO st to o fM CO o CO ro CO 00 OJ to o so O tn ho CO Os Ht st 2" ro r^ in s* ro a o in in CM o o *— •— ro CM *-• O CM CM to O to

ho in st f- fo ro ^ »— OS CM *—

so o fM *- o^ ro h"^ o

NT in CM «— in o OJ *r-

h«^ to to CM d CM •- o d Os to Os to st st *—

o^ CM ot sd T- CM d CO in «—

Urn CD N. O X 1^ B

73

Hoi 7

F

1 B

73

Hoi 7

ti_ CD

N-r— O Z u. B

73

Ho1

7

ir-u. B73

H

oi 7

F

1 B

73

Hoi 7

^R U. 00

N. *0 z Ik R

GO

ho

z tk B73

N. o z U. B

73 ho

z F1

B73

ho

z u. 873

Hoi 7

*-• lA. B73

H

oi 7

F

1 B

73

Hoi 7

8910

3 89

103

8910

3

o

CO

•J-O

00 8910

4 89

105

8910

5 89

105

2291

15

2291

15

2291

15

8950

1 89

501

8950

1 89

502

8950

2 89

502

8950

3 89

503

8950

3 23

1916

23

1916

23

1916

st CM in O CM CM

st fSJ in o CM CM

f3 in Os CM CM 8950

6 90S

68 90

S68

8950

7 89

507

8950

7 89

901

8990

1 89

901

8990

2 89

902

8990

2 89

903

8990

3 89

903

8990

4 89

904

8990

4

31

32

to to ro in ro 36

37

00 ro ro O sr sf CM to •sf in sj- -st *o St 48

49

50

in 52

53

st in m in sO in ho in CO in o in O SO OJ so to so 64

65

ho so S 95 sO O fso 72

73

74

75

2161

9 21

619

2161

9 21

619

2161

9 21

619

2161

9 21

619

2161

9 21

619

2161

9 21

619

2161

9 21

619

2161

9 o> o

2161

9 21

619

2161

9 21

619

2161

9 21

619

2161

9 21

619

2161

9 21

619

2161

9 21

619

2161

9 21

619

2161

9 21

619

2161

9 21

619

2161

9 21

619

2161

9 21

619

2161

9 21

619

2161

9 21

619

2161

9 21

619

2161

9

Page 232: Triple testcross analysis to detect epistasis and estimate ...

223

lA O in o in o o in o in o o in O o in in in in in in O in o in in in o O o in o o in O in in o O o o in in o in CM ra CM K> K> o tn CSJ rO (NJ fO fO tn d rsj (0 CM OJ o] fO OJ CM nj CXJ CM (M lO CM CM •»* CM (M ^ CM

O in in o in m in in m o o o o O in o o o o in o o in in in in o o tn o in o o tn O tn o in o o o o in o o d CO d CO s 00 s CM d OO 00 S

(\j CO S c3S

rvj CO C\1 OO CM CO

r— 00 C\J CO CM CO

r\j 00 CO C\J CO CM 00 CNJ CO s 00 CVI OO C\J 00 d CO sa 00 CM CO 00 gj CO OO CM 00 5 ss CM CO ro (M 00 CO

tn in o o o in in o in in o o in o tn in in in in o in o o in o o in o in o o o o o o o in in o o o in o o in 00 N. s iS d 00 s Rfc s R g T- o 00 CO d CO d 00 d OO R R s s rJ OO s C\J CO

rO OO s d CO d CO s d OO o OO s CM 00 s *-• 00 d 00 OO o CO R d CO fc d (\j

CO 00 Ch rw d CO (M 00 rs.

CM 00 •>0 in in w *o o« CO m CM o CO CO 00 >««• CO CM ro CO "»* s» N> OO OO o 00 "T" •S* *- o O N! o

>o rO o 11 CM tn •- 00 CM O Ch <> CM in CM in CM oi CM in CM d CM o •— ro CM ro Ch o CM *—

in (M d «-» *—

tn ro CM "O in CM K in "Na" d CM o K! ro *—• d C h •— CM <*— *— o d •— o «— *—

N. CM >o in CM O* OO tn (M » >* ro ro ro ro o ro — in tn N. nJ- CM 00 S* o CM ro •— O in CM OS CM

h.! CM 1

Ch CM CM "O CM

«-• *• CM CM CM

(XI CO CM CM in m CM tn tn •-rsi CM

d K» CM in ro (M

d ro (M CM CM ro CM d CM

in CM CM d CM

d CM

ro CM

ro in CM in ro (M ro CM

d CM

d CM CM "O CM CM ro CM

CM CM CM d ro CM

ro ro CM tn CM CM

CM CM CM N! CM CM (M

d CM

d CM CM d CM CM

d C M N t C M C M CM

in C M C M

ro CM «— C M C M

s s s s 5 5 5 9 5 s 5 2 5 @ 9 0 o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o * — o o o o o o o o o o ^ o o o o o o o o o o o o o o o o o o o o o o o d o d d d d d d d d o J o d d d d d d d d d r O d d d

o • o CM O CM O CM O

o o o

o o o CM O CM O o

o «— O O o

o CM o CM O ro

o ro

o ro

o o

o CM o CM o o

o CM O o

o CM O •»»

o o o «— O s* o o o

o O o

o ro

o o

o o

o O CM O ro

o O o o CM O CM (M o d CM r\j >*• d CM CM d •4- d CM d o d s* d CM CM CM d rsj d CM d •J- d d CM d CM CM d

o o o o p o o o o o p o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o O O i — O h i . O C > J » i O O ^ f \ J O O C M O « r - O O O K l O O 0 < O < N r - O O ^ f \ j T ~ O O O w O O O O O O r — r u s # 0

oo<mo»ooh*>fo<mi.#oo«.#o<mooo'^oooo>ft\joo<vxi-<\joooojododdoc\j««>oo w— CM

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o d d d o d d

o *— o o o o O O o o o o o o CM CM o o o o o O O o (M o o o o o o o o o o o o O ro O CM o o o o o o o o o o o o o o o o o o o o o o o O o O o o o o o o o o o o o o o o o «- T-

*• W— T— V— *—

"" w- •- '• •-*—

*- •- *— «—

o in ss o Os s o o CM o o 00 so o 3 p o h». ro O ro o o o o o N. o s o o o o •— o tn o ro o 00 o in o CM o CO o o s s o CM o in o in o o o Os o ro o o CO 1- o o r^ o o in *-

in CM ro in ro in ro •sT in CM tn d ro ro in CM ro CM T— ro d CM in CM in T— CM in CM in CM in d ro st rsI ro ro st CM

O N. o o <0 o

•>.» o s o o

o o in so e o o o 00 N- o ro o o o OO O o o o o o ro o in o Os o o o in o so O o CM o so O so o in o ro o •>4 o in o CM o *o o CO o «o o St o o CO o o CM o ro o o o o

fO (M in fO d CM d rg in '>4' N 1^ N T" CM d d OJ 0^ d ro Nf d ro •— *— »— d sT 2 N.' ro CM d ro *— OJ d ro d st 2

o CO ss o so o g s s o rs. o CO p o N. CO O o o so S o o o CO o so o o o CO o o

o N. S o o o o

o s o CO o CO g o S o N. O o o so o CO o N. o N. o o N- N.

o ro O "O s s

«—• «— T— r» *-* «- *— CM CM •- <r~ «-» CM CM *— «— *—

o CO o o OO Nj* o CO O o CO o CO o o Os so o CO o o o o so OO o o N. O o o o «o o so O o

o in o in O o o so O CO o o o in g o 00 o in O o (0. o so O |s-o o o o o 00 o o O CO o o T- O o CO o OO o o o in

CM CM CM CM ro CM CM CM (M CM ro CM (M ro CM CM ro CM CM CM CM CM CM CM OJ ro CM CM OJ CM CM CM OJ CM ro (M CM ro CM ro ro OJ CM ro CM o •vj" O O N- O o o O o in o o sT ro o o 00 o o ro in o r— O ro o ro o o CM O CM o CO o CM o ro

o "O O CM o rv. o o

o o O ro o •o o CM o CM S o ro O ro o CO o CM o >o o r». o m o o rs. in o O st S 2 •s» -4" in •J* •4* s* -J' N* -st NJ- >3- St st St St st st St st st st st

ro o o^ CM so in ro ro Os in so o o o in — CM so o o CO NO o <o in N. ho O in in o ro m st N. st sO <y >o N! in OS CM o St o *—

•»* >* CM ro o» o» CM o! CM N> in CM •- d ro ro ro d o d ro Ch CM O d o d in CM in d CM Ch o H

in o ro d CM Os CM d st d *—

d r-*

CM ro St CM r- d St ro ro o Ol st CM CM st

u. CD Z U. R CO H

oi 7

U. B73

H

oi 7

Ik R CO Ho1

7 F

1 R oa Hoi 7

u. R CD Hoi 7

u. R CO Hoi 7

r~ Ik R CD Hoi 7

u. R CD z u. R CO Hoi 7

Ik R CD Hoi 7

•— Ik R CD H

oi 7

Ik R 00 o X R Ik CD

N.

X Ik B73

H

o17

9030

1 90

301

9030

1 90

302

9030

2 90

302 rg N (M

8:8:8: CM CM CM CM CM CM 2303

23

2303

23

2303

23

2267

20

2267

20

2267

20

9030

6 90

306

9030

6 CM CM ro o ro CM

CM CM ro o ro CM 23

0322

23

0701

23

0701

23

0701

23

1103

23

1103

23

1103

23

2306

23

2306

23

2306

23

1905

23

1905

23

1905

23

1104

23

1104

23

1104

91

101

9110

1 91

101

2327

07

2327

07

2327

07

9110

3 91

103

9110

3

rS fcS o* N. o OO CO CM ro CO OO CO in CO N. a OO a o-CO o o O^ CM Os K! o» o in Os «o Oh N. O

OO 8: O o o

CM O

ro o o

in o

sO o

N. O

CO o o o o CM ro sf in so r OO o. o «— CM r—

oooo»0«otoo»^0«oko»oko»0>«oko*0^0>0<>c>»0«0»0«ok^o»0>'0>0^0«ooo»o^q«q<>0»0«0>0>»0>>0»0^0^0^0»

rm(mimrm(mr\irvj(\j(mrsj{m(m(mrvi(mcmrm(mcnj(mrnj(m(m(mcm(mcmr^(mrmrmrmrmrmrm^^fm^^rm^(mrm^

Page 233: Triple testcross analysis to detect epistasis and estimate ...

224

S

s

"2 3 C

4 c o u

a o)

0> •w CO v 0) o z

c

o o in in o o o in o in o o in o o in in o o in o o o o in o tn in in o o o tn in o tn o o in tn in O o o o CXJ fs] in ro CNJ CM CM CM d ro ro »- d in C\1 d CM cv CM ro •»* CM CM CM CM CM T- CM ** CM •»» CM CM ro «— ro CM CM CM o o m o o O o in in o o o o o o o tn in O o o o o o tn O o o o o O o in in o o in o o o in tn o o o s fv oo fn oo CM CO ci 00 K ro

00 ss R d CO d oo 00 d 00

CM CO cS CM CO d 00

CM 00

CM d CO 00 s i o CM 00 CM GO s d ro oo 00 lO CO 2 in CM CO 00 ro oo tn 00 C\j CO CM CO si CO ro oo ro 00 CM oo CM OO tn CO S cS

o o o in o O o o in in o o in o o in o in O in o o o o o O in in in o o O o o O in in o in in o in o o o CVJ CO o

00 s d oo d CO fc •— CO g R R f c Sff d CO fc 00

CM OO R d 00 Sg:R: CM 00 s 00 rw d CO S fcg CO

CM CO as CM 00 oS s CO d CO R n <y |v- ro CO st CM d CO

rvi m ro ro o o> o CM sf *- CM in CM 0, o in ro CM S* CM T- in oo CO CM ro in CM ON sf CO co ro tn m CM d S CM T~ "T" ss -X^ d •r~ d is r— t—

S* o 00 CM 1^ ro in CM *—

d O CM «— r" ro CO <> NO o d o ro o i d d «— CM *— w—•

d o T" ro CM CM 00 ro *— nt— *—

tn ro ro «— 00 o *—

ro o NO IS! o *—

no o

NO CM in CM ro CM

«— fT" in oo in CM N. CO CM O in ^ in in o >o in M) r- ro r- o CM ro h- in CO O T- in to *— >1" NO V- ro tn NO 00 «-<o Kl rg

CK CM rg i CM

CO CM CM d CM CM

in CM

in CM

CM •-•O CM CM CM CO CM

Sj-CM rvj

«-- 00 CM CM CM

CM CM CM

CM <r" CM IM to CM

CM sy CM to CM

ro CM CM

O CM CM CM CM CM CM CM K O CM

ro CM

CO o CM CM NO o CM

CM CO CM CM CM CM ro o CM

ro ro CM •— N. Ni- CM CM CM

tn CM CM Ch ro CM

d ro CM d CM CM

ro ro CM to o CM

ro CM CM *— CM CM CM

on ro CM

•— tn in ro CM CM

o o o o o o O o o o o o O o o o o o O o o o O O O O O O O o o o O o o o o O O o o O o O o O o O C9 o o o O O o o O o o o o o o o o o o o

o o o o o o O o o o O o o o O o o o O o

o d d d d d d d d d d d d d d d o d CM o d d d o d d CM d d o d d d d o d d d d d d d d d d

o o o o o o o o o CM o ro o o o o o CM o o o o «-• o

ro o o o o <> o <o o

o o o ^ e o

o o CM o Nf

o o o o T" o o *- o o CM o

ro o o «— ro o o o in o CM o o o o o o o o o o o CM o o o «-

o d d d CM d CM d CM CM CM d >d CO d CM d d in CO CM d CM CM d CM NO CM NO d d d d CM CM o d d CM

o o o o o o o ro O o o o O o o o o e O o 'O o o o o o ro O o o o o o o o o o o o CM O o o o ro o o o

o O o o o w- o o o

o o O O «— O o o o o o o o o o O o O o o o o o O CM o o o o o d d >o d d d d d CM d d d d d o d >t d d K cO CM o d CM d o d CM d d d d CM d d d d d d d

o o o o o o o o o O o o o o o o o o o o o o o o O o o o o o o o o o o o O o o o o o o o o o d d d d d d d d d d d d o d d d o o d d d d d o d d d d o d d d d d o d o d o o d d d d

o o o o o o o o o o o o o T- o o o o o o o «- o CM

o *— o o o o o o o o «- o o o

o o o o o o o OJ o o o o o o o o o o o o ro o o

o o o o o o o o o o

o o o o o o o o o

*— •" *• '• '- *- '- *- *-

o rvj o o o «-• o o o in o o o o o o o ro

o ro o o o o ro CM o in o o o >* o *-• o c o rs. o o h- c^ o o o SO o o o •— o o o ro O O «- o <3 o o o o *— o o« o CO o no o CM

o o o o in

o no o ro o o o o> in "6 CM •J- od ro in in ro ro CM T— in ro sT T-" in CM r«- CM in >o ro >3- in CM «-• ro St in <o ro ro *-* tn *— fO NO CM sj- in ro ro st CM w—

o o h-o o r o CM •

o m o p o o in o in o o in o CM

o o o 00

o o o ro O o o r

o "O o c> o o o 00

o o o o in 00 o >o o o o

CM O o tn o

h-o o>

o o o o o o o o ro o CO o CO o o sT ro OJ po tn *- CM CM ^ >T •— o^ %o ^ r— ro N! >» CM >6 ro d

•— sf d rC ro w— ^ >o CM NO ot r^ >» sj- in o ««.* CM CO NO

o o o o •«T O <o o «o o «o o oo §g O o CO

o o CO O 00

O CO S o -so o o o o o CO CO o o o o >o o o o o CO

O O r«» o o ro O o o tn CO g s o On o 00 o o o o h-o Oo g O

fo-o o NO r^

r- OJ «r— *-'-

*" •-• CM CM CM «— *— CM cO r-' *— *—

o oo o c> o in O oo o o o o CO o o Oj o CO o o o o h- CO

o o o r^ o CO

o o» o o g o o o >o o c> O o o r»«-o r-o CO

o m o o NO (h

o NO

O 00

o o o no o CO o o» s o no o o o •4" o 00

o o o no O 00 o o on no

Ol r>j nj CM ro CM CM CM CM CM CM CM CM ro CM (M CM CM CM ro CM CM ro CM rvi CM CM CM CM CM CM ro CM CM CM CM CM CM CM CM ro CM CM CM CM o irv o o CO o '«*

o in o to o O O GO CM o to O r««. o o CM >0 s O m o •J* O in o in o o o CO o CO o o o CM

o o CO

o ro o o ro O o O CO O o tn ro o tn O tn o tn o "»»• o

CO O o o tn

o o O ro o ro O O

•<f ro sf lO 'J' s* •J- in -J- >3- 'sT ro sa- >»• s* •st >f

ooor\jcdin^eo(>i^w^ 0*^kjfvic0«0h-tnc0^f\jfm'«0o^^oc0t^»0kjn^nimrvjc0r0ii^^c0*-fm0»0*m>»>0

osrvjs.<rcoin>^o>^o^m^rm^^m

._ - - - - f** *• f*" n» n" n.

u.edxi^iozu.edxt^caztkeax^fioxu.cozu.gdzu.oozu.cdxulcdz(kcdzt^a)zuucdzikcbx O. On CK r" CM CM CM ro ro ro o o O •— CM CM CM ro ro ro o O o O o O o O o o o o o o o o o O o o O o O o o o 9- ro ?2 ro tn tn in in in in in in in in in in o On o ON o On On On On NO NO NO •— tNo tw. rs. ON On CM CM

(M CM CM CM On Ot a> ON (y On On o» O O On CM CM CM CM CM CM a 5 a o O a

*-.^^c\jrvjf\j%oo>o«-«-T-fororo

rvJCMOJCMCMCM f \ J ( M C M

r". <\ikinyin*oh-coo*o fnjron in n.coo»o*-f\jpo«.*tn

(njfvjf\ifvirnjf\if\if\jfvifvjr\jf\ifuc\iojf\jf\ifnjfviruf\jrvjfvir\jrvjf\ji\jojfmf^c\jojfgrufgcurg^rmryfmrmronjr^

Page 234: Triple testcross analysis to detect epistasis and estimate ...

ro rv> ro ru ro ro ro ro r\> ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro o o c> o Ch €h o o o» Ch o o o o o* o« o Ov c^ o c> o -o o "O <o •o "O <o o o «o o >o o o o o «o "O *o o 3 "i <o ro ro ro ro ro ro ro ro ro ro ro «.» V .. ..f . - . _k »* . -» o o o o o o o o o o «o <o •o o V) •o «o « 00 9 00 9 09 Qo 09 00 00 o «o 09 *N o vn *«• ro o 00 •>1 o vn 4>- Ul ro -* o o m vn JS Ul ro

"O «o «o •o o o «o o o o •O <3 *o <o o <o <o >o O •o O <o W OI Ul UJ M vn vn vn Ul 04 Ul ro ro ro ro ro ro vn vn Ul ro ro ro Ul vn vn ro ro ro _* _k Ul Ul Ul M* •>4 ->j vn vn Ul -g ->i -M <o •»4 •si ->j o o o O o o o o O o o o o O o o o o o o o o o o o o o o o o ui vn vn •T' Ul Ul CO 00 09 •>J vn Ul vn ro ro ro

X 09 3 09 X 00 -n z CO se 09 -n X 00 -n X 03 X CD X 03 T\ X 03 *n o ol _k o Di o Di o Di o a -* o a o a o Mb a •s •M •M -J

a a •^1

_k . •_k . «•* o o ro ro 00 *«» 00 o ro ro Ul ro Ul ro Ul 00 U4 Ul •o o Ul o r* P® S O 4> Ul Ul 03 ^ -k vn o O p» Ul ro bo In vn -• o b» •>j ro b^ ro ut 1* b^ ^ b» 'o b< is Ul o bo

*«. *«» *N *«• *S *<» vn M ''O vn vn •>J bw 1* vn k> bo bo M bo 1* bo Ul b« Ul bo -N| Ul •si Ul ro •s o o o O o o o o o o o o O o o o o o o o o o o o o o o o o o ro rj ro ro M ro ro ro ro ro ro ro Ul ro ro Ul ro ro ro ro ro Ul ro ro Ul ro lO M ro ^ 'o •s O bo o b^ bo bk 1* vn o vn *>i vn o •si Ul o bo Ov •si o o o o O o o o o o o o o o o o o o o o o o o o o o o o O o -»ro mJk — mJt — ro -* •>* —J> — -* ro _k ro _* _k _» ro ro bo ^ 09 •SI '*o -si o '*o bo bo bv bo bo to •Nl o bo o bo bo b^ •>1 o o o O o o o O o o O o o o o o o o o o o O o o o o o o o o o _k _» _» _* —* _k •«g ro Ul ro >o vn 'O Ul c>» 00 *»• •o -* 0^ ro vn Ul Ul Ul o U4 Ul ro ro o ru bv *«• ro Ul Ui b> v<. vn 1* Ul b' Ul o Ul vn •si Ul Is v> o o o o o o o o o o o o o o o o o o o o o o o o O o o o o o ^ _» •A _» . . wk <pA M 04 Ui Ul ro vn *<» M Ul ro vn ro o^ ro vn Ul Ul vn vn ro *<•

1* UJ o o* ro Ul -sj o O bo L» bo fo bv o 1* bv Ui o •sj >_k o ro o o* o o O o o o o o o O o o o o o o o o o o o o o o O o o o o o -Jk _* r* r* r* -* _* -* -* _k _k _k _k -k _* _k —k o o o o o o o o o 1A o o o o Ifc Ik o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

o ro o o o o o o o ro o o o o o o o o *o o o *»• ro o o *S o o ro o o o o o o o o o o o o o o o ro o ro o o l\i •*k o o ro o o * . o o o o o o o o o o o o o o o o o o o o o o o O o o o o o o

ro <> *>• o o ro o o o ro o o o o o o ro o o ro o o ro o o ?" lO o -* o* r\j o a ank o Irt o o o o o o Ul o o o o o o Ul ro o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o ro o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

ro ro ro ro ro ro ro o- o* S o* (h o ch 3 3

ro i

•ak o> <*0 09 "sj 1

XJt u1 ^090-k->^uioo«our\i«0

os^^<oi^rj*>4^-*«>iui-*c3oo« o o o o o o o o o o o o o o

i-sj»o-^'*^'oroo<'roo i—•roujoo^ro.a-^o • o o o o o o o o o

(7<>i/4lnruc}ovn4>-a4>usii.mlno*>j^ o o o o o o o o o o o o o o o o

J o o r>j o f\)

o o o o o o o r o o o o o o o

ro ro o ro *o Ul

ro o

ro •Sj

ro *o

ro ro Ul

«o Ov

ro ro Ul

ro fVJ _* o

ro Ul Ul

ro ro o

ro -s|

ro Ul CO

ro ro

ro o vn

ro ro Ul ro o o

ro Ul

ro Ul 4N ro ro -* ro 09 00

ro ro M ro Ul 00

ro o

ro ro

ro jh

ro ro o

ro Ul

ro ro ro ro ro ro o -» o o Ul "sj 00 vn

ro M O ro ro o

ro Ul •sj

ro Ul ro

K ro ro o ro Ul

ro ro

ro ro

ro Ul *«•

ro ro Ul

»0 -Sj o -* M* fo Ul Ul ro Ul Ul Ul fo Ik Ul -Ul fo fo b fo U M fo Ul vn fo • ro fo vn fo b ro

»o -» -si ro ro

•lA O Ul o 00

ok o o o

Ul ro o

Jo •Mk Ul o

—k «k •S4 00 o ro o

—k Mb o •ts ro

•A ^ ro -» ««• ro :8 1 Ul

•_h Mh o o ro Ul ^ <o "O ro o «•* o oo ro Ul

Ul •Sj ro 1 CO M* ro Ul Ul Ul Ul •A bo o Ul Ul Vj IM Ul fo Ul Ul CO b fo b fo 1a b b^ 'o Ul vn b^ ^ V* vn bo be fo M V* bo b 1*1 00 •si ro %o

o» s 00 ro

CO o 09 s S 09 CO ro

09 s 00 Ul ri?! 00 ro Co

00 S s s 00 ro s 09 09

ro 09 00 _* 3 00 s 09

ro o o o o o vn b b Ul Ul Ul b Ul b Ul Ul b b In b b i/i Ul 1/1 Ul b Ul b uib b b b In b b b

• o In b b \n In

00 •^ Ul

00 ro 00 ro a oo

ro 00 Ul 00

ro 09 ro

00 o CD Ul 00 o 00

Ul 00 vn CO M 09 UJ 00 00

ro Ul >S g CO 00 mk _k ga 00 ro

00 Ul

00 00 00 00 00 00 -» ro o o ro a 00

ro K 09 Ul g 00 Ul

00 Ul

00 09 M 09 Ul g

vn Ul o o vn o b b b b b Ul o b Ul b b b b b b b b b o o Ul b o Ul vn o Ul o Ul b b In b b b • Ul b b b

o — _* •

ro U4 mJt _k ro Ul Ul ro ro Ul - Ul ro *s ro «i* Ul o ro U4 Ul Ul Ul •a Ul Ul mk M ro ««• to CO •_k vn Ul o o In vn b Ul b Ul Ul b vn b b b Ul Ul b b Ul o b Ul Ul Ul b b Ul Ul b b Ul b Ul Ul b Ul b b tn Ul b Ul Ul

m <

3 1

IP

O

5" o vn

o o 3 ft 3' c s.

la TJ

3 •-

Q. 0) «< (A

8-

3

szz

Page 235: Triple testcross analysis to detect epistasis and estimate ...

Table 05. continued.

Env. Entry Hale Tester YD ED CD KD EL RN EP BP RL SL DE PH EH AN SE SO

g/plant cm cm cm cm no. no. cm cm days days days

21619 211 93501 F1 90.6 21619 212 93501 B73 123.7 21619 213 93501 Ho17 125,1 21619 214 93502 F1 157.7 21619 215 93502 B73 177.5 21619 216 93502 Ho17 139,9 21619 217 94705 F1 124.3 21619 218 94705 B73 140.4 21619 219 94705 Hoi 7 119.1 21619 220 93505 F1 100.2 21619 221 93505 B73 94.0 21619 222 93505 Ho17 106.6 21619 223 94702 F1 120.4 21619 224 94702 B73 138.1 21619 225 94702 Hoi 7 133.3 21619 226 93901 F1 147.4 . 21619 227 93901 B73 104.1 ' 21619 228 93901 Hoi 7 119.8 ^ 21619 229 93902 F1 124.4 ' 21619 230 93902 B73 84.3 ' 21619 231 93902 Hoi 7 149.8 . 21619 232 94701 F1 111.8 ' 21619 233 94701 B73 114.0 < 21619 234 94701 Hoi 7 138.5 ' 21619 235 94302 F1 100.9 • 21619 236 94302 B73 112.3 1 21619 237 94302 Hoi 7 109.1 i 21619 238 93906 F1 124.1 . 21619 239 93906 B73 103.9 1 21619 240 93906 Hoi 7 116.1 i 21619 241 94301 F1 134.0 i 21619 242 94301 B73 131.8 < 21619 243 94301 Hoi 7 137.8 1 21619 244 89101 F1 127.1 1 21619 245 89101 B73 140.1 i 21619 246 89101 Ho17 120.1 < 21619 247 94303 F1 133.1 1 21619 248 94303 B73 131.4 -21619 249 94303 Ho17 130,7 i 21619 250 94304 F1 144.9 ' 21619 251 94304 B73 123.8 ' 21619 252 94304 Ho17 138.5 t 21619 253 89107 F1 116.1 ' 21619 254 89107 B73 143.2 ' 21619 255 89107 Hoi 7 128.7 -

4.20 4.60 4.30 4.70 5.00 4.50 4.40 4.70 4.20 4.70 4.80 4.20 4.60 5.00 4.30 4.60 4,70 4.10 4.50 4.60 4.50 4.50 4.90 4.30 4.70 5.10 4.50 4.40 5.30 4.20 4.40 4.50 4.20 4.70 4.80 4.20 4.50 4.50 4.20 4.60 4.60 4.10 4.20 4.70 4.10

2.80 2.90 2.60 3.00 3.10 2.80 2.80 3.00 2.60 3.00 3.00 2.70 2.80 3.00 2.60 2.70 3.00 2.40 2.80 3.00 2.60 2.80 3.10 2.60 3.00 3.20 2.80 2.70 3.20 2.50 2.60 2.80 2.50 2.90 3.10 2.50 2.80 2.80 2.60 2.80 2.90 2.50 2.50 2.90 2.40

1.50 1.80 1.80 1.80 1.90 1.70 1.60 1.80 1.60 1.80 2.00 1.50 2.00 2.10 1.80 1.90 1.80 1.70 1.80 1.70 1.90 1.70 1.90 1.70 1.80 1.90 1.70 1.80 2.20 1.70 1.80 1.70 1.70 1.80 1.70 1.70 1.70 1.80 1.60 1.90 1.70 1.70 1.70 1.90 1.80

12.20 12.90 15.70 15.40 15.30 15.60 15.60 13.90 16.80 11.30 10.10 13.30 12.90 12.50 16.40 15.20 10.70 16.90 14.20 11.70 16.60 12.90 11.00 15.80 10.70 10.60 12.30 14.80 13.70 15.00 15.50 15.90 16.90 14.50 14.30 15.60 16.10 14.40 17.10 16.10 13.90 18.20 15.40 14.70 17.20

14.20 15.90 12.80 15.70 17.20 14.50 14.40 14.80 11.70 14.10 15.90 12.40 13.90 16.50 12.60 14.00 16.20 12.40 13.90 14.20 12.90 14.50 15.90 12.80 14.90 16.30 13.30 14.30 17.00 12,30 14.20 15.90 12.90 15.20 16.80 12.50 15.10 17.20 13.30 14.80 15.90 13.10 12.60 15.10 12.40

1.10 1.00 1.00 1.00 1.10 1.00 1.00 1.00 1.00 1.10 1.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.00 1.00 1.00 1,10 1.00 1.00 1.00 1.00

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0,0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.00 0.00 0.00 0.00 0.00 0.00 2.10 5.30 0.00 2.10 4.20 2.10 4.50 0.00 2.10 2.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 4.20 0.00 0.00 2.10 0.00 0.00 2.10 4.40 0.00 2.10 0.00 4.20 0.00 2.10 0.00 0.00 0.00 0.00 2.10 2.10 0.00 0.00 2.70 2.10 0.00 0.00 2.10 4.50 2.10 0.00 0.00 4.20 0,00 2.10 0.00 4.20 0.00 2,10 2,10 0.00 0.00 0.00

2.10 2.10 0,00 0.00 0.00 0.00 0.00 0.00 2.10 0.00 0.00 0.00 2.10 0.00 2.10 0.00 0,00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

215.7 230.1 220.9 239.5 227.0 227.2 225.8 236.0 221.9 239.5 243.6 239.2 230.5 235.7 217.8 216.7 231.2 215.5 232.4 242.8 216.8 227.0 233.2 213.2 213.4 221.4 218.8 232.0 234.5 230.0 226.7 230.1 231.5 226.6 239.7 223.0 220.0 229.7 210.8 218.6 222.9 211.3 234.2 238.3 224.1

113.2 117.7 109.5 122.5 107.8 116.3 107.5 117.9 111.0 123.9 128.8 133.0 114.2 117.7 108.5 105.2 114.5 104.5 120.6 131.3 107.8 116.9 114.2 100.9 97.3

106.4 108.6 120.8 119.3 113.5 112.3 111.7 120.6 118.4 119.8 113.7 109.2 116.1 100.0 107.4 113.8 103.3 114,8 121.7 112.5

79.5 81.0 78.5 77.0 79.5 79.5 79.5 81.5 82.0 80.5 82.0 82.0 78.5 78.0 78.0 76.0 79.5 79.5 82.0 83.0 78.5 78.0 79.0 75.5 77.0 80.0 78,5 83.0 82.0 80.0 80.5 80.0 81.0 79.5 79.5 79.5 78.0 78.5 77.0 77.0 82.0 81.0 81.0 81.0 79.5

82.0 82.0 81.0 81.0 81.5 83.0 84.0 84.5 85.0 84.0 84.0 84.5 81.5 81.0 81.0 78.5 81.5 82.0 84.0 85.0 81.0 81.0 81.0 79.5 81.0 82.0 81.5 85.0 83.0 84.0 82.0 81.0 83.0 81.0 79.5 81.0 79.0 82.0 80.0 81.0 83.5 81.5 84.0 82.5 82.0

2.5 1.0 2.5 4.0 2.0 3.5 4.5 3.0 3.0 3.5 2.0 2.5 3.0 3.0 3.0 2.5 2,0 2.5 2.0 2.0 2.5 3.0 2.0 4.0 4.0 2,0 3.0 2.0 1.0 4.0 1.5 1.0 2.0 1.5 0.0 1.5 1.0 3.5 3.0 4.0 1.5 0.5 3.0 1.5 2.5

to to O

Page 236: Triple testcross analysis to detect epistasis and estimate ...

Table D5. continued.

Env. Entry Hale Tester YD

g/plant

21619 256 90303 F1 80.1 21619 257 90303 B73 122.7 21619 258 90303 Hoi 7 102.9 21619 259 91505 F1 133.1 21619 260 91505 B73 131.8 21619 261 91505 Hoi 7 126.7 21619 262 90703 F1 126.8 21619 263 90703 B73 147.5 21619 264 90703 Ho17 146.1 21619 265 92302 F1 123.3 21619 266 92302 B73 116.9 21619 267 92302 Hoi 7 144.9 21619 268 92703 F1 139.2 21619 269 92703 B73 142.4 21619 270 92703 Hoi 7 77.9 21619 271 92706 F1 125.5 21619 272 92706 B73 149.8 21619 273 92706 Hol7 105.1 21619 274 93102 F1 133.9 21619 275 93102 873 143.3 21619 276 93102 Hoi 7 123.4 21619 277 93504 F1 125.2 21619 278 93504 B73 148.4 21619 279 93504 Hoi 7 110.3 21619 280 93506 F1 124.2 21619 281 93506 B73 107.2 21619 282 93506 Hol7 134.3 21619 283 93903 F1 114.4 21619 284 93903 B73 129.8 21619 285 93903 Hoi 7 134.2 21619 286 91904 F1 120.5 21619 287 91904 B73 113.4 21619 288 91904 Ho17 110.0 21619 289 92306 F1 147.4 21619 290 92306 B73 110.9 21619 291 92306 Hoi 7 119.5 21619 292 91905 F1 110.3 21619 293 91905 B73 131.5 21619 294 91905 Hoi 7 119.5 21619 295 94305 F1 118.5 21619 296 94305 B73 138.3 21619 297 94305 Hoi 7 119.5 21619 298 90701 F1 136.5 21619 299 90701 B7S 108.4 21619 300 90701 Hoi 7 119.5

RN EP

4.10 4.60 4.20 4.60 4.90 4.30 4.40 4.60 4.10 4.40 4.60 4.30 4.40 4.60 4.10 4.50 4.60 3.90 4.40 4.70 4.30 4.20 4.50 4.60 4.20 4.50 4.50 4.30 4.30 4.30 4.20 4.40 4.20 4.50 4.20 4.30 4.20 4.60 4.30 4.40 4.70 4.30 4.80 4.40 4.30

cm cm cm no. no.

1 2.70 1 .60 11.60 13.10 1 .10 1 2.90 1 .70 13.80 15.20 1 .00 1 2.40 1 .80 14.00 12.70 1 .00 1 2.80 1 .80 15.60 13.90 1 .00 1 3.00 1 .90 12.60 16.30 1 .10 1 2.70 1 .70 16.60 13.10 1 .00 1 2.70 1 .70 16.10 13.30 1 .00 1 3.00 1 .70 16.00 15.30 1 .00 ' 2.60 1 .60 18.50 12.00 1 .00 1 2.70 1 .70 15.70 13.40 1 .00 > 2.90 1 .70 13.40 15.40 1 .00

2.50 1 .80 17.60 13.00 1 .00 1 2.60 1 .90 16.20 13.20 1 .00 I 2.90 1 .80 15.60 15.40 1 .00 1 2.70 1 .50 14.20 12.20 1 .00

2.60 1 .90 16.70 13.80 1 .00 2.90 1 .90 16.10 15.80 1 .00 2.50 1 .50 16.00 11.80 1 .00 2.60 1 .80 16.60 14.00 1 .00 2.60 2 .10 15.20 16.10 1 .00 2.60 1 .70 15.70 12.80 1 .00 2.60 1 .80 15.40 13.80 1 .00 2.60 1 .90 15.30 15.90 1 .10 2.40 2 .20 15.40 11.90 1 .00 2.60 1 .60 16.40 14.10 1 .00 3.00 1 .60 14.70 15.10 1 .00 2.70 1 .80 18.10 13.20 1 .00 2.60 1 .80 15.60 12.80 1 .00 2.50 1 .80 14.70 14.70 1 .10 2.30 2 .00 18.00 12.20 r .00 2.50 1 .80 14.60 14.50 1 .00 2.70 1 .70 13.80 16.70 1 .00 2.50 1 .70 16.40 12.60 1 ,00 2.40 2 .10 16.90 13.60 1 .00 2.60 1 .80 13.90 16.20 1, .00 2.50 1 .80 16.70 12.50 1, .00 2.50 1 .80 14.80 13.60 1, .00 2.70 1 .90 13.90 16.40 1. .00 2.50 1, .80 16.70 12.50 1, .00 2.80 1, .60 14.80 15.50 1, .00 2.80 2, .00 16.50 17.20 1. .00 2.50 1, .80 16.70 12.50 1, ,00 3.00 1.80 16.10 14.20 1. .00 2.60 1. .80 13.40 15.90 1. .00 2.50 1. .80 16.70 12.50 1. .00

BP RL SL DE PH EH AN SE SO

% % X X cm cm days days days

0.0 0.00 0.00 0.00 233.3 113.1 83.0 86.0 3.0 0.0 2.70 2.70 0.00 239.8 118.8 80.0 82.5 2.5 0.0 0.00 2.10 2.40 221.9 114.3 80.5 85.0 4.5 0.0 0.00 2.10 0.00 217.9 111.3 76.5 80.0 3.5 0.0 0.00 0.00 0.00 224.6 106.5 77.0 82.0 5.0 0.0 0.00 2.10 0.00 217.4 111.0 77.5 80.5 3.0 0.0 0.00 0.00 0.00 220.7 107.3 79.5 82.5 3.0 0.0 0.00 2.10 0.00 220.3 105.6 79.5 83.0 3.5 0.0 0.00 0.00 0.00 209.6 103.1 79.5 81.0 1.5 0.0 0.00 4.20 0.00 226.4 110.0 77.0 81.0 4.0 0.0 0.00 0.00 0.00 230.2 115.0 80.0 82.0 2.0 0.0 0.00 4.20 0.00 221.8 106.0 80.0 82.0 2.0 0.0 0.00 4.20 0.00 216.6 110.1 78.5 81.0 2.5 0.0 0.00 6.30 0.00 233.4 121.7 81.0 83.0 2.0 0.0 0.00 0.00 0.00 207.6 105.5 80.5 84.5 4.0 0.0 0.00 4.20 0.00 230.7 116.1 82.0 85.0 3.0 0.0 0.00 4.20 0.00 236.2 122.2 82.0 84.0 2.0 0.0 0.00 0.00 0.00 227.9 113.7 82.0 85.0 3.0 0.0 0.00 2.10 0.00 206.8 97.4 78.0 81.0 3.0 0.0 0.00 0.00 0.00 224.6 107.2 81.0 83.5 2.5 to 0.0 0.00 0.00 0.00 198.9 95.4 78.5 81.5 3.0 to 0.0 0.00 0.00 0.00 215.1 106.8 80.5 83.0 2.5 ^ 0.0 0.00 2.10 0.00 230.2 112.6 79.0 81.0 2.0 0.0 0.00 4.20 0.00 211.2 105.4 78.5 82.5 4.0 0.0 0.00 4.30 0.00 235.6 121.3 82.0 85.5 3.5 0.0 0.00 0.00 0.00 247.4 129.9 85.0 86.0 1.0 0.0 0.00 2.20 0.00 225.6 118.1 81.5 84.0 2.5 0.0 0.00 2.10 0.00 230.6 113.9 82.0 85.0 3.0 0.0 0.00 0.00 0.00 238.6 122.3 83.0 85.0 2.0 0.0 0.00 0.00 0.00 212.6 100.9 80.5 82.5 2.0 0.0 2.10 2.10 0.00 217.7 102.4 81.0 84.0 3.0 0.0 0.00 2.10 0.00 217.7 98.2 81.0 84.0 3.0 0.0 0.00 0.00 0.00 206.6 97.0 78.5 82.5 4.0 0.0 2.10 2.10 0.00 224.2 114.9 79.5 81.5 2.0 0.0 4.20 0.00 0.00 224.6 114.8 86.0 88.0 2.0 0.0 0.00 0.70 0.00 213.8 105.1 80.0 83.0 3.0 0.0 0.00 0.00 2.10 215.5 107.4 79.5 83.5 4.0 0.0 0.00 2.10 0.00 215.3 107.1 79.5 81.5 2.0 0.0 0.00 0.70 0.00 213.8 105.1 80.0 83.0 3.0 0.0 2.10 4.20 0.00 216.7 97.9 76.5 77.5 1.0 0.0 0.00 0.00 0.00 218.0 98.5 78.0 82.0 4.0 0.0 0.00 0.70 0.00 213.8 105.1 80.0 83.0 3.0 0.0 0.00 0.00 0.00 213.4 101.6 79.5 82.0 2.5 0.0 0.00 2.10 0.00 212.9 96.5 79.5 82.5 3.0 0.0 0.00 0.70 0.00 213.8 105.1 80.0 83.0 3.0

Page 237: Triple testcross analysis to detect epistasis and estimate ...

UJ U4 M M Ui l/J 04 Ul ut U4 Ul Ul Ul M Ul UJ UJ UJ UJ UJ o o o O o o o o o o o o o o O o o o o o o Ul «Jt Ul Ul Ul Ul Ul Ul Ul Ul Ul UT Ul Ul Ul Ul Ul UJ Ul Ul Ul

•A •A >0 "O 'O o •o «o *o «o o «o «o o "O "O "O

*«. M U4 Ul UJ M Ul m UJ UJ ro ro ro ro ro VJl OJ ro -* & o CO •>i Ul Ui ro o «o oo •N Ul

00 03 t>j r\j IV*

09 ro r\j ro

00 03 OB ro ro ro 09 CO 09 09 00 09 09 00 00 09 09 00 ro ro ro O <} •O •o «o "O «o o >o o O *o 2 2 o 2 00 09 00 V/1 Ul Ul •p -«g -sj o o o _k o o o o o o o o o o o o

—* Ul Ul ut Ul Ul Ul UJ UJ UJ ro ro ro *«•

2.a

sss83sss;sssssss8$ssssssss O O O O O O O O O O O O O O O O O O O O O O O O

a>-nxo3-n3:ro-n2co3tixro-nx00-nx00tixo3'tix00-nx00tix03-nx00-nxojtix03"tixa3*n rm-o:>i-orh-o:><--oa-.oa-o;^-o>j-.oa-oa-'oa-'2.a-2.a-2.a-'2.a-* .a-*2.a-*2.a-->j ->j ->j

s 'O Ul Ul

•>J o

o o 09 O •o Ul a o Ul o CO

UJ 00 <3 o

Ul 09 -vl 09 ut 00

o •O 00 Ul •SOU!

O -M Ul 00

00 o UJ

o *<•

^ oa o 09 •>1 ro bo o 'o ro 1* Ul bo bo bo Ul M in Ul

09 q» ^ Ul o CO o UJ UJ

O 00 C UJ

09 ->| -»4 "O •<4 -* Ul 9»

•O « 00 UJ Ul 09

Ul o In lo t\> o Ov Ul bo Ul

Ul UJ UJ UJ UJ UJ UJ *»• UJ 4N UJ UJ UJ UJ UJ UJ M UJ *0 UJ *s *s *S «s «s Ul Ul «0 UJ -s> o UJ Ul «o *o -g Ul o 00 ro oo Ul Ui ro o •s UJ o 00 o 00 -g ro ro o UJ ro oO Ul o o o o UJ o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro bs Ul tn ro Ul ro bo o* Ul b» Ul b«. 09 Ul o b i" o* Ul bo In bo -sj is 00 -g -»j *g «s •ssj Oo ut Oo •xg

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o O o o o o o O O o o o o o

7 7 — — — r* r* — -ft -ft -k -ft -ft -ft —ft .ft —ft mJt -ft -ft -ft —ft -ft -ft —* -ft -ft -ft -ft —ft —ft

Ul -si OS b* Ul Ul Ul Ul Ul -vj Ul *<• Ul bv Ul Oo UJ Ul Ul is Ul Ul Ul bo Ul Oo Oo bo Oo Ul ut • Oo Ul

a Oo o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

_fc aA —ft -ft . . —R —ft —ft -ft Ul UJ UJ o Ul Ul Ul Ul Ul Ul UJ Ul Ul Ul *«• UJ Ul Ul Ul Ul UJ ro UJ ro Ul Ul UJ UJ Oo ro *s Ul UJ *S Ul Ul Ul Ul Ul o k) Ul c^ o ro o >o *0 -sj b» Lft o ro 09 to Ul bo bo bv Ul bo UJ ro bo ro bo ro UJ ro is «S UJ Oo UJ o o o o o o o o o o o o o o o o o o O o o o o o o o o o o o o o o o o o o o o o o o o o o

-» _fc _k -k _fc -ft —ft -ft —ft —* —k . —ft —ft —ft . —* —ft

. -A —ft . UJ UJ UJ Ul *>» ro Ul UJ ro o. UJ ro Ul Ul ro Ul UJ ro Ul Ul ro UJ UJ o» 4>. UJ o* Ul #s Oo *S UJ *s UJ Ul . s UJ Oo Ul

Ul ro Ul Ul 4N Ul bv Ul -J bo o ro •si b ro Ul ro *<« ro o UJ o •sj Ul O CK "•J ro is is «sj • —ft ut ro ro o o o o o o o o o o o o o o o o o o o o o o O o o o o o o O o o o o O O o o o o o o o o o

o o o r* o •pjt o —k -ft -ft 7* -ft o -ft -ft -ft -ft o -ft o —ft -ft —ft •A -ft -ft -A —* o ..A o —ft

«o o o o o o o o o o o o o o o o o -si o o o o o •>1 o o o o o o o o • o o o o 00 o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o sa o o o o o

-* —Jk -ft UJ . -* UJ .

Ul Ul o o Ul o o o o o o o o« o o Ul Ul Ul o o o o Ul Ul o Ul o o Ul o o Ul o o o o o o o o —ft o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o Ul o o

o o o ro o o o o o o ro o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o fo o o o o o o _k o o o ro o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o CD o o o o o o o o o o o o o o o o o o o o o o o

ro o jo o o o UJ o o OV ro o UJ Os Ul ro ro UJ UJ Oo ro ro o o 00 o ro o o o o Ul ro p o o o o o Ul bo o fo o o o o ro o Ul Ul o —ft *«• o *<• •M k> *>. Ul ro o o is o bo o o o UJ bo is o o o o fO o o o o o o o o o o o o o o o o o o o o o O o o o o o o o o o o o o o o o o o o o o o o o

•> ro o o o ro o o Ul o o o ro o Ul o o o o o ro o UJ o UJ ro ro o Oo o o ro o o «S o o Ul o o to «s U4 Ul Ul UJ U4 Ul o Ul o o UJ o o 09 o o o o o o o o o o fO o o •o Ul UJ o Ul o o UJ o o k> o o o o o —ft ro

e» a« ->i oo rj hJ

ro o Ul

—ft o 09 o

oO Oo —ft o o

—ft o Oo o Ul o Ul

—ft

—ft Ik Ul bo is ro Lft ui <o I 00 vn

Ul S N *0 00 Oo Ul

—* —ft oO oO O O

Ul ro •ts o o -• o Ul «s

O oO O Ul «Jl Oo

Ul fs 00 fo i bo o ut is is 1a ro Ul

00 oO

00 o *o —'

00 "O o o 00 oO 00 00 —ft >0 ^ ^ o UJ

oO o o " O ^ O o O O O O O Q p m O O O O O O 0-»0'0*S45$-SJ«0'N 00 oO

^ o 00 00 oO 00 o So 00 00

j® r* Ul Ut o Ul o o o o o o o O Ul O O U l U I U I O U I U l O U l o o

• Ul o Ul o Ul In

s83 <0 00 >0 "o -ft 00 -* o u1 o u1 o ui

«o o Ul !S o ro "O ro

«o ro

oO ro o UJ ro

o UJ •o ro o ro oO

o •o UJ

<o

o o o o o o o o b b b In In ut b Ul ut mouiovnouivnuioovnoui 2§ ro o oO 00

-ft 00 oO *0 O UJ

oO ro «o « *o -A ro ro b b b b ut Ul b In Ul Ul In b b

U) UJ ro ro to ro UJ UJ -* -»ro -ft ro —ft o ro UJ -ft ro *s -ft ro 4N UJ s ro ro Ul ro -* ro

o b Ul Ul o Ul o O Ul Ul Ul o Ul Ul Ul Ul o O Ul b Ul o Ul b o o Ul Ul b Ul o rs) iM f\i rv> o o ui o

rv) -* oj o UI o o In

(o •o

&

Q. Of «<

szz

Page 238: Triple testcross analysis to detect epistasis and estimate ...

Table 05. continued.

Env. Entry Hale Tester YD ED CD KD

g/plant cm cm cm

30519 46 89502 F1 85.8 4.00 2.40 1.60 30519 47 89502 B73 104.7 4.30 2.70 1 .60 30519 48 89502 Hoi 7 83.5 3.70 2.10 1 .60 30519 49 89503 F1 85.6 4.20 2.70 1 .50 30519 50 89503 873 100.0 4.20 2.60 1 .70 30519 51 89503 Ho17 58.3 3.70 2.30 1 .50 30519 52 231916 F1 103.8 4.10 2.60 1 .50 30519 53 231916 B73 84.0 4.10 2.70 1 .40 30519 54 231916 Hoi 7 130.9 4.20 2.60 1 .60 30519 55 229524 F1 64.2 3.90 2.50 1 .50 30519 56 229524 B73 92.3 4.30 3.00 1 .30 30519 57 229524 Hoi 7 86.1 3.90 2.30 1 .60 30519 58 89506 F1 60.3 3.90 2.60 1 .40 30519 59 89506 B73 91.4 4.40 2.80 1 .60 30519 60 89506 Hoi 7 85.5 3.80 2.40 1 .40 30519 61 89507 F1 70.6 4.10 2.60 1 .50 30519 62 89507 B73 102.3 4.30 2.80 1 .70 30519 63 89507 Hoi 7 94.5 3.90 2.40 1 .50 30519 64 89901 F1 88.7 4.00 2.60 1 .40 30519 65 89901 B73 75.7 4.20 2.70 1 .60 30519 66 89901 Hoi 7 83.7 3.70 2.40 1 .40 30519 67 89902 F1 81.4 4.10 2.40 1 .70 30519 68 89902 B73 81.6 4.20 2.80 1 .50 30519 69 89902 Hoi 7 80.3 3.80 2.30 1 .60 30519 70 89903 F1 89.1 4.00 2.60 1 .50 30519 71 89903 B73 128.3 4.50 2.90 1 .70 30519 72 89903 Hoi 7 48.7 3.60 2.20 1 .50 30519 73 89904 F1 62.6 3.70 2.60 1 .20 30519 74 89904 B73 127.7 4.40 2.80 1 .60 30519 75 89904 Hoi 7 71.9 3.70 2.30 1 .60 30519 76 90301 F1 57.4 3.60 2.50 1 .10 30519 77 90301 B73 100.1 4.20 2.60 1 .60 30519 78 90301 Hoi 7 87.7 3.80 2.40 1 .50 30519 79 90302 F1 99.9 4.10 2.70 1 .40 30519 80 90302 B73 90.1 4.30 2.80 1, .50 30519 81 90302 Hoi 7 114.3 4.20 2.50 1 .90 30519 82 229921 F1 104.0 4.20 2.60 1, .60 30519 83 229921 B73 109.0 4.20 2.80 1, .60 30519 84 229921 Ho17 129.1 4.10 2.60 1 .60 30519 85 230323 F1 78.5 4.00 2.50 1, .50 30519 86 230323 B73 112.3 4.30 2.80 1, .60 30519 87 230323 Hoi 7 85.7 3.80 2.40 1, .40 30519 88 226720 F1 89.9 4.10 2.70 1, .40 30519 89 226720 B73 81.7 4.30 2.90 1, .40 30519 90 226720 Hoi 7 103.2 4.20 2.40 1, .80

EL

cm

RN

no.

EP

no.

BP RL SL DE

X

PH

cm

EH AN SE SD

cm days days days

U.20 14.90 15.20 15.20 14.10 12.80 15.60 14.00 16.80 12.90 13.70 14.90 11.80 13.80 15.20 13.70 14.10 15.90 16.30 14.40 15.40 13.30 13.00 13.80 13.50 14.80 11.20 13.50 16.80 15.50 13.20 14.70 14.80 15.50 13.40 17.10 15.40 15.00 18.20 15.10 14.70 15.20 15.20 13.10 17.10

13.50 15.30 12.10 14.40 15.80 13.80 15.50 17.30 14.20 14.50 17.00 13.60 13.40 17.00 13.00 14.80 17.10 13.30 14.10 16.30 13.10 14.40 16.80 12.90 14.90 17.30 13.10 13.40 15.10 12.50 15.00 16.70 13.20 14.80 16.80 14.10 15.10 16.70 14.20 14.10 16.70 13.50 15.00 17.20 14.10

1.00 1.00 1.00 0.90 1.00 0.80 1.00 0.90 1.00 1.00 1.00 1.00 0.90 1.00 1.00 1.00 1.00 1.00 0.90 0.90 1.00 1.00 1.00 1.00 1.00 1.00 0.90 1.00 1.00 0.90 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.00 0.90 1.00 1.00 0.90 1.00 1.00

5.0 0.0

10.0 15.0 0.0

25.0 0.0

10.0 0.0 5.0 0.0 5.0

10.0 10.0 0.0 5.5 0.0 0.0

15.0 20.5 0.0 0.0 0.0 0.0 0.0 0.0

21.5 7.0 0.0

20.5 15.0 0.0 0.0 5.0 0.0 5.0 0.0 0.0 0.0

15.0 0.0 7.0

10.0 5.5 0.0

0.00 0.00 0.00 0.00 2.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2.50 4.20

12.10 4.60 2.10 0.00 6.30 7.90 3.00 9.40 0.00 0.00 0.00 7.00 5.80 6.30 8.40 5.30 4.50 2.20 2.30

12.80 2.10 0.00 8.40 3.00 6.30 0.00 0.00 4.40 2.10 4.20 9.60

10.50 0.00 2.10 0.00 3.00 4.60 6.30 5.00 0.00 9.00

10.50 16.30

2.50 1.80 9.00 3.40 4.20 0.00 2.10 5.50 0.00 0.00 0.00 3.00 0.00 0.00 0.00 0.00 0.00 5.70 2.10 2.20 4.20 0.00 0.00 0.00 0.00 2.70 2.10 3.60 0.00 2.10 0.00 0.00 5.00 0.00 0.00 4.20 0.00 0.00 3.10 0.00 0.00 7.20 0.00 2.10 4.70

196.2 213.5 204.3 193.6 212.9 196.8 207.0 207.4 201.9 201.5 204.6 197.3 174.9 217.6 191.5 195.6 217.0 196.3 210.0 211.7 188.4 210.1 218.6 194.5 211.2 224.6 198.8 198.0 229.7 200.5 194.7 207.9 183.2 215.0 203.2 204.0 211.5 211.6 208.4 227.4 225.9 192.1 217.0 221.4 209.1

91.9 106.2 104.2 87.9

101.9 92.8

103.5 106.1 98.0 91.5 95.7 87.4 90.3

113.6 93.9 92.4

113.6 99.4

108.2 99.8 95.4

105.8 108.8 88.5

106.7 113.3 100.4 95.9

114.3 99.9 91.9

107.8 82.2

102.5 96.6

101.6 109.0 110.9 100.5 118.9 120.6 88.3

113.9 116.3 100.9

88.0 89.5 89.0 86.5 88.0 88.0 89.0 90.5 88.0 89.0 90.0 89.5 90.0 89.0 89.5 90.5 90.0 90.0 90.0 87.5 90.0 87.0 89.0 86.5 89.0 90.0 91.0 89.5 89.5 89.0 89.0 90.0 88.0 89.0 90.5 88.5 90.0 90.5 86.5 90.0 89.0 90.0 91.0 91.0 90.0

89.5 90.5 91.0 88.0 90.0 91.0 91.5 92.0 89.5 92.0 91.5 92.0 91.0 90.5 92.0 91.0 91.5 92.0 92.0 91.0 92.0 88.0 90.5 88.5 92.0 91.5 94.5 92.0 90.5 92.0 91.5 91.5 90.0 92.5 92.5 91.0 91.0 92.0 87.5 91.5 91.0 92.0 93.0 92.5 91.5

1.5 1.0 2.0 1.5 2.0 3.0 2.5 1.5 1.5 3.0 1.5 2.5 1.0 1.5 2.5 0.5 1.5 2.0 2.0 3.5 2.0 1.0 1.5 2.0 3.0 1.5 3.5 2.5 1.0 3.0 2.5 1.5 2.0 3.5 2.0 2.1 0.0 1.5 1.0 1.5 2.0 2.0 2.0 1.5 1.5

to N) vo

Page 239: Triple testcross analysis to detect epistasis and estimate ...

230

8

S

8

0 01 2

•8

>» -8

•S

8

>-l_

c

q. V. o)

o in o O in in O in O O o in O in in o O in o O o O o in in in O o o in in O in o in in in in in in o in in *— CM rv nj o ro ru CM "" CM o ro m rn CM CM K5 *- fA CM CM rO CM ro CM CM CM CM CM nj

in in o o o o o in in o in in in in in o o o o o O O in o in o in o o o o O o o o in in o o o in o in nj m s

CM o s s s i CM CM ? CM <> o!

CM ro c> 50 CM o* rO Ch

o c> o o

CM CM 50 CM CM O o

s Ov CO CO

o o CO

CM o

in o o o in in o o in o in o in o o o C9 in O o o o in m o in in o o in in o in o in o o in in in in in o

00 ss 00 s o

CO C> CO s

(> CO o o» CO

o CM O" i •— O" 3 3

o! CO o o» CO

o o a

CK CO CO CO CO

o o o o

9> o o s s

o o o

CO CO N! CO CO

N! CO

CX Ch CO CO

CM o o in CO rw CM CO in ro 'd- rw Oo o-o «- CO o 00 'O in CO in in >o ro ro Oo o 00 ch

S 8 N O CO

CM o s CM o o h! o

CM fo o

in o CM

"d o s CM O JO o

CO in o «—

CO o o o o

>o c

NT C3 O

CO o o ro o *—

CM O o

CO N! CM o»

«o Ov 8:^

in -* 00 00 CM N* *o » CM o KJ •>0 N. *o «- CM >o ro ro o ro •- «- CM CO CO o CM -* •»* CO o d o CM

K. CM O CM CM CM

nj CM CM

CM fO CM

in w— CM K CM

o o CM s CM

•• CM CM

in o CM

o CM CM

in CM CM

CM O CM CM

e o CM

CM O CM

S CM o CM

CO o CM

o CM CM o CM

N CM CM

o CM

ro o CM

00 CM CM

CM 00 o rg

ro

CM o CM

>•.* O CM

o CM

CM o CM

o CM

n! o CM

o o CM o CM

CM o o CM CM

s o o o N! O CM

) q o o ( ) a o V- I > o o I o o i o o n o o c m o o o

o o o o o O O o o o o o o o o o o o ro CM tn o o CM o o o CM o •— o lO o CM St (M *o o o o o o >» o c> ro o o

s s ® 2 q ^ ^ 2 ^ ^ p ® ® ® ® ® o ® o ® o o o o o o o o o o o o o o o o o o o o o o o o o '^'*^*~po''t>oir40ooj>on-*~'«~'0{\i{\i*0'««*ofo*o«—c\jmn-r^*okin,^*orvjo«ocorvjo>s'>to^cooh-c\ifo>o * * * * * * * * * • • * • • • • • • • • • • • • • • • • • • • • • • • • « • • ( • • • « ( (m<>tn-«o^'«*rmm^f'^oncxioos^«of<>»mfxi<^rmo^coo*^cm«or>j>o^oroh»rmn>inco«ormrorsjr\j^m w— «— *— *-•

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

o o o o o o t n o o o o u ^ m o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o u > m i n o o « " m o o t a o o o o t n o m o o o o o i / > o m o b » m i a o ( / > o t n o i n o i n o o «- K1 *- W-W-OJ CM *-

o o *o o O o o o o o CM O CO o ro o o o o ro o o >o >o o CM o o o h-o CM o fO o o s O CO

o o *o

o •J- o o o >» o o o sT o CM

O o CM

O o ro.

o ro o >o o in o

CM o sj- o in

o ro o p O h«-

ro in CM *—

ro CM tn >6 p N3" *o ro in <0 CM •si- ro >* Nj- in 00 *—

in ro s* CM in ro *—

ro fO •«* CM in CM *—

o CO o >o o g O >o o CM

o o o •>» o •st o 00 o tn o c^

o o 00 o in

o CM O CM

o h-O o Ch o in

o >o O •N? O o o o ro o CO o o

o <— o o r». o «.»

o o o N. o CO

o h- o CM

o st o m O r--o CM O O *o *-

in in CM ro in ro in in ro r— in in in *«-

ro in ro CM in •»* >»• T~ ro in "•J- in ro «o ro to St ro St in St in fs.

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o ir»>oiatoir»f>jir^*»»««tmcvifo*»^'k)'»*^»0'^ir»fmn.r\jokimrvjio*>^>*fvjin'oin>y-»yiamkimo*oroininm

o >o g O ro o in o

CO o ro O rs. O a» o ro o in o O in o •o o c^ o o «o S o

St O «o o

o O St

O N. O o S O o o o in o o o CN O st

O in o CO o CM O in o CO o St O N. O CO o St O oo o N. O ro o

rs-o o 00

(M CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM (M CM CM CM CM CM CM CM CM CM CM CM CM

o o ro o CO

o 00

o o in o CM

o ro e o Oo o CO

o 00

o CO

o o oo o o o ro o rs- o o o o o 00

o CO

o o o o o rs. o o o CM

o tn o o o CM

o r-

o o o o o o o o CO

o CO o CM O «o o o o ro o

st st ro ro st ro S* st ro ro ro ro ro st ro st ro st st st ro ro st st st ro st st ro st ro ro st ro st st ro ro st ro st st st *o o N. o» tn in o fs-o CO ON N- st st CM <y to­ CO in CO o» ro in tn h-O CM «— ro in ro st CO ro *o o so CO CO in «->d 00 o

N» st 00 CO o

CM 00 o O

Ch CO

CM CO

rs! o O CO

ro Ch o i st o CM CO & CM 8i ro tn g CO tn o tn CD

st CO *6 N.

ro <3

in m

CO CO

N! 00 o

CM CO m (M 3 rs.

o tn CO

ro N. CO rs.

U . O B X t ^ C O Z U > C D X i ^ C D X ^ C D X U - C O X U . C O X U . C D X U . c f l X t ^ C O Z ^ C D Z U . C O X U . a i Z U * C D Z ( k e D X

g«—^-t-rvjojojrororo o o o o o o o o o r - m r o " ' - - - - - - -• •-* i-a !•« •-• •-• ft ft r«i r«a r-i r-a ««• (M(>j«MCM(MOJfVf\ir\JCM(M(Njr>jrvicMcvirMr\j

^rukt'«s'm*on.oo<

r^ is. h* ro ro ro st st •4- o» O o o O o o o O o o o o Is. rs» r— «— ro ro CM CM CM NO NO ro ro ro o ON ON c^ o CM CM CM CM CM CM CM

in VO eo ON o «— CM ro st in CM CM CM CM CM CM

•- «—

ON ON On On <>• On On o> On o> r" in tn in in tn in in tn in in tn o o o o o o o o O o o ro ro ro ro ro ro ro ro ro ro ro

Page 240: Triple testcross analysis to detect epistasis and estimate ...

231

in in in o in in o in o in e o in o O o o o in o o o o tn in tn o in O in o in in o o in in o in in o o o in o •" w o CM ro CM CM CM o] •» CM C\J ro o CM o CM CM o •- CM CM CM O CM CM CM CM t* IM

in o o o in m in in O in in o o in o o tn o o tn in o tn o o o in in o in O o o o O o o o in O m O o o tn CNJ rsj o o- s sis 5

CM O. fy

O CM 0> O" 55 (S

ro o

nj o* CM o> in ? •— CM

O CM CM

o» CM Ch o* GK CM Ch

CM CM •-! Ch

CM o»

CM d c

Ch 00

o m in o o o in o o o in o in in o o tn o in in in o in in in tn in o o o O in in o O in in o o in in o o in tn

i a 00 ii 00 00 §§ CM CM ot 0» CO

Ch CO s

o 0 00 o c CO

o o>

rsi (> o o o i O 00 th to o o Ch CO

CM O 00 d eo d o o i (> OS CO 00

•O in •• o O CO in o CM CM 00 in >o CM OO in o <r* o o 00 «— tn CO CM in in •># tn rw in o CO st tn CM "O CM oo o

rv h*! f>j *-<i~ •—

o o

<43 C> o

CM o

«o in Ch o

s# K o

ro ro o

ro o o o

•4-O

tn o •—

•—

ro CM

ro o

rn

•—

tn o

St O

CM O

IS! c> o CM O

ro CM O

c\i <r"

tn o

CO CO tn Ch

m o o o» 00 CM O o o ro ro •- OJ Kl ro 00 f>o O «- St eo CM in in 00 in *o tn CO o W N 00 in

CNI •— OJ CM

rO *• CM

CM O o CM CM

in CM CM

CM o CM

CO Kl Ch o

CM

in CO (>

CM

"C o> w rO o *-CM CM o •-CM CM

ro

CM

in

CM CO

ro

CM 1 o CM N

CM i K

N CM CM

ro

CM

00 (

CO

CM

00 ch

in o CM CM

st rw

CM

in h-ro o CM CM

CO st

CM

CM o d c>> d o o CM •-

o o O O O O

O o o o e o N» •-s o CM o e o o ss O o o •»»

O O o ro

O O OO O

o O OO o o o o o o o o O o o *o o o O o •—

o o O o o ro O o o o o >o o o o o O

o o O o

CM o ts. o o o ro

o O O o o in CM ro •r* o o %o o o o >6 "O O ro ro o o o ro o CO o lo CM o o «o o o CO o o o 'C CM • d is!

o o o o •-

o o o CM o o r i ro o »o o in o o o o

CM CM s o •>0 o o CK O o o o o

ro o 00 o CM o e o CO o o CM o o o o c

o in o 00 o o o "O o o o o o

st *-o st o ro O o o o p CM N.

N e ro in N 00 «o N! ro «o IS! Ch *—

in CO o CM CM

ro O CM CM in "C eo c> CM o 00 CO in IM w d h! st

o o o o o o

Q O o o o o o o

o o o o o o o o

o o o o

o o o o o o o o

o o o o o o o o o o O o o o o o o o o o o o o o o o o o o o o o o o o o

o o o o o o o o o o o o o o

o o o o o o

o o o O o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o d d d d d

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o tn o o o o o m o in in o in

CM o o o o in o o in o o o

»— o tn o rC in o o o o in o o tn tn in o in o d d m d d

o o o o o •-

o o o o o o o o

o o o oo ss ss o o o o o o o

o o o o

o o o o o o o o o o o c> o o o o o o o o o o o o o o o o o o o o o o o o o o o

o o o o o o o o o o o

'- *-d o o ^ «— *— •- o *- o -- o o

o Kl o o ro

o o o o ® o in o in o o ro *-

o o QO <>«•

o CM o in o o ro tn

o o •O f-

o CO o <o o o o o

ro o ro o o o o CM o CO o o o in o «> o o

*o s o CM o o o ro CO o CO o o

tn o in o o rs- so

in ru ««•

in N! ro in ro ro ^ CM ro m N. ro in w ro o Kl in r-! St r-

•>* CM in ro in ro st <o CM st «o ro st in CM

o ss o o •»* ss o o 00 o o CM ro gs o in o o o m ro O O

in o o o o o o ho o o o oo o oo o o -T o

IM o oo o r o CO o o

sT o St o o o

ro •-o o 00 o CM o o o o o>

•4- tn Kl Kl «o lO o ro ot in in m in Kl <r" ^ OO in ro CO CM in fO Kl in St sa- ro ro St ir»

st st -O st ro in st st r- •—

ss O s* O o o CM in

o in s o o

in r*>- o o s9- in

o "O o >«• O O

•«» o o in

o "O o r^ o o «o o ro o in o -J-o NT o m o >* O ro o o o o

oo o in O in O st o o in in

o st o st o st o o o

in st

'• IP"

*- •—

o *o ss o h- o o

o o 09 in

o o o in o o tn CO

o o in

o rw o ro o o CO (

o o <i CO

o CO

o o in o o

o fO o oo o o g o o o •o o «o o 00 o

Kl o in o 00 o >o s o o o in

o h-o o

tn o o o

oo ro fO cO OJ OJ ro (M CM ro CM CM CM CM CM r\j CM CM CM CM CM CM CM CM ro CM IM ro CM IM ro rO CM CM CM CM CM CM CM ro IM CM CM IM CM CM CM

o o o Kl

o c

o •»* o o o o

o in

o o O O O o o c>» *-

o CM

o N. O O (M CM O O o o

CM o a> o o o

ro o -J-O o O o

CM o o- o o o CM O fo- o ro o

ro o o O o o

st o o

ro o o o o

o o ro in

^ >* ro •«» ro ro N* ro ro •Kt ro >»• ro NT ro 'J' st st ro st ro ro st ro «4- in ro 0; 00 o h. O ro o» <> tn O* CM «- •J- in >0 «o CO ro in h- h. o tn CO OO in in o in N. o»

s m rO CO

ro 2P O K o g CM Ch ho o N. CM oo o> i o tn CO CO

Ch O CO

rw rsl CM

in o CM ••

CM <o O' CO CO o« CM 00 CO CO CO s CO r». s JS o tn Ch tn 00

CM oo o

<M CO

st o* CO r d o st *0 h".

u. B73

H

oi 7

u. B73

H

oi 7

F

1 B

73

z U. CO Ho

i 7

F1

B73

H

oi 7

F1

B

73

Ho

i 7

F1

B73

H

oi 7

u. B73

H

oi 7

u. B73

H

oi 7

T-u. B73

N.

z tl. B73

r»-o z B

73 N. ir-

O z u. B

73

Ho1

7

u. B73

H

oi 7

ti. B73

H

oi 7

s in ss in in

2271

10

2271

10

2271

10

9190

1 91

901

9190

1 91

902

9190

2 91

902

9190

3 91

903

9190

3 22

7511

22

7511

22

7511

22

7512

22

7512

22

7512

91

906

9190

6 91

906

9230

1 92

301

9230

1 22

8313

22

8313

22

8313

92

303

9230

3 92

303

9230

5 92

305

9230

5 22

6308

22

6308

22

6308

92

307

9230

7 92

307

9270

1 92

701

9270

1

o ro

N. eo ro ro Kl

o CM sT sj"

Kl ""J" in *o •—

r«> 00 ji

o> •»*

o tn CM

in in ro •4' in in

tn «o in in ^ "T"

N. in

00 tn

o in o *-• •o CM «o ro 1

in «o

*-•

CO o «o o IS.

CM N. rs r s o« o rs. CO

in o ro

o> o in in o o ro ro

o» in o ro

in o ro

o <y-tn in o o ro ro

O in o ro

CK

in o ro

•— in in o o ro ro

o <y in tn o o ro ro

o> in o Kl

tn o ro

r" in in o o ro ro

tn in o o ro ro

in in o o Kl ro

in o ro

O in o ro

<y in o fO

o

tn o ro

o in o ro

in o ro

<y in o Kl

o

in o ro

o in o ro

tn o ro

tn o ro

o-in o ro

tn o ro

c>»

tn o ro

o« in o ro

in o ro

(> o» in tn o o ro ro

o» *— tn o ro

o* in o ro

o tn o ro

tn o ro

in in o o ro ro

Page 241: Triple testcross analysis to detect epistasis and estimate ...

232

S

8

•S

L. c

o l A l A o o • lA e i n l A l A l A O l A O l A l A o in in l A o l A O O l A o O ( A o o l A o in O l A in l A in o o o lA oi rJ rvj *— rvi r \ j •-• O r\j k S CNl KJ fO CM O *- rg ro rn f M ro K» ru Kl <M •- CM ro o CM K ! «- ro rn

Q. o>

in o o in o in in o in in

s CM M 50 o o. •-00 O

•— N1 •*• c

o o in in in o in o o in o o o o o o o in o o l A in in

s o O'

o o* o s C M C M o>> s C M ro o- C M jo o>

o o

rsj a > a C M o->

o in e o in lA o o ft GO

o« (> o OO GO CO 0» Ch

mmooinirtino

^oo^rvj*—r«.coo o«o«oooo«oono» I oo O" o

i s s s

o o o t n i n i n o o o o o o o o o o o & n o o m o o o i n o o o i a o o o o m o o^oogkcoco^co&ao^cooooo^ooo^goooo^oooosooo^oooo

r*>gorgooooqoo>roooinrg*'n.co^ror>o

0000»00«(soc>kooooookcoo« CM (> CM o o o ro oo «- ro in T- CM o 00 CM N.

o O o •— N! CM o

CM o

lA o

CM in •—

•J-o o

CO o

in r—

ro o

in in o o

o •- h- O to •- o K ro CM

ro CM

CM o CM

o o CM *-

^ o ^ •— T- CM

fO lA At O CM CM

CM <) oo CM «r- "T-

S CM

iposfonico-<from»-oocooj ip«—oo'^-o'o'-o^ruoo

0000n>cm0in0m00cm(^000(mc\iin00<^r\i0<>t0ki(mrm0>rcm0krm

o o o o o o

o»oosrc\jorvjroo

^ o « — « — * » o ^ o t V J f \ J ( M < \ J r v J C M O J f \ 4

O O o

o •J*

o C M

o >3-

o o

o o o *- N.

A J o 00 C M f O o •4' OJ o *—

oooooooooooooooooooooooooooooooooo O O O O O O K I O O O O O O O O O O O O O O O O O O O O O O O O O O O

O O O O O O C M O O O O O O O O O O O O O O O O O O O O O O O O O O O

o o o o o o o o rvjmcommosj'o r^«on>«-«ooooin

o o o o o o o o

oooooooooooooooooooooinooooooooooooooooooooooo >o«ommoommoommoooioomooinoo«-oo *- 1- «- CNJ

o CO

o o

o o

o o

o o

o o

o o o o o

o CM

o o o

o O

o o

o o o

o o o

o o

O o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o O o o

o o

o o

o o

o o

o o

o o

o o

o o o o o

o o o •- •- •-'-•- •*- o o •- •- *- •- -- •- o *— o o o •- o

o o

o o o o GO

o o in

o o o

o lA

o 'J'

o •o

o r».

o N*

o CM

o o o> o

CM o oo

o o CO

o o Ch

o o o

o in

o r»- o CO

o o (M o

in o >r

o r» o o ro

o o»

o o

o o •o

o o CM

o CM

o Al

o in

o o CO ^

•>c a ro <»» ^o ro <r~ n "C *—

CM «**

CM -* CM in T~ ro to >o ro •— •—

ro "4r *o CM >* >o ro in ro in ro in ro •—

>0 CM

o o

o s o 00

o 00

o ro

O «o o o o ro

o o o o o CM

o o

o o h-

o in

o o o c^

o o

o o

o in

o o o

o S3

o in

o (M o

in o o o

in o in

o o CM

o oo

o ro

o in

o <o o s*

O CM

o •»»

o r^

o o 00 o

ro ro CM in ro nr— in ro ro lA CM lA ro in <r* ro in »o •»* «4- •.» lA Nf >6 in ro ro ^a- in -4' in in in *4- S3 >* to

o in

o o o ro

o AJ

o ro

o CM

o in

o o o >»• o CM

o ro

o in

o ro

o •J- o o ro

o -«»•

o in

o •«*

o CO

o o in

o ro

o o o s o CO

o ro

o >»

o in

o in

o CO

o in

o O o in

o in

O in

o o •J- o o S> CM

*" •" •- «-• «-• -- T—

o «o s o in

o oo

O CO

o o "O o o o "O s s o h.

o CO

o ro s o

oo o in

o r^ § o

in o in

o N.

o CM

o o o o O in

o >o

o o

o ro

o in

o N.

o g o o >o o in

o o o 00

o O'

o in

o S3

o o CO CM

CM CM CM CM CM CM AJ CM CM CM CM CM CM CM CM AJ AJ CM CM CM CM CM AJ CM CM AJ CM CM ro CM CM CM CM CM AJ CM CM CM CM CM CM CM CM CM CM

o • o o >o o o» o

o O o

CO o ro

o o

o o

o ro

o *o

O o

O ro

o in

o o o oo

o O CM

o <> o CM

o AJ g o o o

CM o CO

o CM

o o o CO

o o O

o o *o o O c> o

ro o 00

o o ro

o o

o o

o o ro ro

1 ( i od* i mn»nj'fs-oom"sj-4nn.co-4'«^n-incnj>»imnj"»->jinw~>of<iro

' ' ' ' • • • • • • • • • • • • • • • • • • • • a

O s O N > O O h > - O C O O O O O > N - d r^^p»^roroo(mn.r^*4'«o^ •oo«kp^^eogoooeoc\jn.d

CM •4- •sT o h- o si rv

O o ro > o s o CO CM o •- ro «»»• ro o CM o o CO tS 00 Ch in

CO o * O CO 5^ fx.

^ <y o

r" R 1 GO X

AJ CM CM o O O fN. N. N. CM CM CM c> (> O

pw r»- r- r». r«. r»- h- N. h- N.

t^caxikttzt^az(kcdxu.cdxu.cba:ii.eqztkcdzu.gdx^cnzuuaxu.axtkcox^cdzu.cax

s s s ^ p p s s * 3 p p p p p p ^ ^ o c 3 0 o o o o o o o o o o o o o o o o o o o o o o ^ r>" n- l/> lA lA r»> r* N» «-• If\ ia Irt ^ w" *" *" «— ir» lA l/% t/> lA lA N» N. lA lA tA h* h* N. soje»ss^{^sc5cjoft!ft*ft!ft'ft?ft!!ok?k>s010!e505c!0!ok»5oss'^?rji5nfn555>5?rnm555 0»^0>00^0>^(>0>0k0»0»0»0>000>ch0><>0»0^00^0^0«0«ch0000«0^0^0«000«0^0«0^

r s O' o •- CM ro in 00 o CM ro lA S3 h- CO Oo o CM ro in N. oo Oo o CM ro •s3* in GO 00 CO o* o«> <y (> Oo o-o o o O o o o o o o o CM CM CM CM CM CM *- CM CM CM CM CM rxj CM CM CM CM CM CM CM CM CM ro CM CM CM CM CM CM AJ CM

<y ty <y o» o Oo o o> o> Oo o> o o» O Oo Oo o o» O Oo Oo Oo Oo Oo o o> Oo Oo O* o« Oo Oo Oo Oo ««» <f~ «-» *-• in in in in in in in in in in in in in in in in in in in in in in in in in in in in in in lA in in in in in in in m o o o o o o o o o o o o o o o O o o o o o o o o o o o o o o O o o o o o o o o ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro lO ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro

Page 242: Triple testcross analysis to detect epistasis and estimate ...

Table D5. continued.

Env. Entry Male Tester YD ED CO KD EL RH EP BP RL SL DE PH EH AN SE SO

g/plant cm cm cm cm no. no. cm cm days days days

30519 226 93901 F1 85.6 30519 227 93901 B73 82.9 30519 228 93901 Hoi 7 51.5 30519 229 93902 F1 87.4 30519 230 93902 B73 74.0 30519 231 93902 Hoi 7 110.7 30519 232 94701 F1 83.7 30519 233 94701 B73 100.9 30519 234 94701 Hoi 7 78.8 30519 235 94302 F1 57.9 30519 236 94302 B73 60.9 30519 237 94302 Hoi 7 J1.4 30519 238 93906 F1 91.7 30519 239 93906 B73 125.5 30519 240 93906 Hoi 7 62.0 30519 241 94301 F1 69.6 30519 242 94301 B73 85.6 30519 243 94301 Hoi 7 86.9 30519 244 89101 F1 67.7 30519 245 89101 B73 99.6 30519 246 89101 Mo17 63.1 30519 247 94303 F1 69.5 30519 248 94303 B73 106.7 30519 249 94303 Hoi 7 42.2 30519 250 94304 F1 85.6 30519 251 94304 B73 95.7 30519 252 94304 Hoi 7 90.2 30519 253 89107 F1 94.7 30519 254 89107 B73 121.4 30519 255 89107 Hoi 7 94.1 30519 256 90303 F1 81.0 30519 257 90303 B73 101.6 30519 258 90303 Hoi 7 56.3 30519 259 91505 F1 85.6 30519 260 91505 B73 98.3 30519 261 91505 Hoi 7 86.4 30519 262 90703 F1 73.0 30519 263 90703 B73 90.4 30519 264 90703 Hoi 7 65.2 30519 265 92302 F1 76.2 30519 266 92302 B73 84.5 30519 267 92302 Hoi 7 75.5 30519 268 92703 F1 95.7 30519 269 92703 B73 108.8 30519 270 92703 Hoi 7 83.8

3.90 4.20 3.60 4.00 4.10 4.00 3.80 4.10 3.60 3.80 4.10 3.80 4.00 4.50 3.60 3.80 4.00 3.90 3.90 4.20 3.80 3.80 4.40 3.40 3.90 4.20 3.80 4.10 4.30 3.80 4.70 4.40 3.40 4.10 4.30 3.90 3.60 4.10 3.60 4.10 4.20 3.70 3.90 4.30 3.70

2.50 2.70 2.20 2.50 2.80 2.50 2.30 2.70 2.40 2.60 2.80 2.40 2.60 3.00 2.40 2.70 2.80 2.70 2.60 2.70 2.20 2.50 2.70 2.10 2.50 2.80 2.30 2.50 2.80 2.30 2.80 2.80 2.30 2.60 2.80 2.60 2.20 2.70 2.30 2.70 2.90 2.40 2.60 2.80 2.30

1.50 1.50 1.50 1.50 1.30 1.50 1.50 1.40 1.40 1.20 1.30 1.40 1.60 1.60 1.20 1.10 1.30 1.20 1.40 1.50 1.60 1.30 1.70 1.40 1.40 1.40 1.50 1.60 1.60 1.60 2.00 1.70 1.10 1.60 1.50 1.50 1.50 1,40 1.30 1.40 1.30 1.40 1.50 1.60 1.50

14.70 12.90 13.80 14.10 12.80 16.20 15.10 14.90 15.30 12.40 12.00 15.70 15.80 15.60 15.20 14.90 14.40 16.40 13.50 13.30 13.00 13.90 14.40 13.50 15.10 14.00 16.10 15.80 16.40 16.70 14.40 13.20 12.30 15.30 14.30 15.30 14.90 14.50 15.60 13.90 13.70 15.10 15.00 15.00 15.30

13.80 16.60 12.20 13.00 15.00 13.80 14.50 15.90 12.90 14.70 16.50 13.30 14.70 16.60 12.70 14.50 17.00 13.50 15.00 17.10 13.00 14.90 17.00 13.40 13.30 16.30 13.60 13.70 15.70 12.20 15.50 17.80 12.60 14.80 16.00 12.50 13.60 15.00 11.90 14.10 15.50 13.20 14.00 15.90 12.40

1.00 0.90 0.80 1.00 1.00 1.00 1.00 1.10 1.00 1.00 0.90 1.00 1.00 1.00 0.80 0.90 1.00 0.90 0.90 1.10 1.00 1.00 1.00 0.90 1.00 1.10 1.00 1.00 1.00 1.00 0.90 1.00 0.90 1.00 1.00 1.00 0.90 1.10 0.90 1.00 1.00 1.00 1.00 1.00 1.00

0.0 10.0 25.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0

15.0 0.0 0.0 0.0

25.0 15.0 0.0

10.0 20.0 0.0

10.0 0.0 0.0

20.0 5.0 0.0 0.0 5.0 0.0 0.0

21.5 0.0

15.5 5.0 0.0 7.0

12.5 0.0

10.0 6.0 0.0 0.0 0.0 0.0 0.0

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4.20 3.00 6.70 2.10

10.30 11.00 11.60 21.50 12.60 4.20 0.00 5.90 7.20

10.00 13.10 8.40 9.70

10.60 10.70 3.00

13.60 5.90 2.50 8.60 4.90 0.00

15.60 7.60 0.00

14.90 11.10 2.40

22.00 12.30 4.20

14.30 10.00 6.50

15.90 7.50 2.10

14.60 2.50

10.20 24.80

2.10 0.00 3.10 0.00 2.50 0.00 4.20 2.20

10.50 2.10 0.00 8.00 0.00 5.60 4.20 4.20 0.00 0.00 6.50 0.00 4.60 0.00 2.50 4.20 0.00 0.00

13.20 0.00 0.00 3.00 0.00 0.00 8.40 0.00 0.00 0.00 0.00 0.00 6.40 2.50 2.10 8.40 2.50 0.00 0.00

205.8 213.9 195.7 208.5 222.0 208.5 202.0 212.9 196.1 202.8 202.2 199.3 210.2 217.3 212.3 209.4 215.8 201.9 199.8 219.5 197.8 202.3 219.4 191.5 198.5 209.1 199.8 208.1 214.1 195.9 194.5 223.4 205.9 193.9 203.0 196.3 177.0 207.3 184.2 199.0 213.2 207.4 194.2 210.6 186.8

98.8 99.3 94.5

103.4 110.0 107.5 99.0

106.1 90.8 93.4 96.0 91.0

101.1 112.6 107.4 100.5 108.8 99.9 95.0

118.2 97.0 97.8

113.1 87.1 99.5

107.5 103.4 109.9 104.6 110.7 102.0 116.9 106.1 90.5

102.1 91.5

103.9 110.3 99.6 99.3

105.3 102.2 104.9 108.8 106.0

87.0 89.0 90.0 89.5 90.5 90.0 88.0 90.5 87.0 87.0 89.5 89.0 91.0 93.0 91.0 88.5 90.0 89.5 89.0 92.0 91.5 90.0 90.0 88.0 89.5 91.0 91.5 92.5 90.0 90.5 89.5 91.0 92.5 88.0 90.0 90.0 91.5 91.0 92.0 89.5 90.0 90.5 91.5 91.5 92.5

88.5 91.0 92.0 89.5 92.0 92.0 90.0 91.5 90.5 91.5 92.0 91.0 92.0 94.0 95.5 91.5 91.5 91.0 91.0 92.0 95.0 92.5 92.0 93.0 92.5 93.5 94.0 94.0 91.5 92.5 92.0 93.5 96.0 90.0 91.5 90.5 92.5 92.5 94.0 92.5 91.5 92.0 94.0 93.0 95.0

1.5 2.0 2.0 0.0 1.5 2.0 2.0 1.0 3.5 4.5 2.5 2.0 1.0 1.0 4.5 3.0 1.5 1.5 2.0 0.0 3.5 2.5 2.0 5.0 3.0 2.5 2.5 1.5 1.5 2.0 2.5 2.5 3.5 2.0 1.5 0.5 1.0 1.5 2.0 3.0 1.5 1.5 2.5 1.5 2.5

to cj

Page 243: Triple testcross analysis to detect epistasis and estimate ...

30

61

9

30

61

9

30

61

9

30

61

9

30

61

9

30

61

9

30

61

9

30

61

9

30

61

9

30

61

9

30

61

9

30

61

9

30

61

9

30

61

9

30

51

9

30

61

9

Ut o Ul •o

UJ o ut o

UJ o Ul 3

U4 o Ul o

UJ U4 o o ut Ul <0 "O

Ul U4 O O Ut Ul « so

UJUI o o Ul Ul O "O

m Ul o o Ul Ul so «o

Ul o Ul so

U4 o ut "O

UJ o Ul

Ul o Ul •mM sO

Ul o Ul

Ul o Ul «o

U4 U4 O O Ut Ul «0 "O

Ul o Ul 3

Ul o Ul 3

Ul Ul o o Ul Ul so

Ul UJ o o Ul Ul •O o

UJ o Ul 3

UJ o Ul 3

UJ o ut 3

14 1

5

UJ ro -o o 00 ->| o Ul UJ ro UJ o o

ru •<o o

ro <o 00

ru o •M

ru •o o

lu ru o «o Ul

ru ru so so UJ ro

ru ru «o <5 o

ru ru 00 00 <0 00

ro o» -si

ru 8

ru CO Ul

ro ru 09 Ul

ru 09 ro

ro ru 00 00 o

ro 3

ro S

ru ru :i5i

ro ru ru a

ro IS

ro

88

70

1

88

70

1

88

70

1

88

30

6

88

30

6

88

30

6

95

90

2

95

90

2

95

90

2

88

30

3

88

30

3

88

30

3

88

30

1

88

30

1

90

70

1

88

30

1

90

70

1

90

70

1

94

30

5

94

30

5

91

90

5

94

30

5

91

90

5

91

90

5

so so ru ro UJ UJ o o

91

90

4

92

30

6

91

90

4

91

90

4

93

90

3

93

90

3

93

90

3

93

50

6

93

50

6

93

50

6

93

50

4

93

50

4

93

10

2

93

50

4

93

10

2

93

10

2

92

70

6

92

70

6

92

70

6

B7

3 Ho

i

7

-n a*

Ho

i

7

B7

3

Ho

i

7

B7

3 Ho

i

7

B7

3

T1 Ho

17

B7

3 Ho

i

7

F1 B

73 Ho

i

7

B7

3

Ho

i

7

F1 00 "n a-*

B7

3 Ho

17

Ho

i

7

F1 B

73 Ho

i

7

B7

3 Ho

17

03 a-

X o -J

B7

3 Ho

i

7

F1 09 Tl a-

Ho

i

7

B7

3

*n

-»J o OS 00

o 00 «o ;S

*o 00

00 o

*o o 00

—ft UJ O o

o o» ro —ft O >Q UJ *o -o Oo S 00 ut s

Ul «o 4N 00 -s UJ Ul

SO ^ o*

*o go 09

O o Ul —Jk o ut

•A o 00

"O o Ul o Ul O Ut UJ

M o b« M 'o ru o o>. o b^ Ul Ul b^ ru i^ fu b» ru Ul M bo Ul oo b fu vn 1ft Ul bo Ul

UJ JN UJ UJ OJ UJ JN Ul UJ UJ UJ UJ UJ UJ UJ Ul *«» *- Ul «ro *0. bo UJ o o

UJ o o o 'o o o

o o

ro o O

o o

bs o ''O o o o CO o UJ o o o

UJ o o

o o o o

«0 <3 o o

00 o o o

*o fu o o

fu Ul o o

fu o

bo o b o

ru o o

•1* o o o 3 O

1* b o o

UJ b o o o

Ul o

UJ o

ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ru ru ru ru ru ru ru ru ru ru ru ro ro ro ru ru ro ru ru ro ro ru ro ro ro ru ru ro ro ro V/1 00 o o

b^ o o

Ul o

CO o

Ul o

>o o

b* o

Ul o

bs o

o* o o

tn o

CO Ul o o o

bo o

b» o

bo o

bk io o o

Ul Ul o o

i^ o o

b» Ul o o bo o •-J o

Ul o

bo o

Ul o

bo o

00 -M o o

Ul o

bo o

bx Ul o o

^ Ul o o

Ul o

bo o

bo o

UJ b^ o o

1.

70

1.

40

1.

40

1.

30

1.

50

1.

50

1.

30

1.

50

2.

10

1.

40

05*1

o

1.

50

1.

60

is o

1.

20

1.

40

1.

30

1.

50

1.

40

OS* I

09*1 1

.6

0

1.

50

1.

20

1.

70

o

1.

00

1.

50

1.

50

09*1 1

.5

0

i^ o o

1.

50

In o

1.

60

1.

60

09*1

09* V

09*1 1

.5

0

1.

70

in KM to Ul rvj —ft

Ul Ul ? ru 4N Ul —ft UJ Ul ro Ul ro Ul Ul Ul Ul Ul Oo ^ —ft UJ Ul UT Ul Ul Qo

^ —ft .ps v/1 Oo Ul

UJ Ul o o

ro o

b» o o

Ul o o

bo o o

to o

CO o o

Ul O

Ul o

-g UJ O O

bo o

Ul o o o

i^ o

Ik UJ o o fu o o

bo Ul o o o o

Ul o

•si O

i^ o o o CO o

"sJ Ul o o

is o o o •M fu O O

ba Ul o O

fu o

bo o b o

UJ Ul —A

ro Ul —ft Ul ro Os ro Ul Ul

—ft UJ Ul UJ Ul 5^ 00 Ul UJ ut Ul UJ 0^ Ul U4 Ul M Os Ul Os it ro 0^ 5^ U4 Oo 4N

—ft ru s Ul

o b" o o

b^ o

b^ o o o

-si o

*<• o o

b« o

Ul o

Ul o

*«. o o o

Ul *<• o o

UJ o

Nl o o o o o

-sj ro o o

bs b o o

bo bo o o

b bo o o 2

bx o O

Ul o

Ul o

io. o O Ul o o

ut o s

'o. Ut o o o o

b o b o

Ul o

7*7^ — VHI* r* — — r* r -»_» -k o -ft O -ft —ft —ft o -ft -ft-ft -ft -ft -ft —k _k —»

o o o o

o o o o o o o o o o o o o o o o o o o o o o o o o o o o

o o o o o

o o ^ b o o

b b o o

b 1* o o

b b o o

b o

bo o b o o o o o o o b b o o

b o b o b b o o

b b o o

b o b o o

Ul o o Ul o o o Ul o o Ul o Ul ut Ul o o o o o UJ Ul o O Ul Ul o o o o

ro o ut o o o o o ut o o o o o o o Ul

o o o o o o o o o o o o o ut o o o o o o b b b b b b b b b o b b b b b b b b b b b b b b b

o ro o o o o o o N o o o o o o o ru o o ro o o o o o o p p o o o o o Ul ? o o o o o o o o o o o o

o o o o o o o o o o o o o

o o o o o o o o o o o o o o o

o o o o

ru o b b o o

b b o o

b b o o

b b o o

b o b o o o b o b o b o

is b o o

o o b o b b o o

b b o o

b o b o b o

ro o o ro o ro ov •s - ro 00 Ov Os VII o .IN Os o ru o 00 «o 00 o Ul UJ 00 Qo o -M fu ru ru o ro Ul Oo Ul 00

—ft Ul ru

O Ul o o

b« o

Ul o o

o o o

o o

UJ o

vn o 00 o

UJ o o

ut o

UJ Os o o

o o ru o CO o o o UJ '>o O o

is b o o

00 o o o

_K ^ o o o o

bo o

bo o fu o

Ul o

fu O o o s

—* o

i^ o o

1ft i^ o o

Vo o

fu o fu o

ro ro o o o ro o ro ro o o o ru UJ ro o ru ru ro ro ro UJ UJ o o Ul o <> o o o ro Oo o o ru o ru o o

o o o o o o o o o o

o o o

Ul o o o o o o o o

>o o o

o o o

is. o o ^ i^ o o

-» *>» o o

t-ft Ul o o

—»*o o o

o o o o b o b o

Ul o o o b b o o

v. o

In o b b o o

i^b o o

In o b o b o

ro ro o ro O 00

rvi ro o M p"

ru >o

ro o 00

ro UJ

ro Ul

ru Ul

ro ro ru 00

fo ru «o

ru o

ru ru •J" o Ul o ru o ru

ru o UJ

ro o

ro —ft lU « 00 Ul so

—ft —ft so o ut Ul

ro ru o o ro ro o o

00 UJ ru o Ox

ru s

ru o Ul

ro ru —»

ru ru M* ru

ru ro ru -ft ru ru ru o ru

ru s

y) 00 "Oj

ru -ft oO O -ft ro —* ru —a

00 ru o oo

ro bv b» Ul b^ Ul ru ru 1ft CO •o —ft bs bo 00 o Ul bo Ul ru Ul Ul fu bx bo be bo bo In fu bo b* o Ul bo b

o -* ro UJ

o o o

—k •wk

—ft o UJ o

—ft mJk o o *«. o UJ

o <} o po o o o wft o ru go >o 00 ru

o «o o ru

o o O "O O QO

o o |8

o ru *o 1

—* -Sj

—ft —ft

00 Ul o o sO 00 O 00 Ul sO p

—* Oo

—* o

bx 'o —k k> r\j Ul UJ bo ut k> Ul V- a* "M UJ V| b» b Ul b bo Ul uibo M Vo bo fu IM «o ru o o o p

00 oO o

00 00 so sO o o

O CO p «

00 00 "O

00 M> •o o 00 "O ro s 2§ —A 00 OO ss

O 00 -ft sO |S oO ro 00

Ul Ul Ul o Ul b ut b b O Ul b Ul Ut b Ul b b b Ut Ul b Ul b Ul b b b b o

. |S ru s o UJ so so ru -* O "O ru UJ so UJ ru

*o *o —k ru "O ru s s "O —* iS <o >o ru UJ

•o ru o ^ sO o o

so sO ru ru

"O Ul iS ru ut o Ul o o ut Ul b b b b In In o Ul b b Ul o Ul o ut Ul b b vn b Ul Ul b

IN) ro ro ro M ru ru Ul Ul ro lu yi ru -ft ru -ft ro —ft -ft -ft Ul -ft -ft Ul O Ul o o Ul Ul o o o O Ul Ul o vn In Ul b Ul b b In Ul b b Ul Ul b ut Ul b

free

Page 244: Triple testcross analysis to detect epistasis and estimate ...

Table 05. continued.

Env. Entry Male Tester YD ED CD KD

g/plant cm cm cm

30619 16 95904 F1 77.3 3.60 2.40 1 .40 30619 17 95904 B73 103.2 4.40 2.70 1 .70 30619 18 95904 Hoi 7 87.3 3.80 2.40 1 .40 30619 19 88703 F1 97.8 4.10 2.40 1 .70 30619 20 88703 B73 119.1 4.30 2.60 1 .80 30619 21 88703 Hoi 7 119.5 3.80 2.30 1 .60 30619 22 88704 F1 94.6 4.00 2.50 1 .60 30619 23 88704 B73 95.4 4.10 2.60 1 .50 30619 24 88704 Hoi 7 91.4 3.60 2.20 1 .40 30619 25 228714 F1 100.3 4.20 2.60 1 .70 30619 26 228714 B73 107.9 4.30 2.90 1 .60 30619 27 228714 Hoi 7 96.2 3.90 2.50 1 .50 30619 28 89102 F1 115.9 4.30 2.80 1 .70 30619 29 89102 B73 93.0 4.30 2.80 1 .60 30619 30 89102 Hoi 7 124.1 4.20 2.60 1 .60 30619 31 89103 F1 123.3 4.20 2.60 1 .60 30619 32 89103 873 110.4 4.30 2.70 1 .60 30619 33 89103 Hoi 7 127,7 4.00 2.30 1 .80 30619 34 89104 F1 108.6 4.30 2.70 1 .70 30619 35 89104 873 101.9 4.30 2.80 1 .50 30619 36 89104 Hoi 7 72.5 3.80 2.40 1 .40 30619 37 89105 F1 110.3 4.20 2.60 1 .60 30619 38 89105 B73 95.5 4.20 2.70 1 .50 30619 39 89105 Ho17 88.4 3.80 2.40 1 .50 30619 40 229115 F1 105.0 4.20 2.40 1 .80 30619 41 229115 873 125.5 4.40 2.80 1 .70 30619 42 229115 Hoi 7 111.6 4.00 2.30 1 .80 30619 43 89501 F1 96.0 4.20 2.70 1 .50 30619 44 89501 B73 101.7 4.40 2.80 1 .80 30619 45 89501 Hoi 7 83.9 3.70 2.30 1 .50 30619 46 89502 F1 110.8 4.10 2.60 1 .50 30619 47 89502 B73 124.1 4.30 2.60 1 .70 30619 48 89502 Ho17 96.2 3.80 2.20 1 .70 30619 49 89503 F1 97.8 4.10 2.50 1 .60 30619 50 89503 B73 131.8 4.50 2.30 2.30 30619 51 89503 Hoi 7 113.9 3.80 2.20 1 .60 30619 52 231916 F1 115.1 4.20 2.70 1 .60 30619 53 231916 B73 114.8 4.30 2.50 1 .90 30619 54 231916 Ho17 111.5 3.70 2.50 1 .30 30619 55 229524 F1 91.3 4.20 2.40 1, .90 30619 56 229524 B73 106.1 4.40 3.00 1, .50 30619 57 229524 Ho17 85.3 3.70 2.20 1 .50 30619 58 89506 F1 96.9 4.00 2.40 1 .60 30619 59 89506 B73 109.7 4.50 2.90 1, .60 30619 60 89506 Ho17 94.9 3.80 2.40 1, .50

RN EP

cm no. no.

BP

X

RL

X

SL

X

DE

X

PH

cm

EH AN SE SD

cm days days days

13.40 13.90 15.40 14.90 15.20 17.50 15.20 14.50 15.80 14.70 14.30 15.00 14.90 13.40 16.40 16.00 14.30 18.20 16.30 15.70 15.70 15.30 14.40 16.50 15.20 15.20 17.20 14.20 13.60 15.50 15.50 16.70 15.50 14.90 15.10 15.80 15.60 14.80 15.70 13.50 14.70 14.80 14.40 14.00 15.70

13.30 15.60 12.40 14.00 16.00 12.60 13.60 15.10 11.50 13.90 14.70 12.20 15.20 15.80 13.10 14.10 15.60 12.70 13.70 15.70 12.30 13.20 14.70 12.10 14.60 16.00 12.70 14.40 15.50 12.30 13.50 14.70 11.80 13.40 16.30 12.90 15.20 16.50 12.60 14.20 16.20 12.60 14.00 16.70 13.40

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.00 1.00 1.00 1.10 1.00 1.10 1.00 1.10 1.10 1.00 1.00 1.00 1.00 1.00 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.00 1.00 1.00 1.00 1.00 1.10 1.00 1.00 1.00 1.00

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0

10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.5 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4.20 4.20 6.30 4.20 2.10 0.00 6.30

12.60 4.80

11.40 10.50 11.40 11.80 14.70 31.90 4.20 0.00 6.30 6.80 6.30

12.40 4.20 4.20 6.30 6.30

16.70 9.30 2.50 4.60 6.30 8.40 6.30

10.70 7.50 2.50 7.90 4.20 3.10

12.60 2.10 4.20 6.30

15.60 12.60 12.60

0.00 0.00 2.20 0.00 2.10 2.70 0.00 0.00 0.00 0.00 0.00 2.10 0.00 0.00 0.00 2.10 0.00 2.70 0.00 0.00 0.00 0.00 0.00 0.00 2.10 0.00 2.40 0.00 0.00 0.00 0.00 2.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

215.2 223.8 211.9 220.2 223.5 213.0 215.5 226.6 209.2 228.2 231.1 225.0 222.0 232.3 225.1 221.4 223.9 223.5 229.9 240.0 213.4 216.1 213.6 214.5 239.4 243.2 228.0 211.3 215.2 210.0 209.8 230.8 210.2 216.0 219.5 209.1 211.8 219.4 213.5 216.6 216.2 215.7 213.5 222.3 210.4

105.8 111.4 100.5 112.9 118.3 107.5 106.0 109.2 103.7 116.3 122.4 108.4 112.5 121.9 119.7 111.3 121.7 115.3 116.4 120.5 106.5 107.0 102.5 101.3 125.1 131.0 117.9 105.8 105.8 105.9 103.6 121.2 107.8 111.5 112.0 107.8 108.7 111.6 108.7 99.9

106.2 98.2

111.9 119.2 106.7

to U oi

Page 245: Triple testcross analysis to detect epistasis and estimate ...

Table DS. continued.

Env. Entry Hale Tester YD ED CD KD EL RN EP BP RL SL DE PH EH AN SE SD

g/plant cm cm cm cm no. no. cm cm days days days

30619 61 89507 F1 84.3 3.90 2.50 1 .50 14.30 30619 62 89507 B73 104.3 4.20 2.80 1 .50 14.20 30619 63 89507 Mo17 99.3 4.00 2.30 1 .90 16.30 30619 64 89901 F1 92.2 3.80 2.60 1 .40 16.40 30619 65 89901 B73 95.1 4.10 2.80 1 .40 14.80 30619 66 89901 Ho17 94.7 3.80 2.50 1 .40 16.30 30619 67 89902 F1 99.1 4.10 2.70 1 .60 15.00 30619 68 89902 B73 84.4 4.20 2.80 1 .50 13.10 30619 69 89902 Hoi 7 65.6 3.70 2.40 1 .30 14.60 30619 70 89903 F1 106.1 4.20 2.50 1 .70 15.00 30619 71 89903 B73 123.4 4.40 2.70 1 .80 14.40 30619 72 89903 Hoi 7 90.6 4.10 2.30 1 .90 14.80 30619 73 89904 F1 82.5 3.80 2.60 1 .30 13.90 30619 74 89904 B73 109.9 4.20 2.60 1 .60 14.70 30619 75 89904 Ho17 84.8 3.50 2.20 1 .30 15.20 30619 76 90301 F1 71.9 3.90 2.60 1 .40 13.90 30619 77 90301 873 106.9 4.20 2.80 1 .50 15.10 30619 78 90301 Ho17 76.7 3.80 2.40 1 .50 16.10 30619 79 90302 F1 87.9 4.10 2.60 1.60 13.40 30619 80 90302 B73 87.1 4.00 2.80 1 .30 13.10 30619 81 90302 Ho17 102.2 4.00 2.60 1 .50 16.80 30619 82 229921 F1 109.5 4.10 2.70 1 .50 15.70 30619 83 229921 B73 117.3 4.30 2.80 1 .60 15.00 30619 84 229921 Hoi 7 124.1 4.20 2.60 1 .60 17.50 30619 85 230323 F1 83.0 3.80 2.40 1 .50 14.70 30619 86 230323 B73 110.9 4.10 2.60 1 .50 14.00 30619 87 230323 Ho17 100.3 3.80 2.40 1 .60 16.30 30619 88 226720 F1 107.6 4.20 2.60 1 .60 15.30 30619 89 226720 873 103.6 4.40 2.70 1 .80 14.70 30619 90 226720 Ho17 108.2 4.10 2.60 1 .70 17.10 30619 91 90306 F1 83.3 4.10 2.60 1 .50 13.80 30619 92 90306 B73 122.8 4.40 2.60 1 .80 14.80 30619 93 90306 Ho17 97.6 3.90 2.30 1 .70 15.10 30619 94 230322 F1 74.3 3.90 2.40 1 .50 13.20 30619 95 230322 B73 111.2 4.40 2.60 1, .80 14.40 30619 96 230322 Ho17 89.2 3.90 2.30 1, .70 14.70 • 30619 97 230701 F1 92.9 4.10 2.50 1, .60 14.50 30619 98 230701 B73 123.5 4.50 2.70 1, .80 15.40 • 30619 99 230701 Hoi 7 96.9 3.70 2.40 1, .40 17.30 30619 100 231103 F1 84.7 4.00 2.30 1, .70 14.60 30619 101 231103 B73 101.3 4.30 2.70 1, .70 14.60 30619 102 231103 Hoi 7 72.2 3.80 2.40 1. .50 15.70 • 30619 103 232306 F1 102.4 4.20 2.60 1. .60 14.50 • 30619 104 232306 873 92.6 4.20 2.60 1. .60 13.50 • 30619 105 232306 Hoi 7 83.3 3.80 2.20 1. ,60 14.80 '

14.20 16.00 13.10 U.OO 16.80 13.00 14.50 16.40 12.90 14.40 16.30 12.40 13.70 14.20 11.70 14.20 15.80 12.50 13.50 16.00 13.30 14.60 15.80 13.60 13.70 15.60 13.10 14.60 16.20 13.30 14.20 15.30 12.70 14.30 16.00 13.20 14.00 15.90 12.00 14.10 15,70 12.00 14.50 16.60 12.80

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 1.00 1.10 1.00 0.90 1.00 1.00 0.90 1.00 0.80 1.00 1.00 1.00 1.00 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.0 0.0 0.0 5.5 5.0 0.0 0.0 5.0

10.0 0.0 0.0 5.0

10.0 0.0 0.0

11.0 0.0

20.0 5.0 0.0 5.5 0.0 0.0

10.0 5.0 5.0 0.0 0.0 5.0 5.5 0.0 0.0 0.0 5.0 0.0 5.0 0.0 5.0 0.0 5.0 0.0

10.0 0,0 0.0 0.0

0.00 0.00 0.00 2.10 0.00 2.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.20 0.00 0.00 0.00 0.00 0.00 4.20 0.00 0.00 4.20 4.80 4.20 0.00 0.00 2.10

12.60 0.00 0.00 10.50 4.40 0.00 0.00 0.00 0.00 0.00 2.10 4.20 0.00 0.00 0.00 0.00 0.00

6.30 10.50 11.40 6.30

12.60 4.20 6.30 4.20

18.20 8.40 4.20 8.40 8.40 0.00 8.70 4.20 4.40 4.40 6.30 4.20 6.30 0.00 4.20

14.90 2.10 2.10

12.40 16.70 6.30

12.50 6.30 2.10

13.50 8.40 6.30

10.10 6.30 6.30 2.10 6.40 6.30

10.70 4.20 2.10

14.70

0.00 0.00 0.00 0.00 0.00 0.00 2.10 2.10

11.10 2.10 0.00 2.10 4.20 0.00 2.10 0.00 0.00 2.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.20 0.00 0.00 0.00 2.10 0.00 0.00 2.10 0.00 4.20 0.00 0.00 0.00 6.30 2.10

222.1 229.0 220.3 224.9 221.0 214.2 212.5 227.9 212.8 218.4 239.8 219.4 235.1 245.7 222.2 211.5 226.3 208.6 241.2 215.8 215.4 229.2 226.3 229.2 236.9 244.9 214.3 238.0 238.2 234.8 228.7 238.0 235.1 228.2 241.8 215,7 238.2 258.1 233.2 233.3 251.6 228.6 232.0 234.4 228.4

115.6 117.3 115.1 116.6 113.2 111.1 109.2 115.3 10B.9 113.9 129.3 112.3 123.1 128.2 112.1 102.0 116.6 105.2 124.8 104.9 106.5 115.0 122.0 122.0 119.1 135.8 109.7 126.6 129.6 126.4 122.4 131.2 125.9 116.1 129.6 105.1 125.4 136.8 121.3 119.1 135.3 119.4 121.8 121.1 121.2

Page 246: Triple testcross analysis to detect epistasis and estimate ...

Table D5. continued.

Env. Entry Male Tester YD ED CD KD EL RN EP BP RL SL DE PH EH AN SE SO

g/plant cm cm cm cm no. no. cm cm days days days

30619 106 231905 F1 88.3 30619 107 231905 873 94.5 30619 108 231905 Hoi 7 91.4 30619 109 231104 F1 81.7 30619 110 231104 B73 110.1 30619 111 231104 Hoi 7 85.1 30619 112 91101 F1 85.7 30619 113 91101 873 99.4 30619 114 91101 Hoi 7 107.8 30619 115 232707 F1 81.7 30619 116 232707 B73 83.6 30619 117 232707 Hoi 7 4 91.1 30619 118 91103 F1 1 75.2 30619 119 91103 B73 i 81.7 30619 120 91103 Ho17| 91.2 30619 121 91104 F1 i 81.2 30619 122 91104 B73 i 120.7 30619 123 91104 Ho17! 45.7 30619 124 226309 F1 ! 90.7 30619 125 226309 B73 ! 78.9 30619 126 226309 Ho17 : 96.1 30619 127 91501 F1 i 82.8 30619 128 91501 B73 ! 97.5 30619 129 91501 Ho17 ; 95.6 30619 130 91502 F1 55.0 30619 131 91502 B73 : 113.9 30619 132 91502 Ho17 \ 67.1 30619 133 91503 F1 92.0 30619 134 91503 B73 i 99.2 30619 135 91503 Hoi 7 i 115.6 30619 136 91504 F1 99.0 30619 137 91504 B73 104.1 30619 138 91504 Hoi 7 , 108.8 30619 139 227110 F1 68.9 30619 140 227110 B73 i 107.6 30619 141 227110 Hoi 7 97.8 30619 142 91901 F1 100.2 30619 143 91901 B73 125.4 30619 144 91901 Ho17 87.0 30619 145 91902 F1 75.1 30619 146 91902 B73 95.2 30619 147 91902 Hoi 7 77.1 30619 148 91903 F1 92.9 30619 149 91903 B73 138.6 30619 150 91903 Ho17 80.6

A.10 4.30 3.90 4.10 4.40 3.90 4.20 4.40 4.30 4.30 4.10 4.00 3.80 4.10 3.90 3.90 4.40 3.40 4.10 4.10 3.90 4.10 4.40 4.10 3.70 4.40 3.60 4.10 4.40 4.20 4.20 4.40 4.10 4.00 4.60 3.70 4.00 4.50 3.90 4.00 4.30 3.80 4.10 4.40 3.80

2.50 2.60 2.40 2.50 2.80 2.30 2.80 2.80 2.60 2.60 2.60 2.50 2.50 2.60 2.40 2.40 2.70 2.20 2.60 2.60 2.40 2.40 2.80 2.40 2.40 2.70 2.20 2.50 2.80 2.50 2.60 2.80 2.40 2.40 2.80 2.40 2.60 2.90 2.30 2.50 2.60 2.40 2.50 2.70 2.30

1.60 1.80 1.50 1.60 1.60 1.60 1.40 1.70 1.80 1.80 1.50 1.50 1.40 1.50 1.50 1.60 1.80 1.20 1.50 1.50 1.50 1.70 1.60 1.70 1.30 1.70 1.50 1.70 1.60 1.80 1.60 1.60 1.70 1.60 1.80 1.50 1.50 1.70 1.70 1.60 1.70 1.50 1.60 1.80 1.50

15.10 14.00 16.00 13.90 14.20 14.10 14.40 13.00 16.00 14.70 13.00 16.10 13.80 13.70 15.60 14.80 14.80 14.30 15.30 12.80 16.90 15.10 13.70 15.40 14.50 14.60 15.00 15.00 14.20 16.30 14.60 14.30 16.90 13.70 14.40 16.60 13.70 14.70 14.30 14.10 13.70 15.50 15.20 17.80 15.40

14.40 15.00 12.60 14.00 15.10 12.60 15.60 18.10 14.00 15.40 17.40 13.50 13.70 15.60 12.50 13.50 16.40 11.70 14.70 15.90 13.50 13.90 16.30 12.90 13.20 15.10 12.40 14.00 16.00 13.50 14.50 15.30 12.90 15.40 17.30 13.10 14.50 16.50 13.20 14.20 14.70 12.70 13.40 14.30 11.70

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.80 1.00 1.00 0.90 1.00 1.00 0.90 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 0.80 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 0.90 0.90 1.00 1.00 1.00

10.0 0.0 0.0

10.0 0.0 5.0 5.0 5.0 0.0

20.0 0.0 5.0

10.0 0.0 0.0

20.0 0.0

20.0 5.0 0.0 0.0 6.0 0.0 0.0

20.0 0.0

15.0 0.0 5.0 0.0 0.0 0.0 0.0

10.5 5.0 5.0 0.0 0.0 0.0

15.0 10.0 10.0 10.0 0.0 0.0

0.00 4.20 0.00 0.00 4.20 0.00 0.00 0.00 0.00 0.00

10.40 0.00 0.00 4.20 0.00 0.00 6.30 0.00 2.10 2.10 0.00 0.00 2.10 0.00 0.00 0.00 0.00 0.00 2.10 2.40 6.30 0.00 0.00 0.00 0.00 0.00

12.60 19.10 0.00 2.40 4.20 6.30 3.00 2.10 4.20

8.40 4.30 6.30

12.60 4.20

10.40 4.20 2.10

17.40 12.60 8.40 8.40 6.30 4.20 8.40 0.00 8.40

10.00 8.40 4.20 6.30 4.20 4.20 4.20 4.20 4.40 4.50 6.30 4.20

10.20 2.10

12.80 20.80 9.00 6.30

10,90 10.50 4.60

14.70 0.00 0.00 4.20 5.40 2.10 6.30

0.00 0.00 0.00 0.00 0.00

10.50 0.00 0.00 0.00 4.20 0.00 0.00 2.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10 2.10 2.10 2.10 0.00 2.40 0.00 0.00 0.00 0.00 0.00 0.00 2.40 0.00 0.00 0.00 0.00 2.10 0.00 0.00 0.00 0.00 0.00 0.00

232.7 234.9 225.9 232.2 235.7 227.4 222.7 226.7 228.0 235.6 243.4 228.3 227.8 225.4 227.0 228.9 240.2 218.1 229.0 230.1 224.2 225.9 228.0 225.2 226.5 229.1 226.3 223.3 215.3 225.2 236.7 243.6 239.2 241.4 236.9 226.7 237.1 248.2 228.3 221.7 216.4 224.7 229.3 239.8 219.1

118.8 121.7 119.1 123.5 122.8 122.3 115.1 115.1 121.7 123.5 127.7 120.9 121.6 123.6 121.1 114.4 123.8 104.3 117.8 124.7 113.3 115.8 124.1 116.3 113.1 116.5 114.6 116.8 109.0 115.2 126.5 135.1 135.3 127.0 124.7 114.8 129.7 132.6 123.5 120.3 106.7 120.3 125.9 128.9 115.7

Page 247: Triple testcross analysis to detect epistasis and estimate ...

Table D5. continued.

Env. Entry Hale Tester YD ED CO KD EL RN EP

g/plant cm cm

30619 151 227511 F1 74.5 3.80 2.50 30619 152 227511 B73 91.9 4.30 2.90 30619 153 227511 Hoi 7 124.5 4.20 2.60 30619 154 227512 F1 87.3 4.10 2.60 30619 155 227512 B73 98.5 4.50 2.80 30619 156 227512 Ho17 95.7 4.10 2.40 30619 157 91906 F1 85.8 4.00 2.50 30619 158 91906 B73 115.3 4.40 2.50 30619 159 91906 Hoi 7 72.6 3.60 2.20 30619 160 92301 F1 73.8 4.20 2.70 30619 161 92301 B73 98.2 4.40 2.60 30619 162 92301 Hoi 7 78.5 3.90 2.40 30619 163 228313 F1 85.2 4.00 2.40 30619 164 228313 B73 82.0 4.10 2.70 30619 165 228313 Ho17 87.3 3.90 2.40 30619 166 92303 F1 80.3 4.00 2.60 30619 167 92303 873 87.3 4.20 2.60 30619 168 92303 Ho17 84.2 3.90 2.40 30619 169 92305 F1 96.2 4.20 2.50 30619 170 92305 B73 100.6 4.40 2.70 30619 171 92305 Hoi 7 93.7 3.90 2.40 30619 172 226308 F1 88.2 4.20 2.60 30619 173 226308 B73 107.4 4.30 2.70 30619 174 226308 Hoi 7 98.5 4.00 2.40 30619 175 92307 F1 72.3 3.90 2.50 30619 176 92307 B73 98.0 4.30 2.70 30619 177 92307 Hoi 7 54.5 3.60 2.30 30619 178 92701 F1 104.4 4.10 2.40 30619 179 92701 B73 137.0 4.40 2.70 30619 180 92701 Ho17 69.9 3.60 2.20 30619 181 92702 F1 84.8 4.00 2.30 30619 182 92702 B73 100.0 4.30 2.80 30619 183 92702 Hoi 7 108.2 4.20 2.40 30619 184 95901 F1 65.9 4.00 2.70 30619 185 95901 B73 93.6 4.30 2.70 30619 186 95901 Hoi 7 92.2 4.00 2.50 30619 187 92704 F1 109.1 4.40 2.60 30619 188 92704 B73 123.2 4.50 2.90 30619 189 92704 Hoi 7 79.4 4.00 2.20 30619 190 95505 F1 85.1 4.00 2.40 30619 191 95505 B73 133.1 4.50 2.90 30619 192 95505 Hoi 7 91.0 3.90 2.30 30619 193 92707 F1 102.8 4.10 2.50 30619 194 92707 B73 121.3 4.40 2.70 30619 195 92707 Hoi 7 81.6 3.80 2.20

cm no. no.

BP RL

X %

SL

X

DE

X

PH

cm

EH AN SE SO

cm days days days

1.40 1.50 1.80 1.70 1.70 1.80 1.50 1.90 1.50 1.60 1.80 1.50 1.60 1.40 1.60 1.60 1.60 1.60 1.70 1.70 1.60 1.70 1.60 1.70 1.50 1.60 1.40 1.70 1.70 1.40 1.80 1.60 1.80 1.40 1.60 1.50 1.80 1.60 1.80 1.60 1.70 1.60 1.70 1.80 1.70

14.90 13.60 17.90 14.90 14.10 15.90 13.90 14.40 14.10 13.00 12.80 15.20 15.10 13.60 16.30 15.00 13.30 15.00 14.70 13.80 15.70 14.90 14.40 16.00 14.00 13.60 14.00 15.80 16.00 14.80 11.00 12.60 16.00 14.30 13.40 16.10 15.00 14.20 14.60 14.10 16.40 15.00 14.90 14.50 15.10

15.40 16.20 15.30 15.20 16.20 14.00 14.60 16.00 12.60 15.40 17.60 14.60 15.20 14.80 11.80 16.00 15.40 14.90 14.40 16.80 14.10 16.00 17.30 14.20 15.00 17.20 14.10 14.60 15.10 12.90 16.30 16.80 13.50 14.20 15.90 13.10 15.40 17.20 14.20 13.80 16.40 12.20 13.90 17.10 12.90

0.90 1.00 1.00 0.90 0.90 1.00 1.00 1.00 1.00 0.80 1.00 0.90 1.00 1.00 1.00 0.90 1.00 1.00 1.00 1.00 1.00 0.90 1.00 1.00 0.90 1.00 0.90 1.00 1.00 1.10 1.10 1.00 1.00 0.90 0.90 1.00 1.00 1.00 0.90 0.90 1.00 1.00 1.00 1.00 1.00

10.0 5.0 0.0

10.0 15.0 5.0 5.0 5.0 0.0

20.0 0.0

11.0 5.0 0.0 5.0

10.0 0.0 0.0 5.0 0.0 5.0 15.0 0.0 0.0

15.0 0.0

20.0 5.0 0.0 0.0 0.0 0.0 5.0 15.0 10.0 5.0 5.5 0.0

20.0 10.0 0.0 0.0 5.0 0.0 5.0

4.60 0.00 0.00 0.00 4.20 4.20 2.10 0.00 0.00 2.10 8.80 0.00 6.30 0.00 0.00 0.00 2.10 0.00 0.00 2.10 0.00 2.10

16.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.80 4.20 2.10 0.00 0.00 0.00 0.00 0.00

2.10 8.60

10.70 4.20 2.10

10.50 4.20

12.60 8.60

10.50 3.10 8.40 6.30

12.60 12.60 6.30 4.20 6.30 5.00 6.30 9.70

10.50 6.30 2.10 0.00 6.30 4.20

13.50 0.00

16.80 4.60 2.10 4.20 4.20 2.10 6.30 6.30 0.00 4.20 0.00 2.70 4.20 2.10 6.30

16.70

0.00 0.00 4.20 2.10 0.00 0.00 0.00 0.00 2.30 0.00 0.00 4.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10 2.10 0.00 0.00 0.00 0.00 0.00 4.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10 0.00 0.00

231.6 231.8 232.2 247.0 242.4 239.6 224.0 241.3 214.6 228.3 228.0 227.6 244.6 259.5 241.4 238.9 228.3 227.7 221.2 235.1 231.3 247.4 254.7 247.7 221.6 231.1 225.6 220.3 226.1 215.0 233.2 229.5 225.6 225.7 227.0 219.3 232.3 237.7 233.3 214.3 238.5 223.0 235.9 241.3 216.2

123.2 125.3 123.6 130.9 131.3 127.0 118.8 132.4 111.4 116.3 118.8 116.1 133.3 138.4 126.0 124.2 123.1 118.3 108.7 118.2 115.5 132.3 141.8 128.5 110.8 120.3 116.6 113.2 114.5 110.5 123.3 122.2 114.4 114.9 119.6 116.1 124.6 125.8 120.5 108.0 124.8 110.3 126.2 128.7 112.3

10 00

Page 248: Triple testcross analysis to detect epistasis and estimate ...

Table D5. continued.

Env. Entry Male Tester YD ED CO KD EL RH EP BP RL SL DE PH EH AH SE SD

g/plant cm

30619 196 92708 F1 76.7 4.20 30619 197 92708 B73 86.5 4.20 30619 198 92708 Hoi 7 110.6 3.60 30619 199 93101 F1 88.8 4.00 30619 200 93101 B73 87.0 4.30 30619 201 93101 Ho17 105.0 4.00 30619 202 95503 F1 87.6 4.10 30619 203 95503 B73 118.0 4.40 30619 204 95503 Ho17 87.2 3.90 30619 205 93104 F1 91.7 4.00 30619 206 93104 B73 77.6 4.10 30619 207 93104 Hoi 7 97.9 3.90 30619 206 93105 F1 92.0 4.20 30619 209 93105 B73 96.6 4.10 30619 210 93105 Hoi 7 92.3 4.00 30619 211 93501 F1 104.7 4.20 30619 212 93501 B73 84.2 4.00 30619 213 93501 Hoi 7 85.7 3.80 30619 214 93502 F1 83.7 3.80 30619 215 93502 B73 118.5 4.50 30619 216 93502 Hoi 7 76.3 4.00 30619 217 94705 F1 84.7 4.00 30619 218 94705 B73 115.0 4.40 30619 219 94705 Hoi 7 82.6 3.90 30619 220 93505 F1 92.4 4.10 30619 221 93505 B73 104.7 4.20 ; 30619 222 93505 Hoi 7 103.3 3.90 : 30619 223 94702 F1 94.2 4.50 : 30619 224 94702 873 113.2 4.40 30619 225 94702 Hol7 93.8 3.80 : 30619 226 93901 F1 74.9 3.70 ; 30619 227 93901 B73 88.4 4.00 : 30619 228 93901 Ho17 57.4 3.40 : 30619 229 93902 F1 97.8 4.10 ; 30619 230 93902 B73 128.2 4.50 : 30619 231 93902 Hoi 7 94.4 3.80 : 30619 232 94701 F1 98.7 4.20 : 30619 233 94701 B73 97.4 4.20 : 30619 234 94701 Ho17 80.9 3.50 ; 30619 235 94302 F1 57.0 3.80 ; 30619 236 94302 B73 80.5 4.20 ; 30619 237 94302 Hol7 65.1 3.80 : 30619 238 93906 F1 113.6 4.10 : 30619 239 93906 873 135.5 4.40 ; 30619 240 93906 Hoi 7 74.5 3.70 ;

cm cm no. no. cm cm days days days

2.70 2.70 2.20 2.60 2.80 2.40 2.60 2.70 2.20 2.30 2.70 2.50 2.60 2.80 2.40 2.60 2.60 2.30 2.40 2.90 2.40 2.40 2.80 2.50 2.70 2.80 2.50 2.50 2.80 2.30 2.30 2.70 2.30 2.50 2.80 2.40 2.70 2.90 2.30 2.50 2.90 2.50 2.60 3.00 2.40

1.50 1.50 1.40 1.50 1.60 1.70 1.50 1.80 1.70 1.70 1.50 1.40 1.60 1.40 1.60 1.70 1.40 1.50 1.50 1.70 1.60 1.60 1.60 1.40 1.40 1.50 1.40 2.00 1.60 1.60 1.60 1.30 1.20 1.70 1.70 1.50 1.50 1.40 1.20 1.40 1.30 1.40 1.50 1.50 1.40

14.50 13.80 12.00 14.20 13.20 16.30 15.00 15.10 14.60 15.00 12.90 15.60 14.90 15.20 15.10 15.20 15.20 16.30 13.60 15.10 14.10 15.10 14.70 15.20 13.90 13.80 16.00 14.90 15.50 16.10 14.50 14.40 12.20 14.10 15.40 16.10 13.90 14.00 15.10 12.40 12.60 13.60 14.90 15.30 15.00

14.80 16.10 12.90 14.90 16.80 13.60 13.90 15.70 12.70 13.80 15.60 12.90 14.10 15.20 12.50 14.30 15.20 12.80 15.80 18.50 14.60 14.80 15.60 12.40 14.00 15.30 12.90 14.00 16.20 12.70 14.20 16.00 12.00 13.50 14.60 12.90 14.90 15.80 12.40 14.40 16.30 13.30 15.00 16.20 12.60

0.80 0.70 0.70 1.00 1.00 1.00 0.90 1.00 1.00 1.00 0.90 1.00 0.90 1.00 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.10 1.00 1.00 1.00 1.00 0.80 1.00 0.90 1.00 1.00 0.90 1.00 1.00 1.10 0.90 1.00 0.90 1.00 1.00 0.90

21.0 35.0 32.5 0.0 5.0 5.0

10.0 5.0 0.0 0.0

10.0 0.0

10.0 5.0 5.0

10.0 5.5

10.0 10.0 10.0 10.0 5.0 0.0 5.0 0.0 0.0 5.0 5.0 0.0 0.0

20.0 10.5 15.5 5.0 0.0

15.0 0.0 0.0 0.0

10.0 5.0

15.0 0.0 0.0

10.0

0.00 6.30 0.00 0.00 2.10 0.00 2.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

8.80 0.00

14.60 6.30 4.20 3.00 8.40 2.10 4.20 0.00 0.00 6.30 8.50 6.50

12.60 2.10 3.10 2.10 2.10 2.10 6.80 8.70 0.00 4.20

12.60 11.20 20.80 2.10 6.30 4.80 4.20 0.00 0.00 8.40 5.00 2.10

12.60 10.70 10.50 4.20 3.40 0.00 3.10 0.00 8.40

2.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.20 0.00 3.10 4.50 2.10 2.20 2.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10 0.00 2.10 0.00 0.00 2.10 2.10 0.00 0.00 2.10 0.00 0.00 3.00 0.00 0.00

235.7 241.5 230.4 234.8 242.3 227.5 217.2 227.6 217.0 231.0 235.0 228.4 231.9 229.8 218.7 218.7 229.8 218.0 228.9 228.5 230.9 227.3 230.2 229.9 246.0 241.5 243.4 229.5 236.5 235.2 220.4 237.1 214.8 227.7 230.8 226.0 207.3 236.5 209.6 229.7 220.0 211.3 231.8 232.9 227.3

126.3 123.2 118.1 125.1 130.5 119.9 109.5 115.6 114.4 117.4 123.1 117.5 122.2 126.6 110.6 111.1 121.9 109.1 123.2 123.1 122.2 111.9 121.2 117.7 133.1 133.5 133.9 111.5 127.4 120.8 112.0 122.3 106.3 116.9 122.6 113.3 104.0 126.0 108.7 120.0 110.8 98.9

118.4 124.4 112.6

Page 249: Triple testcross analysis to detect epistasis and estimate ...

240

S

•8

I C o u

>v (Q "D

<0 >» <0 "O

2. •g

s

>. u 4>« c

(Nj(\jrvjru(M(Mrj(MCM(Mr>jcMi\irgc%j(\j(\j

o K>

O o

o o

o o

o o

o o

o o o

o o

o o

o o N

O CM

O o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o o

o o

o rg O o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o o o

(M o o o d d rO d d d rJ d o d d d d d d d d ru d d Sj- o d o o d d d d d d d d d d d o d d

2J2J2^2^^22S®P22®22®®®®®®oooooooooooooooooooooo otniD'«^rO'>9>TfOcoo^N-coomoomroi/i^>orviNrmojroh>-v—rM->7-^c3or\jKio^oco*o>o^NT>7-«^

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ® 2 9 2 ® o ® ® ® o o o o o o o o o o o o o o o o o o o O O O O O r S J O O O f > i O O C M O K ) O O f \ J O O O O O O T - - » J O O O O O O O O O C O O O O O O O O f O O o o o o o ^ o o o > t o o > t o ^ o o s ^ o o o o o o ( M o o o o o o o o o o r O o o o o o o o ^ o

a "V. O)

ro <v N- CM »- o< ro rw oo ro «- ro in (M >0 lA vO OH €0 0^ in ro d

ro

d CM CM rg

ro OJ

d CM CM

d m CM

CM CM

K> CM

CM ro CM

<M rvj CM

CM CM CM d CM fM

d ro CM

c> ro CM

CM ro CM

ro ro *- fM CM CM CM

d

CM d ro CM

CM CM a d •S* CM

ro CM ro CM

d ro fM CM CM

o in

o ro

o in

o o >o o CM o o m

o CM O ro

o h- o

d d CM ro d d *- •s* d ro

o o o o o o o o o o o o in o o in o o o o o o o o o o o o o o o o o o o o o in o o o o o tn o d d d d in tn in d d d d ro

ro d in in in in in d tn d in in d d in d in d d tn in in in tn tn in in o d in o in CM CM ro

ro CM in tn tn in in in

o o o o o o o o o o o O p o O Q o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o • o o o 00 o o Ch o CO N. o O o CO o o o o o Oo o o o o o o o o o Oo o o o o o o o o o o o d *— t- o d •- *— d o d d d •- •— o T— *— *— d d

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o O o o o o o o o o o in CM ro CM CM o •o- o» o CM o N, in fM <r o ro>. in CO CM tn ro in vS- >»• oO tn tn fM Oo o OO yO Oo >o in «- fM ro ro in 1 ro in d CM lo in ro CM •»* CM d ro ro tn >* CM d CM ro tn CM •<r in ro ro d CM tn CM ro tn ro

*" ' T— *•

«- «- •" r" *- *— •" "T" «"• *—

o o o o o o o o O o o o o o O o o o o o o o o O o o o o o o o o o o o o o o o o o o o o fM N* in >T N. o m CO in o o 00 -4- o 00 ro CM tn h- in CO o CO •sT CM O^ r«-o •«T o Oo CM Oo CM r- o o r- in in d ro in in ro d tn tn tn OJ d d in in in d •ot tn tn •oj- tn in tn ro in in d vt •»" ' ir- «— T*» <r»

•" r- T-» *" •— **• *—

o O p o o o O O p o o o O P o O O O O o p o o o o o o O o o o o o o o o o o o o o o o o o in in >o CM in o> N. m *o o "O N. s* CO O "O o N. |0«. oO oO in in CO in ro in OO in NO in in ro tn in in ro •— CM CM •- •- 9^ *" OJ "• *— r— T—

o o o o O o o O O o o o o O o o o o o o o O o o o o o o o o o O o o o o o o o o o o o o o o 00 <o in ro 00 in ro o CO 0.* in in rv o> CM >o oO ro in CO fO oO CO in oO o •4- 00 h- N. yQ h- r- o in CO ^ IM CM IM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM fM CM rO CM CM CM CM CM CM CM CM CM CM CM CM (M CM CM CM fM CM CM ro CM CM (M fM

O O O o p o o o o O o O o O o o O o O o o o o O O o o O o O o o o O o O O O O o o o o o O a CM CM N- 00 -J* o o CM O «— o CO tn CO CO tn Oo ro Qo CM ro Oo o tn CO Oo ro CO Oo ro T-* o ro >o CM >3- o Oo CO

•»» ro rn N* ro ro ro ro •4- S* K5 ro ro fO •<r •sj ro s* ro ro

O CM OO fw K. CO 00 CM ro ro o in «o <h o in CM •st CO in CO in O in oO in oO (M CO o fM CM in «— ro >«• ro tn 2 ro tn O in 00 ro V- 52 CO d ro ro d d 9 ro CM fO CM in xj CM d Oo ro d d CM Oo d CM O o o o o N» o CO O 52 CO N" o o o o » CM CM Oo •— o o CM CO Oo Oo oO Oo CO o CO Oo o Oo s QO h»

•" «— w— *• Oo QO h»

ta rw

p rw K h". ho K N. fo. N- r- N. K

ta o p *— R R r— O *— R *— R o T-R R R R R

«— O R «" R CO R-o U. m X Ik GO X u. GQ X Ik CD z Ik CO X u. CO X Ik 00 X Ik CD X tk CD X Ik 00 X Ik CO X tk CO X ik CD X tk R CO X tk CD X

«. V. ro ro ro N. h. ro Kl ro in tn in ro ro ro CM CM CM ro ro ro oO oO sO CM fM fM •s* •Nt sO oO >o ro ro ro o o o o o o o o o o O o o O O o O o o o o o p o O O O o O o o o o O O o o O o o o o o o o ro ro ro ro ro Kl ro ro ro fO ro ro tn in in N» ro- ro ro ro N- ro- N- r^ N. h- tn in tn ro

tn ro

in ro

in Oo Oo Oo <y 2 o» o>> o o o O o o CM CM CM CM CM fM CM rvi f\J ro ro ro ro ro tn ro

tn ro

in ro ro ro ro ro CK o> 00 CO oo o> o> o» <> o CO CO CO o» o> o o Oo o Oo o Oo Oo o> o» o» O- <y o o« <y Oo Oo O- Oo Oo O o o» o» O'

CM ro m *c CO Oo o •— CM fO <»* in CO o» o CM ro "f in ro. OO Oo o CM fO m oO ro- CO Oo o CM ro m •«* •»* •sT in in tn in in tn in in in tn oO oO oO oO MO >o o «o oO foo K R. N. h- fo- h- ro- ro- CO CO CO CO n 00 CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM fM CM CM CM CM CM CM CM fM CM CM CM CM CM (M CM fM fM fM CM CM CM CM CM CM CM CM O (y Oi O o- C^ o» O o« <s o Oo o> Oo Oo O Oo o Oo Oo Oo O Oo Oo Oo Oo Oo Oo Oo Oo Oo Oo Oo Oo Oo Oo o>

*— 'O «o *o •o o >0 •o o o oO vO oO oO oO oO o£) oO oO oO oO "O oO OO OO oO <o OO >o S O *C oO oO o o o o o o o o O o o o o o o o o o o o o o o o o o o o o o o o o O o o o o o O o o o O O ro ro ro ro ro ro ro ro fO ro ro ro fO ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro

Page 250: Triple testcross analysis to detect epistasis and estimate ...

Table D5. continued.

Env. Entry Hale Tester YD ED

g/plant cm

30619 286 91904 F1 60.1 3.90 30619 287 91904 B73 107.0 4.40 30619 288 91904 Mo17 79.2 3.90 30619 289 92306 F1 80.8 3.80 30619 290 92306 B73 101.1 4.30 30619 291 92306 Hoi 7 99.3 4.10 30619 292 91905 F1 69.3 4.10 30619 293 91905 B73 90.2 4.10 30619 294 91905 Ho17 87.6 3.90 30619 295 94305 F1 77.6 4.10 30619 296 94305 B73 91.2 4.20 30619 297 94305 Hoi 7 82.1 3.80 30619 298 90701 F1 83.1 3.90 30619 299 90701 B73 90.5 4.20 30619 300 90701 Ho17 82.6 3.80

cm cm cm

RN

no.

EP

no.

BP RL SL DE PH

cm

EH AN SE SO

cm days days days

2.30 2.80 2.40 2.40 2.80 2.40 2.50 2.70 2.40 2.70 2.80 2.60 2.80 2.80 2.60

1.70 1.60 1.50 1.50 1.50 1.70 1.60 1.40 1.50 1.50 1.40 1.40 1.30 1.50 1.20

14.20 13.70 15.20 13.60 13.80 16.00 13.30 13.70 15.20 13.30 12.90 13.60 14.10 13.40 15.00

14.80 17.00 13.00 14.50 15.60 13.50 14.90 16.40 13.10 15.00 16.50 13.30 14.80 16.10 13.30

0.80 1.00 0.90 1.00 1.00 0.90 1.00 0.90 1.00 1.00 1.00 1.00 0.90 1.00 1.00

30.0 0.0

15.0 15.0 0.0

10.0 0.0

10.0 0.0 5.0 0.0 0.0

10.0 0.0 0.0

0.00 0.00 0.00 0.00 4.20 0.00 0.00 0.00 0.00 0.00 4.20 0.00 2.10 0.00 0.00

8.40 4.20 8.40 6.30 6.30

10.50 6.30 4.20 3.70 6.30 6.30 4.20 0.00 4.20

10.50

0.00 0.00 0.00 0.00 2.10 0.00 0.00 4.20 0.00 0.00 0.00 2.10 0.00 0.00 0.00

222.9 223.8 216.2 220.4 231.3 223.8 204.5 212.5 224.3 227.8 224.5 221.4 210.1 212.8 223.3

111.6 115.1 108.1 117.5 128.0 118.1 104.5 112.6 117.5 117.6 116.2 114.6 107.2 115.1 111.9

Page 251: Triple testcross analysis to detect epistasis and estimate ...

242

APPENDIX E. S, PROGENY MEANS BY ENVIRONMENT AND ACROSS

ENVIRONMENTS.

Page 252: Triple testcross analysis to detect epistasis and estimate ...

243

GLOSSARY FOR APPENDIX E

Abbreviations used in appendix E are as follows:

YD = grain yield (g planf^).

ED = ear diameter (cm).

CD = cob diameter (cm).

KD = kernel depth (cm).

EL = ear length (cm).

RN = kernel-row number (no.)-

EP = ears plant"' (no.).

BP = barren plants (%).

RL = root lodging (%)•

SL = stalk lodging (%).

DE = dropped ears (%) .

PH = plant height (cm).

EH = ear height (cm).

AN = days from planting to 50% anthesis (days).

SE = days from planting to 50% silk emergence (days).

SD = silk delay (AN-SE) (days).

LW = width of the primary ear leaf (cm).

TB = tassel branch number (no.).

20520 = S, progeny experiment, environment Ames 1992.

20620 = S, progeny experiment, environment Elkhart 1992.

21620 = S, progeny experiment, environment Atomic Energy 1992.

30520 = S, progeny experiment, environment Ames 1993.

30620 = Sj progeny experiment, environment Ankeny 1993.

Page 253: Triple testcross analysis to detect epistasis and estimate ...

Table El. Si progeny means across environments.

ENTRY HALE YD ED

g/plant cm

1 088301 115.7 4.37 2 088303 87.2 4.02 3 095902 90.6 4.36 4 088306 106.7 4.34 5 088701 92.8 4.21 6 095904 71.0 3.95 7 088703 92.3 3.91 8 088704 80.5 3.70 9 228714 99.0 4.31 10 089102 91.9 4.35 11 089103 75.3 3.82 12 089104 101.0 4.26 13 089105 91.6 3.91 14 229115 108.5 4.11 15 089501 92.7 4.07 16 089502 93.1 3.94 17 089503 98.4 4.07 18 231916 98.7 4.08 19 229524 86.6 4.15 20 089506 116.6 4.31 21 089507 87.9 3.98 22 089901 97.6 4.26 23 089902 125.1 4.50 24 089903 93.8 4.28 25 089904 91.8 3.92 26 090301 94.8 4.00 27 090302 82.8 4.17 28 229921 108.4 3.99 29 230323 90.0 4.01 30 226720 118.3 4.53 31 090306 95.3 4.08 32 230322 93.4 3.99 33 230701 90.7 3.94 34 231103 95.0 4.05 35 232306 98.4 4.10 36 231905 89.0 3.99 37 231104 103.2 4.10 38 091101 105.4 4.37 39 232707 68.5 3.98 40 091103 84.3 3.90 41 091104 83.7 3.92 42 226309 98.5 4.03 43 091501 104.2 4.23 44 091502 81.8 3.82 45 091503 97.1 4.05

CD

cm

2.74 2.61 2.74 2.75 2.73 2.44 2.34 2.27 2.58 2.71 2.45 2.58 2.52 2.46 2.60 2.42 2.37 2.61 2.59 2.65 2.52 2.64 2.65 2.46 2.32 2.51 2.57 2.51 2.54 2.90 2.45 2.48 2.49 2.60 2.58 2.47 2.50 2.91 2.65 2.57 2.41 2.51 2.65 2.40 2.55

KD

cm

1.63 1.41 1.62 1.59 1.48 1.51 1.57 1.42 1.72 1.64 1.37 1.68 1.39 1.65 1.47 1.52 1.70 1.47 1.56 1.66 1.46 1.62 1.85 1.82 1.60 1.49 1.60 1.48 1.47 1.63 1.63 1.51 1.45 1.45 1.52 1.52 1.60 1.46 1.33 1.33 1.51 1.52 1.58 1.42 1.50

EL

cm

14.33 13.95 13.21 13.89 13.89 12.21 14.30 14.78 14.77 13.98 13.64 15.80 15.84 15.60 13.96 14.27 15.08 14.46 14.52 14.79 14.13 14.10 14.47 13.04 14.40 14.17 14.30 15.08 15.24 16.66 14.34 14.14 14.62 15.25 14.05 13.89 14.76 13.90 13.73 14.22 14.69 15.38 14.67 14.55 13.99

RN

no.

15.07 13.48 14.95 15.20 14.23 14.22 14.05 12.54 13.31 14.07 12.55 13.65 12.45 13.45 13.34 12.60 13.71 14.68 14.19 14.82 14.47 15.26 14.72 14.34 12.02 13.85 12.35 14.78 13.46 15.46 13.46 13.26 13.31 13.63 14.57 13.46 12.91 16.40 15.03 12.75 13.23 14.62 13.87 12.24 13.55

EP

no.

0.97 1.02 1.00 0.99 0.97 0.80 1.01 0.86 1.00 1.04 1.00 0.99 0.95 1.01 0.97 1.00 0.93 0.97 0.99 0.99 1.01 0.93 1.00 1.00 0.99 1.01 0.85 1.05 1.01 1.03 0.98 1.02 1.00 0.97 1.01 1.00 1.05 0.95 0.97 0.97 0.90 0.95 0.93 0.89 1.01

BP

3.0 0.0 0.0 1.0 3.5

21.2 2.0 13.0 0.0 0.0 4.0 3.3 5.1 1.0 3.0 0.0 6.3 3.1 1.0 1.2 0.0

10.8 0.0 0.0 1.0 0.0

15.0 0.0 1.0 0.0 2.0 0.0 3.0 4.0 0.0 1.0 1.2 5.0 3.0 3.1

11.0 5.0 7.0

11.0 0.0

RL SL DE PH EH AN SE SD LU TB

X X X cm cm days days days cm no.

0.00 9.34 0.00 5.65 0.00 3.78 0.00 3.16 1.11 3.49 0.00 1.66 0.85 1.26 6.11 2.67 0.00 2.54 0.00 8.73 0.00 3.92 0.77 7.48 0.00 2.62 0.00 13.62 0.00 2.92 0.00 5.01 0.46 1.43 0.42 2.86 0.00 0.42 0.00 3.34 0.00 4.58 0.00 2.83 0.00 7.97 0.84 1.68 0.00 4.17 0.00 3.00 0.00 1.77 1.50 6.49 0.00 4.39 0.00 8.55 0.42 10.52 0.42 3.85 2.91 4.25 2.59 10.03 0.00 4.17 0.42 5.92 0.00 6.12 0.00 5.48 1.00 6.20 1.67 3.09 2.51 3.15 0.00 4.64 0.00 3.92 1.25 3.34 0.42 4.58

1.92 206.0 0.42 204.1 0.00 183.3 0.45 194.8 1.01 205.0 1.67 198.3 0.00 201.9 2.63 193.1 0.60 237.1 0.95 214.5 0.43 212.2 0.91 215.8 0.00 201.9 3.07 237.2 1.29 179.0 1.68 201.9 0.96 184.7 0.83 191.5 0.87 202.4 0.00 197.4 0.84 195.9 0.45 181.7 0.00 187.9 0.90 203.1 0.00 209.4 0.84 181.4 1.40 203.5 1.00 214.3 0.00 233.6 0.00 216.2 0.00 204.1 0.00 195.5 0.83 231.1 0.00 221.3 0.42 213.2 0.42 217.3 0.50 195.0 1.45 197.4 0.00 211.1 0.00 190.5 0.00 205.3 0.84 199.7 0.00 199.0 0.84 192.8 0.83 191.0

105.6 84.5 108.5 89.5 88.6 82.6 97.7 83.1 99.2 84.0 91.7 83.5

102.3 85.5 86.2 82.8

123.4 87.4 109.1 88.0 111.2 86.6 105.7 87.0 89.9 82.8

130.8 88.8 78.5 80.3

100.5 85.5 72.8 81.8 96.7 83.5 87.8 87.1 99.0 83.3 95.8 85.8 87.8 82.6 79.6 78.0

102.1 83.6 104.3 82.5 84.7 81.0 89.6 81.5

116.9 83.8 126.9 87.8 113.6 87.6 111.5 84.5 92.9 83.8

124.6 88.5 112.7 85.8 108.3 86.3 115.3 88.3 98.8 86.8 98.3 85.0

112.1 87.1 98.0 85.5 93.7 85.1 97.7 83.6 96.1 84.3 83.4 81.0 88.0 83.6

87.1 2.6 91.6 2.1 85.8 3.1 85.3 2.1 87.1 3.1 88.3 4.8 88.6 3.1 88.6 5.8 89.4 2.0 90.6 2.6 90.3 3.6 90.6 3.6 86.1 3.3 91.0 2.1 83.1 2.8 88.0 2.5 85.0 3.1 86.3 2.8 89.6 2.5 85.6 2.3 88.5 2.6 85.6 3.0 81.5 3.5 86.6 3.0 87.1 4.6 84.8 3.8 86.5 5.0 86.0 2.1 91.1 3.3 90.5 2.8 86.8 2.3 88.0 4.1 91.6 3.1 89.1 3.3 89.0 2.6 90.3 2.0 89.3 2.5 88.5 3.5 89.3 2.1 88.5 3.0 88.8 3.6 86.5 2.8 87.1 2.8 85.5 4.5 86.8 3.1

9.1 7.1 9.5 6.8 9.3 6.3 9.4 5.4 9.2 12.1 9.3 9.8 9.1 4.6 9.9 10.1 8.5 5.2 8.9 7.5 9.1 8.3 9.4 8.2 9.4 8.1 9.5 8.9 8.3 6.6 8.6 6.1 8.8 7.6 9.6 5.8 8.6 5.1 9.1 5.9 9.7 6.6 8.7 8.4 7.5 9.7 8.6 8.0

10.0 10.4 9.2 6.8 9.5 9.1 9.6 7.6 9.4 6.6

10.2 7.1 7.8 6.0 9.3 5.4 8.9 7.4 9.8 7.5 8.9 5.6 9.3 8.7 9.1 5.9 9.7 5.7

10.6 8.1 8.8 6.6 8.6 6.2 8.8 7.2 9.7 6.1 8.4 6.5 8.6 5.8

Page 254: Triple testcross analysis to detect epistasis and estimate ...

Table El. continued.

ENTRY HALE YD

g/plant

46 091504 95.1 47 227110 94.1 48 091901 106.1 49 091902 54.3 50 091903 178.5 51 227511 96.2 52 227512 123.1 53 091906 93.3 54 092301 101.4 55 228313 129.2 56 092303 91.1 57 092305 101.2 58 226308 82.6 59 092307 72.7 60 092701 103.0 61 092702 70.1 62 095901 90.0 63 092704 94.3 64 095505 83.8 65 092707 92.4 66 092708 102.2 67 093101 104.2 68 095503 85.8 69 093104 78.3 70 093105 104.3 71 093501 92.4 72 093502 110.6 73 094705 73.5 74 093505 97.4 75 094702 103.1 76 093901 78.8 77 093902 85.9 78 094701 87.0 79 094302 64.9 80 093906 66.0 81 094301 97.9 82 089101 137.9 83 094303 84.7 84 094304 99.4 85 089107 90.0 86 090303 71.8 87 091505 83.5 88 090703 73.7 89 092302 102.0 90 092703 86.8

ED

3.94 4.22 4.34 3.80 4.45 4.32 4.53 4.09 4.29 4.46 4.09 4.24 4.08 4.10 3.88 4.17 4.11 4.33 3.92 4.00 4.36 4.26 3.86 3.91 4.11 4.04 4.49 3.78 4.22 4.08 4.08 4.02 3.88 4.13 4.01 3.98 4.80 4.05 4.08 3.94 4.24 4.17 3.83 4.06 4.07

CO

cm

2.45 2.67 2.67 2.45 2.63 2.77 2.70 2.57 2.71 2.66 2.53 2.63 2.70 2.62 2.40 2.49 2.55 2.58 2.58 2.51 2.64 2.68 2.30 2.49 2.51 2.37 2.77 2.56 2.63 2.58 2.54 2.64 2.51 2.70 2.63 2.64 2.65 2.46 2.58 2.39 2.50 2.65 2.43 2.60 2.56

KD

cm

1.49 1.55 1.67 1.35 1.81 1.54 1.83 1.52 1.58 1.80 1.56 1.61 1.38 1.48 1.48 1.68 1.56 1.75 1.34 1.48 1.72 1.58 1.56 1.42 1.60 1.66 1.7Z 1.22 1.59 1.50 1.54 1.38 1.37 1.43 1.37 1.34 2.15 1.59 1.50 1.55 1.74 1.52 1.40 1.46 1.51

EL

cm

13.88 13.11 13.46 10.89 18.88 14.07 14.85 13.76 14.01 16.30 14.23 14.30 13.02 11.79 15.24 11.15 13.96 13.75 12.88 14.50 14.86 13.72 13.28 13.92 14.11 13.43 13.36 14.21 14.43 15.23 13.15 13.86 14.43 11.97 14.36 15.28 14.35 14.87 14.89 15.24 11.78 13.89 15.19 14.36 13.94

RN

no.

13.46 15.79 15.07 13.07 13.33 15.27 14.86 13.70 15.45 12.70 14.23 15.24 14.39 16.30 12.84 15.10 14.24 15.37 12.93 13.70 14.18 15.54 13.12 13.40 13.46 13.52 16.37 12.94 13.74 14.05 13.43 12.43 13.38 15.19 13.60 13.84 15.70 15.56 14.13 12.18 14.55 14.20 12.62 13.07 12.60

EP

no.

1.12 1.00 0.99 0.82 1.21 0.98 1.03 0.99 0.95 1.05 0.98 0.98 0.96 0.94 1.00 0.83 0.92 0.93 0.99 1.00 0.98 0.98 0.99 1.00 0.97 1.00 0.97 0.97 1.02 0.98 0.84 0.98 0.99 0.74 0.87 0.97 0.95 0.89 0.98 0.99 0.89 0.99 0.91 1.00 1.05

BP

1.1 1.0 1.2

19.0 0.0 2.3 0.0 1.0 5.0 0.0 2.5 3.0 4.0 5.7 0.0 17.6 10.0 7.0 1.0 0.0 2.2 2.2 3.0 1.0 2.5 0.0 3.0 3.3 0.0 2.0

16.2 2.0 1.0

25.5 11.5 3.2 5.0 12.7 2.0 1.0

11.7 1.0 9.5 0.0 1.1

RL

0.00 0.83 0.43 4.17 0.00 0.00 0.70 0.43 0.00 0.88 0.00 0.00 2.09 0.42 0.00 0.62 0.00 1.25 0.00 0.00 0.00 1.74 0.00 0.42 0.00 0.00 0.50 0.00 0.42 0.00 0.83 0.00 0.67 0.00 0.00 0.00 0.00 0.87 0.00 0.83 0.00 0.00 1.67 0.00 0.00

SL

8.78 4.33 8.19 1,96 8.41 5.08 3.48 3.34 4.33 3.50 3.75 3.54 6.81 2.76 3.35 4.32 2.51 3.40 2.95 2.78 1.70 5.76 5.11 7.92 8.92 3.55 6.17 2.50 8.02 4.16 4.17 3.94 6.14 1.45 0.56 2.10 6.80 4.38 2.92 4.59 6.73

10.21 5.95 2.92 1.47

DE

0.00 0.00 0.00 2.02 0.52 0.93 0.00 0.00 1.68 0.00 1.43 1.05 0.42 0.42 0.00 1.71 1.26 1.29 0.43 0.00 0.00 0.00 0.90 0.42 0.00 0.93 1.34 0.42 O.OO 0.82 0.00 0.56 4.08 1.43 0.00 1.67 O.OO 0.00 0.42 2.34 0.42 0.00 0.42 0.42 0.00

PH

cm

EH

cm

220.5 210.5 213.1 158.2 216.0 205.9 229.8 192.8 200.8 239.6 202.8 203.6 232.9 186.4 183.2 201.6 188.0 207.8 183.7 203.5 206.4 201.8 176.2 187.4 190.5 189.6 197.0 196.9 226.5 206.8 187.2 198.0 195.1 185.6 214.1 204.3 195.3 186.8 199.0 207.3 215.1 185.2 187.7 213.2 192.7

122.2 101.7 109.8 73.2

110.0 110.0 120.3 96.4

100.7 117.4 103.3 94.0

122.4 90.5 85.1 96.6 87.3

104.9 83.8 95.7 88.9

103.4 77.2 92.2 87.2 89.6

100.5 91.6

121.2 99.5 82.0 97.5 87.9 76.8 95.4 96.3 83.2 83.7 99.7

105.7 108.2 84.2 90.9

105.9 102.1

AN

days

86.5 86.0 85.6 83.5 81.4 87.1 85.0 86.5 83.1 86.5 86.1 84.1 88.0 87.0 83.0 85.0 81.8 85.5 82.8 84.5 83.3 82.5 82.3 84.1 83.7 82.6 83.8 88.0 88.8 83.3 81.6 86.6 81.5 82.1 90.1 81.8 81.0 83.5 85.3 88.3 87.1 82.1 86.0 84.1 86.8

SE SO LU TB

days days cm no.

89.1 2.6 9.1 6.0 88.0 2.0 9.4 6.5 87.0 1.3 8.9 6.6 86.1 2.6 9.1 6.5 84.0 2.6 9.8 8.2 89.6 2.5 10.1 5.3 87.7 2.7 9.0 8.1 89.0 2.5 9.6 6.7 85.6 2.5 8.8 7.9 87.7 1.2 9.2 6.1 88.5 2.3 9.3 7.5 87.6 3.5 8.7 7.8 90.3 2.3 9.4 5.9 89.5 2.5 8.9 9.0 85.0 2.0 8.4 4.5 89.3 4.3 9.5 9.0 83.6 1.8 9.5 8.0 89.6 4.1 9.3 9.6 86.5 3.6 9.9 4.9 88.5 4.0 8.9 5.6 89.0 5.6 8.6 7.5 84.3 1.8 9.4 4.5 86.8 4.5 8.9 4.0 87.5 3.3 8.7 7.4 86.2 2.5 8.1 7.4 85.6 3.0 8.9 6.9 86.5 2.6 9.5 12.6 91.1 3.1 9.6 5.8 90.8 2.0 9.8 8.6 87.0 3.6 9.5 9.0 83.8 2.1 8.6 5.3 89.3 2.6 8.9 5.2 85.5 4.0 8.5 7.4 87.3 5.1 9.2 5.8 92.6 2.5 9.6 8.8 84.6 2.8 8.8 5.9 84.0 3.0 9.6 6.8 88.1 4.6 9.9 12.7 88.1 2.8 10.2 6.0 90.6 2.3 10.0 7.2 92.0 4.8 8.8 8.7 85.6 3.5 8.3 9.2 88.6 2.6 9.0 8.3 86.8 2.6 9.3 5.6 89.6 2.8 9.3 8.4

to

Page 255: Triple testcross analysis to detect epistasis and estimate ...

Table El. continued.

ENTRY HALE YD ED CD KD EL RN EP BP RL SL DE PH EH AH SE SD LW TB

g/plant cm cm cm cm no. no. cm cm days days days cm no.

91 092706 92 093102 93 093504 94 093506 95 093903 96 091904 97 092306 98 091905 99 094305 100 090701

98.0 88.9 107.7 89.4 94.0 94.4

102.2 73.8 66.1 88.8

4.10 3.98 4.15 4.14 3.95 4.10 4.21 3.89 4.10 4.26

2.58 2.41 2.52 2.71 2.53 2.65 2.57 2.50 2.68 2.82

1.51 1.57 1.62 1.43 1.42 1.45 1.64 1.39 1.42 1.44

14.27 13.50 14.00 14.47 15.94 13.18 14.20 12.70 11.62 13.42

13.16 13.90 14.27 13.80 13.63 14.36 15.35 12.73 15.82 14.75

1.01 1.00 1.01 1.02 0.94 0.95 1.00 0.88 0.78 0.95

0.0 5.2 0.0 0.0

10.0 5.0 1.0 12.3 22.0 5.0

0.52 0.00 0.00 0.00 0.42 0.00 0.00 0.00 0.00 0.00

2.63 1.09 7.46

14.13 6.09 1.24 3.34 1.26 0.42 2.50

0.00 3.37 0.00 0.00 1.25 0.42 0.43 0.00 1.68 0.00

219.5 175.7 191.9 220.4 201.4 187.8 189.5 192.4 184.4 179.0

116.4 78.4 94.8 118.9 101.7 81.2 90.5 86.0 80.0 80.2

88.6 82.6 84.3 90.1 87.0 83.1 83.1 83.6 82.0 85.0

90.5 85.8 87.3 92.0 89.0 88.0 86.3 87.5 86.8 88.0

1.8 3.1 3.0 1.8 2.0 4.8 3.1 3.8 4.8 3.0

9.3 8.4 8.4 9.5 9.6 9.4 9.4 8.7 9.2 10.7

7.6 8.4 5.1 8.1 7.8 5.7 6.8 5.3 7.8 5.5

to

0^

Page 256: Triple testcross analysis to detect epistasis and estimate ...

Table E2. SI progeny means by environment.

Env. ENTRY HALE YD

g/plant

20520 1 088301 145.1 20520 2 088303 111.9 20520 3 095902 123.7 20520 4 088306 136.9 20520 5 088701 111.0 20520 6 095904 114.4 20520 7 088703 106.7 20520 8 088704 103.5 20520 9 228714 95.2 20520 10 089102 102.8 20520 11 089103 108.8 20520 12 089104 133.1 20520 13 089105 127.3 20520 14 229115 130.8 20520 15 089501 116.5 20520 16 089502 130.6 20520 17 089503 125.8 20520 18 231916 135.1 20520 19 229524 106.5 20520 20 089506 143.2 20520 21 089507 105.9 20520 22 089901 130.4 20520 23 089902 132.5 20520 24 089903 119.3 20520 25 089904 105.2 20520 26 090301 113.6 20520 27 090302 20520 28 229921 123.0 20520 29 230323 94.4 20520 30 226720 120.0 20520 31 090306 104.9 20520 32 230322 123.6 20520 33 230701 106.3 20520 34 231103 128.8 20520 35 232306 103.0 20520 36 231905 88.7 20520 37 231104 113.2 20520 38 091101 129.8 20520 39 232707 86.1 20520 40 091103 120.8 20520 41 091104 114.3 20520 42 226309 130.3 20520 43 091501 149.2 20520 44 091502 106.0 20520 45 091503 129.6

ED

4.70 4.30 4.65 4.60 4.35 4.30 4.10 3.90 4.45 4.60 4.10 4.50 4.20 4.45 4.25 4.35 4.45 4.40 4.45 4.50 4.10 4.55 4.50 4.45 4.05 4.15

4!25 4.05 4.70 4.45 4.25 4.25 4.40 4.25 4.10 4.25 4.70 4.35 4.30 4.25 4.35 4.50 4.00 4.30

CD

cm

2.70 2.55 2.65 2.75 2.65 2.45 2.25 2.35 2.55 2.60 2.45 2.55 2.50 2.50 2.55 2.30 2.40 2.65 2.70 2.70 2.55 2.55 2.60 2.40 2.20 2.45

2!50 2.55 2.80 2.40 2.40 2.40 2.60 2.50 2.25 2.40 2.90 2.70 2.60 2.30 2.55 2.65 2.45 2.65

KD

cm

Too" 1.75 2.00 1.85 1.70 1.85 1.85 1.55 1.90 2.00 1.65 1.95 1.70 1.95 1.70 2.05 2.05 1.75 1.75 1.80 1.55 2.00 1.90 2.05 1.85 1.70

1.75 1.50 1.90 2.05 1.85 1.85 1.80 1.75 1.85 1.85 1.80 1.65 1.70 1.95 1.80 1.85 1.55 1.65

EL

cm

16.00 15.35 14.90 14.95 14.85 14.60 14.45 15.95 14.85 14.50 15.55 16.80 17.30 16.00 15.05 15.80 16.60 16.15 15.60 15.95 14.80 15.60 15.35 13.70 14.75 15.30

15.30 15.60 17.15 15.05 15.15 15.35 16.60 14.45 13.70 15.35 14.60 15.45 16.65 15.60 16.15 16.25 15.15 15.25

RN

no.

14.70 13.60 15.10 15.80 13.90 14.30 13.80 12.00 13.10 14.60 12.70 13.80 12.50 13.20 13.00 12.80 13.70 14.90 14.95 15.70 14.70 15.70 14.65 15.10 11.90 14.60

15.60 13.60 15.60 12.80 13.60 12.90 13.80 13.90 13.30 12.50 15.80 15.25 12.70 13.40 14.80 14.00 11.60 13.80

EP

no.

1.00 1.05 1.00 1.00 1.00 1.05 1.05 0.90 1.00 1.10 1.15 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.'io 1.00 1.00 1.00 1.05 1.05 1.00 1.00 1.00 1.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

BP

0.0 0.0 0.0 0.0 0.0 0.0 0.0

10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

RL

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10 0.00 0.00

7!50 0.00 0.00 0.00 2.10 0.00 2.10 0.00 0.00 0.00 0.00 0.00 0.00 2.10 0.00 0.00 0.00 0.00

SL

12.50 2.10 2.10 9.50 0.00 0.00 2.10 5.00 6.80 8.30 6.25

16.00 6.25

31.25 6.25

10.40 4.35 7.50 0.00 0.00 4.15 4.40

13.85 2.10 6.25 8.30

5.00 0.00

10.70 12.50 4.15 4.20

18.75 4.20 6.25 2.10 0.00

14.60 2.10 0.00 4.15 9.10 6.25 8.35

DE

6.25 2.10 0.00 2.25 2.10 6.25 0.00 5.00 0.00 0.00 0.00 0.00 0.00 2.10

PH

cm

EH

cm

.00 .10 .35 .00 .00 .00

2.10 2.25 0.00 0.00 0.00 2.10

2.50 0.00 0.00 0.00 0.00 4.15 0.00 0.00 0.00 0.00 4.75 0.00 0.00 0.00 4.20 0.00 2.10 0.00

209.8 213.4 181.5 196.7 213.5 206.4 212.2 191.7 241.0 211.1 227.8 219.1 208.0 244.0 179.7 205.2 189.0 194.4 206.1 204.0 199.8 184.4 187.9 204.3 208.6 182.8

216!6 233.4 228.2 205.8 201.1 244.5 226.4 215.3 224.4 197.0 197.7 217.9 197.2 210.3 200.3 204.1 189.5 191.7

103.0 114.8 84.3 93.6 99.5 93.0

104.1 79.3

126.7 102.2 117.6 102.6 91.7

134.0 81.1 99.3 65.7 96.1 85.7 97.8 96.5 86.4 79.6

103.0 98.0 81.2

114)3 123.7 123.5 112.8 90.8

132.1 118.6 109.0 117.1 90.8 95.9

117.6 98.5 90.0 94.0 97.9 76.7 80.7

AN

days

82.0 88.5 79.0 83.0 83.0 81.0 86.0 83.5 89.0 87.5 86.0 85.5 81.5 88.5 79.0 82.0 80.0 82.0 87.0 82.0 85.0 80.0 78.0 85.5 81.0 78.5

82 .'0 85.5 88.0 83.0 79.0 88.0 84.5 85.5 87.5 86.0 83.5 86.5 85.0 84.5 82.0 83.0 79.0 81.5

SE SD LU TB

days days cm no.

85.0 3.0 8.6 6.6 92.0 3.5 9.2 6.6 84.0 5.0 9.0 5.2 87.5 4.5 9.4 5.2 85.0 2.0 8.4 11.1 87.0 6.0 9.3 9.7 89.0 3.0 8.7 4.3 87.0 3.5 10.3 9.9 90.0 1.0 8.1 5.0 91.5 4.0 8.7 6.4 90.0 4.0 9.0 6.9 90.5 5.0 8.6 8.6 85.0 3.5 9.4 6.9 90.5 2.0 9.2 7.0 83.0 4.0 7.5 6.2 85.5 3.5 7.7 5.8 84.5 4.5 8.6 7.0 85.5 3.5 8.9 5.3 89.0 2.0 8.3 4.7 84.5 2.5 8.2 5.4 88.0 3.0 9.3 5.6 83.5 3.5 8.1 8.1 81.5 3.5 7.5 9.7 87.0 1.5 8.7 8.0 85.5 4.5 9.1 9.8 82.5 4.0 8.6 7.0

84!O 2.0 9.3 6.6 89.5 4.0 9.2 5.8 90.5 2.5 10.0 7.1 85.0 2.0 7.2 5.4 85.0 6.0 9.0 5.0 90.5 2.5 8.5 6.6 87.0 2.5 9.3 6.2 88.0 2.5 8.4 5.0 89.5 2.0 9.0 7.3 89.0 3.0 8.1 5.5 87.0 3.5 9.5 5.3 90.5 4.0 10.2 6.9 87.5 2.5 8.6 5.9 88.0 3.5 8.3 6.6 85.5 3.5 8.6 6.8 86.0 3.0 9.3 5.7 83.5 4.5 7.7 5.5 84.5 3.0 8.1 5.0

to

Page 257: Triple testcross analysis to detect epistasis and estimate ...

Table E2. continued.

Env. EHTRY HALE YD

g/plant

20520 46 091504 105.5 20520 47 227110 131.9 20520 48 091901 133.6 20520 49 091902 82.3 20520 50 091903 187.3 20520 51 227511 133.3 20520 52 227512 137.4 20520 53 091906 102.5 20520 54 092301 146.1 20520 55 228313 150.2 20520 56 092303 111.0 20520 57 092305 131.6 20520 58 226308 106.4 20520 59 092307 111.7 20520 60 092701 126.9 20520 61 092702 111.3 20520 62 095901 139.2 20520 63 092704 135.6 20520 64 095505 99.7 20520 65 092707 114.8 20520 66 092708 131.1 20520 67 093101 137.9 20520 68 095503 98.0 20520 69 093104 108.5 20520 70 093105 119.9 20520 71 093501 101.7 20520 72 093502 115.9 20520 73 094705 95.8 20520 74 093505 107.9 20520 75 094702 133.9 20520 76 093901 112.6 20520 77 093902 123,0 20520 78 094701 125,4 20520 79 094302 104,1 20520 80 093906 67.9 20520 81 094301 122,1 20520 82 089101 137.9 20520 83 094303 107.7 20520 84 094304 114.0 20520 85 089107 102.1 20520 86 090303 84.9 20520 87 091505 109.5 20520 88 090703 104.2 20520 89 092302 133,4 20520 90 092703 94.9

ED

4.20 4.60 4.60 4.15 4.65 4.70 4.70 4.20 4.65 4.75 4.25 4.55 4.25 4.55 4.15 4.55 4.40 4.55 4.20 4.15 4.55 4.55 4.15 4.35 4.40 4.15 4.65 4.00 4.45 4.40 4.25 4.35 4.25 4.65 4.10 4.35 4.80 4.35 4.25 4.15 4.40 4.40 4.05 4.35 4.15

CO

cm

2.60 2.65 2.70 2.40 2.55 2.75 2.65 2.45 2.75 2.55 2.45 2.70 2.70 2.65 2.35 2.60 2.55 2.55 2.55 2.45 2.60 2.60 2.25 2.50 2.45 2.40 2.70 2.65 2.75 2.60 2.40 2.65 2.50 2.85 2.65 2.60 2.65 2.40 2.45 2.30 2.50 2.60 2.35 2.50 2.55

KO

cm

1.60 1.95 1.90 1.75 2.10 1.95 2.05 1.75 1.90 2.20 1.80 1.85 1.55 1.90 1.80 1.95 1,85 2.00 1.65 1.70 1,95 1.95 1.90 1.85 1.95 1.75 1.95 1.35 1.70 1.80 1.85 1.70 1.75 1.80 1.45 1.75 2.15 1.95 1.80 1.85 1.90 1.80 1.70 1.85 1.60

EL

cm

14.35 14.90 14.40 13.45 19.40 15.50 15.65 14.15 16.35 17.65 15.05 15.05 13.80 13.15 15.80 12.40 15.55 15.45 13.55 15,75 16.20 15.10 13.70 15.05 14.50 13.90 13.15 16.20 14.80 16.80 13.65 16.10 15.80 12.95 14.35 16.20 14.35 15.00 15.30 16.15 12.20 14.70 16.10 15,80 14.45

RN

no.

13.20 15.60 15.60 13.45 13.60 16.60 15.00 13.25 15,10 12,70 14,30 16,00 14.40 16.70 12.90 16.20 14.30 16,60 12,95 14,10 14,65 15,80 13,70 13,70 13,60 13.40 16.20 12.80 13.60 14.10 14.20 13.05 13.70 15.50 14.10 13.60 15.70 16.15 13.90 12.10 14.90 14.20 12.70 13.30 12.55

EP

no.

1.10 1.00 1.00 0.80 1.00 1.00 1.00 1.00 1.00 1.05 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.00 1.00 1.00 1.00 1.00 1.00 1.05 1.00 1.00 1.00 1.00 1,00 1.00 1.00 1.00 1.00 1.00 0.90 1.00 0.95 1.10 1.00 1.00 1.00 1,00 1,00 1.00 1.00

BP

0.0 0.0 0.0

20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0

10,0 0,0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

RL

0.00 4.15 2.15 0.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.25 0.00 0.00 0.00 0.00 2.50 0.00 0.00 0.00 4.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SL

8.50 8.30 8.70 0.00 4.50 8.30 8.35 8.35 4.35 7.85 4.15 8.35

12.50 0.00 7.70 2.25 0.00 2.10 4,15 6,25 2,15

11,20 6,25

18,75 10.40 0.00 8.75 2.10

12.50 10.40 2.10 4.20

12.50 0.00 0.00 4.20 6.80 8,35 4,15 0.00 6.25

12.50 6.25 4.15 0.00

DE

0.00 0.00 0.00 2.10 2.10 2.10 0.00 0.00 6.30 0.00 0.00 0.00 2.10 0.00 0.00 4.40 0.00 2.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10 2.10 0.00 0.00 2.10 0.00 0.00 6.25 0.00 0.00 2.10 0.00 0.00 0.00 4.15 2.10 0.00 2.10 0.00 0.00

PH

cm

EH

cm

232.8 219.5 226.2 178.5 208.5 216.6 227.1 196.4 202.0 242.5 213.0 213.3 244.0 185.5 187.9 205.6 199.0 209.5 190.5 197.4 208.6 205.7 185.5 192.2 198,0 193,5 197,0 202,2 228.4 213.5 190.9 202.8 190.7 188.6 223.2 204.0 195.3 192.0 201.1 210.2 226.0 185.7 189.9 215.5 192.4

131.3 104.8 112.3 77.8

105.7 115.2 115.6 95.0 97.7

116.5 109.3 96.1

126.8 86.6 88.4 91.8 91,0

101.6 86,3 87,8 90.5

104.3 80.6 94.5 89.5 87.6 96.7 95.8

123.4 98.9 79.0 92.7 83.7 74.5 98.9 91.8 83.2 79.5 93.6

101,8 116.7 81.8 89.9

104.7 103.5

AN

days

88.0 86.5 85.0 81.0 81.5 86.5 87.0 85.5 81.0 87.0 85.0 82.5 86.0 85.0 80.0 81.0 79.5 83.0 81.0 83.0 85.0 80,0 79,0 80,0 85.5 80.0 81.0 87,0 88.0 81.0 80.0 83.5 78.0 79.0 88.5 80.5 81.0 81.0 85.5 88.0 86.5 79.0 84.0 83.5 87.0

SE SO LU TB

days days cm no.

90.0 2.0 9.2 5,4 88.0 1.5 8.8 5,2 86.5 1.5 8.4 5,7 83.0 2.0 9.0 6,5 84.0 2.5 9.0 8,1 89.0 2.5 9.8 5,0 89.0 2.0 9.4 7.6 87.5 2.0 8.9 6,1 83.0 2,0 8.2 7,5 88.5 1,5 9.6 5,1 87.0 2,0 8.8 7,4 86,0 3.5 8.3 6,9 88,0 2.0 9.1 5,1 88,5 3.5 8.4 8,0 82.0 2.0 8.2 3,9 88.0 7.0 9.4 7,3 81.0 1.5 8.9 7,4 88.0 5.0 8.9 8,0 86.0 5.0 9.2 5,0 87.0 4.0 9.0 5,1 90.0 5.0 8.8 6,9 82.0 2.0 9.0 4,4 84.5 5.5 8.4 4,1 84.5 4.5 8.4 7,5 88.0 2,5 7.9 7.4 84.5 4,5 8.4 6.0 83.5 2,5 9.0 9.7 90.0 3,0 9.1 6.0 89.5 1,5 9.2 7.8 86.0 5,0 9.4 7.2 81.0 1,0 8.2 5.1 86.5 3.0 8,5 5,1 83.5 5.5 8,1 7,3 86.0 7.0 9.1 5,7 92.0 3.5 9.9 8,6 84.0 3.5 8.5 5,7 84.0 3.0 9.6 6,8 85.0 4.0 9.3 11,5 88.0 2.5 10.1 5,3 90.0 2.0 9.3 7,1 91.5 5.0 8.2 7,4 83.5 4.5 7.8 8,8 86.0 2.0 8,5 7,8 85.5 2.0 8,9 5,6 90.0 3.0 9,1 8,0

N

03

Page 258: Triple testcross analysis to detect epistasis and estimate ...

fu IM ro r\j ro ro rv) ro ro ro fO ro ro ro fO O O o o o o o o o o o o o o o O O o o* o o o o o (> o* o a> o c> rv) ro ro rv> ro ro ro ro ro ro ro ro ro ro ro o o o o o o o o o o o o o o o

ro ro ro ro ro ro ro ro ro rv) ro ro ro ro ro o o o o o o o o o o o o o o o a» o o o o ch o o» o. o CN o o o ro ro ro ro ro ro ro ro ro ro to ro ro ro ro o o o o o o o o o o o o o o o

ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro o o o o o o o o o o o o o o o CN a» o Q* o Ul cn U1 tn Ul ut U1 i/i ui U1 ro ro ro ro ro ro ro ro ro ro fO ro ro ro ro o o o o o o o o o o o o o o o

UJ UJ UJ UJ UJ UJ ro ro ro ro ro ro ro ro ro ro mJk . •Jk Of 04 ro _» o *o 00 U! UJ ro o «o 00 o

ro ro ro ro o ro ro ro o o o o o o o o ro ro o o OJ M UJ UJ >o ro UJ ro «o «o 00 00 CO 00 00 00 ro UJ 00 00 ro -* o o o 0» o "O o o o *o •o «o •o «o mA •o o Oi —* -vi UJ UJ •>1 Ul o UJ UJ o 'O o W1 U1 XJt o U1 Ul o o o ro o ro ro ro o o o o o o o o ro o o UJ ro c o UJ ro —* UJ ro O" o UJ ro

> o o ru I 00 00 rv> I o 00 > ^ » o o • M ro

^ -g y> o o o ^ W 4>-

•oj i#j <o uj o o o o

c^ ro "

o o o o — »0 "O _. o — 04 M o o o o ^ Ul W1

o o o o <o «o <> ro M M M <0 *0 V/1 o o o o c^ M

o o o *0O O M M ro U1 •sj o o o

ro

^<o^<oco-*^o-^*o<ocD--k«o*oui*o«oocoQ9o<ooo«>«j^«p*«j*>jui^o*oooo^o^ro3^u4^roI*o y^o»Ln-<j>oo*"N^ru*N5*^'<Sofv^wo^ru5*^^fx#vi*»ui#^^vim->jo^SSo-«oSu4#^o^oo-*">i v^">i^'OO^ut*^"^wout-*09X^roro-g«o^'0*>j-*o«04W*>ioo4owib^w^o*o^^^rv)t/»r\jV»chv/i^

UJ UJ UJ UJ o UJ UJ *» UJ UJ JN U4 UJ *>• 4N *>•

to ui vn o Ul to Ul Ul o

o o o

bo o

o Ul to Ul k) o vn o o

o o

vn o

fo Ul o o

o Ul bo o o

o Ul to Ul o Ul o o o

ro o

bo Ul bi o Ul Ul o o

Ul Ul b Ul UJ Ul vn vn

Ul vn o

UJ Ul Ul fO o Ul Im

o

vn ro vn

ro ro ro ro ro ro ro ro TO ro TO ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro vn vn vn vn o

vn o vn

bo o o o o o

UJ vn vn o o Ul

->j vn

o* Ul b' vn

UJ o vn vn

b o vn

vn o

vn Ul bo o

vn Ul vn UJ o 3

bo o bi

to vn Ul bi

bo o bi

vn Ul

vn o

b o

Ul o vn

*>• vn o o

ooocnouvoooulo a00^U1«OC>»UJ*>g(/I.^^UJU1^OkOw^^(/JUIO^O^^O»-«J00U100a0'>Jl/IQ9-sJC>^ oowiulouiuii/iuiuiovni/iouioiininoi/iooo^ouii/ii/ioouiuiv/t

M Ul UJ O ro Ul UJ ro Ul *<• *»• w Ch —* vn UJ UJ 4N Ul UJ

—Jk UJ M UJ ro

•A UJ

<•* UJ UJ o

Os. to o o

vn o

b o

ro vn Ul bi

bo o

TO O bo

vn o vn O" o o

b vn

UJ Ul Ul Ul ro

o *<» o vn bi o

V-o o

ro Ul 00 vn vn o Ul

CO o bi

1A U4 vn o

u Ul

bo o vn o

vn o

ro Ul Ul bo o

bo vn vn

*«• o bi

uS ro UJ vn UJ ro UJ -A *»• 4> vn *«• *»• 4S ro UJ M N UJ ro UJ M M* M vn vn UJ vn Qw UJ vn UJ UJ ro

bo o o

o o

to o

Ul o blk o

b vn Ul to b

o vn CO o o o

b o

to o o

ro o o

b o

UJ b b o o o

b o

b Ul vn to b b o o o

Ul o

to o o

vn o

Ul to o o

ki o

vn o O o O

vn O

to M o vn

b 1* o o bi

^ —A r* o r* — r*

•A -* -* o -> o •lA -k -k _k •>* _k b b b b b b b Lk b b o b b b b b b b b b b b b b b o b b b b b b o b b o o o o o o vn o o o o o o o o o o o o Ul o o o o o o o o o o o Ul o Ul o vn o o o o o o o o o o o o

OOOOOOOOOOOOOOOOOOOOOOOOOOOUfOUIOOOOOOOOOOOOOUlO o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

o o ^ o o o o o o o o o o o o OO—^OOOOQQOOOOOO o o u n o o o o o o o o o o o o

o o o o o o o o o o o o o r o o o o o o o o o o o o o o o - » o o o o o o o o o o o o o o o o

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

o^^o^^^yiooroororooooooiNJorooiofo-«goroiooofu*^o*^*^forv)*^oo^o»roch o^MCD-^_-S[oooo^o^-*ooooo—»o^ov/i-*^o*^—*00— o u i o v i u i u i o o o o o o o ' - n o o o o o o o o o o o o o o o o o o v i o o u i o o v i o v i v i v i 3 i o

o o o o o ro ro o o ro o o ro o o o o o ro o o o ro O (^ o o o o o o o o o o o ro o o 00 o o o

o o

o o

o o

o o

vn o

00 o

o o

o o

ro vn o

o o o o

o o

o o

o o

o o

o o

UJ vn o

o o

o o

o o vn

o o

00 vn

o o

o o

o o

o o

o o

o o

o o

o o a* Ul o

o o o

o o o o o

o o

ro o

o o

00^0«0<^f\j«0-0fv} uif^ooro-t^iu-^oi

(\>O^V>^^OUI^O

00«<>JM*0000— o-^S^uirorooowch'O X*>U10^Wol-»->40^0

Q»-^00 00 00O'OC»<S00

uioooooo^uvwi

OOOOOOOOQOQO'OQBP»« w oi vn <s 00 w C3 o uiouii/ivntnuiouiui

oovnuiuiaiuimoo

OOOOO^O'O^OOM^

jN'S^inuioo'MvnooCh 00^-*<0*>JUIM^O*S

61-2

Page 259: Triple testcross analysis to detect epistasis and estimate ...

Table E2. continued

Env. ENTRY HALE YD ED

g/plant cm

20620 36 231905 93.0 4.05 20620 37 231104 109.9 4.20 20620 38 091101 120.4 4.55 20620 39 232707 60.4 3.80 20620 40 091103 94.5 4.05 20620 41 091104 80.9 3.75 20620 42 226309 108.5 4.05 20620 43 091501 112.5 4.45 20620 44 091502 94.2 3.80 20620 45 091503 93.5 4.15 20620 46 091504 100.0 4.15 20620 47 227110 81.3 4.15 20620 48 091901 100.7 4.35 20620 49 091902 68.9 3.75 20620 50 091903 197.9 4.60 20620 51 227511 83.9 4.15 20620 52 227512 95.0 4.35 20620 53 091906 103.5 4.10 20620 54 092301 118.1 4.45 20620 55 228313 109.5 4.25 20620 56 092303 97.0 4.10 20620 57 092305 112.0 4.40 20620 58 226308 85.3 4.15 20620 59 092307 75.8 4.10 20620 60 092701 103.1 3.85 20620 61 092702 85.4 4.35 20620 62 095901 104.8 4.25 20620 63 092704 89.8 4.45 20620 64 095505 84.1 3.95 20620 65 092707 81.9 3.90 20620 66 092708 82.2 4.30 20620 67 093101 105.5 4.25 20620 68 095503 96.8 4.00 20620 69 093104 90.6 4.00 20620 70 093105 97.1 4.15 20620 71 093501 87.6 4.00 20620 72 093502 146.3 4.85 20620 73 094705 65.2 3.75 20620 74 093505 81.8 4.10 20620 75 094702 114.2 4.20 20620 76 093901 95.7 4.05 20620 77 093902 94.5 4.15 20620 78 094701 81.0 3.85 20620 79 094302 77.5 4.40 20620 80 093906 68.0 4.30

CO

cm

KD

cm

EL

cm

RN

no.

EP

no.

BP RL SL DE PH

cm

EH AN SE SO LU TB

cm days days days cm no.

2.55 2.70 2.95 2.60 2.50 2.30 2.55 2.65 2.40 2.55 2.60 2.75 2.80 2.55 2.70 2.75 2.65 2.65 2.75 2.75 2.60 2.65 2.75 2.60 2.35 2.60 2.60 2.50 2.65 2.55 2.65 2.70 2.50 2.55 2.55 2.50 2.90 2.50 2.30 2.70 2.55 2.65 2.55 2.90 2.80

1.50 1.50 1.60 1.20 1.55 1.45 1.50 1.80 1.40 1.60 1.55 1.40 1.55 1.20 1.90 1.40 1.70 1.45 1.70 1.50 1.50 1.75 1.40 1.50 1.50 1.75 1.65 1.95 1.30 1.35 1.65 1.55 1.50 1.45 1.60 1.50 1.95 1.25 1.80 1.50 1.50 1.50 1.30 1.50 1.50

14.10 14.90 14.25 13.05 14.00 14.25 15.70 15.35 15.50 12.65 14.20 12.20 13.60 11.75 18.80 13.00 13.40 14.65 14.95 15.30 14.20 14.55 13.60 12.70 15.25 12.00 13.80 13.05 13.35 14.25 13.90 13.55 14.05 14.75 13.80 13.60 14.80 14.35 13.45 15.25 13.75 14.45 14.10 12.30 15.90

13.60 13.00 16.40 14.20 13.00 12.80 14.30 14.10 11.40 13.80 13.80 15.00 14.70 13.20 13.60 14.60 14.50 13.50 15.40 12.60 13.60 15.40 14.25 15.40 12.70 14.80 14.30 11.60 12.70 13.70 14.10 15.30 12.40 13.60 13.50 13.20 16.70 12.60 13.30 13.80 13.40 12.40 13.20 15.30 14.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 1.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 1.00 0.95 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.05 1.00 1.00 1.00 1.00 0.95 0.70

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10.0 0.0 5.0 0.0 0.0 5.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.5

27.5

0.00 0.00 0.00 0.00 0.00 2.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10 2.15 0.00 0.00 0.00 0.00 4.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2.10 2.80 0.00 2.10 0.00 0.00 0.00 0.00 0.00 0.00 4.15 0.00 0.00 0.00 2.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10 0.00 0.00 0.00 2.10 0.00 0.00 0.00 2.10 0.00 4.15 0.00 0.00 2.10 9.15 2.10 4.25 2.10 4.15 0.00 4.20 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10 0.00 0.00 2.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.20 0.00 0.00

N> OJ o

Page 260: Triple testcross analysis to detect epistasis and estimate ...

251

o in o o in in o m in o o o in in m in in o in o in in fo •- ro C\J in >o vj- oo to K» in >* CM fO CM K> si- M K» M

^^CDu^'srcoooeoiAinfooh«<<ros9><^i*>»<MGO«~(Mh»o or*» "0«ON-mf\JO»-.toif\oococOoo^>o>oh^inin<>f^cd od o

^C>linOJO»0^00>0»miA<Oo^O»0»OsO^OCMO«-li>N> s3>iA coeoooeoeoo^f»>ooeocoooeoeoooN^h<!ooo«coeooof^ 'coo^

o in in in

oinointnooooinominoootninintnotn oo oQQcah^cQcoaoowcocoucoGON-af^GOoocoooco aoo

^oootnoinotnininoinomininoinotnino o in CO oo eo K. N. r*» eo r«» oo a 00 00 N. o eo ho fC io b-oo K-> oo K

infO'OOOfoinKi CO o in o o o in o K? CO CM ro id N! c^

o "O CM in o o *-•

NI GO o to o

rxi o

CM in o o T—

to o-o in vj- fs. in o o in fO <> o *— Ok o o O CM CM *— CM CM CM CM

N. 00 ro o« O in O OO h- CM >3" 00 o rvj CM o rsi

ro -J-CM R CM O CM

CM <y

CM in o CM O CM CO O «—

ro CM CM 8:! T- C

2S299^ooooooooooooooooooooooooooooooinooo ^ o o o o o o o o o o o o o o o o o o o o o o o ^ o o « r — o o o o o o o o o r o o o o fM OOOOOOOOOOOOOOOOOOOOOOOOJOOfvJOOOOOOOOO^tOOO

o in in ro o O o O o o o o o o o o o o o o r— O

CM CM CM CM o o o o CM CM CM ^ O

o o o o o o o o o o o o o o o o o o (M O o o o o o o o o o o o o o o o o o o «- o o o o o o o o o o o o o o o o o o o * o o oooooooorviooooooooooo

^OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO CMO oooinooomooooinooooooooooT—oooooooooooooooo *oo

§2 2 i D 2 ^ 5 ^ ° ® ^ ' 0 ' £ ^ ® ^ o o o o m o o o o i n o o o i n L n O t n o o o o o o o o o o ooo*oo»oooooo^ooooooooooo«oooooooooooooooo o* o • ' • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • a

o o in in s o in 00 o CM in in o in >o g o oo o in o in in o o in O •k* o o o in o CO o r«^ o o o >o o CM in CM o o T~ in ro CM S* >» CM ro ro ro P S r- in ro m5 ro •«» "i.*

o CM o "O o CM in o ro CM o CM o o o >o o o> o fO o -J- o o o ro •-ro CM ro to CM fO >3- ro -J- in ' fO CM

o >o o o o >o o «o in CM o in o >o in in o in o o o in O o in o •O >*

CM >o *-•

in ro >6 •»# in in w— •»* in

o^oinininooinoinoinooooinoinooLnooooooinooooinintnininm ^'0inS-^0CMtnin»<^in^0inp0(nminin<>r^c\j^N>inho*0^r<«^K)^mh«*0rn^0^f^i^mi^

in >o o •Sj- o >o o in o in «o in NJ- in <) in ».* O in in o in •O o te in S) m in IC in 00 le o in CO in oo in CO o NO o •«*

in tn in ro CO o IG in in o in o in in in in in o in tn r^ m in r-(M ' CM CM ru CM CM CM CM CM CM CM CM CM CM CM CM CM CM nj CM CM CM CM CM CM CM CM CM CM CM <M CM CM CM CM (M CM N CM CM ca

o o tnooinininminmin poroh»«-&>oooj«-o» in in in in CM O CM o in in in in o to ro o •«* in o o ro o ro ^ ro s»

nj oo o o m ro I •* . • O CO O O O I S^oiSSS^FC;

O^GO^O'COO^^^O^O^OoO^ oooooooooooo o

ooooeococococooococ>'0^o*><>9'ch0'0«c>o«^«

O N. •-to CM *—

CO N. O •• N! CM CM to o« in o

o r«- o in ^ o o to in CM tn o CO *-o (M in CM o in o rg o in CM in ro >» to >3- •sJ- >*

CO o o in N. S. <> in to o o o •o o» ro CM *— to <>

as n! o in o o 'NT o to to * *o in «—

o to '.tf- in in o o o o o o o in in c>» o» ro o to ro ro to CM O" <h o o> o o o o o o o o

to CM to in in CM ro «o •sf •o N. o O O O O O o «— O O o CM O O o r*«» ^ in in in o in in in in CO CO CO o O o> o o» 0% o o o o>> o» 00 CO CM CO CO CO CO CM oo 00 00 »o CM CO CO o o O CM O O o o CM o o o CM CM o o O CM to in K CO O o >o h» 8 9 1

*• r~

*" r~ CM CM

o o o o o o o o O o o O o O o O CM CM CM CM CM CM CM CM CM CM CM CM CM OJ CM CM *o «0 "O *o *o >o >o «o o «o *— CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM

Page 261: Triple testcross analysis to detect epistasis and estimate ...

252

S 8

g. •S

-3

8

Q. o>

UJ 1

> c

in Nj- ro o o N- fo ro o o O fo in >o Os o CO «o *- o o >d K in rw •o 00 lA ed K CO K Ch o o oo ro K N!

N-inh'-oOs:r«^in^orNJorxjLnoo«-ooc\jN^o^oomN-rNjrMcvj'>Oiri«~«-o^<ro.Ov-ooN.T-v>«>coroo^«»o ooo«(Keoo>N>eoooo>co(>ooeoo'Cor>wQO(M^N.ooooQoeo<>o»ooot«oeoGQKO^QOiv!cootoso^coooo^ooooK

iAOOOinoin«noininc>ooointnoomooou%ooiAOmooomoointninooo«oomi/> ^tnKtK)r'im<<*«>.»inK)(MKt*>^v-*i^inofKi^K)'»f<MCMmrororo>»rn«--^inc\jt<ototnc\jro^*>^^rotn<«^r\l

oinooooooointnoinouMnoooooirtmmootntAOooooinominoioootnmmin

lAlOOOlAOlAlAOOOOtnou^Ol^toOli^Olntnoooov>lnooou^u^ooolnmoolnlAOo 2P!lS?i£J£5J20iDJGi52iI?3i:r52rrTrSOosogrvj«^rvJOh-*roroood»o^ororu<>>*Nlr\j<>'»ooedcdoc\j ^*"C0^C000CP00 00 00 00 O00Mfl0 00 00h•e0h»00 00 C000Q0K*00C0C0N•aC00Q 00 00N•wK<«Q0^«•ac0^>oN•00C0

N.'ON-p^(MK)Ooo«ootnr-for\irorooo^r->s^ro(Mi/^»^oO'>^«~co^rofOCNjO'OOoo»(MN.«-N.NO*>^«—

OOCO*-KI«—'^OfNj»-OT-OOr-OvO»OsOO>OCMO*-h>.*-"*"f\JOO^O»OOJOO»OOOOOOCO«-N-OsOO •• W— •— •— V-

K)in^h>»K>o^'o^ininroo.fOJOOK)f>«(Njh-cMtn^&tnf<oi*oo^m>of^r^N.>o^N>OK)oofMKiu>>o^N.rvjro

o*-N^cMOO"»yKJ^ojO*ow~o«^oooorvj^r\j>Of\j^ro^oroo*—roo>o>oeo*—ooo«—h«-ovm ^cNjrM(M(MCMrMrMr\jr\irvj<r*c\j(\j«—rvir\jcMcMr\j(MrMrM«—o.irur\jT--rvi(\jr\jrvjrMT-^r\}^CM^c>jrij(\j^^^

SS992222222S2222®®2"^o®®"^®®ooooooooooooooflooooo ^000000000000000000»— OOOfOOOO^OOOOOOOOOOOOO^OO OOOOOOOOOOOOOOOOOOOotOOOs^< ICMOOOOOOOOOOOOOrvJOO

o i n i n o o i A O i A O O o o o i n o o o o o i n o o t n o o o o o o m o o o o o o o o o o o ^ m o o i n

OrO(MO(M^O«>^(MO(MeO'>^«>trs]CM<\JOO^OCMOOOCMOJ(Mo>^CNJCMOOCM>tOOJOJOroO<>tOrvJO

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o r— o o o o o o o o o o o o o o o o o o in o o o o o Q o *— o o o o *- o o o o o o o ru o o o o o o *— o o o o o o o o o o o o o o o o o o o o rg o o o o o o o o o CM o o o fv] o ro o o o o o o o rvj o

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O F J O O O O

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

o o ^ o ^ o o o o o i n o o o o o o o o t n i n o o o t n o o o o o o o o o o o o o o o o ^ o o o o O ^ O t- O O O ^ O O O C S J O O O O O O O O O J O O O t- O *— oo^ooooooooooc>oooo

o N. in o rvi o in o o >»• in o •»» O 00 o o tn o Nj- o ro o CO K o in o o 00 o Nj- o 00 o in o in o o o in vj- O ro o ro O W-" o o o CO o o CM o o so o o O in o o ro o o o fO o ro O rs. o c^ o o hw T-ro CM in ro in ro CM fO ro fO ru ro

*—• CM ro

«— ro ro *o N rO tn in ro in CM N* CM in ro ro ro ro *r- in CM ro ro

in CO o in •>« 00 o >» o in F- in ir- in o CM in in ro in in o in in <>.*

o "T* in in in o in <> s o in CM -st o CO in o ro o in o "J* in o in in O "O o "O in in o 'nJ- in CO Ni in "6

*— in -4- in in in in NJ- in *-• o CO in in ro in ro CM

in O in CO o in in CM in CO O CO in o O "O ro ro Nt IT" CM T—

o m • o o 00 R o o 'C >o o in in in o in in in in ro in in >o ro o in ro ro o o o in IC in in in in >* o o 00 o -s* in >o in tn IC o in in in o o •o o >o m in in vf o in o o so o fs- in fO o •»* 5 in in in sO o in in -ss-

<F" R— «— *— *— T— <R" *-• «— «— «—

in in ICS O o o T- o in o s s O S3 m o in o tn CO m in in tn in R O %0 tn in o tn o o tv o o o o oo o so in N. s in in in K o CO o CO in O SO O SO O tc in in o N. O Qs O ro o o sO in CM CM CM CM ro CM CM CM CM CM CM CM ro CM (M CM CM CM CM CM CM CM CM CM CM ro CM CM CM (M CM CM CM rsi CM CM CM CM CS| CM CM CM CM CM <M

iCK5 9H5P22"^2!n!0®. oincM'.»h«-f>JO^c\j«Mo»fMKJ^o«—oino*~opo^^c\jmm»-ro>j'*-roroojo»rurvj'^^o^'sTO^w—o

fOfOOK>-»tOS.OeQh«.»

I >* >* >t -J-1 t >3- -J- m sr fo

. . K* a» o o O » OJ ~ o rM

K» O ru rvj o fON.ro o <o o K» r\j ru cj o

<M •-<M O K> N. O O

w— ro w- rvj lA O O

•-

tfNt fM (M «M CM (NJ fVi fO N* in ro fo ro fo i «0 n-I K» K>

in SO in CM CM O O •o 'O CM C^J o tn O o in CO in >o o> o o o o in •— •4' h-CM :5 iS CM CM - in in O Os ro in CO ro. N. CO fs. 00 *o ro CO ro in o« in o so m sO O O <r o *— (M ro «o so ro o» CM o o CO o 00 o o o oo CO rvi 00 «p» r— *- ' ir-

h. fO •<* O CM ro o •- CM ro CM sO ro ro in CO r>. ru in N. CO ro o p o o o o O o o o o o o O T-" o o o o o o o o o o o o o r* •— ro in m in in r" o Os o. m in o ro ro ro ro ro ro rs- N. o h- in N- fs. in «— (M sO *— h- CM CO CM CM sO CM (M ru in CM in rvj CM ro in o ro CM Os o CM o c> Os Os CM Os Os Os rvi rvj Os Os CM Os Os r*j Os o> o Os Os Os Os Os o> Os o ro CM o o CM o o o o CM O o o fVI CM o o CM o o OJ o O o o o o o o o o 00 o* o CM ro sf in sO r»- CO < o rvj ro in sO h. CO Os o CM fO in so h- CO ro ro sr NJ- •<r •4' Nj- •S* >3* in m tn in in in in in in in sO sO SO sO sO sO so

o o o o o o o O o o o o o o O o o o o o o o o o o o o o o o o CM CM (M CM CM CM CM CM CM CM CM CM CM CM rvi CM CM CM CM CM rsj ru CM CM CM CM ru ru rvj ru CM sO sO O SO SO so sO SO O SO so <o SO sO sO sO sO SO sO so so so sO sO SO >o so sO so sO SO «-• •— *— «-• *— CM rsi CM CM CM CM CM CM CM CM CM CM CM (M CM CM CM CM ro CM CM OJ ru ru CM <\l CM ro CM CM

Page 262: Triple testcross analysis to detect epistasis and estimate ...

ooooooooooooooooooooooooooooooooooooooooooooo

Ss:ssiS'®®-^°^""^"~-'|S§:5«S:saS2SSSS3S85?85S2g3S:jSasas::a

IS o ro O o o o ro o o o o o o o O 00 ro CD 03 00 09 ro 00 9 «o o oa CO *o «o «o «o «o O) 00 S cn S o vn OB s vn *s UJ «o Ul O •>» O o p o -A o o o o o o o O —» U1 Ul M ro U4 -i ro M

O o o o o o o o o o o o ss o o o o 'O 'O <o <o < o o "O *0 *o *o ss 00 <o «o ro V M M to ro ro o o *«» U4 Ul vn -M w •>4 vn U4 M UJ

o o o o o o o o o o o o O O o o o cn 1/1 *«• OJ lO ro vn i/j w

o o o o o o o o s o O "O •o >0 <o s *o Ui 4>' 04 iM iM s >o UI «>| o vn •*4 vn vn o o o o O o o o o o OW ro -* ro ro vn vn ro

o •>1

00 "O o KM O Os -g

•>* o ro o

ui o «o U4 M o M

ro Ch ro o In M b» b»

O -» •o ro *»•

ro 00 ro S

•o ro «' 0» V/l 00

iH 04 M M M *s UI » O vn o o* vn

k) vn

vn vn o vn vn ?: 09 vn bi vn vn o vn O

{ft vn ro vn fo o

o vn i" o vn

o vn UI \n UI o o 1a ro vn vn o vn o o o vn

o vn ro o

ro' o vn o vn

o o o

o o k} o

1.* UI vn vn

bo vn o

UI vn

ro ro ro to ro ro ro ro lo ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro fv ro ro ro UI ro ro ro ro lo ro ro ro V* M o vn i" vn

vn o

vn o

c> o o 3 O

*«• O 3

bo o

vn vn o bi

to o

bo vn vn

CN o

bo o b* vn '-o o vn o vn o cn o vn o u( in *<• UI 'o v/l b»' o bo v/l -J o

o b o vn

b» vn vn vn Si ul vn b<

vn vn

r* -r* -o -J. — -» — -k «. -* •>»

Qs vn vn ro o bi

o vn vn

vn vn g vn CM vn vn

UJ vn

vn o O o

UI vn UI vn o 09 o M vn o vn

Ov vn vn o

Qk vn vn o

UI vn

vn o

UI ««l vn o

<y o

vn UI b* * o

U o vn

UI o vn

• UI vn

b» UI vn b o o

ro o •

vn bo o

ro vn M M U4 vn zl M 04 - UI vn - ro vn U4 c •A .A

vn U4 vn fo vn o» UI lO UI vn vn UI M M KM vn o b» vn bo o

o o

vn o •>1

09 vn vn O *<• O vn

'>o o o o o o

09 t/1 <h vn vn o vn

UJ UI o

«o .r*> vn o

i». to o vn vn bi

o ro o vn

•«k o

bo o

b*' Vi1 o o o vn «o vn vn

to vn bo vn

t>| M O UI is

o UI O vn

M M ro 04 ro 4N vn vn vn #«• lO vn *«• UI UI ? UI UI ro UI ro UI fO vn UI UI vn UI ro UI <1* «*

ro vn UI -» o o o

•g vn vn

09 vn vn o o 00

vn bs vn fo V/l vn ro o

o vn 'o o vn o vn o o o o vn o vn o 3 ro «o o o

o o* o o

ro o

ro o

UI b" o o

UI o o o o 3 o

o ro o o

ro o

fu o

bo o o o

to o In o O

' ' ' ' ' • • • • • • • • • • • • • • L A T I T A I S I T A T K T * O O O O ^ O O O O ' C O O O W O O O O O O O O O O O O - A O O O O O O O O O O O O ooovfiwnui*oovnouioooi/iooouioouioouioooooooo

fXJ -k -* -» Ul 0yi0-kuf000o00*>l000ui000000000000000000 oouiooo^wnoot-noooooooooooooooooooooo*

ooooooooooo oooooooutooo

ooooooooooo ooooooooooo

o o o vn o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

o o

vn vn o o

o o o o

o o o o

o o o o o o o o o o o o o o

o o o o o o

o o o o

o o o o

o o o o

o' o

o o o o o o o o

o o o o o o o o

o o o o o o

I^MN-r«'sj^ooo<^i./io<c^M'Ooooruoo^^oi\irv)oo^oo»ov<^o •*'00^vi00rviu0-^vi0ix)0<0^000-^00^fxl0—»^OIUX«»iUIXlMQ' uioutuiov/iOsO«ouiuioo^ooooooouil^ouioouiSKKoo

rvroo^^oMo^orN>o -iOtuOMrvjolkb^o^o ovnooooouiooo

ro o to to o o o o o o o o UI o ro o o ro o o o o o ro o o o ro o o o o o ro o o o o -» b o vn b o

vn vn vn vn

k) 00

k> o> b o b o b o b o b o b o

UI vn b o o

b o b o o

b o b o b ki O UI

b b o o o

b o b b o o o

b o b * o

b o b o b 1* o o

b o b o b b o o o

ro O- lO <0 vn

*o oo

to o 1

to o o ro ro O' 00

o ro 00

ON. UI k) 1* b to to vn k> UI b bo

»«0'S|^0>0000-A^00.->*sou40(>->i'-<4«oa^i/ioouio-»

to -• ro ro ro to to ro ro 09 o to 09 o o (S M o 00 UI 00 ki to -s vn b to * to b to

o ro

ro ro QO 00 00 ro 00 •S 00

•M* 00 O O 00 -» O UI O 00 a UI

>o 2 O vn S o o

00 p o o >o M UI -M 00

bo «» *«• to UI o vn k) UI Ik t j to UI b Vi UI UI -A to s

00 UI

>o ro UI

*o o o

<o e 00 00 *o UI

«o 00 o

o b b o bo Ik UI b b b o b vn b

iCBNaQ»*^00<SOBO»*S*S • OOOUI^«OUI'SMM^'N

0C|^^«O^^^<O«O^>O09<iO<O*O000B00000S 09 00 00(909 00 Q9CB0Dfi9a90Bai ^y^J'*ww^ ^ i >4Wr\j*oo*^w5suiuiivui\/i-»jui- * S "SW-«^ru'oSSw utuioooo'>jrvioooouiuii/iooov/ioouiuiuio^ooooou)o"

7*[^f^wj^^puirorN>roo-»-*iNj*^o9vn^'>iw-*on/iww*«'*^*^(Mv*>'0^ oooooo*oovnooovnvnooouivnooovnuiovnoouiouioo*

o'o'^i'o^noiv^o'o • • • • • • • • • • « 0^«0^wi">|0^0»*>4^

'SOD:^:SO»->icoooqoo»'S "<j*so»ooiuo^oui^-»oo • • • • • • • • • • a OUlOUIOVlOUIOOUt

•^40a(»OooaooQ»cDOoo» >ooruMuioui$5ui-* ouiowiuiooou*om

oooovnuiouti/loo

p00a«o^0a0»00«09000e ui<so->4fo^^lk^bkCh

^ ^ 09 0 ^ -*0*0*0 000000c90000c00e00's00000000* 00'0'0«0 c *>ioo'Orv)^v/ia»-ftUi^ui*«jruooorv)ui«^o^a«^bo^Oi^ui^K)^rok)^M* I

p^ooooooOo^^^^«o-^uivn-^j<sO'-^^'Sui*>ioovn(pOBOouioa'00»*^o«^ ^oJN09vi^%0'0vn04->^ tinoooo•o^ooaQ^Mv/l-^|(/4•>l—»oooo^ch«^^>0">j**«sj^f\j«oc>k04^oron* uio^oi^n^wb*^^

(Q "O

m 3 <

-<

5

S 8

3 I -

8-"<

f> a

£9Z

Page 263: Triple testcross analysis to detect epistasis and estimate ...

Table E2. continued

Env. ENTRY HALE

30520 16 089502 30520 17 089503 30520 18 231916 30520 19 229524 30520 20 089506 30520 21 089507 30520 22 089901 30520 23 089902 30520 24 089903 30520 25 089904 30520 26 090301 30520 27 090302 30520 28 229921 30520 29 230323 30520 30 226720 30520 31 090306 30520 32 230322 30520 33 230701 30520 34 231103 30520 35 232306 30520 36 231905 30520 37 231104 30520 38 091101 30520 39 232707 30520 40 091103 30520 41 091104 30520 42 226309 30520 43 091501 30520 44 091502 30520 45 091503 30520 46 091504 30520 47 227110 30520 48 091901 30520 49 091902 30520 50 091903 30520 51 227511 30520 52 227512 30520 53 091906 30520 54 092301 30520 55 228313 30520 56 092303 30520 57 092305 30520 58 226308 30520 59 092307 30520 60 092701

YD ED

g/plant cm

CD

cm

KD

cm

EL

cm

RN

no.

EP

no.

BP RL SL DE PH

cm

EH

cm

AN SE SD LU TB

days days days cm no.

79.0 72.9 82.4 48.5 74.9 72.1 62.1

70.7 73.9

85 !o 58.6 79.2 66.6 76.4 49.9 63.6 88.3 72.4 80.7 64.7 59.2 46.9 62.9 63.7 43.7 32.2 63.3 77.8 65.5 56.4 38.1

125.7 64.0

77.7 65.4

6718 76.0 53.5 42.3 85.5

3.80 4.00 3.95 3.85 4.05 3.75 3.80

3.75 3.80

3)75 3.70 4.10 3.75 3.90 3.45 3.90 4.00 3.95 3.90 4.10 3.85 3.60 3.65 3.80 3.75 3.55 3.80 3.75 3.95 3.50 3.45 4.25 4.00

4!O5 4.00

4.00 4.00 3.85 3.85 3.75

2.35 2.35 2.60 2.55 2.55 2.45 2.60

2.30 2.40

2!40 2.60 2.90 2.35 2.50 2.35 2.75 2.60 2.55 2.45 2.80 2.55 2.60 2.50 2.40 2.55 2.20 2.45 2.55 2.60 2.20 2.40 3.10 2.65

2!65 2.65

2.45 2.55 2.60 2.45 2.45

1.45 1.65 1.35 1.30 1.50 1.30 1.20

1.45 1.40

I!35 1.10 1.20 1.40 1.40 1.10 1.15 1.40 1.40 1.45 1.30 1.30 1.00 1.15 1.40 1.20 1.35 1.35 1.20 1.35 1.30 1.05 1.15 1.35

I!40 1.35

liss 1.45 1.25 1.40 1.30

13.45 13.35 14.40 13.65 12.85 13.45 13.15

13.65 13.05

14!85 13.40 15.15 13.25 13.95 13.35 14.60 14.40 13.95 13.60 13.00 12.85 12.10 14.40 13.90 11.75 12.80 13.65 13.70 11.70 10.85 9.90

18.51 13.10

13!40 11.50

13!85 13.35 12.50 10.45 14.85

12.90 13.70 14.85 14.00 14.70 13.95 15.15

12.70 14.40

14.'30 13.20 15.10 13.50 14.10 12.25 13.85 14.75 13.30 13.85 16.80 16.40 12.95 13.15 14.55 13.05 13.35 13.80 13.35 16.05 14.30 14.00 13.58 15.00

14!55 15.90

14165 15.25 14.15 16.50 12.90

1.00 0.90 0.90 0.95 0.95 1.00 0.85

1.00 1.05

i!oo 0.95 1.10 0.90 1.00 0.85 0.90 1.00 0.95 1.00 0.85 0.95 0.90 0.70 0.90 0.75 0.50 1.00 1.10 1.00 0.95 0.90 1.29 0.95

0^95 1.00

O!90 1.00 0.95 0.80 1.00

0.0 8.5

10.5 5.0 6.0 0.0

29.0

0.0 0.0

o!o 5.0 0.0

10.0 0.0

15.0 15.0 0.0 5.0 6.0

15.0 5.0

10.0 30.0 10.0 25.0 50.0 0.0 5.5 5.0 6.0

15.0 0.4 5.0

sio 0.0

12.5 5.0 5.0

18.5 0.0

0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00

o.'oo 0.00 0.00 2.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

o!oo 0.00

o'.oo 0.00 0.00 0.00 0.00

8.35 0.00 4.55 0.00 6.25 0.00 0.00

0.00 4.60

9!35 5.25

16.25 6.25 2.10 0.00

10.20 8.35

10.80 2.80

10,00 2.65 9.15

13.65 10.70 5.25 8.35 4.15

18.75 5.00 5.55 7.70

33.03 6.25

o!oo 6.25

o!oo 3.10 9.05 7.15 0.00

4.20 0.00 0.00 0.00 0.00 0.00 0.00

0.00 2.10

o!oo 0.00 0.00 0.00 0.00 0.00 0.00 2.10 0.00 2.50 2.50 0.00 0.00 0.00 0.00 0.00 2.10 0.00 0.00 0.00 0.00 3.85 0.28 0.00

oioo 0.00

7:15 5.25 0.00 0.00 0.00

196.1 172.2 181.6 191.8 179.7 184.2 160.9

189.8 175.9

202)7 228.4 197.0 192.7 167.8 206.8 204.9 197.6 201.0 189.1 189.8 197.3 175.4 175.5 188.2 188.4 180.1 173.6 208.5 199.8 196.8 144.6 208.5 194.7

187^5 187.2

192)2 187.7 211.8 169.5 162.7

103.0 71.8 88.1 88.7 88.0 91.0 75.0

92.7 79.0

111.2 126.1 104.0 104.1 74.8

108.2 100.9 101.4 111.3 96.6 93.9

100.6 91.6 81.6 89.7 89.2 78.2 79.3

115.0 96.6

101.2 64.0

111.2 103.5

94^6 92.6

99.7 84.6

111.2 79.9 75.7

93.0 89.5 89.0 90.5 89.5 91.0 91.0

89.0 88.0

91 !5 93.0 92.5 90.5 90.0 95.0 91.0 90.5 93.5 91.5 90.0 92.0 90.0 90.0 90.5 90.0 88.0 89.0 89.5 90.0 89.5 89.5 89.8 92.0

93!5 90.0

92)5 90.0 94.5 93.5 90.0

94.5 91.0 90.0 92.5 91.0 92.5 92.0

93.0 91.0

93!O 96.0 95.0 92.5 92.0 97.5 93.5 92.5 95.0 93.0 93.0 93.5 92.5 92.0 91.0 92.5 91.0 92.0 91.5 92.5 90.0 90.0 91.7 94.0

95^0 92.0

93!5 92.0 97.0 94.5 91.0

1.5 1.5 1.0 2.0 1.5 1.5 1.0

4.0 3.0

1)5 3.0 2.5 2.0 2.0 2.5 2.5 2.0 1.5 1.5 3.0 1.5 2.5 2.0 0.5 2.5 3.0 3.0 2.0 2.5 0.5 0.5 1.9 2.0

lis 2.0

r.o 2.0 2.5 1.0 1.0

9.5 9.7

10.2 8.9

10.1 10.8 9.5

10.9 10.2

9)9 10.0 11.2 8.8 9.8 9.4

10.4 9.9 9.9

10.3 10.7 11.2 9.0 9.3 9.2

10.0 9.0 9.6 9.5

10.0 9.5

10.0 11.2 10.6

10.6 9.6

lois 9.5 9.9 9.8 8.5

5.8 7.5 5.9 5.1 5.8 6.3 8.1

9.6 7.3

bIO 7.0 6.9 6.4 4.3 7.0 7.5 5.7 9.0 5.6 5.6 8.2 7.0 5.1 7.4 5.2 6.3 5.3 5.8 7.2 5.9 6.5 9.1 5.2

6.9 7.8

8^1 7,5 5.7 9,0 4.5

to 01 4k

Page 264: Triple testcross analysis to detect epistasis and estimate ...

Table E2. continued

Env. ENTRY HALE

30520 61 092702 30520 62 095901 30520 63 092704 30520 64 095505 30520 65 092707 30520 66 092708 30520 67 093101 30520 68 095503 30520 69 093104 30520 70 093105 30520 71 093501 30520 72 093502 30520 73 094705 30520 74 093505 30520 75 094702 30520 76 093901 30520 77 093902 30520 78 094701 30520 79 094302 30520 80 093906 30520 81 094301 30520 82 089101 30520 83 094303 30520 84 094304 30520 85 089107 30520 86 090303 30520 87 091505 30520 88 090703 30520 89 092302 30520 90 092703 30520 91 092706 30520 92 093102 30520 93 093504 30520 94 093506 30520 95 093903 30520 96 091904 30520 97 092306 30520 98 091905 30520 99 094305 30520 100 090701 30620 1 088301 30620 2 088303 30620 3 095902 30620 4 088306 30620 5 088701

YD ED CD

g/plant cm cm

KD

cm

EL

cm

RH

no.

EP

no.

BP RL SL DE PH

cm

EH

ctn

AN SE SD LU TB

days days days cm no.

90.0 92.5 2.5 10.3 8.6 89.0 90.5 1.5 10.4 8.4 91.0 95.0 4.0 10.0 9.8 88.0 90.0 2.0 10.7 4.3

89!O 89!5 ois 9!3 i*\z 89.5 92.5 3.0 9.8 4.4 92.5 93.5 1.0 8.7 6.9

89!5 91.0 1.'5 9.3 7.'o 89.5 91.0 1.5 10.4 13.8 93.0 95.0 2.0 10.5 5.4 93.0 95.0 2.0 10.6 8.2 89.0 92.0 3.0 9.8 9.1 88.5 90.5 2.0 8.9 5.2 94.5 96.0 1.5 9.3 4.8 88.0 90.5 2.5 9.1 7.2 89.5 94.0 4.5 9.4 6.3 94.5 95.5 1.0 10.4 7.7 88.0 91.0 3.0 9.1 5.7

92)5 96!5 4!O 1O!3 isio 91.0 93.0 2.0 10.8 5.9 93.5 96.0 2.5 10.8 6.9 92.0 95.5 3.5 9.5 9.6 90.0 91.5 1.5 8.9 9.2 91.0 93.0 2.0 10.1 8.0 90.0 92.0 2.0 10.1 5.5 91.8 92.7 0.9 10.5 9.1 91.5 93.0 1.5 10.2 7.6 90.5 92.5 2.0 9.4 7.0 89.5 92.5 3.0 9.1 4.8 94.0 95.0 1.0 10.1 8.4 93.0 93.5 0.5 10.2 7.2 90.5 92.5 2.0 10.0 5.6 89.5 91.0 1.5 9.9 7.1 89.5 92.0 2.5 9.5 5.2 90.0 92.5 2.5 8.7 7.7 90.5 93.5 3.0 11.5 5.7

« A . 9.5 7.6 , , 9.4 6.8 , 9.7 6.8 , , 9.7 5.6

A . 9.8 12.7

3S.2 58.8 63.7 66.6

53.8 73.0 24.0

69.3 93.0 54.1 86.3 55.5 44.6 53.7 54.7 7.5

45.6 69.0

50.6 75.9 73.1 38.7 62.6 63.3 89.2 66.5 78.8 77.4 72.5 75.8 63.9 64.9 73.8 48.1 15,7 91.5 98.4 78.7 66.0 72.6 66.2

3.95 3.90 4.20 3.70

3.90 3.90 3.30

3."70 4.35 3.80 4.15 3.75 4.20 3.70 3.50 3.50 3.60 3.80

3!60 4.05 3.75 3.95 3.95 3.80 4.05 3.75 3.95 3.80 3.75 4.15 3.75 3.90 4.00 3.75 3.60 4.35 4.10 3.90 4.10 4.00 3.85

2.20 2.40 2.60 2.45

2.55 2.35 2.35

2.'10 2.80 2.55 2.75 2.40 2.70 2.65 2.40 2.20 2.40 2.55

2)45 2.65 2.35 2.40 2.55 2.45 2.75 2.60 2.65 2.20 2.40 2.75

.45

.60

.55

.35

.50 2.90 2.75 2.55 2.70 2.60 2.65

1.75 1.50 1.60 1.25

1.35 1.55 0.95

1.60 1.55 1.25 1.40 1.35 1.50 1.05 1.10 1.30 1.20 1.25

i!I5 1.40 1.40 1.55 1.40 1.35 1.30 1.15 1.30 1.60 1.35 1.40 1.30 1.30 1.45 1.40 1.10 1.45 1.35 1.35 1.40 1.40 1.20

9.70 12.85 13.40 11.55

11.15 14.20 11.70

12!75 12.30 13.60 14.90 13.90 11.15 12.75 12.90 9.30

13.60 14.70

12!80 14.35 13.85 11.45 13.40 15.70 14.30 14.61 13.80 13.05 12.50 14.55 15.55 12.80 12.90 11.70 8.55

13.90 13.40 12.85 12.35 13.15 11.70

14.00 14.05 16.20 12.95

15.40 13.15 12.40

14.'05 17.10 13.55 13.60 13.85 13.10 12.10 13.45 14.65 12.60 14.50

14.60 14.25 12.40 13.75 14.30 13.10 12.70 12.68 13.20 13.50 13.80 14.25 13.75 14.05 16.35 12.70 16.00 15.80 15.80 13.50 14.50 15.00 14.50

0.70 0.85 0.80 1.00

0.90 0.95 1.00

i!oo 0.95 0.85 1.00 0.90 0.80 0.95 1.00 0.35 0.90 0.85

0.70 0.90 1.00 0.70 1.00 0.80 1.00 1.19 1.00 1.15 1.05 1.00 0.80 0.90 1.00 0.75 0.40 1.00 0.90 1.00 1.00 0.95 1.00

33.0 15.0 20.0 0.0

11.0 15.0 0.0

o.'o 5.0

16.5 0.0

10.0 21.0 5.0 0.0

63.5 8.5

16.0

28!5 10.0 0,0

33,5 0.0

21.0 0,0 0.4 0,0 6,0 0.0 0,0

20,0 10.0 0.0

25.0 60.0 0,0

10.0 0.0 0.0 5.0 0.0

0.00 0.00 0.00 0.00

0.00 0,00 0.00

o!oo 0.00 0.00 0.00 0.00 0.00 0.00 3.35 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

8.30 2.10 2.40

10.60

2.80 4.75 4.15

8.90 8.75 0.00 8.35 2.00 6.25 7.15 3.55 4.75 0.00 2.10

5.00 2.10

10.45 13.90 15.60 11.00 0.00 0.26 0.00 0.00

12.90 16.35 11.45 3.10 4.15 0.00 0.00 8.35

10.40 10.40 8.35 2.10

11.90

4.15 2.10 2.25 2.15

0.00 2.40 0.00

o.'oo 2.50 0.00 0.00 2.00 0.00 2.80 3.35 7.15 0.00 4.15

0.00 0.00 5.45 0.00 0,00 0.00 0.00 0.28 0.00 0.00 0.00 0.00 4.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.95

186.4 182.2 193.5 169.9

172.5 166.8 163.8

177.9 185.1 178.7 211.6 185.0 169.3 180.3 188.7 181.0 195.0 192.1

169!O 190.8 200.1 197.8 172.0 175.7 198.7 182.9 205.5 162.5 187.0 215.8 186.3 178.0 168.6 184.1 170.8 169.9 211,6 206,0 187.0 199.2 195,2

85.5 89.0 99.5 78,5

84.7 70,6 78.6

81^7 95.1 82.7

112.7 87.1 71.5 92.1 82.5 76.6 91.6 85.7

73!I 97.4

106.8 98.9 76.5 88.8 95.3 95.1

111.2 64.6 96.2

119.2 92.3 79.0 79.7 90.1 72.7 78.7

112.3 109.7 90.4

105.6 98.4

N) m ui

Page 265: Triple testcross analysis to detect epistasis and estimate ...

Table E2. continued

Env. ENTRY HALE YD ED CD KD EL RN EP BP RL SL DE PH EH AN SE SO LU

g/plant cm cm cm cm no. no. XX X X cm cm days days days cm

TB

no.

30620 6 095904 45.0 3.35 2.05 1.30 11.10 14.00 0.70 30.0 0.00 4.15 0.00 210.8 103.0 30620 7 088703 85.7 3.85 2.35 1.50 14.85 14.30 0.90 10.0 2.15 0.00 0.00 208.3 112.4 30620 a 088704 45.2 3.15 1.70 1.45 11.85 12.55 0.75 25.0 7.50 0.00 0.00 197.1 92.9 30620 9 228714 , , , A

30620 10 089102 81.4 4.19 2.69 1.50 13.24 14.40 1.01 1.3 0.04 16.11 0.11 222.8 117.7 30620 11 089103 76.7 3.75 2.35 1.40 13.80 13.15 0.95 5.0 0.00 2.10 0.00 213.0 112.0 30620 12 089104 95.8 4.10 2.60 1.50 15.40 13.60 0.95 5.5 3.85 10.00 0.00 221.5 115.7 30620 13 089105 74.9 3.70 2.45 1.25 15.05 12.30 0.95 5.0 0.00 2.10 0.00 200.7 96.3 30620 14 229115 83.8 3.75 2.25 1.50 14.40 13.20 1.00 0.0 0.00 18.75 2.10 236.6 133.3 30620 15 089501 66.5 3.90 2.75 1.15 13.40 14.10 0.85 15.0 0.00 2.10 0.00 191.8 88.5 30620 16 089502 88.5 3.90 2.45 1.45 13.85 12.50 1.00 0.0 0.00 4.20 2.10 203.4 101.8 30620 17 089503 37.1 3.49 2.39 1.10 13.84 12.60 0.71 28.6 4.15 3.61 0.11 186.8 81.0 30620 18 231916 74.6 3.85 2.60 1.25 13.00 14.85 0.95 5.0 2.10 2.25 4.15 197.3 102.8 30620 19 229524 78.2 3.95 2.55 1.40 13.30 14.00 1.00 0.0 0.00 2.10 0.00 206.4 89.2 30620 20 089506 92.2 4.00 2.50 1.50 13.90 14.50 1.00 0.0 0.00 8.35 0.00 205.1 106.0 30620 21 089507 67.0 3.85 2.50 1.35 13.25 14.50 1.05 0.0 0.00 16.65 0.00 200.7 97.4 30620 22 089901 62.8 4.05 2.60 1.45 13.15 15.45 0.75 25.0 0.00 5.50 0.00 189.8 97.8 30620 23 089902 , , , 30620 24 089903 • , A • A A A

30620 25 089904 70.5 3.70 2.25 1.45 13.10 11.50 0.95 5.0 0.00 12.50 0.00 222.9 121.2 30620 26 090301 91.2 3.95 2.55 1.40 14.80 13.40 1.00 0.0 0.00 2.10 0.00 178.6 91.8 30620 27 090302 , , , , , 30620 28 229921 88.6 3.75 2.45 1.30 14.60 14.70 1.00 0.0 0.00 10.95 0.00 222.3 124.5 30620 29 230323 81.3 3.85 2.45 1.40 14.05 13.90 1.00 0.0 0.00 12.50 0.00 230.0 126.0 30620 30 226720 , , , . , A

30620 31 090306 96.3 4.05 2.45 1.60 14.40 14.00 1.00 0.0 0.00 23.45 0.00 209,9 116.9 30620 32 230322 87.4 3.85 2.50 1.35 13.45 13.30 1.05 0.0 0.00 2.15 0.00 203.9 102.9 30620 33 230701 79.6 3.75 2.50 1.25 13.75 13.60 1.00 0.0 0.40 8.30 0.00 232,8 134.3 30620 34 231103 76.4 3.80 2.40 1.40 13.95 13.50 0.95 5.0 0.85 14.95 0.00 220.5 111.8 30620 35 232306 95.6 4.05 2.55 1.50 13.65 14.90 1.00 0.0 0.00 8.30 0.00 226,7 117.9 30620 36 231905 84.7 3.90 2.40 1.50 13.35 13.70 1.00 0.0 2,10 8.35 2.10 217.4 118.4 30620 37 231104 84.4 3.95 2.40 1.55 13.80 12.90 1.00 0.0 0.00 14.60 0.00 195,8 101.7 30620 38 091101 99.7 4.15 2.90 1.25 13.50 16.20 0.90 10.0 0.00 12.90 0.00 202.3 101.1 30620 39 232707 70.3 3.75 2.55 1.20 12.80 15.55 0.90 10.0 5,00 7.50 0.00 218.2 117.1 30620 40 091103 56.2 3.55 2.50 1.05 12.90 12.60 0.95 5.5 8,35 2.10 0.00 197.2 104.6 30620 41 091104 56.5 3.80 2.40 1.40 14.10 13.20 0.80 25.0 8.35 0.00 0.00 221.6 105.1 30620 42 226309 78.2 3.90 2.50 1.40 15.50 14.65 0.85 15.0 0.00 6.25 0.00 205.2 108.5 30620 43 091501 73.9 3.95 2.65 1.30 13.85 13.80 0.90 10.0 0.00 5.25 0.00 193.9 94.6 30620 44 091502 69.7 3.70 2.35 1.35 14.25 13.05 0.95 5.0 6.25 2.10 0.00 199.4 87.6 30620 45 091503 83.8 3.90 2.55 1.35 13.75 12.85 1.00 0.0 0.00 4.15 0.00 195.3 90.7 30620 46 091504 76.7 3.55 1.90 1.65 12.45 13.45 1.15 0.0 0.00 12.50 0.00 217.3 118.4 30620 47 227110 71.8 4.05 2.70 1.35 12.55 16.30 1.00 0.0 0.00 6.25 0.00 208.8 105.3 30620 48 091901 100.8 4.65 2.85 1.80 13.00 16.35 1.00 0.0 0.00 16.65 0.00 208.9 111.4 30620 49 091902 19.2 3.55 2.20 1.35 8.55 12.25 0.50 50.0 0.00 2.10 0.00 142.5 73.6 30620 50 091903 196.4 4.29 2.29 2.00 19.64 14.00 1.61 1.3 0.04 0.00 0.11 222.2 108.6

9.7 9.6

10.0

9)3 9.4

10.7 9.5

10.2 9.1 9.5 9.1

10.1 9.4

10.1 10.2 9.6

10.6 9.5

9!5 9.8

bIS 9.8 9.7

10.3 9.4 9.3 9.7

10.2 11.1 9.7 9.0 9.3

10.2 8.9 9.2 9.2

10.0 9.4 9.5

11.3

10.4 5.1

10.2

7!2 9.1 8.9 8.7 8.6 7.5 6.2 9.6 6.5 5.5 6.2 7.0 9.5

11.6 7.0

7.9 6.9

6.1 5.9 8.6 8.6 5.9 9.3 6.6 5.8 9.7 6.5 6.4 6.9 6.2 7.7 6.5 5.9 8.1 7.4 7.0 7.8

to Ul o\

Page 266: Triple testcross analysis to detect epistasis and estimate ...

Table E2. continued

Env. ENTRY MALE YD ED CD KD EL RN EP BP

g/plant cm cm cm cm no. no. %

30620 51 227511 67.5 4.09 2.69 1 .40 12.84 14.50 1.01 9.6 30620 52 227512 , S , A , . 30620 53 091906 86.1 4.00 2.50 1 .50 13.20 13.50 1.00 0.0 30620 54 092301 59.0 4.05 2.65 1 .40 12.30 15.45 0.75 25.0 30620 55 228313 , A . •

30620 56 092303 71.6 3.95 2.60 1 .35 13.60 14.50 1.00 0.0 30620 57 092305 69.7 3.90 2.50 1 .40 13.95 14.35 0.90 10.0 30620 58 226308 63.0 3.80 2.65 1 .15 11.60 14.75 0.85 15.0 30620 59 092307 50.6 3.75 2.60 1 .15 10.00 16.30 0.90 10.0 30620 60 092701 91.4 3.70 2.40 1 .30 15.35 12.80 1.00 0.0 30620 61 092702 32.6 3.80 2.45 1 .35 9.90 15.00 0.55 45.0 30620 62 095901 42.4 3.80 2.60 1 .20 12.85 14.85 0.65 35.0 30620 63 092704 73.6 4.05 2.55 1 .50 12.20 16.15 0.90 10.0 30620 64 095505 63.6 3.65 2.50 1 .15 12.10 13.05 0.95 5.0 30620 65 092707 , . . . . . . 30620 66 092708 . , . 30620 67 093101 96.5 4.15 2.65 1 .50 13.95 15.50 1.00 0.0 30620 68 095503 75.6 3.30 2.10 1 .20 11.65 13.45 1.00 0.0 30620 69 093104 70.0 3.80 2.45 1 .35 14.05 13.60 0.95 5.0 30620 70 093105 113.8 3.95 2.55 1 .40 13.55 13.65 0.90 10.0 30620 71 093501 100.8 3.99 2.29 1 .70 14.24 13.60 1.01 1.3 30620 72 093502 86.2 4.20 2.70 1 .50 12.50 16.35 0.90 10.0 30620 73 094705 54.3 3.50 2.45 1 .05 12.95 12.85 1.00 0.0 30620 74 093505 91.7 4.05 2.60 1 .45 13.65 14.20 1.00 0.0 30620 75 094702 80.3 3.90 2.55 1 .35 14.50 13.70 1.00 0.0 30620 76 093901 25.1 3.70 2.50 1 .20 13.35 13.25 0.40 60.0 30620 77 093902 73.8 3.90 2.60 1 .30 13.05 12.40 0.95 5.0 30620 78 094701 69.6 3.80 2.45 1 .35 14.40 13.35 0.95 5.0 30620 79 094302 19.0 3.70 2.55 1 .15 10.75 15.50 0.40 58.5 30620 80 093906 , , , , 30620 81 094301 75.6 3.65 2.55 1 !lO 14.55 13.40 1.00 0.0 30620 82 089101 . A

30620 83 094303 70.2 4.10 2.45 1 !65 14.80 16.40 0.75 25.0 30620 84 094304 87.3 3.95 2.55 1, .40 13.80 14.60 1.00 0.0 30620 85 0B9107 73.7 3.75 2.35 1 .40 14.25 12.00 0.95 5.0 30620 86 090303 68.4 4.35 2.55 1, .80 11.20 15.65 0.80 20.0 30620 87 091505 65.6 4.10 2.70 1, .40 14.15 14.00 0.95 5.0 30620 88 090703 52.8 3.60 2.40 1, .20 13.75 12.55 0.85 16.5 30620 89 092302 79.0 3.70 2.40 1, .30 13.30 13.05 1.00 0.0 30620 90 092703 93.3 4.10 2.50 1, .60 13.05 13.50 1.15 0.0 30620 91 092706 • • . . 30620 92 093102 60.2 3.80 2.30 i! !50 11.80 14.20 0.90 15.0 30620 93 093504 , . . , . . 30620 94 093506 74.1 3.90 2.60 i! !30 14.05 14.30 1.00 0.0 30620 95 093903 56.7 3.80 2.45 1. .35 15.15 13.95 0.75 25.0

RL SL DE PH EH AN SE SD LU TB

X X X cm cm days days days cm no.

0.04 11.91 4.08 197.2 102.8 10.6 5.3

o!oo 6.25 o!oo 19316 100)2 ! ) ) 9)8 6)5 0.00 6.85 0.00 204.5 105.0 9.4 7.9

0.00 12!50 0.00 202.5 107)1 9.7 7)6 0.00 6.25 0.00 198.9 93.4 9.1 8.0 2.10 10.40 0.00 238.8 127.7 9.9 6.4 0.00 4.55 0.00 195.8 101.6 9.4 9.6 0.00 4.55 0.00 186.2 84.3 9.3 5.1 0.00 11.05 0.00 210.2 107.3 9.7 10.1 0.00 6.25 2.10 182.0 87.2 9.8 8.6 6.25 10.40 2.10 214.0 114.9 9.3 10.6 0.00 0.00 0.00 179.3 79.5 10.7 5.4

6!45 10.65 o!oo 214!4 114)3 ) ) ) 10)2 5)4 0.00 10.40 0.00 180.8 85.6 9,2 3.9 0.00 14.60 2.10 199.6 102.3 9.7 7.4 0.00 14.65 0.00 187.3 90.7 9.3 7.3 0.04 9.41 0.11 196.2 102.0 9.6 8.1 0.00 2.10 2.10 206.0 109.4 10.1 13.1 0.00 8.30 0.00 203.7 93.5 10.0 6.1 2.10 8.35 0.00 229.1 124.7 10.1 9.1 0.00 4.20 0.00 213.0 104.2 10.1 9.7 0.00 8.35 0.00 192.9 93.8 8.9 6.2 0.00 4.15 0.00 202.6 105.8 9.6 5.1 0.00 6.25 4.50 193.0 92.0 9.3 6.9 0.00 2.50 0.00 189.1 84.4 9.4 6.4

o!oo 2^10 o!oo 202)4 100)7 ) ) ) 9)3 6.7

4!35 4!35 o!oo 188!4 92)4 ) ) 10)6 14)6 0.00 4.15 2.10 203.1 109.7 10.3 6.5 4.15 6.25 0.00 208.5 107.2 10.7 7.7 0.00 5.15 0.00 224.3 114.2 9.5 9.2 0.00 6.25 0.00 196.5 95.5 8.6 9.7 8.35 6.25 0.00 194.2 95.7 9.3 8.9 0.00 8.35 0.00 218.4 113.1 9.7 5.3 0.00 0.00 0.00 195.0 103.5 9.8 8.8

0.00 2!80 2!40 177!8 85)6 ) ) ) 8)7 9)9

o!oo 8!30 o!oo 222)5 123)0 ) ) ) 9)9 7)9 2.10 4.20 0.00 199.2 106.8 9.8 7.9

Page 267: Triple testcross analysis to detect epistasis and estimate ...

Table E2. continued.

Env. ENTRY HALE YD EO CO KD EL RN EP BP RL SL DE PH EH AN SE SO LW TB

g/plant cm cm cm cm no. no. % X % X cm cm days days days cm no.

30620 96 091904 61.6 3.75 2.50 1.25 12.50 14.25 0.85 15.0 0.00 0.00 0.00 195.5 84.7 10.0 5.8 30620 97 092306 75.7 4.15 2.55 1.60 14.10 14.90 0.95 5.0 0.00 6.30 2.15 192.6 94.6 9.6 7.2 30620 9S 091905 39.5 3.50 2.40 1.10 12.65 12.35 0.65 36.5 0.00 4.20 0.00 190.9 85.1 9,2 5.2 30620 99 094305 30.5 3.90 2.55 1.35 11.60 15.60 0.50 50.0 0.00 0.00 2.15 188.4 84.6 9.9 8.0 30620 100 090701 45.8 3.85 2.65 1.20 12.00 13.85 0.75 25.0 0.00 0.00 0.00 182.4 81.6 10.7 5.6

OJ m