Top Banner
Traffic Flow Theory in the Era of Autonomous Vehicles Michael Zhang University of California Davis A Presenta8on at The Symposium Celebra8ng 50 Years of Traffic Flow Theory, August 1113, 2014, Portland, Oregon USA
25

Traffic&Flow&Theory&in&the&Era& of&Autonomous&Vehiclestft.eng.usf.edu/tft50/tft50_presentations/3A_1_Zhang.pdf · • Example%RoboCar#1%% 7(+)= ↓A {5() −} ,5()=34${ ↓6 ,+/}

Mar 22, 2018

Download

Documents

phamnhan
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Traffic&Flow&Theory&in&the&Era& of&Autonomous&Vehiclestft.eng.usf.edu/tft50/tft50_presentations/3A_1_Zhang.pdf · • Example%RoboCar#1%% 7(+)= ↓A {5() −} ,5()=34${ ↓6 ,+/}

Traffic  Flow  Theory  in  the  Era  of  Autonomous  Vehicles

Michael  Zhang  University  of  California  Davis  

 A  Presenta8on  at    

The  Symposium  Celebra8ng  50  Years  of  Traffic  Flow  Theory,    August  11-­‐13,  2014,  Portland,  Oregon  USA  

Page 2: Traffic&Flow&Theory&in&the&Era& of&Autonomous&Vehiclestft.eng.usf.edu/tft50/tft50_presentations/3A_1_Zhang.pdf · • Example%RoboCar#1%% 7(+)= ↓A {5() −} ,5()=34${ ↓6 ,+/}

Outline  

• From  individual  driving  to  traffic  flow  • Prominent  features  of  traffic  flow  • Models  of  traffic  flow-­‐human  driven  vehicles  • Models  of  traffic  flow-­‐autonomous  vehicles  • The  future  of  traffic  flow  

Page 3: Traffic&Flow&Theory&in&the&Era& of&Autonomous&Vehiclestft.eng.usf.edu/tft50/tft50_presentations/3A_1_Zhang.pdf · • Example%RoboCar#1%% 7(+)= ↓A {5() −} ,5()=34${ ↓6 ,+/}

The  Driving  Task  as  Feedback  Control

Actual  System:  Road  Environment  Traffic  Environment  

Measurements:  {(x’,y’),g’,R’},  v’,  

s’,    

 Control  Law:  DirecKon/Lane  Speed/Spacing  

 

Vehicle  Dynamics  Traffic  Dynamics  

-­‐-­‐-­‐-­‐  

{(x,y),  g,  R},  v,  s,  …  

Disturbances  Boundary  cond.  

Steering  Angle  Acc/Dec  rate  (throSle/braking)  

{(x,y),  g,  R},  v,  s,  …  

Page 4: Traffic&Flow&Theory&in&the&Era& of&Autonomous&Vehiclestft.eng.usf.edu/tft50/tft50_presentations/3A_1_Zhang.pdf · • Example%RoboCar#1%% 7(+)= ↓A {5() −} ,5()=34${ ↓6 ,+/}

Human  Drivers  vs  Autonomous  Vehicles  From  A  Control  PerspecDve

Human  Drivers    •  Sensing  is  imprecise  but  more  

versaKle  •  Response  is  slower  but  more  robust  •  Best  at  processing  fuzzy  informaKon  

and  is  highly  adapKve  •  Strength:    handles  complex  tasks  

such  as  lane  tracking,  obstacle  avoidance  more  easily  

Autonomous  Vehicles  (Robo  Cars)    •  Sensing  is  more  precise  but  less  

versaKle  •  Response  is  faster  but  less  robust  •  Best  at  exercising  precise  

controls  and  is  less  adapKve:    •  Strength:  handles  procedural  

tasks  such  as  speed  control,  car  following  more  easily  

Page 5: Traffic&Flow&Theory&in&the&Era& of&Autonomous&Vehiclestft.eng.usf.edu/tft50/tft50_presentations/3A_1_Zhang.pdf · • Example%RoboCar#1%% 7(+)= ↓A {5() −} ,5()=34${ ↓6 ,+/}

The  Essence  of  Traffic  Flow  Theory  is  to  Infer

•  The  Speed-­‐Spacing  Control  Law  of  Each  Driver  

𝑣↓𝑛 (𝑡)={?}(𝑠↓𝑛 (𝑡),⋯,𝐸)    E={speed  limits,  grades,  radius,  surface  condiKons,    visibility,  ….}  

• And  the  collecKve  dynamics  of  an  OPEN  “Many-­‐ParKcle”  Dynamical  System  with  “random”  inserKons  and  removals  (reflecKng  LANE  CHANGE  interacKons)  controlled  by  these  driver  control  laws  

{𝑥 ↓𝑛 (𝑡)= 𝑣↓𝑛 (𝑡),  𝑛=1,2,⋯,𝑁}  

Page 6: Traffic&Flow&Theory&in&the&Era& of&Autonomous&Vehiclestft.eng.usf.edu/tft50/tft50_presentations/3A_1_Zhang.pdf · • Example%RoboCar#1%% 7(+)= ↓A {5() −} ,5()=34${ ↓6 ,+/}

Example:  The  California  Motor  Code  Rule

•  For  every  10  mph  of  speed,  leave  one  car  length  of  space    •  This  translates  to    

                     s(𝑡)−𝑙= 𝑣(𝑡)/10 𝑙≡𝑇𝑣(𝑡)    or   𝑣(𝑡)= 𝑠(𝑡)−𝑙/𝑇   with  speed  limits    𝑣(𝑡)=𝑚𝑖𝑛{𝑉↓𝑓 , 𝑠(𝑡)−𝑙/𝑇 }        

Page 7: Traffic&Flow&Theory&in&the&Era& of&Autonomous&Vehiclestft.eng.usf.edu/tft50/tft50_presentations/3A_1_Zhang.pdf · • Example%RoboCar#1%% 7(+)= ↓A {5() −} ,5()=34${ ↓6 ,+/}

If  Human  Drivers  are  IdenDcal  Robots with  super  fast  reacKon  Kme  and  vehicles  capable  of  infinite  acceleraKon  and  deceleraKon    • Micro  model  

•  Traffic  Stream  Model  (steady-­‐state)  𝑉(𝑠)=𝑚𝑖𝑛{𝑉↓𝑓 ,  𝑠/𝑇}  • Macro  (conKnuum)  model  (in  vehicle  coordinate)  𝑠↓𝑡 − 𝑣↓𝑛 =0,  𝑣=𝑉(𝑠)  

𝑎(𝑡)={█■0,                          𝑣(𝑡)= 𝑉↓𝑓 @𝑢(𝑡)−𝑣(𝑡)/𝑇 ,   𝑣(𝑡)<𝑉↓𝑓     𝑥 (𝑡)=𝑣(𝑡)  

𝑣 (𝑡)=𝑎(𝑡)  

Page 8: Traffic&Flow&Theory&in&the&Era& of&Autonomous&Vehiclestft.eng.usf.edu/tft50/tft50_presentations/3A_1_Zhang.pdf · • Example%RoboCar#1%% 7(+)= ↓A {5() −} ,5()=34${ ↓6 ,+/}

What  are  These  Models  and    what  phenomena  do  they  produce?

• Micro  model:  “linear”  CF  model  of  Pipes  •  AcceleraKon  waves  •  DeceleraKon  waves  

•  Stream  model:    Triangular  FD  •  Capacity:  2640  pcphpl  (l=20c,  T=1.36sec,  Vf=60mph)  •  Jam  wave  speed:    -­‐10  mph  

• Macro  model:    LWR  with  Triangular  FD  

•  Shock  waves  •  Expansion  (acceleraKon)  waves  

q  

v  

s  

k  

𝑙  

1/𝑇   

𝑉↓𝑓   

𝑉↓𝑓   

− 𝑙/𝑇 =−10𝑚𝑝ℎ↓   

1/𝑙   

𝑄↓𝑚   𝑘↓𝑡 + 𝑄↓𝑥 (𝑘)=0  

𝑠↑∗ = 𝑉↓𝑓 𝑇+𝑙  

1/𝑠↓∗    

Page 9: Traffic&Flow&Theory&in&the&Era& of&Autonomous&Vehiclestft.eng.usf.edu/tft50/tft50_presentations/3A_1_Zhang.pdf · • Example%RoboCar#1%% 7(+)= ↓A {5() −} ,5()=34${ ↓6 ,+/}

When  All  Vehicles  Follow  the  Same  Rule

k  

𝑉↓𝑓   

− 𝑙/𝑇 =−10𝑚𝑝ℎ↓   

1/𝑙   

𝑄↓𝑚   

1/2𝑙   

−10𝑚𝑝ℎ  

Trucks   Cars  

q  

k  

𝑉↓𝑓   

− 𝑙/𝑇 =−10𝑚𝑝ℎ↓   

1/𝑙   

𝑄↓𝑚   

Normalized  by      vehicle  length  

The  slope  of  the  jam  wave  speed  is  a  good  indicator  whether  drivers  of  different  type  of  vehicles  follow  the  same  driving  rule  or  not  

Page 10: Traffic&Flow&Theory&in&the&Era& of&Autonomous&Vehiclestft.eng.usf.edu/tft50/tft50_presentations/3A_1_Zhang.pdf · • Example%RoboCar#1%% 7(+)= ↓A {5() −} ,5()=34${ ↓6 ,+/}

In  reality,  human  drivers

• Differ  from  each  other  in  driving  ability  and  habits  • Cannot  assess  moKon  and  distances  precisely  • Respond  with  delay  and  finite  acceleraKon/deceleraKon  • Do  not  follow  rules  exactly  

Consequence:  Traffic  flow  in  the  real  world  is  much  more  complex  

Page 11: Traffic&Flow&Theory&in&the&Era& of&Autonomous&Vehiclestft.eng.usf.edu/tft50/tft50_presentations/3A_1_Zhang.pdf · • Example%RoboCar#1%% 7(+)= ↓A {5() −} ,5()=34${ ↓6 ,+/}

Prominent  Features  of  Real  Traffic  Flow

• Phase  transiKons  • Nonlinear  waves  •  Stop-­‐and-­‐Go  Waves  (periodic  moKon)  

Page 12: Traffic&Flow&Theory&in&the&Era& of&Autonomous&Vehiclestft.eng.usf.edu/tft50/tft50_presentations/3A_1_Zhang.pdf · • Example%RoboCar#1%% 7(+)= ↓A {5() −} ,5()=34${ ↓6 ,+/}

Phase transitions

Page 13: Traffic&Flow&Theory&in&the&Era& of&Autonomous&Vehiclestft.eng.usf.edu/tft50/tft50_presentations/3A_1_Zhang.pdf · • Example%RoboCar#1%% 7(+)= ↓A {5() −} ,5()=34${ ↓6 ,+/}

Nonlinear  waves

Vehicle platoon traveling through two shock waves

flow-density phase plot

Page 14: Traffic&Flow&Theory&in&the&Era& of&Autonomous&Vehiclestft.eng.usf.edu/tft50/tft50_presentations/3A_1_Zhang.pdf · • Example%RoboCar#1%% 7(+)= ↓A {5() −} ,5()=34${ ↓6 ,+/}

Stop-­‐and-­‐Go  Waves  (OscillaDons)  

Scatter in the phase diagram is closely related to stop-and-go wave motion

Page 15: Traffic&Flow&Theory&in&the&Era& of&Autonomous&Vehiclestft.eng.usf.edu/tft50/tft50_presentations/3A_1_Zhang.pdf · • Example%RoboCar#1%% 7(+)= ↓A {5() −} ,5()=34${ ↓6 ,+/}

Some  Classical  Traffic  Models     • Microscopic  

• Modified  Pipes’  model      • Newell’  Model  • Bando’  model  

• Macroscopic  conKnuum    •  LWR  model  • Payne-­‐Whitham  model  • Aw-­‐Rascle,  Zhang  model  

•  v-­‐s  (speed-­‐spacing)  relaKon  is  central  to  all  these  models  

( )( ){ }min , /n f nx v s t l τ= −&

( ){ }( ) 1 exp ( ) /n f n fx t v s t l vτ λ⎡ ⎤+ = − − −⎣ ⎦&

( )( )( )*( ) , 1/n n nx t a u s x t a τ⎡ ⎤= − =⎣ ⎦&& &

( )* 0t xqρ ρ+ =

( ) 0,t xvρ ρ+ = ( ) ( )2

*0t xx

v vcv vvρ

ρρ τ

−+ + =

( ) ( ) ( ) ( )* * * *1/ , , ,s u s v q v q vρ ρ ρ ρ ρ ρ= = = =

( ) 0,t xvρ ρ+ = ( )( ) ( )*

t x

v vv v c v

ρρ

τ−

+ − =

( ) ( )'*c vρ ρ ρ= −

Page 16: Traffic&Flow&Theory&in&the&Era& of&Autonomous&Vehiclestft.eng.usf.edu/tft50/tft50_presentations/3A_1_Zhang.pdf · • Example%RoboCar#1%% 7(+)= ↓A {5() −} ,5()=34${ ↓6 ,+/}

The  Difficulty  of  Modeling  Real  Flow

•  Each  driver  is  different  • Driving  rules  are  hidden  •  Sensing  is  imprecise  • Behavior  is  adapKve,  nonlinear,  and  perhaps  inconsistent  •  (Driving  environment  is  complex)  

Page 17: Traffic&Flow&Theory&in&the&Era& of&Autonomous&Vehiclestft.eng.usf.edu/tft50/tft50_presentations/3A_1_Zhang.pdf · • Example%RoboCar#1%% 7(+)= ↓A {5() −} ,5()=34${ ↓6 ,+/}

When  Robo  Cars  Take  Over  the  Road

• Behavior  is  uniform  and  consistent  •  Sensing  and  control  is  more  precise  • Rules  are  always  obeyed  •  (Driving  environment  is  sKll  complex)  

More  importantly,  driving  rules  are  by  design,  leaving  rooms    for  opKmizing  flow  and  safety                          Feedback  Control  Problem      

Page 18: Traffic&Flow&Theory&in&the&Era& of&Autonomous&Vehiclestft.eng.usf.edu/tft50/tft50_presentations/3A_1_Zhang.pdf · • Example%RoboCar#1%% 7(+)= ↓A {5() −} ,5()=34${ ↓6 ,+/}

Traffic  Flow  Theory  For  Robo  Cars-­‐Longitudinal  Control •  Example  RoboCar#1    𝑎(𝑡+𝜏)= 𝑘↓𝑟 {𝑉(𝑠)−𝑣},𝑉(𝑠)=𝑚𝑖𝑛{𝑉↓𝑓 ,  𝑠/𝑇}  • Human:  𝜏=1-­‐2s,  T=1.36-­‐2s;    Robo  Car:  𝜏=0.4-­‐0.6s,  T=0.8-­‐1.2s,  Capacity:  ≈1/𝑇 ,  +70%,    

• But  this  may  be  too        rosy  a  predicKon  in  the          iniKal  deployment          stage  (liability)  

Actual  System:  Road  Environment  Traffic  Environment  

Measurements:  v’,  s’  

 Control  Law  

Speed/Spacing    

Traffic  Dynamics  

-­‐-­‐-­‐-­‐  v

,  s  

disturbance  

Acc/Dec  rate  (throSle/braking)  

 v,s  

Page 19: Traffic&Flow&Theory&in&the&Era& of&Autonomous&Vehiclestft.eng.usf.edu/tft50/tft50_presentations/3A_1_Zhang.pdf · • Example%RoboCar#1%% 7(+)= ↓A {5() −} ,5()=34${ ↓6 ,+/}

Example  RoboCar#2  

𝑎(𝑡+𝜏)= 𝑘↓𝑟 {𝑉(𝑠)−𝑣}+ 𝑘↓𝑣 {𝑢−𝑣}    Faster  response  and  higher  throughput  than  RoboCar#1  𝜏=0.4-­‐0.6s,  T=0.6-­‐0.75s  

Actual  System:  Road  Environment  Traffic  Environment  

Measurements:  v’,  s’,  u’  

 Control  Law  

Speed/Spacing    

Traffic  Dynamics  

-­‐-­‐-­‐-­‐  v

,  s,  u  

disturbance  

Acc/Dec  rate  (throSle/braking)  

 v,s,u  

Page 20: Traffic&Flow&Theory&in&the&Era& of&Autonomous&Vehiclestft.eng.usf.edu/tft50/tft50_presentations/3A_1_Zhang.pdf · • Example%RoboCar#1%% 7(+)= ↓A {5() −} ,5()=34${ ↓6 ,+/}

Example  RoboCar#3  (RoboCar#2  with  V2V)

𝑎(𝑡+𝜏)= 𝑘↓𝑎 𝑎↓𝑢 (𝑡)+𝑘↓𝑟 {𝑉(𝑠)−𝑣}+ 𝑘↓𝑣 {𝑢−𝑣}    

Actual  System:  Road  Environment  Traffic  Environment  

Measurements:  v’,  s’,  u,  a’  

 Control  Law  

Speed/Spacing    

Traffic  Dynamics  

-­‐-­‐-­‐-­‐  v

,  s,  u,a  

disturbance  

Acc/Dec  rate  (throSle/braking)  

 v,  s,  u,  a  

And  the  list  goes  on:  you  can  come  up  with  other  models  that          meet  safety  and  stability  requirements    

Page 21: Traffic&Flow&Theory&in&the&Era& of&Autonomous&Vehiclestft.eng.usf.edu/tft50/tft50_presentations/3A_1_Zhang.pdf · • Example%RoboCar#1%% 7(+)= ↓A {5() −} ,5()=34${ ↓6 ,+/}

Expected  throughput  with  vehicle  platooning

0  

1000  

2000  

3000  

4000  

5000  

0   5   10   15   20   25  

Throughp

ut  (veh

/hr)  

Platoon  Size  N  

Throughput  

Tg=0.55  s  

Tg=0.60  s  

Tg=0.65  s  

Tg=0.70  s  

21  

Throughput  of  CACC  platooning  with  different  platoon  size  and  intra-­‐platoon  Kme  gap  sepng  

Page 22: Traffic&Flow&Theory&in&the&Era& of&Autonomous&Vehiclestft.eng.usf.edu/tft50/tft50_presentations/3A_1_Zhang.pdf · • Example%RoboCar#1%% 7(+)= ↓A {5() −} ,5()=34${ ↓6 ,+/}

Future  of  Traffic  Flow  Theory  Research  (1)

•  Do  the  Arrival  of  Robo  Cars  Mean  The  End  of  Traffic  Flow  Research?  •  AutomaKon  creates  uniformity  and  standardizaKon,  suppresses  randomness:  From  billions  of  drivers  to  a  handful:    Google  Car,  GM  Car,  Toyota  Car  ….  

•  Behavior  of  each  Robo  Car  is  consistent  and  known    

q  

k  

q  

k  

From  Human  Drivers  to  Robots  

Page 23: Traffic&Flow&Theory&in&the&Era& of&Autonomous&Vehiclestft.eng.usf.edu/tft50/tft50_presentations/3A_1_Zhang.pdf · • Example%RoboCar#1%% 7(+)= ↓A {5() −} ,5()=34${ ↓6 ,+/}

Future  of  Traffic  Flow  Theory  Research  (2)

•  In  the  short  term  •  design  of  driving  models  for  Robo  cars  •  Robo  car  friendly  infrastructure  

•  In  the  intermediate  term  •  Mixed  traffic  with  Robo  Cars,    •  Platooning  of  Robo  Cars  •  Lightless  intersecKons  with  in-­‐vehicle  signal  control  •  Rich  micro  level  data  for  understanding  and  modeling  traffic,  and  validaKng  traffic  models  

Page 24: Traffic&Flow&Theory&in&the&Era& of&Autonomous&Vehiclestft.eng.usf.edu/tft50/tft50_presentations/3A_1_Zhang.pdf · • Example%RoboCar#1%% 7(+)= ↓A {5() −} ,5()=34${ ↓6 ,+/}

Future  of  Traffic  Flow  Theory  Research  (3)

•  In  the  long  term,  full  automaKon  of  highway  traffic  •  OpKmal  scheduling  and  pricing  for  congesKon  free  networks  •  Robust  Recovery  from  DisrupKons  

• New  services  and  shared  use  of  autonomous  vehicles  •  Robo  Taxi  Services  •  Last  and  first-­‐mile  of  transit  (flexible  transit)  •  Seamless  integraKon  of  mulKple  modes  •  And  the  list  goes  on  

Page 25: Traffic&Flow&Theory&in&the&Era& of&Autonomous&Vehiclestft.eng.usf.edu/tft50/tft50_presentations/3A_1_Zhang.pdf · • Example%RoboCar#1%% 7(+)= ↓A {5() −} ,5()=34${ ↓6 ,+/}

Concluding  Remarks

Autonomous  Vehicles  will    •  In  the  long  run  bring  more  order  to  traffic  flow  and  simplify  traffic  flow  theory  

• Produce  rich  data  for  traffic  flow  research  • Brings  a  host  of  brand  new  research  problems  for  modeling,  design  and  operaKons  of  transportaKon  systems