Top Banner

Click here to load reader

22

Transmission Lines Fundamentals

Apr 10, 2015

Download

Documents

Stephen Dunifer
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Transmission Lines Fundamentals

VII 1

Transmission Lines

(a) Parallel-plate transmission line (b) Two-wiretransmission line

(c) Coaxialtransmission line

Metal strip

Groundedconducting plane

Dielectric subtrate

Groundedconducting plane

Metal stripGroundedconducting plane

Dielectric subtrate

Two types of microstrip lines

Page 2: Transmission Lines Fundamentals

VII 2

TEM-Waves along a Parallel-Plate Transmission Line

dx

y

z

w

Lossless case:

( )term e always omittedj tω

r r r

r r r

E E e E e e

H H eE

e e

j

y yz

y

x xz

x

= ⋅ = ⋅ ⋅

= ⋅ = − ⋅ ⋅

= =

0

0

γ

γ

γ ω µε µε

Γ

Γ

in order to find the charge density and the current density we use:

D D D e E E en n y yz

2 1 0− = → ⋅ = → = ⋅ = ⋅ −σ σ σ ε ε γr r

σ: free surface charge

H H J e H J J e H e

Eet t s y s s z x z

z2 1

0− = → × = → = − ⋅ = ⋅ −r r r r r r

Γγ

Js: free surface currentd dsΙ

Page 3: Transmission Lines Fundamentals

VII 3

Fields, Charge and Current Distribution along a Coaxial Transmission Line

B

E

xx xxxxx

x x

xx xxxxx

x x

xx xxxxx

x x

xx xxxxx

x x

λ

Current

Displacement Current

BEB E

x

+ +++ + - --- -

+ +++ + + +++ +

+ +++ +

- --- - + +++ +

- --- -

- --- -

- --- -

+ +++ +- --- -

Page 4: Transmission Lines Fundamentals

VII 4

Parallel-Plate Transmission Line in Terms of L and C

Lossless case term e always omittedj tω( )

∇ × = −

=

=∫ ∫

r rE j H

dE

dzj H

ddz

E dy j H dy

yx

y

d

x

d

ωµ

ωµ

ωµ0 0

+( )

= ( ) ⋅

=

( ) ⋅( )

= ⋅ ( )= ⋅ [ ]

dV z

dzj J z d

jdw

J z w

j L z

Ldw

H m

sz

sz

ωµ

ω µ

ω

µ

Ι

∇ × =

=

=∫ ∫

r rH j E

dHdz

j E

ddz

H dx j E dx

xy

x

w

y

w

ωε

ωε

ωε0 0

− ( ) = − ( ) ⋅

=

− ( ) ⋅( )

= ( )

= [ ]

d zdz

j E z w

jwd

E z d

j CV z

Cwd

F m

y

y

Ι ωε

ω ε

ω

ε

Page 5: Transmission Lines Fundamentals

VII 5

d V zdz

LCV z2

22( ) = − ( )ω

d z

dzLC z

2

22Ι

Ι( )

= − ( )ω

V z V e V ej LC z j z( ) = ⋅ = ⋅− −0 0

ω ω µε

Ι Ι Ιz e ej LC z j z( ) = ⋅ = ⋅− −0 0

ω ω µε

Phase velocity: u

LCp = = =ωω µε µε

1 1

Characteristicimpedance:

ZV z

zLC0 = ( )

( )=

Ι

Page 6: Transmission Lines Fundamentals

VII 6

Lossy Parallel-Plate Transmission Line

Conductance between the two conductors:

Compare with the analogy of resistance and capacitance

ε κc

R= ⋅

case a case b

⇒ = = = ⋅ = ⋅G

RC

wd

wd

1 κε

κε

ε κ

G

wd

S m= ⋅ [ ]κ

Page 7: Transmission Lines Fundamentals

VII 7

Ohmic power dissipated in the plates

r r rS e E e HLoss z z x x= × ⋅ * Power flux density flowing into the plates ( )

rey

Def. Surface impedance Z

EJs

t

s

= J free surface current

ddxs

z= Ι

Z R j Xs s s= + ⋅

R

lengthcross tion w ds

c

= ⋅ =⋅

1 1κ κsec

l

= ⋅ ⋅ =1

2 2κκ µ ω µ ω

κc

c c c

cw wl l

effective series resistance per unit length

R

w wf

mc

c

c

c

= = ⋅ [ ]22

2µ ωκ

µ πκ

Ω /

d penetration depth

c c

= = 2

κ µ ω

Page 8: Transmission Lines Fundamentals

VII 8

Equivalent Circuit of a Differential Length ∆∆∆∆ z

of a Two-Conductor Transmission Line

G ∆z•

R ∆z• L ∆z•

C ∆z•

Page 9: Transmission Lines Fundamentals

VII 9

Distributed Parameters of Transmission Lines

Parameter Parallel Plate Two-Wire Line Coaxial Line Unit

R

L

G

C

2w

f c

c

π µκ

µ d

w

κ w

d

ε w

d

w=widthd=separation

R

as

π

µπ

cosh−

1

2

D

a

πκcosh /− ( )1 2D a

πεcosh /− ( )1 2D a

R

fs

c

c

= π µκ

a=radiusD=distance

cosh /

ln /

/

− ( )≈ ( )

( ) >>

1

2

2

2 1

D a

D a

if D a

R

a bs

2

1 1

π+

µπ2

lnba

2πκln /b a( )

2πεln /b a( )

R

fs

c

c

= π µκ

a=radiuscenter cond.

b=radiusouter cond.

Ω / m

H m/

S m/

F m/

Page 10: Transmission Lines Fundamentals

VII 10

Wave Equation for Lossy Transmission Lines

− ( ) = +( ) ( )

− ( ) = +( ) ( )

( ) = ( )

( ) = ( )

dV zdz

R j L z

d zdz

G j C V z

d V zdz

V z

d zdz

z

ω

ω

γ

γ

Ι

Ι

Ι Ι

2

22

2

22

γ α β ω ω= + = + +j R j L G j C( )( )

Page 11: Transmission Lines Fundamentals

VII 11

Waveguides

x

y

z A uniform waveguide with an arbitrary cross section

Time-harmonic waves in lossless media:

∆r rE E+ =ω µ ε2 0

r rE x y z t E x y e j t k zz, , , ,( ) = ( ) ⋅ − ⋅( )0 ω

∇ + ∇( ) = ∇ −xy z xy zE E k E2 2 2 2r r r

∇ + −( ) =xy zE k E2 2 2 0

r rω µε

∇ + −( ) =xy zH k H2 2 2 0

r rω µε

Page 12: Transmission Lines Fundamentals

VII 12

From x E j H we get∇ = −r r

ωµ : From xH j E we get∇ =r r

ωε :

∂∂

+ = −

− − ∂∂

= −

∂∂

− ∂∂

= −

Ey

jk E j H

jk EEx

j H

E

xEy

j H

zz y x

z xz

y

y xz

00 0

00

0

0 00

ωµ

ωµ

ωµ

∂∂

+ =

− − ∂∂

=

∂∂

− ∂∂

=

Hy

jk H j E

jk HHx

j E

H

xHy

j E

zz y x

z xz

y

y xz

00 0

00

0

0 00

ωε

ωε

ωε

Hh

jkHx

jEy

Hh

jkHy

jEx

Eh

jkEx

jHy

Eh

jkEy

jH

x zz z

y zz z

x zz z

y zz z

02

0 0

02

0 0

02

0 0

02

0 0

1

1

1

1

= − ∂∂

− ∂∂

= − ∂∂

+ ∂∂

= − ∂∂

+ ∂∂

= − ∂∂

− ∂∂

ωε

ωε

ωµ

ωµxx

h kz2 2 2= −ω µε

Page 13: Transmission Lines Fundamentals

VII 13

Three Types of Propagating Waves

Transverse electromagnetic waves TEM : EZ = 0 & HZ = 0

Transverse magnetic waves TM : EZ ­ 0 & HZ = 0

Transverse electric waves TE : EZ = 0 & HZ ­ 0

Page 14: Transmission Lines Fundamentals

VII 14

TEM - Waves

H E k kz z z TEM z TEM= = → − + = → =0 0 02 2& ω µε ω µε

Phase velocity uk

Wave impedance ZEH k

pTEMz

TEMx

y zTEM

= =

= = =

ωµε

ωµ µε

1

0

0

for hollow single-conductor

waveguides:

H there is only H and H

div H H fields must form closed loops

EDt

rot H J TEM waves cannot exist in

gle conductor hollow waveguides

z x y

zz

= →

= → −

= → ∂∂

=

= →−

0

0

0 0

r

r r

sin

Page 15: Transmission Lines Fundamentals

VII 15

TM-Waves

Ejk

kEx

Ejk

kEy

Hj

kEy

Hj

kEx

xz

z

z

yz

z

z

xz

z

yz

z

= −−

∂∂

= −−

∂∂

=−

∂∂

= −−

∂∂

ω µε

ω µε

ωεω µε

ωεω µε

2 2

2 2

2 2

2 2

Wave equation

∂∂

+ ∂∂

+ −( ) =2

2

2

22 2 0

Ex

Ey

k Ez zz zω µε

Page 16: Transmission Lines Fundamentals

VII 16

TM-Modes in Rectangular Waveguides

a

x

y

b

z

boundary conditions

E y and E a y in the x direction

E x and E x b in the y direction

z z

z z

0 0 0

0 0 0

, ,

, ,

( ) = ( ) =

( ) = ( ) =

separation of variables

E x y E k x k yz x y, sin sin( ) = ( ) ( )0

k

ma

and knb

m n are egersx y= =π π( , int )

Page 17: Transmission Lines Fundamentals

VII 17

Solution

E x yjk

kE

ma

ma

xnb

y

E x yjk

kE

nb

ma

xnb

y

H x yj

kE

nb

ma

xn

xz

z

yz

z

xz

, cos sin

, sin cos

, sin cos

( ) = −−

( ) = −−

( ) =−

ω µεπ π π

ω µεπ π π

ωεω µε

π π π

2 2 0

2 2 0

2 2 0 bby

H x yj

kE

ma

ma

xnb

yzz

( ) = −−

, cos sin

ωεω µε

π π π2 2 0

TM13 mode means m=1, n=3

(if m=0 or n=0 then E=H=0)

k

ma

nbz

2 22 2

= −

ω µε π π

ω µε π π

π µεπ π

c

c

ma

nb

fma

nb

cut off frequency

22 2

2 2

0

12

+

=

=

+

if f < fc then jkz is real no wave propagation

Page 18: Transmission Lines Fundamentals

VII 18

Field Lines for TM11 Mode in Rectangular Waveguide

1,0

0,5

00

π/2 βzπ 2π3π/2

y/b

x

xxx

x

xx

x

xx

x

x

x

xx

Magnetic field lines

x/a

y/b

O

Electric field lines

Page 19: Transmission Lines Fundamentals

VII 19

TE-Waves

Ej

kHy

Ej

kHx

Hjk

kHx

Hjk

kHy

xz

z

yz

z

xz

z

z

yz

z

z

= −−

∂∂

=−

∂∂

= −−

∂∂

= −−

∂∂

ωµω µε

ωµω µε

ω µε

ω µε

2 2

2 2

2 2

2 2

wave equation

∂∂

+ ∂∂

+ −( ) =2

2

2

22 2 0

Hx

Hy

k Hz zz zω µε

Page 20: Transmission Lines Fundamentals

VII 20

TE-Modes in Rectangular Waveguides

boundary condition

∂∂ ( ) = ∂

∂ ( ) = ( ) =

∂∂ ( ) = ∂

∂ ( ) = ( ) =

Hx

y andHx

a y in the x direction E

Hy

x andHy

x b in the y direction E

z zy

z zx

0 0 0 0

0 0 0 0

, ,

, ,

separation of variables

H x y H

ma

xnb

yz , cos cos( ) =

0

π π

Page 21: Transmission Lines Fundamentals

VII 21

Solution:

E x yj

kH

nb

ma

xnb

y

E x yj

kH

ma

ma

xnb

y

xz

yz

, cos sin

, sin cos

( ) =−

( ) = −−

ωµω µε

π π π

ωµω µε

π π π

2 2 0

2 2 0

H x yjk

kH

ma

ma

xnb

y

H x yjk

kH

nb

ma

xnb

y

xz

z

yz

z

, sin cos

, cos sin

( ) =−

( ) =−

ω µεπ π π

ω µεπ π π

2 2 0

2 2 0

TE01 mode means m = 0, n = 1

k

ma

nbz

2 22 2

= −

ω µε π π

f

ma

nbc =

+

12

2 2

π µεπ π

cut off frequency

if f < fc then jkz is real no wave propagation

Page 22: Transmission Lines Fundamentals

VII 22

Field Lines for TE10 Mode in Rectangular Waveguide

π/2 βzπ 2π3π/2

xx

x

x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

1,0

0,5

00

y/b

1,0

00

x/a

x/a

y/b

O

x

Electric field lines

Magnetic field lines

π/2 βzπ 2π3π/2

x

x

x

x

x

xx

xx

x

x

x x

x

x