Top Banner
Travis Metcalfe (SSI) Asteroseismology of Kepler Exoplanet Host Stars
24

Travis Metcalfe (SSI)

Feb 02, 2016

Download

Documents

Lindley

Asteroseismology of Kepler Exoplanet Host Stars. Travis Metcalfe (SSI). 1992: first pulsar planets. 3 planet system 2 = 4 x Earth mass 1 = 2 x Moon mass Orbits closer than Mercury. 1995: first radial velocity planet. 0.5 x Jupiter mass Orbit closer than Mercury. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Travis Metcalfe (SSI)

Travis Metcalfe (SSI)

Asteroseismology of Kepler Exoplanet Host Stars

Page 2: Travis Metcalfe (SSI)

1992: first pulsar planets

3 planet system

2 = 4 x Earth mass

1 = 2 x Moon mass

Orbits closer than Mercury

Page 3: Travis Metcalfe (SSI)

1995: first radial velocity planet

0.5 x Jupiter mass

Orbit closer than Mercury

Page 4: Travis Metcalfe (SSI)

2001: first transiting planetOrbit closer than Mercury

Size near Jupiter

Page 5: Travis Metcalfe (SSI)

Exoplanet atmospheres

Detections

- Sodium

- Carbon monoxide

- Water vapour

Page 6: Travis Metcalfe (SSI)

2004: first microlensing planet

Hosted by a tiny red dwarf

Orbit size similar to Mars

Mass similar to Jupiter

Page 7: Travis Metcalfe (SSI)

Mass = 3 x Jupiter

Orbit size = 3 x Neptune

Host star mass = 2 x Sun

2008: first direct image

Page 8: Travis Metcalfe (SSI)

2010: first habitable planet?

Gliese 581g

Mass = 3 x Earth

Orbit size = 0.4 x Mercury

Host star mass = 0.3 x Sun

Page 9: Travis Metcalfe (SSI)
Page 10: Travis Metcalfe (SSI)
Page 11: Travis Metcalfe (SSI)
Page 12: Travis Metcalfe (SSI)

Higher temperature = faster sound speed

Lighter gases = faster sound speed

Page 13: Travis Metcalfe (SSI)
Page 14: Travis Metcalfe (SSI)

Global oscillation properties

Elsworth & Thompson (2004)

max

Page 15: Travis Metcalfe (SSI)

Scaling relations

Mathur et al. (2012)

Page 16: Travis Metcalfe (SSI)

Grid-based methods

Mathur et al. (2012)

Page 17: Travis Metcalfe (SSI)

Fitting the frequencies

Metcalfe et al. (2012)

Page 18: Travis Metcalfe (SSI)

• Stellar evolution tracks from ASTEC, pulsation analysis with ADIPLS

• Parallel genetic algorithm optimizes globally, local analysis + SVD for errors

• Stellar age from match to large separation, correct surface effects empirically

0.75 < M < 1.75

0.002 < Z < 0.05

0.22 < Y < 0.32 1.0 < < 3.0

Metcalfe et al. (2009), Woitaszek et al. (2009)

http://amp.ucar.edu/

Chaplin et al. (2011, Science)

Asteroseismic Modeling Portal

Page 19: Travis Metcalfe (SSI)

Kepler-21: a love story

Howell et al. (2012)

• 1.64±0.04 Re planet in a 2.8-day orbit around an oscillating F subgiant

• Asteroseismic target prior to exoplanet discovery, expanded collaboration

• radius (1.86±0.04 R), mass (1.34±0.06 M), age (2.84±0.34 Gyr)

Page 20: Travis Metcalfe (SSI)

Kepler-22: habitable super-Earth

Borucki et al. (2012)

• 2.38±0.13 Re planet with 290-d orbit in habitable zone of G5 host star

• Spectroscopy and global oscillation properties for grid-based modeling

• radius (0.98±0.02 R), mass (0.97±0.06 M), age (~4 Gyr?)

Page 21: Travis Metcalfe (SSI)

Kepler-36: formation puzzle

Carter et al. (2012, Science)

Page 22: Travis Metcalfe (SSI)

Kepler-36: formation puzzle

• 1.5 and 3.7 Re planets in 13.8-d and 16.2-d orbits (7:6 period ratio)

• Asteroseismology and transit timing variations yield planet densities

• Super-Earth and Neptune (8:1 density ratio) in neighboring orbits. How?

Carter et al. (2012, Science)

Page 23: Travis Metcalfe (SSI)

Kepler-##: smallest exoplanet

Barclay et al. (submitted)

• 0.28 / 0.8 / 2.1 Re planets in 13 / 21 / 39 day orbits (no TTVs yet detected)

• radius (0.77±0.02 R), mass (0.80±0.04 M), age (~6 Gyr)

• Innermost planet is smaller than Mercury (similar to size of Moon)

Page 24: Travis Metcalfe (SSI)

Future prospects

• Longer data sets will resolve mode splitting, providing independent constraints on rotational inclination and spin-orbit alignment.

• Extended time series will probe variations due to magnetic cycles, and provide statistics on stellar super-flares (with implications for habitability).

• Comparison with control sample of stars without known planets may reveal correlations between stellar composition and occurrence of planets.