Top Banner
Transport processes (TRP) VST rz18 Transport processes – Part 2a Ron Zevenhoven Åbo Akademi University Thermal and Flow Engineering / Värme- och strömningsteknik tel. 3223 ; [email protected] 1/58 2a Page 58 added 22.1.2018 Transport processes (TRP) VST rz18 2/58 2a
29

Transport processes – Part 2a - Startsidausers.abo.fi/rzevenho/trp-slides-2a-2018.pdf · Transport processes – Part 2a Ron Zevenhoven ... Transport processes(TRP) VST rz18 Separation

Aug 29, 2018

Download

Documents

vuongduong
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Transport processes – Part 2a - Startsidausers.abo.fi/rzevenho/trp-slides-2a-2018.pdf · Transport processes – Part 2a Ron Zevenhoven ... Transport processes(TRP) VST rz18 Separation

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Transport processes – Part 2a

Ron ZevenhovenÅbo Akademi University

Thermal and Flow Engineering / Värme- och strömningstekniktel. 3223 ; [email protected]

1/58 2a

Page 58 added 22.1.2018

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

2/58 2a

Page 2: Transport processes – Part 2a - Startsidausers.abo.fi/rzevenho/trp-slides-2a-2018.pdf · Transport processes – Part 2a Ron Zevenhoven ... Transport processes(TRP) VST rz18 Separation

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

3/58 2a

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

4/58 2a

Page 3: Transport processes – Part 2a - Startsidausers.abo.fi/rzevenho/trp-slides-2a-2018.pdf · Transport processes – Part 2a Ron Zevenhoven ... Transport processes(TRP) VST rz18 Separation

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

5/58 2a

Thermal diffusivity

α = λ /(ρꞏcp)

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

6/58 2a

more general: T=T*

more general: θ = (T -T*)/(T0 -T*)

Page 4: Transport processes – Part 2a - Startsidausers.abo.fi/rzevenho/trp-slides-2a-2018.pdf · Transport processes – Part 2a Ron Zevenhoven ... Transport processes(TRP) VST rz18 Separation

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

7/58 2a

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

8/58 2a

Page 5: Transport processes – Part 2a - Startsidausers.abo.fi/rzevenho/trp-slides-2a-2018.pdf · Transport processes – Part 2a Ron Zevenhoven ... Transport processes(TRP) VST rz18 Separation

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

9/58 2a

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

10/58 2a

Page 6: Transport processes – Part 2a - Startsidausers.abo.fi/rzevenho/trp-slides-2a-2018.pdf · Transport processes – Part 2a Ron Zevenhoven ... Transport processes(TRP) VST rz18 Separation

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Orthogonality

etc. , 0)sin(30,)sin(0,)sin(

etc. , 1)sin(3 1,)sin( and

0,1,2,3...m integer for

πππ

xπ)msin(π)m(

x½xdxπ)m

(cos

/π/π

)(π)m(

xπ)m

sin(π)m(

xdxπ)m

(cos

cA

)Axsin(x½dx)Ax(cos½½dx)Ax(cos

cA

)Axsin(dx)Ax(cos

cxsinxdxcos

cxcosxdxsin

:Note

m

11/58 2a

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

12/58 2a

Page 7: Transport processes – Part 2a - Startsidausers.abo.fi/rzevenho/trp-slides-2a-2018.pdf · Transport processes – Part 2a Ron Zevenhoven ... Transport processes(TRP) VST rz18 Separation

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

13/58 2a

EXAMPLET

rans

port

pro

cess

es(T

RP

)

VST rz18

14/58 2a

EXAMPLE

This can be since the concrete has an 8x higher heat capacity ρ∙cp, i.e. enthalpy / volume.

Page 8: Transport processes – Part 2a - Startsidausers.abo.fi/rzevenho/trp-slides-2a-2018.pdf · Transport processes – Part 2a Ron Zevenhoven ... Transport processes(TRP) VST rz18 Separation

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

15/58 2a

more general: h(T-T*)

more general: θ = (T -T*)/(T0 -T*)

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

16/58 2a

Page 9: Transport processes – Part 2a - Startsidausers.abo.fi/rzevenho/trp-slides-2a-2018.pdf · Transport processes – Part 2a Ron Zevenhoven ... Transport processes(TRP) VST rz18 Separation

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

17/58 2a

Note: µ0 = 0

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

18/58 2a

Page 10: Transport processes – Part 2a - Startsidausers.abo.fi/rzevenho/trp-slides-2a-2018.pdf · Transport processes – Part 2a Ron Zevenhoven ... Transport processes(TRP) VST rz18 Separation

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

19/58 2a

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Separation of variables – example /1

• Q: A steel plate at 900°C is cooled by spraying 40°C water on one side of it. This gives convective heat transfer with constantheat transfer coefficient h = 5000 W/(m2.K). The other side of the plate may be consideredthermally insulated.

• For a plate with thickness d = 4 mm, calculatethe temperature on both plate surfaces 5 seconds after the spray cooling has started.

• For the steel, assume conductivity λ=20 W/(m.K) and thermal diffusivity a = 6ꞏ10-6

m2/s

20/58 2a

Page 11: Transport processes – Part 2a - Startsidausers.abo.fi/rzevenho/trp-slides-2a-2018.pdf · Transport processes – Part 2a Ron Zevenhoven ... Transport processes(TRP) VST rz18 Separation

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Separation of variables – example /2

• A: For the Biot number: – Bi = 5000ꞏ0.004/20 = 1;

– First eigenvalue µ1 = 0.860 (from Figure 2.2)

• Using only the first eigenvalue:– @ x=d : T(x=d) = 40+860ꞏ0.73ꞏexp(-0.28ꞏt)

– This gives T = 195°C @ t = 5 s

– @ x=0 : T(x=0) = 40+860ꞏ1.12ꞏexp(-0.28ꞏt)

– This gives T = 277°C @ t = 5 s

• It is readily seen that the second eigenvalue can be neglected.

21/58 2a

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

22/58 2a

Page 12: Transport processes – Part 2a - Startsidausers.abo.fi/rzevenho/trp-slides-2a-2018.pdf · Transport processes – Part 2a Ron Zevenhoven ... Transport processes(TRP) VST rz18 Separation

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

23/58 2a

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

24/58 2a

= Fourier number, Fo

Page 13: Transport processes – Part 2a - Startsidausers.abo.fi/rzevenho/trp-slides-2a-2018.pdf · Transport processes – Part 2a Ron Zevenhoven ... Transport processes(TRP) VST rz18 Separation

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

25/58 2a

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

26/58 2a

Page 14: Transport processes – Part 2a - Startsidausers.abo.fi/rzevenho/trp-slides-2a-2018.pdf · Transport processes – Part 2a Ron Zevenhoven ... Transport processes(TRP) VST rz18 Separation

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

27/58 2a

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

28/58 2a

Page 15: Transport processes – Part 2a - Startsidausers.abo.fi/rzevenho/trp-slides-2a-2018.pdf · Transport processes – Part 2a Ron Zevenhoven ... Transport processes(TRP) VST rz18 Separation

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

29/58 2a

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

30/58 2a

Page 16: Transport processes – Part 2a - Startsidausers.abo.fi/rzevenho/trp-slides-2a-2018.pdf · Transport processes – Part 2a Ron Zevenhoven ... Transport processes(TRP) VST rz18 Separation

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

31/58 2a

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

32/58 2a

The functions Yk(x) are in practice (in the field addressed by this course) not needed.

Page 17: Transport processes – Part 2a - Startsidausers.abo.fi/rzevenho/trp-slides-2a-2018.pdf · Transport processes – Part 2a Ron Zevenhoven ... Transport processes(TRP) VST rz18 Separation

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

33/58 2a

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

34/58 2a

Page 18: Transport processes – Part 2a - Startsidausers.abo.fi/rzevenho/trp-slides-2a-2018.pdf · Transport processes – Part 2a Ron Zevenhoven ... Transport processes(TRP) VST rz18 Separation

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Bessel functions data

• Source: Introduction to Thermal and Fluid Engineering by Deborah Kaminski and Michael Jensen2005 by John Wiley & Sons, Inc.

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Using Bessel functions – example /1

• Q: A cylindrical column with diameter d = 0.05 m is initially at T = T0 when at time t = 0 suddenly the surface temperature is brought to T = 0 (with respect to somereference temperature).

• Similar to the case for a plane surface, determine the time until the centretemperature Tc is equalised to 0.05 = (Tc-0)/(T0-0)

Page 19: Transport processes – Part 2a - Startsidausers.abo.fi/rzevenho/trp-slides-2a-2018.pdf · Transport processes – Part 2a Ron Zevenhoven ... Transport processes(TRP) VST rz18 Separation

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Using Bessel functions – example /2• A: For long times use the first eigenvalue,

with n = 0 this gives (see p. 37)

µ0 = the first zero of J0(..), which is 2.405, and with J1(2.405) = 0.519 for r = 0: 0.05 = 1.60ꞏexp(-0.0037ꞏt)

• This gives the result t = 937 s, which is ~ 2x faster than a plate with d= 0.05 m

• The heat flux (W/m2) can be calculated using-λꞏdT/dr and differentiated Bessel functions

)exp()()( 2

2000

0100

2

R

taµ

R

rµJ

µJµTT

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Separation of variablessimplification Fo > 0.2

(”long times”)

38/58 2a

Page 20: Transport processes – Part 2a - Startsidausers.abo.fi/rzevenho/trp-slides-2a-2018.pdf · Transport processes – Part 2a Ron Zevenhoven ... Transport processes(TRP) VST rz18 Separation

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

1-dimensional transient conduction /1

• Using separation of variables, convectivecooling/heating (see above) by a medium flow at temperature Tflow with Bi = h.Lchar/k, with convectiveheat transfer coefficient h (Wm2.K), characteristiclength scale Lchar (m) and material conductivity k (W/m.K), gives for dimensionless time τ = Fo > 0.2, using only the first eigenvalue λ1:

rrλ

)rrλ

sin(

)τλexp(CTT

T)t,r(T

)r

rλ(J)τλexp(C

TT

T)t,r(T

)L

xλcos()τλexp(C

TT

T)t,x(T

flowstart

flow

flowstart

flow

flowstart

flow

:sphere

:cylinder

:wall plane

see tabelised dataon next page forfirst eigenvalue λ1

and constant C1

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

1 -dimensionaltransient

conduction /2

• Source: Introduction to Thermal and Fluid Engineering by Deborah Kaminski and Michael Jensen2005 by John Wiley & Sons, Inc.

Wall with thickness 2L

Cylinder with radius r0

Sphere with radius r0

Page 21: Transport processes – Part 2a - Startsidausers.abo.fi/rzevenho/trp-slides-2a-2018.pdf · Transport processes – Part 2a Ron Zevenhoven ... Transport processes(TRP) VST rz18 Separation

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

41/58 2a

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

42/58 2a

Page 22: Transport processes – Part 2a - Startsidausers.abo.fi/rzevenho/trp-slides-2a-2018.pdf · Transport processes – Part 2a Ron Zevenhoven ... Transport processes(TRP) VST rz18 Separation

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

43/58 2a

)(1

)( pFp

dFt

o T

rans

port

pro

cess

es(T

RP

)

VST rz18

44/58 2a

More general: T1

T1

-T1 +

+ T1 / p

T1

Page 23: Transport processes – Part 2a - Startsidausers.abo.fi/rzevenho/trp-slides-2a-2018.pdf · Transport processes – Part 2a Ron Zevenhoven ... Transport processes(TRP) VST rz18 Separation

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

45/58 2a

+ T1 / p

T1 + (T0 - T1)ꞏerfc(..)

+ T1 / pp. 5112.

T1 / p

(T0 - T1)

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

46/58 2a

ptor

pdt

t

eo

pt

11£:

,1

(T0 - T1)

(T0 - T1)

Page 24: Transport processes – Part 2a - Startsidausers.abo.fi/rzevenho/trp-slides-2a-2018.pdf · Transport processes – Part 2a Ron Zevenhoven ... Transport processes(TRP) VST rz18 Separation

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

47/58 2a

T1

T1

T1

T0

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

48/58 2a

-T1 / α

+ T1 / p

(T0 - T1)

(T0 - T1)

Page 25: Transport processes – Part 2a - Startsidausers.abo.fi/rzevenho/trp-slides-2a-2018.pdf · Transport processes – Part 2a Ron Zevenhoven ... Transport processes(TRP) VST rz18 Separation

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

49/58 2a

+ T1 / p

+ T1 / p

+ T1

=1 – x + x2 – x3 + x4 …

(T0 - T1)

(T0 - T1)

(T0 - T1)

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

50/58 2a

!

Fo >> 0.2or simplyFo > 0.2

(T0 - T1) (T0 - T1)

(T0 - T1)

+ T1

+ T1

Page 26: Transport processes – Part 2a - Startsidausers.abo.fi/rzevenho/trp-slides-2a-2018.pdf · Transport processes – Part 2a Ron Zevenhoven ... Transport processes(TRP) VST rz18 Separation

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

51/58 2a

q = √ p / a

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Transformation simplification

term 1 to reduced terms 2

21

withsimplified be can 2

2

2

2

2

2

2

2

2

2

2

r

T

rr

T

rr

r

T

r

T

r

Tr

r

Tr

Tr

r

drTdTrdrr

dTT

d

rTr

T

rr

T

Page 27: Transport processes – Part 2a - Startsidausers.abo.fi/rzevenho/trp-slides-2a-2018.pdf · Transport processes – Part 2a Ron Zevenhoven ... Transport processes(TRP) VST rz18 Separation

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Using Laplace transform – example /1

• Q: Reconsider the gypsum + steel wall (p. 28), thickness 0.05m + 0.05 m, now for short times,

i.e. Fo = at/d2 < 0.2, i.e. t < 1250 s ≈ 20 minutes

• T(x, t=0) = 0 (°C) L = 0.05 m; a = 4ꞏ10-7 m2/s, λ= 0.4 W/mꞏK, ρꞏcp = 1 ꞏ106 J/m3ꞏK;

• Calculate the temperature at the centre of the wall(x=0) when T(x=±L, t) = 100 (°C), after 10 s and after 4 minutes

• Give also the heat flux

Φ”heat (W/m2) at x = +L

Data error functionerf(x) = 1 – erfc(x)

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Using Laplace transform – example /2• A: For the temperature at the centre:

gives T(0,10 s)= 0, T(0, 240 s) = 14.25 (°C)Note that the second term erfc(3L/4√at) < 10-6

• For the heat flux:

gives for t = 10 s: Φ”heat = 100ꞏ113ꞏ1 = 11300 (W/m2) for t = 240s: Φ”heat = 100ꞏ23ꞏ0.997 = 2296 (W/m2)

t

.erfc)t,x(T

at

LerfcT)t,x(T

t

.exp

.)t,Lx(Φ

at

Lexp

cλρT)t,Lx(Φ

"heat

p"heat

Page 28: Transport processes – Part 2a - Startsidausers.abo.fi/rzevenho/trp-slides-2a-2018.pdf · Transport processes – Part 2a Ron Zevenhoven ... Transport processes(TRP) VST rz18 Separation

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

A classroom exercise -1

• Water is transported through a pipeline which is located at several meters below the ground surface. For a situation where the temperature of air, soil and pipeline are at T0 = 7°C at sime t = 0, followed by a sudden change to a lower air temperature T1 = -8°C, calculate how deep below the ground (in meters) the pipeline should be to avoid freezing of the water (at 0°C) after 60 hours. Use for the soil a heatdiffusivity a = 1.38∙10-7 m2/s, and assume that the water in the pipeline does not move.

• (answer : 0.178 m).

55/58 2a

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

A classroom exercise - 2Inside a wall with thickness 2L, heat is generated as a result of an electriccurrent. The amount of heat generated per unit wall lenghth, as function of the distance, x (m), from the wall centre is given by q(x) = qL∙(1+β∙(T - TL) (unit : W/m), where TL is the temperature at the wall. Assuming a steady-state situation in one dimension, x (the wall is very large in directions y and z):

a. Show that the temperature profile inside the wall can be described by

with T = TL at x = ± L ; dT/dx = 0 at x = 0

where λ is the thermal conductivity of the wall.

b. Show that with new variable θ(x) = q(x) /λ = (qL/λ)∙(1+β∙(T - TL) the differential

equation becomes

with θ = qL/λ at x = ± L ; dθ/dx = 0 at x = 0

where µ2 = qL∙β/λ .

c. Show that this is solved to give the following solutation for the temperatureprofile in the wall :

56/58 2a

 0)(

2

2

xqdx

Td

 02

2

2

dx

d

 

1-

cos

cos1

or

cos

cos

L

L

L

L

L

L

qL

qx

TTq

L

qx

q

Page 29: Transport processes – Part 2a - Startsidausers.abo.fi/rzevenho/trp-slides-2a-2018.pdf · Transport processes – Part 2a Ron Zevenhoven ... Transport processes(TRP) VST rz18 Separation

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Sources used(besides course book Hanjalić et al.)

• Beek, W.J., Muttzall, K.M.K., van Heuven, J.W. ”Transport phenomena” Wiley, 2nd edition (1999)

• R.B. Bird, W.E. Stewart, E.N. Lightfoot ”Transport phenomena” Wiley, New York (1960)

• * C.J. Hoogendoorn ”Fysische Transportverschijnselen II”, TU Delft / D.U.M., the Netherlands 2nd. ed. (1985)

• * C.J. Hoogendoorn, T.H. van der Meer ”Fysische Transport-verschijnselen II”, TU Delft /VSSD, the Netherlands 3nd. ed. (1991)

• D. Kaminski, M. Jensen ”Introduction to Thermal and Fluids Engineering”, Wiley (2005)

• S.R. Turns ”Thermal – Fluid Sciences”, Cambridge Univ. Press (2006)

* Earlier versions of Hanjalić et al. book but in Dutch

57/58 2a

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Laplace transform – why?

While Fourier transform ”unravels” a function of timef(t) into a series of cosines and sines, i.e. oscillations, Laplace transform ”unravels” a function of time f(t) intoexpontial functions F(p):

identified as poles Ai of F(p), with intensity ai.

Fourier transform identifies periodic trends, Laplacetransform identifies exponential behaviour: suitable for analysing, for example, response to a sudden change.

58/58 2a

∑ → ∑ ∑