Top Banner

of 15

Training Artificial Neural Networks for Fuzzy Logic

Apr 06, 2018

Download

Documents

Hala Eid
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/3/2019 Training Artificial Neural Networks for Fuzzy Logic

    1/15

    Comp lex Sy st ems 6 (1992) 443-457

    Training A rtificial Neura l Net work s for Fuz zy Logic

    Ab hay B ulsari *

    K emisk-tekniska f akulteten , Abo Akade mi ,

    SF 20500 Turku jAbo, Fin land

    Abstract. P roblems r equiring infe rencing with Bo olean log ic havebeen im plemented in p erceptron s or feedforward n etworks, and someatte m pts have been mad e t o imp lement fuzzy logic based inferencin g insimilar n etworks. In th i s paper , we pr esent produ ctive networks , whichare a rt ificial n eural ne tworks , meant for fu zzy logic based infer encing.

    Th e nod es in t hese netwo rk s collect a n offset product of th e input s,fur th er offse t by a bias. A m eaning ca n be ass ign ed t o ea ch n od e insuch a n etwork , s ince t he offsets must be e ither - 1 , 0, or l .

    E arli er , it was s hown t hat fuzzy logic inferencing co uld b e performed in produ cti ve networks by m anually s et t ing t he offsets . Thi spr ocedur e , how ever , en countered c riticism, since t here is a fee lin g t hatneura l networks s hould i nvolve tr aining. We describ e an algo rit hm fortr aining pro duct ive n etworks from a s et of tra ining in stances. Un likefeedfo rwar d neur a l n etwo rks with sigmoida l ne urons , th ese netwo rk sca n be t rained wit h a sma ll numb er of t raining in stan ces .

    T he t hree main logica l op erations t ha t form t he ba sis of inf erencing- NO T , OR , and A ND - c a n be impl em ented ea sily in pro du ctivenetw ork s. T he networks der ive th eir nam e from t he way t he offsetprod uct of input s for ms t he act ivatio n of a nod e.

    1. In t rodu c t i on

    Prob lem s requi r ing inferen c in g w ith Bo o lean logi c h ave b een impl em ent edin p er ce p t r on s or fe edforwa rd n etworks [1], a nd som e at t em pts h ave b ee nmad e to impl em ent fu zzy logic b ase d inferencin g in si m ilar n etwo rk s [2] .How ever , feedf or w ard n eur al networks with s igmoi da l act ivat ion fun ct ionsca n not ac c urate ly eva luate fu zzy logic ex pr ess ions u s in g th e T-n orm (seesec t ion 2.1) . Th erefore , a n eur a l netwo rk a rc h itect ur e was prop osed [3] inwh ich th e elem entar y fu zzy logic op er ation s cou ld b e p erformed acc ur a te ly.(For a g oo d ov erv iew of fuzz y logic, see [4, 5].) A n eur a l n etwork ar ch it ectur ewas d es ir ed for w h ich t he te d ious tas k of t ra in ing could b e av oided, a nd

    *On leave from L appe enrant a University of Technology. Electronic m ail addr ess:abul sari@bo . f i

  • 8/3/2019 Training Artificial Neural Networks for Fuzzy Logic

    2/15

    444 A bh ay Bul sari

    in which eac h no de carr ied a speci fic m eanin g . Produ cti ve networks , ast he n d efined , offered m any a dva ntages (as describ ed in [3]). I t was s how nt hat fuzzy logic infer en cing c ould be performed in p rodu cti ve networks bym an ua lly set ting t he offsets . Th i s pro cedure , however , encou nt ered crit icism ,

    since th ere is a feelin g t hat ne u ra l networ ks should involved t ra ining.W ith m inor mo dificat ion - nam ely, th e addi t ion of t he di sconn ect in goffset - it is now poss ibl e to b egi n with a networ k of a s ize as large or largert han requir ed , and t ra in i t wit h a few t raini ng inst ances . Becaus e of t hena t ur e of prod uct ive n etworks , a sma ll numb er of t raining inst ances sufficesto t ra in a netwo rk wit h m any more para m eters . Th e paramet er s mu st t a ket he v alues - 1 , 0, or l .

    Th ese mo dified pr od u ctive network s ret a in m ost of t he useful fea t ur esof t he previou s design. I t is st ill po ssible to m anu ally se t th e offsets for

    well-d efined pr oblems o f fuzzy logic . E ach n ode st ill ca rr ies a m ea ning int he sa me m an n er as befor e. Th e network s are v ery simil ar t o feedforwa rdneural net works in st ruct ure. H owever , ex tr a conn ections ar e permi ssible,whi ch was not th e cas e pr eviou sly . A pri ce has be en pa id for t his in creasedflexibility , in the form of a mor e compli ca t ed ca lcu lation of t he net input toa nod e.

    2 . The basic f uzzy logica l ope rations

    T here is inc reasing int er est in t he use of fu zzy logic a nd fu zzy se ts , for var iousapplica t ions. Fu zzy logic m ak es it p oss ibl e to h ave s had es of grey betwee n t het rut h values of (false) and 1 (t rue ) . St a t emen ts s uch as "the temperat ur eis h igh " need no t have cr isp t ru t h values , and t his flexibility has p ermitt edt he dev elopment o f a wid e ran ge of app licati ons, from consume r pr odu ct s toth e co ntro l of heavy m achin ery. Fu zzy ex pe rt systems ar e expert syste msth at use fuzzy logic bas ed infere ncing.

    Almo st a ll logic al op erat ion s ca n b e repr esente d as c ombin at ions of N OT(rv) , OR (V) , and AN D (1\) op eratio ns . I f th e t ru t h va lue of A is repr esented

    as t (A ), t he n we shall ass um e t ha t

    t( rvA) = 1 - t (A )t(A V B ) = t( A) + t (B ) - t (A ) t(B)t(A 1\ B ) = t (A ) t( B )

    Th e OR equation shown above c an be m odified to a mor e suita ble f ormas follow s:

    A V B = rv(rvA 1\ rvB )t(A V B) = 1 - (1 - t(A) ) ( l - t( B ))

    whi ch is equiv alent to t he equat ion s hown above, but is in a mor e usefulform . S imilarly , for thr ee o perand s , on e ca n write

    t (A 1\ B 1\ C ) = t(A )t( B) t(C )t (A V B V C) = 1 - (1 - t( A))( l - t(B ))( l - t (C ))

  • 8/3/2019 Training Artificial Neural Networks for Fuzzy Logic

    3/15

    Train ing Ar tificial Neural Networks for Fu zzy Logic 44 5

    Since Boolea n logic is a s pec ial case o f fuzzy logic (in which t rut h va lues a reeithe r 0 o r 1) , p rodu ct ive networks ca n b e used for Boo lean logic as we ll.

    2.1 U nfit ness of th e sigm oid

    We have yet to ex pla in w hy fuzzy logic ca nnot be impl eme nted in feedfo rwardnetworks wit h sigmo ida l activat ion func t ion s. Su ch n etworks have a s moot ht ransition f rom t he "yes" to t he "no" state , a nd are sa id to have a g racefu ldegrad at ion.

    A /\ B ca n b e p erform ed in a feedfor wa rd neur a l network by cr (t(A) +t (B) - 1.5 ) , whe re a is the s igmo id fun ct ion from 0 to 1. Th i s pro cedure hastw o m a jo r li m it ati on s. T he t rut h value of A /\ B is a fu ncti on o f t he sum oft heir in div idu al t rut h va lues, which is far from t he result of equat ions givenabove. T his t rut h va lue is almo st zero until th eir sum ap proach es 1.5, a ndafte r th at it is a lmost one . T he width of th is tr ansition can b e ad just ed , butt he cha ra cte r of t he fu nct ion rema ins t he sa me . I f t (A ) = 1 and t( B ) = 0,t( A /\ B ) is not exact ly zero .

    Ano t her ob ject ion to t he use of th e s igmo id is more se rious . Us ingcr (t (A ) + t(B ) - 1.5) to ca lcu late t(A /\ B ) yields t he foll owing resul t :

    t((A /\ B ) /\ C) # t (A /\ (B /\ C ))

    3 . P rodu cti ve n et work s

    A p roduct ive net work , as d efined here , no long er imp oses a limi t on t he n umber of con nect ions , as do feedfor ward ne tworks. Th e extraneo us connect ionsdo no t m at t er s ince t heir weight s ca n b e se t t o zero. E ach no de pl ays am ean in gfu l ro le in th ese networ ks . I t collects an offset pr od uc t of inpu ts ,furt her o ffset b y a bias. For exa m ple , the act ivat ion of th e no de s hown infigur e 1 ca n b e writ t en as

    when the offset s a re 0 or 1. I f an offset is - 1 , it effectively d isconnects t helink . In ge ne ra l,

    a = Wo -IpW-Xj )[1 +~Wj ( l- Wj )11T hu s, if a n offset is - 1, it on ly mul t iplies t he produ ct by 1. Th e ou t put oft he nod e is th e a bsolu te va lu e of t he ac t ivat ion , a.

    y = la l

    T he nond ifferentia bili ty o f t he ac t iva t ion func tion is not a pro blem . ev

    ert heless, if d esi re d , t he ac tivat ion funct ion ca n be mad e cont inuo us by

  • 8/3/2019 Training Artificial Neural Networks for Fuzzy Logic

    4/15

    446

    y

    D "iJ nodeo f f s e t ~

    x3

    Fi gu r e 1: A no d e in a producti ve neur al network.

    y

    Abh ay Bul set i

    node

    Fi gure 2: Inv er ti n g a n inpu t in a produc tive network

    re placing it with a produ ct of t he argument a nd t he - 1 to 1 sigmoid, wi th alarge gain, (3:

    y = a ( - 1 + 2 -1 -+ - e x -~---;-(-- (3----=-a--:-)

    Th e offset , W j, shifts t he v alue of th e input by some amount , usu ally 0 or1. Th e input remains un affected wh en th e offset i s 0, a nd a logical i nverse(negation) is t aken w hen t he offset i s 1. In addition t o the offset input s, th ereis a bi as , Wo , which furth er offsets th e produ ct o f th e offset inpu t s.

    Th e productiv e network has se veral nod es with one or m o r e input s (seefigures 6 and 8). Th e input s should b e p ositive numb ers j ; 1. Each o f th enod es has a bi as , alte rna t ively c alled th e offset of th e nod e. A bi as of 0 or- 1 h as th e same e ffect - a nod e offset of zero i s the sa me as n ot I having anod e offset . Th e output is a p ositive numb er :::; 1. Produ ctiv e networks a reso n amed b ecause o f t he mul tiplication of input s at each node.

    4. Implementat ion of the basic fuzzy logical operations

    To show th at on e can represent a ny co mplicated fu zzy logi c op erat ion i nprodu ctive networks , it suffices t o s how t hat t he th ree b asic op erations canb e implemented in thi s framework.

    Th e s implest op eration , NOT , requires a n offset o nly , which ca n b e provided b y th e inpu t link (as s hown in fi gur e 2 ) . Altern ati vely , t his off set ca nb e provided b y th e bi as instead of t he link, with th e sa me r esult.

  • 8/3/2019 Training Artificial Neural Networks for Fuzzy Logic

    5/15

    Tr ainin g Artificial N eur al Netwo rk s for Fu zzy Logi c

    x3

    Figur e 3: Appl ying AND to t hree inpu t s in a produ ctiv e network

    y

    Figure 4 : App lying OR to t hree inpu ts in a produ ct ive network

    447

    AN D is a lso im plemented in a f acil e m ann er in t his fram ework. It needson ly th e p rod uct of t he trut h values of its a rg um ent s; hence , ne ith er t he link snor th e bi as h ave offsets (as show n in figur e 3, for thr ee inputs ).

    On t he ot her h an d , OR needs o ffs et s on all t he in put links , as w ell as ont he bi as ( see figure 4 ). Th e offsets f or OR and A ND indic ate th at th ey aretw o extrem es of a n op erat ion , which would h ave off sets betwee n 0 and 1. Inot her wor ds, o ne c an p erfo rm a 0.75 AN D a nd a 0.25 OR of two op erands Aa nd B by set ting Wo = 0.25 , W I = 0.25 , a nd W 2 = 0.2 5.

    F igur e 5 shows h ow ~ A V B can b e imp lemented . Thi s is equi valen t toA impli es B (A * B ).

    I f th e fun ct ions clar it y (A) a nd fu zzines s (A) are defin ed as

    clari ty(A ) = 1 - fuzzine ss(A)fuzzine ss(A) = 4 x t(A 1\ ~ A ) ,

    t hey can th en b e calcu la t ed in t his fram ewor k.

    Figure 5: ~ XI V X2

  • 8/3/2019 Training Artificial Neural Networks for Fuzzy Logic

    6/15

    448

    A B

    Figur e 6: Network configuration for A XOR B

    A I \ B

    in puts

    Abh ay Bul sari

    5 . I llus t ra t ions of th e manual set t ing of offsets

    Appl yin g AN D an d OR op erat ions over sev era l inpu ts ca n b e p er formed b y asingl e node. I f som e of th e inputs must b e inver t ed , t his can b e acc omp lishe dby cha ng ing t he offset of t he pa rt icul ar link. T hu s , no t on ly can a s ing le no dep erform A I\E I\ C and A v E V C , but a lso A I\ E I \ ~ C (which wou ld r equir eWo = 0, W I = 0, Wz = 0, and W 3 = 1.) However, oper at ions t hat requir ebr ack ets for express ion- for exa mpl e, (A V E) 1\ C - r equire more t han o nenod e.

    An exclusi ve O R appl ied two v ar iables - A XOR E - ca n also be wr itt enas (A V E ) 1\ ~ ( A1\ E ). E ach of t he brac ket ed e xp re ssions r equir es one n od e,with on e m ore nod e requir ed to p erform AN D b etween th em ( see fig ur e 6). (AXO R E ) ca n also b e wr itt en as (A v E ) I \ ( ~ AV ~E ) , or ( AI \ ~E ) V ( ~ AI \ E ) ,eac h of w hich could r esult in differ ent config urat ions.

    A program , SNE , was deve lop ed to eva luate th e outp uts of a prod uctiv enetwork ; an outp ut for t his XO R prob lem is shown in App endix A . Feedfor ward neur al network st udies oft en b egin w ith t his p rob lem , fitting fourp oints w it h ni ne weights by backpr opagation . (Produ ctive networks a lso requir e nine parameters , but fit t he ent ire ra nge o f t ruth values between 0and 1.) F igur e 7 shows t he XOR va lues for f uzzy argum ents. t (A ) increas esfrom left t o right , t(E) in creases from t op to botto m , and t he valu es in t hefigur e a re te n ti mes th e ro unded value of t(A XOR E ).

    In [1], a s m all se t of rules w as prese nted , designed t o govern t he selectionof t he type and m ode of o peration of a c hemi ca l reactor c ar r ying out a s ingl ehomog ene ous reac ti on . As de fined , th ere are regions in t he sta te sp ace (forex amp le, betw een rO/ r l = 1.25 and 1.6 ) wher e no ne of t he ru les m ay appl y.In fact , thes e were meant t o be fu zzy region s , to b e filled in a s ubsequentwork s uch as th is one. T he set of rul es has th erefore b een s lightly mo dified ,and is given b elow. Th ere are two c hoices f or t he ty pe of rea ctor , st irred -ta nk

  • 8/3/2019 Training Artificial Neural Networks for Fuzzy Logic

    7/15

    Tr aining Art ificial Neural Networ ks for Fu zzy Logi c

    0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 9 9 99 ** *00 1 11 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 66 6 6 6 7 7 7 7 8 9 8 8 9 9 9 9 . *

    1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 6 6 6 6 6 7 7 7 7 8 a 8 8 8 9 9 99 *1 11 1 2 2 2 2 33 3 3 3 4 4 4 4 s s s s s e e e e e7 7 7 7 7 s a e a a 9 9 9 9

    11 1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 s s s s s e e e e e 7 7 7 7 7 s e a a e S 9 9 91 1 2 2 2 2 3 3 3 33 4 4 4 4 4 s s s s s s e e e e e 7 77 7 77 a a a a a S9 92 2 2 2 2 3 3 3 33 3 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 7 7 7 7 7 7 7 8 8 a a a 8 922 2 2 3 3 3 3 3 3 4 4 4 4 4 s s s s s s e e S 6 6 S 6 77 7 7 7 7 7 e e e a a e2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 s s s s s s e e e e e e S 7 7 7 7 7 7 7 7 e a a a a22 3 3 3 3 3 3 4 4 4 4 4 4 S s s s s s s e e e e e e e e 77 7 7 7 7 7 7 7 a a e3 3 3 3 3 3 3 4 4 4 4 4 4 S S s s s s s s e e e e e e e S S 7 7 7 7 7 7 7 7 7 7 83 3 33 3 4 4 4 4 44 4 S S S 56 S S S S 6e S e S6 6 G e 6 7 77 7 77 7 7 7 73 3 3 3 4 4 44 4 4 4 S S 5 s s s s s s e s e e e S S 6 G G e 6 7 7 7 7 7 7 7 7 73 3 4 4 4 44 4 4 4SSS S S S S S S S 6 a s e e e e e e G 6 S 6 6 77 7 77 7 74 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7

    4 4 4 4 4 4 4 5 5 5 5 5S G G S S S 5 6 6 6 6 6 6 e 6 e s e 6 6 6 6 6 e e e e s e

    4 4 4 4 4 S 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 e S S SS 6 6 6 6 S 6 6 6 6 6 6 6 S

    4 4 4 5 S 5 S S S S S S 5 5 S S S S 6 6 6 S 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 655 5 5 S 5 S 5 S 5 5 5 5 5 S S 5 e 6 6 6 6 6 e 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

    5 5 5 S S S S S S S S S S S S 6 6 6 6 6 6 6 6 6 6 6 6 6 e e e e e 6 5 S 5 5 5 5 5

    5 S S S S S S 5 S S 5 S 6 6 6 e e e e e e e e e e e e e e S 5 S 5 S S S S S S SS55 5 5 5 s s e 6 e e e e 6 6 s e e e e e e e e e e S S S S5 5 5 S S S S S S S Ss e e s e e e e e 6 6 6 e 6 e s s e 6 e e 6 e 6 S S S S S S5 5 5 S S S S S SS S6 6 6 6 6 6 6 6 6 6 6 6 6 e S S 6 6 6 6 6 6 6 S S 5 5 5 S 5 5 5 5 5 5 5 S 5 4 4 4S6 6 6 6 s e 6 6 e S 6 6 6 e e e e 6 6 s e 5 5 5 S 5 S 5 S 5 S 5 5 S S 4 4 4 4 4

    6 6 6 e e s e e e e e S 6 e e e e e e 6 6 6 S S S S S 5 5 5 S SS S 4 4 4 4 4 4 4

    7 e e e e S 6 e e e e s e 6 e s e 6 6 6 6 S 5 5 S S S 5 5 S 5S 4 4 4 4 4 4 4 4 47 7 7 7 7 7 7 s e e e e e e s e e e e e e 5 S S 5 S S 5 S S S 4 4 4 4 4 4 4 4 3 3

    7 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 6 6 e 6 6 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 3 3 3 37 7 7 7 7 7 7 7 7 7 6 6 e e e e 6 e 6 6 S S S 5 5 S 5 SS 4 4 4 4 4 4 4 3 3 3 3 3

    8 7 7 7 7 7 7 77 7 7 6 6 6 6 e e 6 6 6 5 5 5 5 5 5 5 5 4 4 4 4 4 4 3 3 3 3 3 3 3

    a a S 77 7 7 7 7 7 7 7 e e e s e s s e 5 S 5 5 5 S S 4 4 4 4 4 4 3 3 3 3 3 3 2 2a a a a a 7 7 7 7 7 7 7 7 6 e e e s s e 5 5 S S 5 S 4 4 4 4 4 4 3 3 3 3 3 3 2 2 2a a a a a a 7 7 7 7 7 7 7 6 6 e e e e e S S S S S S 4 4 4 4 4 3 3 3 3 3 3 2 2 2 29 a a a a e a 7 7 7 7 7 7 7 6 e e e 6 5 5 5 5 5 5 4 4 4 4 4 3 3 3 3 3 3 2 2 2 2 2

    9 9 a a a a a S 7 7 7 7 7 7 e e e 6 6 5 S S 5 5 5 4 4 4 4 4 3 3 3 3 3 2 2 2 2 1 1

    9 g 9 S e e e S S 7 7 7 7 7 e e e e 6 5 5 5 S 5 4 4 4 4 4 3 3 3 3 3 2 2 2 2 11 19 g 9 9 S e 8 8 8 7 7 7 7 7 6 6 6 6 6 5 5 5 5 5 4 4 4 4 3 3 3 3 3 2 2 2 21 1 11

    * g 9 9 9 a 8 a a a 7 7 7 7 6 e e 6 6 5 5 5 5 4 4 4 4 4 3 3 3 3 2 2 2 2 1 1 1 1 1** 9 9 9 9 8 a a 8 7 7 7 7 6 6 S 6 6 5 5 5 5 4 4 4 4 3 3 3 3 2 2 2 2 1 1 1 1 0 0** * 9 9 9 g e 8 8 8 7 7 7 7 6 e 6 6 5 5 5 5 4 4 4 4 3 3 3 3 2 2 2 2 1 1 1 1 0 0

    Figur e 7: A XOR B

    449

    or t ubul ar ; and two cho ices for t he mo de of ope ration , cont inuous or bat ch.In t he followin g rul es these choi ces are assume d to b e mu tu ally e xclusi ve;t hat is , t he sum of t heir trut h valu es is 1.

    1. I f th e reac t ion i s highly exot herm ic or hi ghl y e nd ot her mi c - say 15kCalj gm mol ( else we call it a thermal) - s elect a stirr ed-t ank re actor.

    2. I f t he r eacti on m ass is highly v iscous (say 50 cent ipoise or mo re) , se lecta s t irred -t ank reacto r.

    3. I f t he rea ctor ty pe is t ubu la r, t he mo de of op eratio n is cont inuous .

    4. I f rO frl < 1.6 , prefer a continuous st irred tan k reacto r.

    5 . I f rO frl > 1.6 , th e reacti on m ass is not v ery visco us, and t he reactio nis quit e at hermal, pr efer a tubular reactor.

    6. I f rOfrl > 1.6 , t he react ion m ass is not v ery visco us, bu t t he react ionis no t at he rrnal , pr efe r a s tirred - tan k reac tor opera ted in b at ch mode.

    7. I f rO frl > 1.6 , t he react ion m ass is quit e visco us , and t he r eact ion isat herrn al, pr efer a s t irred- ta nk rea ctor o per at ed in ba tch mo de.

    8 . I f th e production r at e is very high com pared to t he r ate o f reactionr l (say 12 m 3 or m ore) , and rO fr l > 5, pr efer a s t irr ed -ta nk r eac tor

    operated in batch mode.

  • 8/3/2019 Training Artificial Neural Networks for Fuzzy Logic

    8/15

    450 Ab hay Bul sari

    9. I f t he prod uct ion rate is very high com pa red to t he rat e of react ionr l (say 12 m3 or mor e) , an d r O/r l < 5, pr efer a st irre d-ta nk re acto roperat ed in cont inuous mod e.

    10. I f r O/ r l ~ 1.6 , t he rea ction m ass is qui t e viscous, a nd t he re act ion isnot a t hermal , prefer a s t irred -ta nk r eactor op erated in batch mo de.

    ro is t he r ate o f react ion und er inl et conditio ns , and rl is t he r at e of react ionund er exit co nd itio ns. I f t hei r ratio is large , a plu g-flow (t ubu la r ) reactorrequir es s ign ifican tly l ess v olu me t ha n a st irre d-t ank r eacto r op erat e d continu ou sly. A st irr ed- ta nk r eactor oper ate d in ba t ch mode is s im ilar t o aplug-flo w reactor w hen t he length coordi na te o f t he t ubu la r rea ctor resembles ti m e in a bat ch r ea ctor. Th e a im of [1] was t o invest igat e t he feas ib ilit y ofimpl ementin g a fuzzy se lecti on ex p ert sys tem in a produ ctive neura l n etwork ;

    henc e, t he heuri st ics enum erat e d ab ove a re typical. T he y a re not n ecessa ri lyt he b est set o f ru les for s elect ing r eactors for single ho mogen eous r eact ion s ;neit her are t hey c om ple te .

    F igure 8 s hows t he i mpl em entatio n of t hese heuristics in a pro du cti ve network. I t is mu ch s imp ler t han a feedfo rward n eur al networ k ; it req uir es notr ain in g, and does not have to o m an y connect ions (weight s) . T he offset s a reeit her 0 or 1, un like t he weights (wh ich ca n have a ny value b etween - 0 0 and(0). Of cours e , it a lso ca lculates t he fuzzy t ru t h values for t he select ion ofty p e a nd m od e of o per at ion of a chemical reactor. I t is a litt le mo re reliabl e

    since t he function of eac h of t he n od es in t he network is known an d u nd erst ood , and t here is no q uest ion of t he sufficiency o f t he numb er of t ra in inginst ances . I t m ay not b e po ss ib le t o rep resen t eve ry expr ess ion in tw o laye rs .Havin g several l ayer s , however , is no t prob lem atic for pro ductiv e network s,

    Jt hou gh it does ca use di fficu lty in tra inin g feedforwa rd neura l networks.

    It may be reca lled t hat t he inpu ts to produ ct ive networks a re t rut h val uesb etween 0 and 1. Th e five inpu ts to t he n etwork s hown in figur e 8 a re

    A t(rO / rl < 1.6)B t (p, < 50)C t ( I ~ Hrx n l < 15)D t (r O r l < 5)E t( F / rl < 12)

    Th ese t r uth values can be ca lculate d (using a ram p or a s igmoid) based oncr it er ia for t he wid th of fuzz iness. ( For exa mp le, for A , t( r O r l < 1.2) = 1and t(rO / r l > 2.0) = 0, wit h a linear i nt erpol at ion in b etwee n.) App end ix Bsho ws result s of th is sys t em w ith clear in pu ts ( t r ut h va lues of 0 or 1) . Forconfirm at ion , t hese r esul t s were fed in t o an indu ctive learning progra m . T hispro gram was able to e licit t he h euris tics for s elec ting a st irred -t an k for co nt inuou s oper at ion - A V ev B V evC V E) and (A V (B 1\ C ) V (D 1\ E ). T his,in effect, was th e s ame as (A V (evA 1\ B 1\ C) V (D 1\ E )) , imp lement ed int he network di rectly from t he heuris t ics. I t was a lso confi rme d th at t he imp lausib le se lect ion of a t ubu lar reacto r op erat ed in batc h m od e never too kpl ace.

  • 8/3/2019 Training Artificial Neural Networks for Fuzzy Logic

    9/15

    Tr aining A r tificial Neural Net works f or Fu zzy Logic 45 1

    A B c D B

    Figure 8: Fuzzy -select ion expert syste m in a produ ctiv e netwo rk

    6 . Limi t a t ion s of pr odu ctiv e n et work s lackin g th e disconn e ctingoff se t

    I f t he input s a nd o utpu ts of a fuz zy logical oper at ion a re given , and if onewants a produ ct ive n etwork to learn t he corre lation , it is a lmost impo ssib lewit hout t he d isco nnectin g offset . A pr od uct ive n etwork witho ut t he d isconnect ing offset (- 1) cannot b e eas ily tr a ined. Th ere i s no way to swit ch offan ou t pu t f rom a nod e th at is connect ed . On e mu st d ecid e t he conn ectiv ityb efor ehand - w hich can b e, at best , good g uesswork.

    Th e pr odu ctive network is in tend ed prim ar ily for represen ting fu zzy logical op erations , a nd ca n of cours e do Bo olean logic. Th at , however , is it slimi t. It has hardly a ny ot her app licat ion.

    7 . Illu s t r a t ions of t ra ining produ cti ve n etwork s

    T he tr ainin g of n eura l network s is in tended to redu ce t he sum of th e squaresof erro rs (SSQ) to a minim um , wh ere t he erro rs ar e th e diff erenc es b etweenthe desire d and t he ac t ua l neura l network out put s. In feedforwa rd neura l

    netwo rk s, it is su fficient to m inimiz e th e SSQ ; in pro du ctive networks , however , it sho uld b e reduc ed t o ze ro wh en th e tr ainin g inst a nces a re kn own tob e accurate .

    Th ere a re a fini te n umber of po ss ibili t ies for t he weight vecto r. Thi s isp resu ma bly an NP -com pl ete probl em. For a netwo rk with N weights , t her eare 3N p ossibilities. I t is t herefore cl ear t hat sea rching t he ent ire sp a ce is notfeas ib le when N excee ds 7 o r 8. To so lve t his pro blem w e present a si mp l ealgorithm in t he n ext s ubsection. Tr aining is p erform ed by mod ify ing t heoffsets in a discrete m an n er (vary ing a mo ng - 1 , 0 , and 1). Th e esse nce of

    this algor ith m is sim ilar t o th e Hook e a nd J eeves method [6].

  • 8/3/2019 Training Artificial Neural Networks for Fuzzy Logic

    10/15

    452 A bha y Bulsari

    Sinc e t here i s a disco nn ect ing offset (-1) , it is p ermiss ible to have m oreno des t ha n n ecessary. T here is no o ver -p aramet rization i n t hese n etworks ;but a n over-eval uat ion of fuzzy ex pressio ns is po ssible wh en t he re are ext ranod es, a nd t h is ca n resul t in wro ng ou tp uts. Th e exac t numb er of nodes

    ca n be dete rmin ed if a comp lete set of t ra in ing inst ances (a ll '2fVin cases) isavaila ble; bu t t his r equires t he a ppro ach of t he pr eviou s work , which h as b eenst rong ly criti cized. Despi t e th e fact th at man y res pec ta ble p eop le in th e fieldof ne ura l n etwork s think th at tr ainin g is n ecessa ry, or t hat "a network i s aneura l n etwor k on ly if i t ca n b e t rained, " we m ain t ain t hat t his is not t herigh t way to co nst ruct p rodu ctive netwo rk s.

    7.1 T h e training algorithm

    Hook e a nd J eeves [ 6] pro p ose d a zero -o rder opt im izat ion m et hod , w hich looksfor t he d irecti on in whi ch th e obj ect ive funct ion im pr oves by vary ing o nep aram ete r at a t ime. D eriva tives ar e no t re qu ire d. W hen no im provement isp ossible , t he ste p size is redu ced. In t he prob lem und er consider at ion here ,each p aram et er (offs et ) must t ake on e of only thr ee va lues . Henc e, wh ena param et er is b eing co nsid ered f or it s effect on th e obj ect ive fun ction, th eth ree cas es a re co m pa red , a nd t he on e wit h th e lowest SSQ is chos en.

    P arame t ers t o b e conside red for t he ir effect o n t he SSQ can b e chose nse que ntia lly or r andoml y. Wi th a se que nt ial cons ide rat ion of par ameters , t he

    sea rch pro cess o fte n fal ls in to cycles t hat are di fficul t to id entify, sto pp ingon ly at t he limi t of th e m aximum num ber of it er atio ns. W ith a rand omconsi de rat ion of p arameters , t he algor ithm ta kes on a stochas tic nat ur e a ndis very slow, bu t does no t fa ll in t o such cycles. N ever th eless , t he sequenti al consid erat ion i s found t o b e pr efera bl e for t he k ind s of prob lems to b econsid ered in sec t io ns 7.2 and 7 .3.

    T ypica l output s of a progr am (SNT) imp lementing t his algorithm arepr esent ed i n App end ices C and D . Th e a lgorit hm i s fast a nd r eli abl e. I trun s into local mini ma at t im es (lik e an y op t imi za t ion algorit hm would on a

    problem w ith se veral mi nim a ) , but since i t is relat ive ly fast , it is easy to t rydifferen t ini t ial guesses . Beca use of t he network a rch itect ure , it is po ssib let o in terpret int ermed iat e resul ts , eve n, pr esum ably, at every it erat ion. Th ealgor ithm worked q ui te we ll with t he prob lems c onsidered in t his p aper.

    7. 2 T h e X OR prob lem

    Th e XOR probl em es sentia lly cons ists of th e t ra in ing o f a pro ducti ve networkto p erform fuzzy XOR op erat ion on tw o in put s . Wi th eight t raining in st ancesit was p ossibl e to train (2 , 2,1 ) and (2 , 3 ,1) networks e as ily, while (2 ,1 ) and(2,1 , 1) n etwork s could n ot learn t he op erat ion. Ap p endix C p resents t heresul t s of t ra ining a (2 ,3 , 1) networ k.

    I t is easy to inter pr et t he r esult s of tra ini ng t hese n etwo rk s. T he (2, 1)ne t wor k lea rn ed A A E fro m t he eig ht t ra ining in stances. Th e SSQ w as1.038. Th e (2, 1, 1) n etwo rk learn ed ~ A A E , resul t ing in t he sa me S SQ ,1.038. Th ese results a re dep end en t on t he ini tia l guesses (to t he extent t hat

  • 8/3/2019 Training Artificial Neural Networks for Fuzzy Logic

    11/15

    Training Ar tificial N eu ral Networ ks for Fu zzy Logi c 453

    a diff erent logica l ex pression m ay result from a diff erent ini ti al g uess), but

    (2, 1) a nd (2, 1, 1) wou ld n ot have a n SSQ of less t ha n 1.0 38. Th e (2 ,2 , 1)network learn ed it p erfectl y, as (A V B ) 1\ ("-'A V ,,-, B) . Th e (2,3, 1) networkonce ran into a local min imum , wit h SSQ = 1.038 , exp re ss ing (,,-,B) 1\ ("-'A 1\"-'B ) 1\ ("-'B ). As shown in App endix C , th is network ca n also learn (A VB ) 1\ ("-'A V ,,-, B) , ignor ing one of th e no d es in t he hidd en laye r , which was"-'(A 1\ B ).

    Wi th four t ra ining in sta nce s (all clear inp u ts a nd ou tp ut s) , the sa menetworks wer e agai n trained by th e algor ithm descr ib ed a bove. Unfortunate ly, t here is no w ay to pr eve nt th e networ k from learning (A V B) as(A 1\ ,,-, B) V ("-'A 1\ B ) V (A 1\ B) V B. A is equ iva lent to as A V A or A 1\ Ain Boo lean logic , bu t not in fu zzy logic , given t he way we have ca lcu late dcon junc t ions a nd di sjunct ion s. T herefore , if on e sta rts wit h cl ear t ra ininginstan ces (n o fuzz y inpu ts or o utp ut s) , t he network m ay learn on e of th eex pressio ns t hat is equ iva lent in B oolean logic . Fort u nat ely, however , t herewas a te ndency to leave hidd en nod es un u sed . T he (2 ,2 , 1) network learn edt he XOR fun ction as ,,-,( A V ,,-, B) V (A 1\ ,,-, B) . Th e (2, 5, 1) n etwork a lsolea rn ed it co rrectly as ("-'A 1\ B ) V "-'("-'A V B ) witho u t adding ext ra neousfeatur es from th e hidd en laya r (leaving 3 nod es unu sed) .

    7 .3 Th e c he m ica l r eac tor s e lect io n pr obl em

    Th e chemical r eac to r se lect ion h eur istics listed in sect ion 5 ca n a lso b e ta ughtto p rodu ct ive networks from th e 32 cl ear tr aining inst an ces (see App endix B).The (5 ,5 ,2 ) , (5 ,6 ,2) , ( 5, 8, 2) , a nd (5 , 10 ,2) networks wer e a ble to l earn th ecorr ect e xp re ssio ns, w ith an SSQ of 0. 00 . Th e nu mb er of it erat ions r equiredwas b etween 200 and 3 000 , but eac h it erati on took ver y littl e ti m e. Th ety pical run t imes on a mi cro Vax II were b etween 1 and 10 m inut es.

    Th e (5,5 , 2) network u sed on ly four hidd en nod es , t he min imum req uir ed .T he (5 ,8 ,2) and (5 ,10,2) networks use d seven and eight nod es, respect ively.T hey typica lly h ad one or two nod es simply du plic at ing the inpu t (or it snegation). Th e res ult s obt a ined with th e (5 ,8 ,2) netwo rk are s hown in Appendi x D .

    7 .4 Limitations of the t raining appro ach

    In Boo lean l ogi c, (A V B) can a lso be wr itt en a s (A 1\ ,,-,B) V ("-'A 1\ B)V (A 1\B ) v B . A is equivale nt to as A V A or A 1\ A in Boo lean l ogi c, bu t not infu zzy log ic, g iven th e way we have ca lcu late d conjun ctions a nd di sjunctions.Ther efore, if one s tarts wi th clear t rai ning in st ances ( no fu zzy inpu ts o routput s) , th e network may lea rn on e of t he expressions t hat is equiva lent inBoo lean logic.

    It is not ea sy to obta in tr a ining inst ances with fu zzy ou tput s . I t is alwayspo ss ibl e t o set th e offsets m anua lly, on ce th e logical ex pression i s kn own.Tr aining is ap pa rently an NP- comp let e pr ob lem. Networks ca nnot be t rained

    se quentia lly li ke , as in b ackpropagation.

  • 8/3/2019 Training Artificial Neural Networks for Fuzzy Logic

    12/15

  • 8/3/2019 Training Artificial Neural Networks for Fuzzy Logic

    13/15

    Tra ining Art ificial Neural Networ ks for Fu zzy Logic

    layer 2 0 .6602l ayer 1 0 .8125 0 . 1875l a yer 0 0 .2500 0 . 7500

    0.3333 0 .3333 0 .4938

    l ayer 2 0 .4938l ayer 1 0 .5556 0 .1111

    l ayer 0 0 .3333 0.33 33

    Appendix B. Resul t s of reactor selection with clear inputs

    Number of input and output nodes : 5 2Number of hidden layers : 1Number of nodes in e ach hid de n layer 4Number of offse ts : 20Pr in t option 0/1/2 : 0Offsets taken from f i l e SEL. I N

    0 0 0 0 0 1 00 0 0 0 1 1 0

    0 0 0 1 0 1 0

    0 0 0 1 1 1 1

    0 0 1 0 0 1 0

    0 0 1 0 1 1 0

    0 0 1 1 0 1 0

    0 0 1 1 1 1 1

    0 1 0 0 0 1 0

    0 1 0 0 1 1 00 1 0 1 0 1 0

    0 1 0 1 1 1 1

    0 1 1 0 0 0 1

    0 1 1 0 1 1 1

    0 1 1 1 0 0 1

    0 1 1 1 1 1 1

    1 0 0 0 0 1 1

    1 0 0 0 1 1 1

    1 0 0 1 0 1 1

    1 0 0 1 1 1 1

    1 0 1 0 0 1 1

    1 0 1 0 1 1 1

    1 0 1 1 0 1 1

    1 0 1 1 1 1 1

    1 1 0 0 0 1 1

    1 1 0 0 1 1 1

    1 1 0 1 0 1 1

    455

  • 8/3/2019 Training Artificial Neural Networks for Fuzzy Logic

    14/15

    4 56

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    o1

    1

    1

    1

    1

    oo1

    1

    1

    o1

    o1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    A bha y Bul sari

    Appe ndix C. A typica l ou tpu t from S N T

    Th i s i s the outp ut from SNT .

    Num be r of i nput and outp u t nodes 2 1Num ber of hidden l a yer s : 1Number of nodes in ea ch h id de n l a yer 3Number of off se t s : 13P ri n t opt ion 0/1/2 1The off se t s take n f r om WTS . I N

    -1 - 1 -1 -1 -1 - 1 - 1 -1 - 1 - 1 -1 - 1 -1Num be r of i t e r a t io ns : 500

    Number of p a t t e r ns in t he in put f i l e 8The off se t s W > 1 to 13

    1 0 0 1 1 1 0 0 0 0 -1 0 1

    The res idua ls F >> > 1 to 8 :O. OOOOOE+OOO.OOOOOE+OOO.OOOOOE+OOO.OOOOO E+OOO. OOOOO E+OO0 .43750 E-040 .43750 E-04O.OOOOOE+OO

    SSQ: 0 .382 81E-08

    Appen dix D. A n ou tpu t from SN T for the ch emical reacto rs e lection heuristics

    Th i s i s t he outp ut from SNT .

    Number of inp u t an d output nodesNum be r of hidden l ayer s : 1Number o f nodes in e ac h h id de n l ayerNumber of off se t s : 66Pr in t option 0/ 1 / 2 : 0Seed f or rand om number genera t i on

    8

    10201

    5 2

  • 8/3/2019 Training Artificial Neural Networks for Fuzzy Logic

    15/15

    Tr aining Art ificial Ne ural Networks fo r Fu zzy Logic 457

    Number of i t e ra t ions : 1000

    Numbe r of p a t t e rns in the inpu t f i l e 3 2The of f s e ts W > 1 t o 66

    1 1 0 0 -1 -1 0 1 0 -1 -1 0 1 0 0 -11 1 0 -1 -1 -1 0 0 -1 0 0 1 -1 1 - 1 11 -1 - 1 0 0 1 -1 -1 - 1 -1 -1 0 1 -1 -1 01 1 1 0 1 -1 -1 0 -1 1 0 -1 0 1 0 00 0

    SSQ O.OOOOOE+ OO

    Ref erenc es

    [1] A . B . Bulsari and H . Saxe n, "Imple men ta t ion o f Chemica l Reacto r Selec tionExpert System in a Feedfor war d Neura l Networ k ," Proc eedings of th e Au s-tralian Conference on Neura l Netw orks , Sy dney , Au str ali a , (1991) 227 - 229 .

    [2] S .-C. Chan an d F .-H . Nah , "Fuzzy N eural Log ic Netwo rk and It s LearningAlgorithms, " P roceedings o f th e 24t h Annual H awaii Int ernational Conf erenceon Syst em Scienc es : Neura l Ne tworks and Related Emerging T echnologies ,Kailu a-K ona , Hawaii , 1 (1991) 476-485.

    [3] A . Bul sari a nd H . Saxen , "Fuzzy Logic In fere ncing U sing a Spec iall y DesignedNeura l Netwo rk Ar chi t ectur e," P roce edings of th e Inte rnat iona l Symp osiumon Art ificial In telligen ce App lications and Neura l Networks, Zurich , Swit zerland , (1991) 57- 60.

    [4] L. A . Zadeh , "A Th eory of A pp r oximat e R eason ing ," pages 3 67-4 07 in Fu zzySets an d App lica tions , edited by R. R. Yager e t al. (New York , W iley , 1987 ).

    [5] L . A. Z ade h , "The Ro le of Fu zzy Logic in th e Man ag em ent of U ncer t ainty inExpert Systems, " Fu zzy Sets an d Sy stems, 11 (1983) 199-227.

    [6] R. F letcher , P ra ctic al Met hods of Optim ization . Volume 1, Unconstrain ed Op -t im i zation (Chicheste r, W iley, 1980).