Top Banner

of 11

Transonic Integration technique for shocks

Apr 14, 2018

Download

Documents

siva_ksr
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/30/2019 Transonic Integration technique for shocks

    1/11

    Acta Meehanica 32, 141--151 (1979) A C T A M E C H A N I C A| by Springer-Verlag 1979

    T h e T r a n s o n i c I n t e g r a l E q u a t i o n M e t h o d W i t h C u r v e d S h o c k W a v e sBy

    D. Nixon*, London, EnglandWith 2 Figures

    (Received Septemb er 1, 197 7)S u m m a r y m Z u s a m m e n f a s s u n g

    T h e T r a n s o n i c I n t e g r a l E q u a t i o n M e t h o d W i t h C u r v e d S h o c k W a v e s . In the existingsolutions of the extended integral equation method for transonic flows the shock wave hasbeen assumed normal to the freestream. In this paper the effect of removing this assumptionis investigated and flows with curved shock waves are examined.D i e t r a n s o n i s c h e I n t e g r a l g l e i c h u n g s m e t h o d e b e i g e k r i i m m t e n Stoflwellen. In den bis-her verSffentlichten LSsungen der erweiterten Integralgleichung fiir transonische StrSmungenwurde ein gerader Stol3 senkrecht zur AnstrSmung angenommen. In der vorliegenden Arbeitwird diese Annahme fallengelassen, und StrSmungen mit gekrfimmten StSI3en werden be-trachtet.

    I n t r o d u c t i o nAn alternativ e to t he commo nly used finite difference method s [1] for calcu-

    lating transonic flows, namely the extended integral equation method, hasrecently appeared in the literature [2]. In this approach the basic non-linearpotential equation ;[or transonic flow is written in integral form using Green'stheorem and the resulting non-linear integral equation is then solved numerically.If shock waves are present in the flow then the integral equation must be solvedsubject to certain regularity conditions which ensure that the acceleration every-where except across the shock wave is finite and continuous; this effectivelyexcludes "expansion shocks". Because of the use of a particular method ofsatisfying these regul arity conditions during the numerical solution of the integralequati on it is possible to make the simplifying assumption th at an y shock waves inthe flow are normal to the ffeestream. In Ref. [2] the pressure distributio n ar ounda parabolic arc aerofoil is calculated using the extended integral equation methodand is compared to a result computed by the accurate "conservative" finitedifference method of Murman [1]. In this comparison the basic potential equationand the boundary conditions are identical in both methods but in the integralequation meth od the simplifying assumpt ion of a normal (to the ffeestream) shock

    * Senior Research Fellow. Presently at Computational Fluid Dynamics Branch NASAAmes Research Center, Moffett Field, CA 94035, U.S.A.

    0001-5970/79/0032/0141/$02.20

  • 7/30/2019 Transonic Integration technique for shocks

    2/11

    142 D. Nixon:w a v e is m a d e ; a f u r t h e r s i m p l i fi c a ti o n is t h a t t h e v e l o c i t y a h e a d o f a n d b e h i n d t h ea e r o fo i l c a n b e n e g l e c te d i n th e c o m p u t a t i o n . T h e p r e s s u r e d i s t r i b u t i o n c a l c u l a t e db y t h e i n te g r a l e q u a t i o n m e t h o d a g re e s f a ir l y w e ll w i t h t h e r e su l t c o m p u t e d b yM u r m a n [1 ] b u t t h e r e a r e d i s cr e p a n c ie s a t t h e l e a d in g e d g e o f t h e a e r o f o i l a n d i nt h e r e g io n o f t h e s h o c k w a v e . I t i s t h e a i m o f th e p r e s e n t e x e r c is e to i n v e s t i g a t e t h ee f f e c t o f r e m o v i n g t h e t w o s i m p l i fy i n g a s s u m p t i o n s m a d e i n R e f . [2] p a r t i c u l a r l yt h e a s s u m p t i o n o f a n o r m a l s h o c k w a v e . T h e m e t h o d p r e s e n t e d i n th i s p a p e r i so n l y v a li d w h e n t h e s h o c k g e o m e t r y d o es n o t d e v i a t e s u b s t a n t i a ll y f r o m b e i n gn o r m a l t o t h e f r e e s t r e a m . T h i s a s s u m p t i o n i s t r u e f o r m o s t t r a n s o n i c f l o w s .

    A l t h o u g h t h e e x t e n d e d i n t e g r a l e q u a t i o n m e t h o d h a s b e e n a p p l i e d t o l i f t i n gf l o w s [3 ], o n l y t h e f l o w a r o u n d a n o n - l i f t i n g p a r a b o l i c a r c a e r o f o i l i s e x a m i n e d i nt h i s n o t e , m a i n l y t o s i m p l i f y t h e p r e s e n t a t i o n a l t h o u g h a n a d d i t io n a l r e a s o n i s t h a tf o r t h is p a r t i c u l a r p r o b l e m t h e b a s ic p o t e n t i a l e q u a t i o n a n d t r e a t m e n t o f t h eb o u n d a r y c o n d i ti o n s a r e i d e n t ic a l t o t h a t s o l v e d b y M u r m a n [1 ], a n d t h u s a ne x a c t c o m p a r i s o n i s a v a i la b l e .

    I t i s f o u n d t h a t t h e i n c lu s i o n o f a c u r v e d s h o c k w a v e in t h e a n a l y s i s a n d t h ec o n s i d e r a t io n o f v e l o c it ie s a h e a d o f a n d b e h i n d t h e a e r o f o i l i n t h e c o m p u t a t i o nl e a d t o r e s u l ts t h a t a r e i n e x c e ll e n t a g r e e m e n t w i t h t h e r e s u l t o f M u r m a n [1 ]. T h ee f f e c t o f i n t r o d u c i n g a c u r v e d s h o c k w a v e i s o n l y s i g n i f i c a n t i n t h e l o c a l r e g i o nc l o s e t o t h e s h o c k w a v e ; a l o c a l e f f e c t i s a l s o e x i b i t e d b y t h e i n c l u s i o n o f t h ea d d i t i o n a l v e l o ci ti e s a h e a d o f a n d b e h i n d t h e a e r o f o il .

    B a s i c E q u a t i o n sT h e b a s ic i n t e g r a l e q u a t i o n f o r t h e t r a n s o n i c f l o w a r o u n d a p a r a b o l i c a r c

    a e r o f o il is g i v e n in R e f . [2 ]. F o r a f r e e s t r e a m M a c h n u m b e r M ~ a n d a t r a n s o n i cp a r a m e t e r k t h e i n te g r a l e q u a t io n is

    ~2(~ , /~~ ( x , z ) ~ - - ' - ~ L ( ~ , ~ ) + I T ( ~ , 5 , ~ ) ( 1 )2w h e r e ( t ( 2 , 2 ) is r e l a t e d to t h e s t r e a m w i s e p e r t u r b a t i o n v e l o c i t y u ( x , z ) b y

    a n d

    w h e r e

    ~ ( ~ , ~ ) = ( 7 + 1 ) ~ u ( x , z ) (2 )( 1 - M s1

    o

    (y~- 1) kZT(X) - - (1 -- M s 3 /~ ZT(X); Z = Z T ( X )

    (3 )

    d e n o t e ss y s t e m (2 , 5) i s r e l a t e d t o t h e p h y s i c a l s y s t e m (x , z ) b y t h e r e l a t i o n

    t h e t h i c k n e s s d i s t r i b u t i o n o f t h e a e r o f o il . T h e c a r t e s i a n c o - o r d i n a t e

    ~-- x , ~ ----- (1 - - M 2 ) 112 2~

  • 7/30/2019 Transonic Integration technique for shocks

    3/11

    T h e T r a n s o ni c I n t e g r a l E q u a t i o n M e th o d W i t h C m ~ e d S h o c k W a v e s 1 4 3a n d t h e f ie l d i n t e g r a l I T ( ' 2 , ~ , " 2 , s ) i s d e f i n e d b yI t ( e , ~ , ~ s) 1 l i r a ~ 9= - 4 - ~ ~ - .0 ~ , ~ ( ~ , 2 ; ~ , $ ) ~2 (~ , ~ ) d $ d ~

    6--+0

    + f 2 ; ~ , a ~ (; :, d $ d ~

    w h e r e 2r = 2% (~.) i s t h e s h o c k l o c a t i o n a n dT ( 2 , ~ ; ~ , $ ) = 1 i n [ ( 2 - - ~ )e ~ _ ( ~ _ $ ) 2 ] .2

    T h e s h o c k j u m p r e l a t i o n f o r E q . (1 ) c a n b e w r i t t e n a s[ ~ - - ~ ] + ~ - [ ~ ] + t a n 2 0 s = 0 (5 )

    w h e r e [ ]+_ d e n o t e s a j u m p a c r o s s t h e s h o c k w a v e w h i c h l o c a l l y h a s a n i n c l i n a t i o n0~ t o t h e ~ - a x is . I n t h e d e r i v a t i o n o f E q . ( 5) t h e r e l a t i o n

    [ e ] +_ = t a n Osi s u s e d w h e r e N ( 2 , 2) i s r e l a t e d t o th e p e r t u r b a t i o n v e l o c i t y n o r m a l t o t h e f r e e -s t r e a m , w( x , z ) , b y

    ~ (2 , ~) - - (~ + 1 ) k(1 - - - :M~-s w (~, z ) .I f E q . (1 ) i s r e a r r a n g e d s u c h t h a t

    ~ ( ~ , ~ ) se e ~ 0~ ~ ( ~ ' ~ ) - - ~ T L( ~ , ~ ) + { I T ( 2 , ~ , 2~s) + t a n 2 0~ ~ ( ~ , ~)} ( 6 )2t h e n t h e r i g h t h a n d s i de o f E q . ( 6) i s c o n t i n u o u s t h r o u g h a s h o c k a n d a d i s c o n t i n -u o u s j u m p b e t w e e n t h e t w o r o o t s o f t h e s e c o n d o r d e r e q u a t io n , E q . (6 ), a u t o -m a t i e a l l y s a t i s f y t h e s h o c k r e l a t i o n E q . (5 ).

    T h e c o r r e c t s h o c k l o c a t io n i s d e t e r m i n e d b y e n s u r i n g t h a t t h e r e i s a f i n i tec o n t i n u o u s a c c e l e r a t i o n e v e r y w h e r e e x c e p t a t t h e s h o c k w a v e , a r e q u i r e m e n tw h i c h l e a d s t o t h e r e g u l a r i t y c o n d i t i o n s ,

    1

    ex {a r~ (2 , ~) + ~7v(2 , 2 , 2%)}~=~o(~ = 0 (7 b )

  • 7/30/2019 Transonic Integration technique for shocks

    4/11

    144 D. Nixon:w h e r e f - - ~ 0 ( ~ ) r e p r e s e n t s t h e l in e ( ~ ( f, 3 ) = 1 ). E q . (1 , 7 ) t h e n c o m p l e t e l yd e t e r m i n e t h e f l o w .

    F o r e a s e o f n u m e r i c a l c o m p u t a t i o n h o w e v e r , t h e p r o b l e m i s m o d i f i e d s l i g h t l yb y t h e i n t r o d u c t i o n o f a p a r a m e t e r e (~ ) s u c h t h a t E q . (1 , 7 ) a r e r e p l a c e d b y t h ee q u a t i o n s

    ~ ( f , 5 ) ~ ( ~ ' ~ )2 - ~ T L ( ~ , 5 ) + 4 ~ ) I ~ ( f , Z , ~ ) ( S )a n d

    1{~rL(~ , 5 ) + ~(3) IT (f , ~ , ~ )}~=~, (~) = y (9 a)~--- {~TZ(f, ~) @ ~(~,) I T ( f . , 3 , Xs)}]~=~(~) = 0 (9 b)aTr e s p e c t i v e l y .

    B e f o r e t h e p r o b l e m d e f i n e d b y E q . (8 , 9 ) c a n b e s o l v e d t h e f ie l d i n t e g r a lI T ( f , 5 , f ~ ) m u s t b e e v a l u a t e d . I n R e f . [ 2 ] t h i s i n t e g r a l i s e v a l u a t e d b y d i v i d i n gt h e f l o w fi e ld i n t o s t r ip s p a r a l le l to t h e f - a x i s a n d a p p r o x i m a t i n g t h e d i s t r i b u t io no f t h e s q u a r e s o f t h e v e l o c i t y i n e a c h s t r ip i n t e r m s o f v a lu e s o n e a c h s t ri p e d g e b yl i n e a r i n t e r p o l a t i o n . S i n c e t h e v a l u e o f ~ r L ( Y , S ) o n e a c h s t r i p e d g e i s e a s i l y o b -t a i n e d , E q . ( 1, 7 ) r e d u c e t o a s e t o f e q u a t i o n s f o r t h e v e l o c i t y o n t h e s t r i p e d g e s .I t i s s u g g e s t e d i n l ~ ef . [2 ] t h a t t h e e f f e c t o f t h e v e l o c i t y i n t h e o u t e r s t r ip s o n t h ev a l u e o f 4 ( f , 5 ) o n t h e a e r o f o i l s u r f a c e is s m a l l a n d c o n s e q u e n t l y t h e v e l o c i t ie s i nt h e o u t e r s t r i p s a r e e s t i m a t e d i n t e r m s o f v a l u e s o n t h e i n n e r s t r i p e d g e s. T h e p a r to f t h e f l o w f ie l d s o e s t i m a t e d i s c h o s e n s o t h a t t h e s u r f a c e v a l u e s o f a r e n o t s ig n i f-i c a n t l y a ff e c t ed b y t h e a p p r o x i m a t i o n .

    T h e s o l u t i o n p r o c e d u r e g i v e n i n R e f . [ 2] i s a s f o l lo w s :F i r s t a n o r m a l s h o c k l o c a t i o n i s a s s u m e d , t o g e t h e r w i t h a n i n i t ia l g u es s f o r t h e

    f i e ld v e l o c i t y . T h e f i e l d i n t e g r a l IT (Z ,, S, x s) c a n t h e n b e e v a l u a t e d a n d , k e e p i n gt h e s h o c k l o c a t i o n c o n s t a n t , E q . (8 , 9 ) a r e s o l v e d f o r n e w v a l u e s o f g ( f , 5 ); t h ep a r a m e t e r s ( S ) i s c h o s e n s o t h g g E q . ( 9 ) a r e s a t i s f i e d . T h i s i t e r a t i v e p r o c e d u r e i sr e p e a t e d u n t i l t h e s ( ~ ) a r e c o n v e r g e d . T h e n o r m a l s h o c k l o c a t i o n i s t h e n m o v e d

    u n t i l t h e e ( S ) a r e c l o se t o u n i t y ( a n d d e ~ 0 ). S in c e a n o r m a l s h o c k w a v e i sdSa s s u m e d i t is im p o s s i b l e t o g e t s (~ ) e x a c t l y u n i t y ( o r d e = 0) .I t is t h e p r i n c i p le a i m o f t h e p r e s e n t a n a ly s i s to s t u d y t h e e f f e c t o f f i t ti n g ac u r v e d s h o c k w a v e i n t o t h i s s o l u ti o n . A s e c o n d o b j e c t i v e i s t o i n c l u d e t h e v e l o c i t ya h e a d o f a n d b e h i n d t h e a e r o f o i l i n t h e c o m p u t a t i o n o f IT (S :, 5 , ~ ) w h i c h a r eneg lec ted in I~e f . [2 ] .

    A n a l y s i s f o r a C u rv e d S h o c k W a v eT h e e f f e c t o f a n a l t e r a t i o n f r o m n o r m a l i n t h e s h o c k w a v e g e o m e t r y is t r a n s -

    m i t t e d t h r o u g h t h e c h a n g e in t h e v a l u e o f t h e f i e ld i n t e g r a l I T ( Z , 5, f~) an d isp r i n c i p a l l y d u e t o a s i g n i f ic a n t j u m p i n v e l o c i t y b e ca u s e o f t h e a l t e r e d s h o c kl o c a ti o n . T h e c o n s e q u e n t c h a n g e s i n v e l o c i t y o u ts i d e o f t h e e n v e l o p e o f th e i n i ti a la n d f i n a l s h o c k l o c a t i o n s w il l a l so h a v e a n e f f e c t o n t h e s o l u t io n . T h e m o s t i m -p o r t a n t e f f e c t , t h a t i s t h e c h a n g e i n I ~ ( f , 2, 28) d u e t o c h a n g e s i n t h e v e l o c i t yr e s u l t i n g d i r e c t l y f r o m t h e d i f f e r e n t l o c a t i o n o f t h e s h o c k j u m p , i s c o n s i d e r e d f i r s t.

  • 7/30/2019 Transonic Integration technique for shocks

    5/11

    The Transonic Integra l Equ at ion Method W ith Curved Shock W aves 145R e f e r r i n g t o F i g . 1 , t h e m a i n c h a n g e o f t h e c o n t r i b u t i o n t o t h e f i e ld i n t e g r a l in

    t h e s t r i p ~1 ~ ~ ~ ~1+1 i s d u e t o t h e j u m p i n v e l o c i t y i n t h e r e g i o n B f r o m ap r e - s h o c k v a l u e t o a p o s t - s h o c k v a l u e .

    _ r.~...--NORMAL ~HOCK

    x ~ . z , ( - e lFig. L Sketch of shoe~ geometry in the J~ str ip

    L e t th e v a l u e o f t h e e l e m e n t a r y f ie l d i n t e g r a l in t h e r e g io n A + B b e d e n o t e db y I j a n d

    I~ = I ~ ( ~ ~) + I ~ ( ~ ) , 0 0 )w h e r e

    G (~ 2 ) = - 4 - ~A

    B

    (11)

    a n d th e " ~ - " a n d " - - " s u p e r s c r i p t s d e n o t e V a lu e s o f 4 ( ~ , B) w h i c h e x i s t i n A a n d Bi f t h e p o i n t i n q u e s t i o n i s a h e a d o f o r b e h i n d t h e s h o c k r e s p e c t iv e l y .A s i n t h e n o r m a l s h o c k a n a l y s i s t h e s q u a r e s o f th e v e l o c i t y i n t h e ~ th s t r ip a r ee s t i m a t e d b y l i n e a r i n t e r p o l a t i o n i n t e r m s o f v a l u e s o n t h e s t r i p e d g e s a n d ,a d d i t i o n a l l y i n t h i s c as e , o f v a l u e s a t t h e c u r v e d s h o c k w a v e . I n o r d e r t o s i m p l i f yt h e a n a l y s i s i t is a s s u m e d t h a t i n th e e v a l u a t i o n o f t h e e l e m e n t a r y f ie l d i n t e g r a lso v e r A a n d B t h e v e l o c i t y in A o r B d o e s n o t v a r y s i g n i f ic a n t l y i n t h e 5 - d i re c t io n .T h i s im p l ie s t h a t t h e s h o c k g e o m e t r y d o e s n o t d i ff e r s u b s t a n t i a l ly f r o m t h a t o f an o r m a l s h o c k w a v e ; w h i ch s h o u l ff b e t r u e f o r m o s t t r a n s o n i c f lo w s. T h i s m e a n st h a t t h e e l e m e n t s A a n d B a r e r e la t i v e l y s m a l l.

    I f th e v e l o c i ty o n t h e u p s t r e a m s id e of t h e s h o c k w a v e i s d e n o t e d b y u + ( G , ~ )a n d t h e v e l o c i t y o n t h e d o w n - s t r e a m si de o f t h e s h o c k w a v e is d e n o t e d u s G )t h e n t h e v e l o c i t y v a r i a t i o n i n A i s g i v e n b y

    ~ (~ , C) = ~+~(~, Cj) + [u W (G q~) - u+'~(~,Ci)] (C _ Ci)G ( ~ ) - C~) ( 1 2 a )1 0 A c t a M e c b . 3 2/ 1 - -3

  • 7/30/2019 Transonic Integration technique for shocks

    6/11

    146 D. Nixon:a n d i n B b y

    9 ( ~ + , - ~ ( ~ ) )w he r e ( }s , -~ ) a r e t he c o - o r d i na t e s o f t he s hoc k w a ve i n t he e l e m e n t ( A B) . I f ,i n t h e ?'*~ s t ri p , t h e s h o c k w a v e c a n b e a p p r o x i m a t e d b y a s t r a i g h t l in e o f s lo p ecot O~ th e n

    q, = ~. + (~e 2 ,) co t 0~, (13)w h e r e 0 s i s t he a ng l e t he s hoc k m a ke s w i t h t he 2 - ax i s a n d ~ , i i s t he l oc a t i on o~ t heshoc k o n th e ~'~us t r i p e dge .

    S i n ce i t is a s s u m e d t h a t u ( ~ , ~ ) d o e s n o t v a r y w i t h ~ i n A o r B t h e n r e f e rr i n gt o F i g . 1W ( ~ , ~ ) = ~+( ~ . ~ , r~ ( ~ , r = a ( ~~ ~ ) (~4)

    w he r e x s 0 i s t he l oc a t i on o f t he no r m a l s hoc k w a ve .Us ing l inea r in te rp ola t ion fo r z~z(~ , ~) in the ~ s t r ip

    a n d,~+= ~ r ~+2 -

    - [ ( ~ , - ( % + " r ( ~ ( ~ ) - r ( 1 5 a )22 ( ~ , , ~ ) : a+" ( x ., ,+ , , ~ ) + ( r _ r

    S u b s t i t u t i o n o f E q . ( 1 2 , 1 3) in t o E q . ( 1 1 ) g i ve s , a f t e r s o m e m a n i p u l a t i o n ,

    A

    + [g+~(~+*, r -- ~+~(~*+,,~)] ( r _ ~) } d ~ d }(r - r1IB(~2/~+~ )- 4 7 z / f gt (g., }; ~, ~-){~2_~(g.,o, ~ )

    B

    ( 1 5 b )

    U s i n g E q . ( 1 6 ) t h e n , E q . ( 1 0 ) c a n b e w r i t t e n a s

    ( 1 6 a )

    (16b)

    I i - - , ~ ~ ~ . 1 , ~)A+B

    (r e j ) -B

    ( 1 7 )

  • 7/30/2019 Transonic Integration technique for shocks

    7/11

    The Transonic Integral Equ at ion Method W ith Curved Shock W~ves 147w h e re [~ i 2 ]+ i s t h e s h o c k j u m p o n t h e j t~ s t r i p e d g e w h i c h i s g i v e n b y E q . ( 5) a s

    [ ~ j2 ] _ + = 4 s e e 2 0 ~ [ ~ 2 ( ~ , ~ j ) - s e c ~ 0 ~ ] . ( 1 8 )S i n c e i t h a s b e e n a s s u m e d t h a t i n t h e e v a l u a t i o n o f t h e i n t e g r a l o v e r t h ee l e m e n t A + B t h e v e l o c i t y d o e s n o t v a r y s i g n i f i c a n t l y w i t h Z" t h e n , t o a f i rs t

    a p p r o x i m a t i o n~ + ( z " , . . , ~ j + l ) = ~ - ( z " ~ 0 , r

    w h e re u -(z "s0 , ~ j+ l) , u +(x~ o, ~i) a r e k n o w n f ro m t h e n o rm a l s h o c k s o l u t i o n a n d i t c a nt h e n b e s e en f r o m E q . (17) t h a t t h e p e r t u r b a t i o n t o I i , I ~ d u e t o a c h a n g e i ns h o c k g e o m e t r y i s g i v en b y

    / / { }[u j+~ ]_- [~ ]2 ) (~ r de d~ (19)BT h e e v a l u a t i o n o f t h e e l e m e n t a r y i n te g r a l I ~ i n E q . (1 9) is s im p l i fe d c o n -

    s i d e r a b l y if t h e s h o c k i n t h e ]th s t r ip is a p p r o x i m a t e d b y a s t r a i g h t l in e a s inE q . ( 13 ). T h e t o t a l p e r t u r b a t i o n , I ~ d u e t o a c h a n g e i n s h o c k g e o m e t r y is o b t a i n e db y s u m m i n g t h e c o n t r i b u t i o n o f e a c h s tr ip ; t h u s

    Nb = 2 : ~ , ~ , ( 2 0 )i= ~w h e r e 2V i s t h e n u m b e r o f st r ip s a n d I ~ is g i v e n b y E q . (1 9) . T h e g o v e r n i n ge q u a t i o n f o r a c u r v e d s h o c k w a v e i s t h e n

    ~ ( z " , 2 ) ~ ( ~ ' ~ )2 - - 7 s , 2 ) - ~ I T ( Z " , z , Z " s.) + I ~ , (21)w h e r e I T ( Z " , 2 , Z " 8o )i s e v a l u a t e d a s s u m i n g a n o rm a l s h o c k a t Z " S o -

    T h u s t h e i m m e d i a t e c h a n g e i n t h e f l o w d u e t o a c h a n g e in t h e s h o c k g e o m e t r yis t r a n s n f i t t e d t h r o u g h t h e a d d i t i v e t e r m I p g i v e n b y E q . (1 9, 2 0 ). A p a r t f r o mt h i s i m m e d i a t e c h a n g e d u e t o I p i t s h o u l d b e r e m e m b e r e d t h a t t h e r e i s a s e c o n d a r yc h a n g e d u e t o t h e a l t e r a t i o n o f t h e v e l o c it ie s o u ts i d e t h e e n v e l o p e o f t h e i n i ti a la n d f i n a l sh o c k l o c a t i o n s.

    E s t i m a t i o n o f t h e S h o c k C h a n g eI n t h e p r e c e d i n g a n a l y s is i t is a ss u m e d t h a t t h e n e c e s s a r y c h a n g e .i n t h e s h o c k

    g e o m e t r y f r o m a c o n v e r g e d n o r m a l s h o c k l o c a t i o n t o m a k e s (~ ) e q u a l t o u n i t y i sk n o w n . I n t h i s s e c t io n i t is s u g g e s t e d h o w t h e s e c h a n g e s c a n b e e s t i m a t e d .

    I n g e n e r a l t h e f i e l d i n t e g r a l I T ( Z " , 2 , Z " 8 ) a n d t h e p a r a m e t e r e ( 2 ) a r e d e p e n d e n to n t h e s h o c k l o c a t i o n x ~(2 ) ; t h e ~ (~ ) a r e f i x e d b y t h e r e g u l a r i t y c o n d i t i o n s , E q . (9 ).I f t h e r e is a n a r b i t r a r y c h a n g e in E q . ( 9 a) d u e t o a c h a n g e o f s h o c k g e o m e t r y t h e n

    DS--~ {s (2) IT(Z " 2 , Z"~)} [s = 0 (2 2 )10 "

  • 7/30/2019 Transonic Integration technique for shocks

    8/11

    148 D. Nixon:w h e r e ( ~ X o ( 2 ) an d (~x~(2) a re th e p e r t ur ba t io ns of th e l ine ( f i@ , ~) = 1) an d th es hoc k l oc a t i on r e s pe c t i ve l y . U s i ng E q . ( 9 ), E q . ( 22 ) r e duc e s t o g i ve

    or( ~ x s ( 2 ) {e(~)IT~ @ , ~ , Y ~ s) @ S Z ~ ( Z ) I T ( Y , 2 , x~)}IZ=~0(~) = 0

    (23)T h e f u n c t i o n I T S , ( 2 , Z , X s) i s e v a l u a t e d f o r t h e i n i t i a l n o r m a l s h o c k l o c a t i o n .5 s, a n d i s f o u n d t o g i v e

    oo

    - r r ~ . ( ~ , e , : % ) = ~ [ a ~ (e ~ ~ r ~ r ~ ( ~ , ~ ~ ~ , ~ ) d ~o ( 2 4 )

    0

    - - o o

    I n a s o l u t i on f o r a no r m a l s hoc k w a ve s (~ ) i s c oi~ver ge d b u t no t n e c e s s a r i l y t ou n i t y . I f e 0(2 d e n o t e s t h e c o n v e r g e d v a l u e o f e (2 ) f o r a n o r m a l s h o c k t h e n t h ene c e s s a r y c ha nge i n t he s hoc k g e om e t r y t o g i ve e ( 2 ) = 0 ( a n d d~e _ . 0 ) c a n h ef ou nd a s f o l low s , d~

    E x p a n s i o n o f e (~ ) i n a T a y l 0 r ' s s e ri es a b o u t ~ , g i v es4 ~ ) = ~ 0(~ ) + ~ x ~ ( ~ ) ( ~ M ) ) ~ . ~ ~ + ( 25 )

    w her e (~xs(2) i s a 6h an ge : in sho ck lo ca t io n a n d (e,~(2))~,=~so is giv en b y E q. (23, 24) .D i f f e r e n t i a t i on o f E q . ( 25) w i t h r e s pe c t t o 2 g i ve s

    w h e r e 0~ = a r c t a n ( ~ ) g i v e s t h e a n g l e o f t h e s h o c k r e l a ti v e t o t h e 2-a xis. O np u t t i n gas(~ ) _ 0og

    a n d o n u s i n g E q . ( 25) , E q . ( 26 ) g i ve s~a~0(~) ( i - ~o(~)___~)a 1tan 0~ = ( -~ -~+ (~(~))~=~' ~ (~(~)!~=~'" (27)

    that is, the shock slope relative to the ~-axis. The movement of the ~oot of thes hoc k , ~x~o(0 , is f oun d f r om E q . ( 25 ) by pu t t i n g e (0 ) e qua l t o u n i t y ; t h us

    (1 - ~o(O)) (2 8)~ z ~0 (0 ) _ ( ~ ( ~ ) ) ~ o = ~ 0 .

  • 7/30/2019 Transonic Integration technique for shocks

    9/11

    The Transonic Integra l Eq uatio n Method W ith Curved Shock W aves 149E q . (2 7, 2 8) t h e n g i v e t h e a p p r o p r i a t e p e r t u r b a t i o n o f t h e s h o c k w a v e t o

    o b t a i n a p r o p e r s o l u t i o n t o t h e t r a n s o n i c p r o b l e m , w h e n (e (~ ) = 1 ).A s n o t e d e a r li e r t h e v e l o c i t y o n t h e o u t e r s t ri p e d g e s c a n b e e s t i m a t e d i n

    t e r m s o f t h e v a l u e s o n t h e o u t e r s t r ip e d g e s w i t h o u t s i g n i fi c a n t ly a f fe c t i n g t h ev a l u e o n t h e a e r o fo i l s u rf a c e. H o w e v e r t h i s a p p r o x i m a t i o n c a n l e a d t o s i g n if i ca n te r ro r s i n ~ (2 ) a n d i n p r a c t i c e t h e s h o c k w a v e g e o m e t r y i s r e p r e s e n t e d b y a s e c o n do r t h i r d o r d e r c u r v e w i t h t h e c o e f f i c ie n t s d e t e r m i n e d b y E q . ( 26 , 2 7 ) u s i n g 0% (~)3~o n t h e i n n e r s t r i p e d g e s o n l y , w h i c h a r e k n o w n t o b e a c c u r a t e . P r o v i d e d t h es h o c k c u r v a t u r e is n o t t o o g r e a t a d i s c r e p a n c y in t h e s h o c k lo c a t i o n i n t h e f a rf i e ld d o e s n o t s i g n i f i c a n t l y a f fe c t t h e s o l u t i o n o n t h e a e r o f o i l s u r f ac e . T h i s i sc o n s i s te n t w i t h t h e i d e as o f t h e o v e r a l l t h e o r y i n w h i c h i~ i s f o u n d t h a t t h e s u r fa c ev e l o c i t y i s n o t s e n s i t iv e t o m i n o r c h a n g e s i n t h e o u t e r f lo w fi e ld .

    S o l u t i o n P r o c e d u r eT h e b a s i c e q u a t i o n f o r a fl o w w i t h a c u r v e d s h o c k i s E q . (2 1). I n o r d e r t o g i v e

    a s m o o t h f lo w u p s t r e a m o f t h e s h o c k w h e n t h e f i n a l s h o c k g e o m e t r y is u n k n o w n ,i . e . i n a n i t e r a t i o n p r o c e s s , E q . ( 2 1 ) i s wr i t t e n a s

    4 ( '2 , Z ) ~ 2 ( ' ~ , ) C t L (X , 2 ) - ]- e ( 2 ) { I T ( X Z , X s , ) @ I v } (29)2w i t h t h e r e g u l a r i t y c o n d i t i o n s

    1 ( 3 0 a )

    - ~ { ~ L ( ~ , ~ ) + ~ ( ~ ) [ z T ( ~ , ~ , ~ 0 ) + 4 ] }1 ~ = ~ .( ~ ) = 0 ( 3 0 b )T h e s o l u t i o n t o t h e p r o b l e m w i t h a c u r v e d s h o c k is f o u n d a s fo l lo w s .a ) F i r s t a c o n v e r g e d s o l u t i o n t o E q . (8 , 9 ) w i t h a n o r m a l S h o c k w a v e i s

    o b t a i n e d , i n c lu d i n g v e l o c it ie s a h e a d o f a n d b e h i n d t h e a e r o fo i l i n t h e e v a l u a t i o nof I r (~ , 2 , ~0) .

    b ) F r o m t h i s c o n v e r g e d s o l u ti o n th e v a l u e s o f I T ~ ( X , 2 , ~ 2 S o a n d ( e ~ ( 2 ) ) ~ = ~ 0a r e c a l c u l a t e d f r o m E q . ( 23 , 2 4 ).c ) A n e s t i m a t e o f t h e r e v i se d s h o c k g e o m e t r y is t h e n o b t a i n e d f r o m E q . (27 ,

    2 8 ) w i t h t h e a p p r o x i m a t i o n t h a t i n e a c h s t r i p t h e s h o c k c a n b e r e p r e s e n t e d b y as t r a i g h t l i n e s e g m e n t , E q . ( 1 3 ) .d ) T h e f i e l d i n t e g r a l f o r a n o r m a l s h o c k , I t ( X , 2 , 2 ~ o ) i s a s s u m e d k n o w n f r o mt h e n o r m a l s h o c k s o l u t i o n .e ) T h e p e r t u r b a t i o n i n t e g r a l I v d e f i n e d b y E q . ( 19 , 2 0) f o r a c u r v e d s h o c k i s

    c a l c u l a t e d u s i n g t h e p r e v i o u s l y c o m p u t e d v e l o c i t i e s a t t h e p r e - s h o c k l o c a t i o n .N e w v e l o c it ie s o v e r t h e f low f i e ld a r e t h e n c o m p u t e d u s i n g E q . (2 9, 3 0 ). T h e n e wp r e - s h o c k v e lo c i ti e s a r e t h e n u s e d t o e v a l u a t e a n e w v a l u e o f I p a n d t h e p r o c e d u r er e p e a t e d u n t i l t h e c o n v e r g e n c e o f t h e p a r a m e t e r s s(~).

    f ) U s i n g t h e n e w v a l u e s o f 4 ( ~, 2) t h e n o r m a l s h o c k i n t e g r a l I T ( Z , ~ , Z , o ) ise v a l u a t e d . T h e p r e - s h o c k v e l o c i t i e s i n t h e ' s h o c k e n v e l o p e ' , r e g i o n B i n F i g . 1 ,

  • 7/30/2019 Transonic Integration technique for shocks

    10/11

    150 D. Nixon:a r e o b t a i n e d b y e x t r a p o l a t i o n . U s i n g th i s n e w v a l u e o f I t ( 2 , 2, ~ ) s t e p ( e) isr e p e a t e d .

    g ) S t e p s ( e - - f ) a r e r e p e a t e d u n t i l c o n v e r g e n c e o f t h e ~ (~ ).h ) I f n e c e s s a r y s t e p s ( b - - g ) a r c r e p e a t e d u n t i l t h e v ( 5) a r e u n i t y o n a s p e c if ie dn u m b e r o f s t ri p e d g e s. T h i s s t e p i s u s u a l l y n o t n e c e s s a r y .

    Re s u l t s

    T h e p r e s s u r e d i s t r ib u t i o n a r o u n d a 6 o p a r a b o l i c a r c a e r o fo i l a t M ~ = 0 . 87 6 5i s c o m p u t e d w i t h a n d w i t h o u t a c u r v e d s h o c k w a v e a n d i s s h o w n i n F i g . 2 . T h er e s u l ts c a l c u l a t e d b y M u r m a n [1 ] u s i n g a c o n s e r v a t i v e fi n it e d i ff e r e n c e m e t h o da r e s h o w n f o r c o m p a r i s o n . T h e e f f e c t o f i n c lu d i n g t h e c u r v a t u r e o f t h e s h o c k w a v e

    (,7M U R M A N- - - e - - - - I N T E G R A L M E T H O D (NORMALSHOCK)C l) i - - -+ - - - -IN T E G R A L E T H O D ( C U R V E DH O C K }

    -0'6-4 i

    ~

    Fig. 2. Pressure distr ibut ion arou nd a 60/o biconv ex aerofoi l. M ~ = 0.8715

    i n t h e a n a l y s i s i s t o p r o d u c e a l o c a l v a r i a t i o n i n t h e v e l o c i t y n e a r t h e s h o c kg i v in g c lo se a g r e e m e n t w i th M u r m a n ' s r e s u lt . T h e b e t t e r a g r e e m e n t n e a r t h el e a d in g e d g e is d u e t o t h e c o n s i d e r a ti o n o f v e l o ci ti e s a h e a d o f a n d b e h i n d t h ea e r o f o i l 'i n t h e e v a l u a t i o n o f t h e f i e ld i n t e g r a l I ~ @ , 2, Y ~,). T h e r e a s o n f o r t h ed i s c r e p a n c y b e t w e e n t h e r e s u l t s j u s t b e h i n d t h e s h o c k w a v e is n o t a p p a r e n t .

    T h e i n t r o d u c t i o n o f s h o c k c u r v a t u r e i n t o t h e e x t e n d e d i n t e g r a l e q u a t i o nm e t h o d r e m o v e s a n y t h e o r e t ic a l d if fe r en c e b e t w e e n t h e p r e s e n t m e t h o d a n dM u r m a n ' s [1 ] c o n s e r v a t i v e f in i te d if f e re n c e m e t h o d o t h e r t h a n n u m e r i c a l in -a c c u r a c y a n d t h is i l lu s t ra t e d b y t h e c o n s i d e ra b l y im p r o v e d a g r e e m e n t b e t w e e nt h e r e s u l t s c a l c u l a t e d b y b o t h m e t h o d s .

  • 7/30/2019 Transonic Integration technique for shocks

    11/11

    T h e T r a n so n i c I n t e g ra l E q u a t i o n M e t h o d W i t h C u r v e d S h o c k W a v e s ] 5 1

    R e f e r e n c e s

    [1 ] M u r m a n , E . : A n a l y s i s of E m b e d d e d S h o c k W a v e s c a l c u l a te d b y R R e l a x a t i o n ~ I e th o d s .A I A A J o u r n a l 1 2 , 6 2 6 - - 6 3 3 ( 19 74 ).[ 2] N i x o n , D . : E x t e n d e d I n t e g r a l E q u a t i o n M e t h o d f o r T r a n s o n i c F l o w s . A I A A J o u r n a l 1 8 ,9 3 4 - - 9 3 5 ( 1 9 7 5 ) .[ 3] N i x o n , D . : C a l c u l a t i o n o f T r a n s o n i c F l o w s u s i n g a n E x t e n d e d I n t e g r a l E q u a t i o n M e t h o d .A L ~ J o u r n a l 1 5 , 2 9 5 - - 2 9 6 (1 97 7) .D. N ixonDepartment o/Aeronautical EngineeringQueen Ma ry CollegeUniversity o/Lon donLondon, U.K.