Top Banner
Towards passive terahertz Towards passive terahertz imaging using a imaging using a semiconductor quantum dot semiconductor quantum dot sensor sensor Vladimir Antonov Royal Holloway University of London http://www.teraeye.co
27

Towards passive terahertz imaging using a semiconductor quantum dot sensor Vladimir Antonov Royal Holloway University of London .

Dec 21, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Towards passive terahertz imaging using a semiconductor quantum dot sensor Vladimir Antonov Royal Holloway University of London .

Towards passive terahertz Towards passive terahertz imaging using a imaging using a

semiconductor quantum dot semiconductor quantum dot sensorsensor

Vladimir AntonovRoyal Holloway

University of London

http://www.teraeye.com

Page 2: Towards passive terahertz imaging using a semiconductor quantum dot sensor Vladimir Antonov Royal Holloway University of London .

AcknowledgmentsAcknowledgments

Royal Holloway, UK : H Hashiba

Tokyo University&JST, Japan: Prof. S Komiyama, Drs. J Chen, O Astafiev (NEC)

ISSP RAN, Russia: Dr. L Kulik

NPL, UK: Dr A Tzalenchuk, Dr S Gibling and P Kleinschmidt

Chalmers University, Sweden: Prof. P Delsing, Dr S Kubatkin

Optisense LTD: M Andreo

Page 3: Towards passive terahertz imaging using a semiconductor quantum dot sensor Vladimir Antonov Royal Holloway University of London .

Passive Imaging with Passive Imaging with superconducting bolometer by superconducting bolometer by

VTT-NISTVTT-NIST

Nb superconducting bolometer Detection of hidden weapon

Courtesy of VTT-NISTCourtesy of VTT-NIST

Page 4: Towards passive terahertz imaging using a semiconductor quantum dot sensor Vladimir Antonov Royal Holloway University of London .

Some numbers for considerationSome numbers for consideration

Background limited noise BLIP~ T(F/n)1/2 , where F - frame rate

(10Hz), n - number of detected photons (108), ~0.05K

Noise Equivalent Temperature Difference (NETD)

imposed by the temperature contrast, or variation of

spectral intensity (spectral fingertips) < 0.1K

Detector should have NETD better than 0.1K and

counting rate around 108 photons/sec

Page 5: Towards passive terahertz imaging using a semiconductor quantum dot sensor Vladimir Antonov Royal Holloway University of London .

Some numbers for considerationSome numbers for consideration

Plank’s law

100 200 300 400 500

0.5

1

1.5

2T=305K

T=300K

f , THz

U,

10-1

9 J

/(H

z m

3 )

There is a difference in ~1010 photons/sec (~10-23J) for black body radiation at 300K and 305K in bandwidth from 0.5 to 0.7 THz.

Passive imaging

0.5 0.6 0.7 0.80.75

1.25

1.5

1.75

2

2.25

U,

10-2

1 J

/(H

z m

3 )

f , THz

Page 6: Towards passive terahertz imaging using a semiconductor quantum dot sensor Vladimir Antonov Royal Holloway University of London .

Finger prints of explosivesFinger prints of explosives

Complex materials has a unique fingerprints in spectrum

T=300K

JF Federici et all ’05

Page 7: Towards passive terahertz imaging using a semiconductor quantum dot sensor Vladimir Antonov Royal Holloway University of London .

QD as a spectral sensitive QD as a spectral sensitive detectordetector

Layout of the QD in 2DEG SEM images of the QD

222

0

2

cc

B (Tesla)0 1 2 3 4 5

0

20

40

60

Fre

quen

cy

(/c

m)

c

0

QD in magnetic field

Zero filed

Plasma resonance in QD

Rm

ne

1

4~

22

0

Resonance curve

APL ’02

Page 8: Towards passive terahertz imaging using a semiconductor quantum dot sensor Vladimir Antonov Royal Holloway University of London .

QD-SET detectorQD-SET detector

eC1

2

0

EF

QDSET

Energy diagram

Dark switches and photo-response

radiation is ON

radiation is OFF

SE

T c

urr

ent,

arb

7525

Time,sec

Log-periodic circular antenna (0.2-3Thz) coupled with QD sensor

Conduct

ance

Gate voltage, Vg

original peaks

shifted peaks

Vg

SET response to QD excitation

Page 9: Towards passive terahertz imaging using a semiconductor quantum dot sensor Vladimir Antonov Royal Holloway University of London .

Modeling of QD-SETModeling of QD-SET

CSD

CCD

CSS

CSS

C1S

R1S

C2S

R2S

C1D

R1D

C2D

R2D

ND

NS

VS VC

VSD

CC

CGSG1

SG2

SET

QD D

DCC

DSS

CSCC

SSSSET eNCVCV

C

CCVCVQ

Offset charge at SET

21 CCCCCC DC

DSC

QSE

T

NSET NSET+1

-Vc

Page 10: Towards passive terahertz imaging using a semiconductor quantum dot sensor Vladimir Antonov Royal Holloway University of London .

Formation of QDFormation of QD

020

0-2.75 -2.70

VC (V)

I (p

A)

S

ICharging of the QD

-4.0 -3.8 -3.6 -3.4V

S,V

I S, a

rb. u

nits

2D map of SET current Individual SET trace

Page 11: Towards passive terahertz imaging using a semiconductor quantum dot sensor Vladimir Antonov Royal Holloway University of London .

Photosignal at 0.3KPhotosignal at 0.3K

T=0.05K T=0.3K

Page 12: Towards passive terahertz imaging using a semiconductor quantum dot sensor Vladimir Antonov Royal Holloway University of London .

Photo response and dark counts Photo response and dark counts

APL, JAP, PRB, IEEE ’04-07

Noise Equivalent Power~ 10-20 Watt/Hz1/2

NETD = NEP/(2~0.01K

Quantum Efficiency ~1%

Spectral bandwidth ~ 1%

Operation temperature is limited by SET (up to 4K)

Page 13: Towards passive terahertz imaging using a semiconductor quantum dot sensor Vladimir Antonov Royal Holloway University of London .

Photosignal at 0.5-0.7KPhotosignal at 0.5-0.7K

5

10

15

20

25

30

35

-2.20 -2.15 -2.10 -2.05 -2.00

0

30

60

90

120

Co

un

ts,s

-1

VC,V

Life

time

,ms

T=0.7Kphotoresponse

dark

5

10

15

20

25

30

35

-2.20 -2.15 -2.10 -2.05 -2.00

0

30

60

90

120

Cou

nts,

s-1

VC,V

Lifetime,m

s

T=0.5K photoresponse

dark

Page 14: Towards passive terahertz imaging using a semiconductor quantum dot sensor Vladimir Antonov Royal Holloway University of London .

2D maps of QD-SET 2D maps of QD-SET

Emitter is ON

VC, VV

S,

V

Physica E ’06PRB’06

Emitter is OFF

VC, V

VS,

V

Page 15: Towards passive terahertz imaging using a semiconductor quantum dot sensor Vladimir Antonov Royal Holloway University of London .

Detector of different Detector of different designsdesigns

A vertical sensor

A lateral sensor with QD crossing the channel

A lateral sensor with QD inside channel

A lateral sensor with QD outside channel

Page 16: Towards passive terahertz imaging using a semiconductor quantum dot sensor Vladimir Antonov Royal Holloway University of London .

QD outside of 2DEG QD outside of 2DEG channelchannel

Gate

QD-SET

Page 17: Towards passive terahertz imaging using a semiconductor quantum dot sensor Vladimir Antonov Royal Holloway University of London .

QD inside the 2DEG QD inside the 2DEG channelchannel

Page 18: Towards passive terahertz imaging using a semiconductor quantum dot sensor Vladimir Antonov Royal Holloway University of London .

QD in high magnetic fieldQD in high magnetic field

CC 112

C2

Metal gates

Vg

EF LL1

LL2

LL0

LL1

NATURE, 2000

QD in high magnetic field

1

SEM picture of the QD

Page 19: Towards passive terahertz imaging using a semiconductor quantum dot sensor Vladimir Antonov Royal Holloway University of London .

QD in high QD in high BB

light off

light on

-689 -688 -6870.0

0.2

0.4

0.6

Con

duct

ance

(e2 /h

)

Gate voltage (mV)

B=3.67 TT=0.05 K

0 5 10Time (sec)

light off

light on

Con

duct

ance

(e /h

)2

0.0

0.2

0.4

QD under illumination Time traces of QD conductance

Spectral sensitivity of the detector

Page 20: Towards passive terahertz imaging using a semiconductor quantum dot sensor Vladimir Antonov Royal Holloway University of London .

QD in high QD in high BB

B(Tesla)

3.5

II II II II II II II II II II II

I I I I I I I II

3.73.6

-660

-665

-670

Con

trol

gat

e vo

ltage

(m

Vol

t)

Con

dact

ance

(arb

.uni

ts)

0

1

QD has three levels: LL0LL0LL1

I IILifetime of excitations

3.4 3.6 3.8 4.0 4.210

-3

10-2

10-1

1

101

102

103

104

6

98

7 5

43

2 1

Life

time

(s)

B (T)

PRB, 2002

Page 21: Towards passive terahertz imaging using a semiconductor quantum dot sensor Vladimir Antonov Royal Holloway University of London .

LT THZ microscope LT THZ microscope of Tokyo Universityof Tokyo University

Ikushima, Komiyama APL, 2006

Page 22: Towards passive terahertz imaging using a semiconductor quantum dot sensor Vladimir Antonov Royal Holloway University of London .

LT THZ microscope LT THZ microscope of Tokyo Universityof Tokyo University

Page 23: Towards passive terahertz imaging using a semiconductor quantum dot sensor Vladimir Antonov Royal Holloway University of London .

Future plans: Quantum Dot in Future plans: Quantum Dot in DQW heterostructure DQW heterostructure

~1 THz

Schematic view Inter-well excitation in asymmetric DQW

Page 24: Towards passive terahertz imaging using a semiconductor quantum dot sensor Vladimir Antonov Royal Holloway University of London .

Near-field antennaeNear-field antennae

50

Simulation of near-field antennae

Simulation of E-field

Near-field antenna

Page 25: Towards passive terahertz imaging using a semiconductor quantum dot sensor Vladimir Antonov Royal Holloway University of London .

Near-field antennaNear-field antenna

Page 26: Towards passive terahertz imaging using a semiconductor quantum dot sensor Vladimir Antonov Royal Holloway University of London .

Challenges Challenges

QD detector: which type?

Room Temperature Imaging

Source of THz radiation for in-situ calibration

• Physics of isolated QD in DW heterostructures

Page 27: Towards passive terahertz imaging using a semiconductor quantum dot sensor Vladimir Antonov Royal Holloway University of London .

Vertical sensor in DQWVertical sensor in DQWheterostructureheterostructure

An et all, PRB’07