Top Banner
Towards U(N |M ) knot invariant from ABJM theory Taro Kimura Institut de Physique Th´ eorique, CEA Saclay Mathematical Physics Laboratory, RIKEN Based on a collaboration with B. Eynard [arXiv:1408.0010] Taro Kimura (CEA Saclay/RIKEN) Oct. 2014 @ Bonn 1 / 28
28

Towards U(N|M) knot invariant from ABJM theorybctp.uni-bonn.de/workshop2014/talks/kimura.pdf · Towards U(NjM) knot invariant from ABJM theory Taro Kimura Institut de Physique Th

Mar 20, 2018

Download

Documents

PhạmTuyền
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Towards U(N|M) knot invariant from ABJM theorybctp.uni-bonn.de/workshop2014/talks/kimura.pdf · Towards U(NjM) knot invariant from ABJM theory Taro Kimura Institut de Physique Th

Towards U(N |M) knot invariantfrom ABJM theory

Taro Kimura

Institut de Physique Theorique, CEA Saclay

Mathematical Physics Laboratory, RIKEN

Based on a collaboration with B. Eynard [arXiv:1408.0010]

Taro Kimura (CEA Saclay/RIKEN) Oct. 2014 @ Bonn 1 / 28

Page 2: Towards U(N|M) knot invariant from ABJM theorybctp.uni-bonn.de/workshop2014/talks/kimura.pdf · Towards U(NjM) knot invariant from ABJM theory Taro Kimura Institut de Physique Th

Knot theory

QFT interpretation: Wilson loop in Chern–Simons theory[Witten]

SCS =k

∫S3

Tr

(A ∧ dA+

2

3A ∧A ∧A

)

ex.) Jones polynomial: SU(2) CS w/ the fund rep loop

J(K; q) =⟨W�(K)

⟩/⟨W�( )

⟩with q = exp

(2πi

k +N

)Wilson loop: WR(K) = TrR exp

(∮K

A

)

Taro Kimura (CEA Saclay/RIKEN) Oct. 2014 @ Bonn 2 / 28

Page 3: Towards U(N|M) knot invariant from ABJM theorybctp.uni-bonn.de/workshop2014/talks/kimura.pdf · Towards U(NjM) knot invariant from ABJM theory Taro Kimura Institut de Physique Th

Generalizations:

HOMFLY polynomial: SU(2) → SU(N)

Colored polynomial: Tr� U → TrR U

We can generalize it in this way, but...

The expression becomes much more complicataed

What’s the systematic dependence on the rank/rep?

Taro Kimura (CEA Saclay/RIKEN) Oct. 2014 @ Bonn 3 / 28

Page 4: Towards U(N|M) knot invariant from ABJM theorybctp.uni-bonn.de/workshop2014/talks/kimura.pdf · Towards U(NjM) knot invariant from ABJM theory Taro Kimura Institut de Physique Th

Matrix integral representation [Marino]

ZCS(S3; q) =1

N !

∫ N∏i=1

dxi2π

e− 1

2gsx2i

N∏i<j

(2 sinh

xi − xj2

)2

Wilson loop operator (especially for unknot)

WR( ) → TrR

ex1

. . .

exN

= sλ(R)(ex1 , · · · , exN )

Wilson loop vev ⟨WR( )

⟩CS

=⟨sλ(ex)

⟩matrix

Taro Kimura (CEA Saclay/RIKEN) Oct. 2014 @ Bonn 4 / 28

Page 5: Towards U(N|M) knot invariant from ABJM theorybctp.uni-bonn.de/workshop2014/talks/kimura.pdf · Towards U(NjM) knot invariant from ABJM theory Taro Kimura Institut de Physique Th

Another CS-like matrix model:

ABJM matrix model

ZABJM(S3; q) =1

N !2

∫ N∏i=1

dxi2π

dyi2π

e− 1

2gs(x2i−y2i ) (∆N,N (x; y))2

with ∆N,N (x; y) =

∏Ni<j

(2 sinh

xi−xj2

)(2 sinh

yi−yj2

)∏Ni,j

(2 cosh

xi−yj2

)[Kapustin–Willett–Yaakov] [Drukker–Trancanelli] [Marino–Putrov]

A “supersymmetric” CS matrix model w/ U(N |N) sym

cf. U(N |N) supermatrix model:

ZU(N |N) =

∫ N∏i=1

dxi2π

dyi2π

e− 1

gs(W (xi)−W (yi))

∏Ni<j(xi − xj)2(yi − yj)2∏N

i,j(xi − yj)2Taro Kimura (CEA Saclay/RIKEN) Oct. 2014 @ Bonn 5 / 28

Page 6: Towards U(N|M) knot invariant from ABJM theorybctp.uni-bonn.de/workshop2014/talks/kimura.pdf · Towards U(NjM) knot invariant from ABJM theory Taro Kimura Institut de Physique Th

Unknot Wilson loop vev with ABJM⟨WR( )

⟩ABJM

=⟨sλ(ex; ey)

⟩Matrix

Our goal

To construct the U(N |N) knot invariant through ABJM

Taro Kimura (CEA Saclay/RIKEN) Oct. 2014 @ Bonn 6 / 28

Page 7: Towards U(N|M) knot invariant from ABJM theorybctp.uni-bonn.de/workshop2014/talks/kimura.pdf · Towards U(NjM) knot invariant from ABJM theory Taro Kimura Institut de Physique Th

Contents

1 Introduction

2 U(N |N) Wilson loop

3 Torus knot

4 Topological string

5 Summary

Taro Kimura (CEA Saclay/RIKEN) Oct. 2014 @ Bonn 7 / 28

Page 8: Towards U(N|M) knot invariant from ABJM theorybctp.uni-bonn.de/workshop2014/talks/kimura.pdf · Towards U(NjM) knot invariant from ABJM theory Taro Kimura Institut de Physique Th

U(N) unknot invariant:

⟨WR( )

⟩U(N)

=

N∏i<j

q12(λi−λj−i+j) − q− 1

2(λi−λj−i+j)

q12(−i+j) − q− 1

2(−i+j)

= dimq R

Representation R → Young diagram λ = (λ1, · · · , λN )

An analogous expression for U(N |N) vev?

Taro Kimura (CEA Saclay/RIKEN) Oct. 2014 @ Bonn 8 / 28

Page 9: Towards U(N|M) knot invariant from ABJM theorybctp.uni-bonn.de/workshop2014/talks/kimura.pdf · Towards U(NjM) knot invariant from ABJM theory Taro Kimura Institut de Physique Th

Unknot Wilson loop vev with ABJM⟨WR( )

⟩ABJM

=⟨sλ(ex; ey)

⟩Matrix

Supersymmetric Schur function −→ associated w/ U(N |N)

sλ(ex; ey) = StrR

(U(x)

−U(y)

)with U(x) = diag(ex1 , · · · , exN )

Taro Kimura (CEA Saclay/RIKEN) Oct. 2014 @ Bonn 9 / 28

Page 10: Towards U(N|M) knot invariant from ABJM theorybctp.uni-bonn.de/workshop2014/talks/kimura.pdf · Towards U(NjM) knot invariant from ABJM theory Taro Kimura Institut de Physique Th

A representation for U(N |N):

λ =

N ×Nµ

νt

α1α2

α3α4α5

β1β2

β3β4β5

Frobenius coordinate:

λ = (α1, · · · , αd(λ)|β1, · · · , βd(λ))d(λ) = #diagonal blocks

if there is a box here, sλ(ex; ey) = 0

d(λ) ≤ N

Let’s focus on d(λ) = N :

Determinantal formula for U(N |N) Wilson loop

⟨WR( )

⟩U(N |N)

= det1≤i,j≤N

(1

q12(αi+βj+1) + q−

12(αi+βj+1)

)

Taro Kimura (CEA Saclay/RIKEN) Oct. 2014 @ Bonn 10 / 28

Page 11: Towards U(N|M) knot invariant from ABJM theorybctp.uni-bonn.de/workshop2014/talks/kimura.pdf · Towards U(NjM) knot invariant from ABJM theory Taro Kimura Institut de Physique Th

⟨WR( )

⟩U(N |N)

= det1≤i,j≤N

(1

q12(αi+βj+1) + q−

12(αi+βj+1)

)

=

∏Ni<j

(q

12(αi−αj) − q− 1

2(αi−αj)

)(q

12(βi−βj) − q− 1

2(βi−βj)

)∏Ni,j

(q

12(αi+βj+1) + q−

12(αi+βj+1)

)⟨Wµ( )

⟩U(N)

⟨Wν( )

⟩U(N)

Including two U(N) invariants

⟨WR( )

⟩U(N |N)

∼⟨Wµ( )

⟩U(N)

×⟨Wν( )

⟩U(N)

Taro Kimura (CEA Saclay/RIKEN) Oct. 2014 @ Bonn 11 / 28

Page 12: Towards U(N|M) knot invariant from ABJM theorybctp.uni-bonn.de/workshop2014/talks/kimura.pdf · Towards U(NjM) knot invariant from ABJM theory Taro Kimura Institut de Physique Th

U(1|1) theory:

λ =

α

β

hook rep: λ = (α|β)

⟨W(α|β)( )

⟩U(1|1)

=1

q12(α+β+1) + q−

12(α+β+1)

Factorization property⟨WR( )

⟩U(N |N)

= det1≤i,j≤N

⟨W(αi|βj)( )

⟩U(1|1)

cf. Giambelli compatibility [Borodin et al.]

Taro Kimura (CEA Saclay/RIKEN) Oct. 2014 @ Bonn 12 / 28

Page 13: Towards U(N|M) knot invariant from ABJM theorybctp.uni-bonn.de/workshop2014/talks/kimura.pdf · Towards U(NjM) knot invariant from ABJM theory Taro Kimura Institut de Physique Th

Summary

ABJM as the U(N |N) Chern–Simons matrix model

Wilson loop applied to knot theory

Determinantal formula for the U(N |N) Wilson loop:

⟨WR( )

⟩U(N |N)

= det1≤i,j≤N

(1

q12(αi+βj+1) + q−

12(αi+βj+1)

)∼⟨Wµ( )

⟩U(N)

×⟨Wν( )

⟩U(N)

U(1|1) vev as a building block

Taro Kimura (CEA Saclay/RIKEN) Oct. 2014 @ Bonn 13 / 28

Page 14: Towards U(N|M) knot invariant from ABJM theorybctp.uni-bonn.de/workshop2014/talks/kimura.pdf · Towards U(NjM) knot invariant from ABJM theory Taro Kimura Institut de Physique Th

Contents

1 Introduction

2 U(N |N) Wilson loop

3 Torus knot

4 Topological string

5 Summary

Taro Kimura (CEA Saclay/RIKEN) Oct. 2014 @ Bonn 14 / 28

Page 15: Towards U(N|M) knot invariant from ABJM theorybctp.uni-bonn.de/workshop2014/talks/kimura.pdf · Towards U(NjM) knot invariant from ABJM theory Taro Kimura Institut de Physique Th

The original matrix model only describes the unknot loop..

(P,Q) torus knot CS matrix model

Z(P,Q)CS =

∫ N∏i=1

dxi2π

e− 1

2gsx2i

N∏i<j

(2 sinh

xi − xj2P

2 sinhxi − xj

2Q

)

[Lawrence–Rozansky] [Beasley] [Kallen]

(P,Q) torus knotP

Q

(P,Q) = (3, 2)

Taro Kimura (CEA Saclay/RIKEN) Oct. 2014 @ Bonn 15 / 28

Page 16: Towards U(N|M) knot invariant from ABJM theorybctp.uni-bonn.de/workshop2014/talks/kimura.pdf · Towards U(NjM) knot invariant from ABJM theory Taro Kimura Institut de Physique Th

Torus knot: Adams operation

Adams operation:

⟨WR(KP,Q)

⟩=∑V

cVR,Q

⟨WV (K1,f )

⟩with f =

P

Q

A linear combination of theP

Q-framed unknot vevs

Schur function decomposition: sλ(xQ) =∑ν

cνλ,Qsν(x)

Taro Kimura (CEA Saclay/RIKEN) Oct. 2014 @ Bonn 16 / 28

Page 17: Towards U(N|M) knot invariant from ABJM theorybctp.uni-bonn.de/workshop2014/talks/kimura.pdf · Towards U(NjM) knot invariant from ABJM theory Taro Kimura Institut de Physique Th

Torus knot: Spectral curve

Saddle point analysis provides the spectral curve

ex.) (P,Q) = (2, 3)

PQ cuts & (P +Q) sheets

This is just given by SL(2,Z) transform of the unknot curve

[Brini–Eynard–Marino]

What happens for the U(N |N) theory?

Taro Kimura (CEA Saclay/RIKEN) Oct. 2014 @ Bonn 17 / 28

Page 18: Towards U(N|M) knot invariant from ABJM theorybctp.uni-bonn.de/workshop2014/talks/kimura.pdf · Towards U(NjM) knot invariant from ABJM theory Taro Kimura Institut de Physique Th

(P,Q) torus knot U(N |N) CS matrix model

Z(P,Q)ABJM =

∫ N∏i=1

dxi2π

dyi2π

e− 1

2gs(x2i−y2i ) ∆N,N

( xP

;y

P

)∆N,N

( xQ

;y

Q

)

Remark:Perturbatively equivalent to CS theory on the squashedL(2, 1) with b2 = P/Q through the analytic continuation

[Hama–Hosomichi–Lee] [Tanaka] [Imamura–Yokoyama]

We can show: Adams operation & spectral curve

Taro Kimura (CEA Saclay/RIKEN) Oct. 2014 @ Bonn 18 / 28

Page 19: Towards U(N|M) knot invariant from ABJM theorybctp.uni-bonn.de/workshop2014/talks/kimura.pdf · Towards U(NjM) knot invariant from ABJM theory Taro Kimura Institut de Physique Th

Adams operation

Schur function decomposition:

sλ(xQ) =∑ν

cνλ,Qsν(x) −→ sλ(xQ, yQ) =∑ν

cνλ,Qsν(x, y)

The rep theory of U(N) & U(N |N) in a parallel way

Adams operation for U(N |N) theory⟨WR(KP,Q)

⟩U(N |N)

=∑V

cVR,Q

⟨WV (K1,f )

⟩U(N |N)

Taro Kimura (CEA Saclay/RIKEN) Oct. 2014 @ Bonn 19 / 28

Page 20: Towards U(N|M) knot invariant from ABJM theorybctp.uni-bonn.de/workshop2014/talks/kimura.pdf · Towards U(NjM) knot invariant from ABJM theory Taro Kimura Institut de Physique Th

Spectral curveSolving the saddle point equation... in a complicated form

ex.) (P,Q) = (2, 3)

F3F4

F 03

F 04

F0

F3

F4

F 03

F 04

F1

F3

F4

F 03

F 04

F2

F0

F1

F2

F 00

F 01

F 02

F0

F1

F2

F 00

F 01

F 02

F3 F4

F 00

F 04

F 03

F3

F4

F 01

F 04

F 03

F3 F4

F 02

F 04

F 03

F3

F4

F 02F 0

0

F 01

F0

F1 F2 F 02 F 0

0

F 01

F0

F1F2

F 03 F 0

4

Table 1: The cuts of the functions Fk(u) and FQ+l(u) for (P, Q) = (2, 3), where Fk = Fk(u),

F 0k = Fk(u!

12(P�Q)) and F 0

Q+l = FQ+l(u!12(Q�P )). The solid and dotted lines correspond

to the cuts from the first resolvent W (1)(u) and the second resolvent W (2)(u). For example,

we can see F0 = F3, F4 under crossing the corresponding cut of W (1)(u), and F0 = F 03, F 0

4

through the cut from W (2)(u).

multiple angles of 2⇡/(PQ). The total number of the cuts is thus 2PQ. Due to the saddle

point equations they satisfy

Fk(u � i0) = FQ+l(u + i0) for W (1)(u) ,

Fk(u � i0) = FQ+l((u + i0)!12(Q�P )) for W (2)(u) ,

Fk((u � i0)!12(P�Q)) = FQ+l((u + i0)!

12(Q�P )) for W (1)(u) ,

Fk((u � i0)!12(P�Q)) = FQ+l(u + i0) for W (2)(u) .

(5.37)

This means that Fk(u � i0) = FQ+l(u + i0) under crossing the cut from the first resolvent

W (1)(u), Fk(u � i0) = FQ+l((u + i0)!12(Q�P )) for the cut from the second W (2)(u), and so

on. See Table 1 for the case with (P, Q) = (2, 3).

Using these functions we define a function

S(u, f) = S1(u, f) S2(u, f) , (5.38)

19

SL(2,Z) transform of the unknot curve

Taro Kimura (CEA Saclay/RIKEN) Oct. 2014 @ Bonn 20 / 28

Page 21: Towards U(N|M) knot invariant from ABJM theorybctp.uni-bonn.de/workshop2014/talks/kimura.pdf · Towards U(NjM) knot invariant from ABJM theory Taro Kimura Institut de Physique Th

Remark 1: “Mirror” expression [Kapustin–Willett–Yaakov]

ZABJM =1

N !(2π)k

∫dNz

(2π)N

N∏i<j

tanh

(zi − zk

2k

) N∏i=1

(2 cosh

zi2

)−1N = 4 SYM with a fundamental & adjoint matter at k = 1

Trivial (P,Q) dependence: The mirror is the same

Remark 2: Torus knot in the lens space L(2, 1) via SL(2,Z)[Jockers–Klemm–Soroush] [Stevan]

Taro Kimura (CEA Saclay/RIKEN) Oct. 2014 @ Bonn 21 / 28

Page 22: Towards U(N|M) knot invariant from ABJM theorybctp.uni-bonn.de/workshop2014/talks/kimura.pdf · Towards U(NjM) knot invariant from ABJM theory Taro Kimura Institut de Physique Th

Summary

Another matrix model describing torus knots:

SL(2,Z) transform of the unknot model

Basic properties hold for U(N |N) theory

Adams operation

Spectral curve

Taro Kimura (CEA Saclay/RIKEN) Oct. 2014 @ Bonn 22 / 28

Page 23: Towards U(N|M) knot invariant from ABJM theorybctp.uni-bonn.de/workshop2014/talks/kimura.pdf · Towards U(NjM) knot invariant from ABJM theory Taro Kimura Institut de Physique Th

Contents

1 Introduction

2 U(N |N) Wilson loop

3 Torus knot

4 Topological string

5 Summary

Taro Kimura (CEA Saclay/RIKEN) Oct. 2014 @ Bonn 23 / 28

Page 24: Towards U(N|M) knot invariant from ABJM theorybctp.uni-bonn.de/workshop2014/talks/kimura.pdf · Towards U(NjM) knot invariant from ABJM theory Taro Kimura Institut de Physique Th

Knot in Topological string

Brane insertion: [Ooguri–Vafa]

Z(K;x)

=⟨

det(1⊗ 1− U ⊗ e−x

) ⟩CS

WKB expansion: Z(K;x) ∼ exp

(1

gs

∫ x

p(x)dx

)with p(x) = lim

gs→0

∞∑n=0

gs

⟨TrUn

⟩CSe−nx

Taro Kimura (CEA Saclay/RIKEN) Oct. 2014 @ Bonn 24 / 28

Page 25: Towards U(N|M) knot invariant from ABJM theorybctp.uni-bonn.de/workshop2014/talks/kimura.pdf · Towards U(NjM) knot invariant from ABJM theory Taro Kimura Institut de Physique Th

Topological string for ABJM:

local P1 × P1 =

Brane partition function:

Z(K;x, y) =⟨

Sdet

(1⊗ 1− U ⊗

(e−x

e−y

))⟩ABJM

∼ exp

(1

gs

∫ x

yp(x)dx

)Another definition based on topological recursion/B-model

Taro Kimura (CEA Saclay/RIKEN) Oct. 2014 @ Bonn 25 / 28

Page 26: Towards U(N|M) knot invariant from ABJM theorybctp.uni-bonn.de/workshop2014/talks/kimura.pdf · Towards U(NjM) knot invariant from ABJM theory Taro Kimura Institut de Physique Th

Contents

1 Introduction

2 U(N |N) Wilson loop

3 Torus knot

4 Topological string

5 Summary

Taro Kimura (CEA Saclay/RIKEN) Oct. 2014 @ Bonn 26 / 28

Page 27: Towards U(N|M) knot invariant from ABJM theorybctp.uni-bonn.de/workshop2014/talks/kimura.pdf · Towards U(NjM) knot invariant from ABJM theory Taro Kimura Institut de Physique Th

Summary

U(N |N) Wilson loop vev from ABJM matrix model

det formula:⟨WR

⟩U(N |N)

= det1≤i,j≤N

⟨W(αi|βj)

⟩U(1|1)

Torus knot U(N |N) matrix model

SL(2,Z) transform of the unknot: Adams op, spectral curve

Topological string

Ooguri–Vafa construction: Brane pair-creation

Taro Kimura (CEA Saclay/RIKEN) Oct. 2014 @ Bonn 27 / 28

Page 28: Towards U(N|M) knot invariant from ABJM theorybctp.uni-bonn.de/workshop2014/talks/kimura.pdf · Towards U(NjM) knot invariant from ABJM theory Taro Kimura Institut de Physique Th

Discussion

Is it really a knot invariant?

If so, another definition required:

Skein relation

CFT on the boundary

Topological recursion

Volume conjecture, AJ conjecture, knot homology, etc.

Taro Kimura (CEA Saclay/RIKEN) Oct. 2014 @ Bonn 28 / 28