Top Banner
Towards an Hydrological Qualification of the Simulated Rainfall in Mountainous Areas Eddy Yates, Sandrine Anquetin, Jean-Dominique Creutin Laboratoire d’étude des Transferts en Hydrologie et Environnement, Grenoble, France
12

Towards an Hydrological Qualification of the Simulated Rainfall in Mountainous Areas Eddy Yates, Sandrine Anquetin, Jean-Dominique Creutin Laboratoire.

Dec 18, 2015

Download

Documents

Ira Ford
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Towards an Hydrological Qualification of the Simulated Rainfall in Mountainous Areas Eddy Yates, Sandrine Anquetin, Jean-Dominique Creutin Laboratoire.

Towards an Hydrological Qualification of the Simulated Rainfall

in Mountainous Areas

Eddy Yates, Sandrine Anquetin, Jean-Dominique Creutin

Laboratoire d’étude des Transferts en Hydrologie et Environnement, Grenoble, France

Page 2: Towards an Hydrological Qualification of the Simulated Rainfall in Mountainous Areas Eddy Yates, Sandrine Anquetin, Jean-Dominique Creutin Laboratoire.

Cévennes-Vivarais : a region prone to flash floods

• Objective : forecast of these flash floods.

• We focus here on the precipitation forecast.

Introduction Method Results Conclusions

• Watersheds– 100 to 1000 km2

– specific outflows of up to 5 m3s-1km-2

• Storms– 300-400 mm in 6-12 h. over some

100s km2

HYDRAM Water depth seen by the Nîmes radar (Météo-France)October 6, 2001 Vidourle, October 6 – 7, 2001

Q~ 100 Q mean

300 mm9 h

Hilly region between the Mediterranean sea and the Massif Central. Rainy autumns.

Page 3: Towards an Hydrological Qualification of the Simulated Rainfall in Mountainous Areas Eddy Yates, Sandrine Anquetin, Jean-Dominique Creutin Laboratoire.

Precipitation forecast model

We use Meso-NH (Météo-France, CNRS) : a meso-scale non-hydrostatic model a nested configuration. The finest grid has a

2.5 km resolution which allows an explicit resolution of the convection

Introduction Method Results Conclusions

Page 4: Towards an Hydrological Qualification of the Simulated Rainfall in Mountainous Areas Eddy Yates, Sandrine Anquetin, Jean-Dominique Creutin Laboratoire.

Reference observed rain fields

We use kriging : an exact interpolator it takes into account the statistical structure

of the rain-gauge data it gives an estimation of the reliability of the

interpolation (estimation variance)

Simulation and observation are observed for 1h and 11h cumulated rainfall.

Introduction Method Results Conclusions

Page 5: Towards an Hydrological Qualification of the Simulated Rainfall in Mountainous Areas Eddy Yates, Sandrine Anquetin, Jean-Dominique Creutin Laboratoire.

Cases studied

Two simulations with very different qualities.

The point is : “how much better” is the better simulation ? is it better for hydrological purposes too ?

Introduction Method Results Conclusions

1995 : Gardon d’Anduze 2001 : Vidourle

Bad localisation Not enough precipitation simulated (maximum cumulated rainfall

of 160 mm vs. 260 mm)

Observations Simulation

2001

Observations SimulationQuite a good localisation

Not enough precipitation simulated (maximum cumulated rainfall of 100 mm vs. 170 mm)

1995

Page 6: Towards an Hydrological Qualification of the Simulated Rainfall in Mountainous Areas Eddy Yates, Sandrine Anquetin, Jean-Dominique Creutin Laboratoire.

MethodIntroduction Method Results Conclusions

Page 7: Towards an Hydrological Qualification of the Simulated Rainfall in Mountainous Areas Eddy Yates, Sandrine Anquetin, Jean-Dominique Creutin Laboratoire.

MethodIntroduction Method Results Conclusions

R²(area)

R²(area)

Observation

Forecast

Page 8: Towards an Hydrological Qualification of the Simulated Rainfall in Mountainous Areas Eddy Yates, Sandrine Anquetin, Jean-Dominique Creutin Laboratoire.

MethodIntroduction Method Results Conclusions

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

10 100 1000 10000

Area (km²)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

10 100 1000 10000

Area (km²)

estimation error limit

point to point correlation limit

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

10 100 1000 10000

Area (km²)

Page 9: Towards an Hydrological Qualification of the Simulated Rainfall in Mountainous Areas Eddy Yates, Sandrine Anquetin, Jean-Dominique Creutin Laboratoire.

Evolution of the correlation with the area

Introduction Method Results Conclusions

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

10 100 1000 10000

Area (km²)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

10 100 1000 10000

Area (km²)

1995 2001

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

10 100 1000 10000

Area (km²)

1995 11 h cumulated rainfall

Lower short-range accuracy for short time accumulation

1995 1 h cumulated rainfall

Page 10: Towards an Hydrological Qualification of the Simulated Rainfall in Mountainous Areas Eddy Yates, Sandrine Anquetin, Jean-Dominique Creutin Laboratoire.

Limits of the methodIntroduction Method Results Conclusions

1

10

100

1000

10000

100000

10 100 1000 10000

Area (km²)

# pe

r cla

ss

1

10

100

1000

10000

100000

10 100 1000 10000

Area (km²)

# p

er c

lass

1

10

100

1000

10000

100000

10 100 1000 10000

Area (km²)

# p

er c

lass

2001 1995

Page 11: Towards an Hydrological Qualification of the Simulated Rainfall in Mountainous Areas Eddy Yates, Sandrine Anquetin, Jean-Dominique Creutin Laboratoire.

Conclusions, perspectives

• The method can discriminate good forecasts from very bad forecasts

• We need other cases to test the method• The method must be tested with distributed data

too (radars)• Next step : use of TOPODYN (LTHE), a

hydrologic model from the TOPMODEL family. It considers several scales of the watersheds.

Introduction Method Results Conclusions

Page 12: Towards an Hydrological Qualification of the Simulated Rainfall in Mountainous Areas Eddy Yates, Sandrine Anquetin, Jean-Dominique Creutin Laboratoire.

Thank you