Top Banner
1
45

Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

Jun 25, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

1

Topological Phase Transitions

Robert Adler

Electrical Engineering

Technion ndash Israel Institute of Technology

Stochastic Geometry ndash Poitiers ndash August 2015

Robert Adler

Electrical Engineering

Technion ndash Israel Institute of Technology

and many others

Topological Phase Transitions

(Nature abhors complexity)

ISING MODEL

Starling murmuration Rahat Israel

The wonderful world of geotopology

ALGEBRAIC TOPOLOGY Homology homotopy dimensions of groups Betti numbers persistence

DIFFERENTIAL TOPOLOGY Curvature forms Betti numbers Morse theory integration Lipschitz-Killing curvatures

INTEGRAL GEOMETRY Convexity convex ring kinematic formulae Minkowski functionals

SIMPLICIAL TOPOLOGY Simplices complexes cycles numbers of simplices Betti numbers

9

A 1-slide course on Gaussian random fields

On a topological space M (maybe a stratified Riemannian manifold)

Then take independent Gaussian random variables

and define a Gaussian random field

choose a set of dense functions on M (eg Eigenfunctions of the Laplacian)

Excursion sets

11

The Gaussian Kinematic Formula

Theorem

12

GKF - Examples

13

GKF and phase transitions

The separation of homologies

15

An example

Spin glasses and Gaussian critical points

METHOD OF PROOF bull Rice formula for mean bull Exploitation of specific covariance bull Variance for concentration

18

The Euler characteristic heuristic

As well as a general theory of the critical points a Gaussian and related via Kac-Slepian models

20

The Čech Complex

bullTake a set of vertices P (0-simplexes)

bullDraw balls with radius

bullIntersection of 2 balls an edge (1-simplex)

bullIntersection of 3 balls a triangle (2-simplex)

bullIntersection of n balls a (n-1)-simplex

NERVE THEOREM The Cech complex and union of balls have the same homology

E(EC) for Cech complexes on Td

Decreusefond Ferraz Randriam Vergne by counting simplices

2 Poisson process

1 Points (n) chosen at random

E(EC) for Cech complexes

n=100d=3

n=100d=8

n=100d=6

n=100d=10

Cech complex on 1000 points in [01]3

24

Phase transitionspersistence for complexes

Dust or subcritical phase

Thermodynamic or critical or percolation phase

Connectivity or supercritical phase

Theory MK EM OB YD inter alia

fd Dust subcritical

Critical percolative thermodynamic

Dense supercrictical

Recall = critical points p with

26

Three phases of rigorous results (OB)

bull

bull

bull

Theorem

27

Subcritical (dust) phase

Theorem

Erdos-Renyi graphs and complexes

The graph is on n vertices where each edge appears with probability p independently for each edge

Traditionally only the graph structure is studied The literature is extensive and rich

This is a mean field model Unrealistic but mathematically tractable and often representative

Increasing p increases the topological nature of the graph

Linial-Meshulam model

bull X(dnp) A generalization of the Erdos-Renyi graph G(np)

bull Start with a full (d minus 1)-dimensional skeleton

bull For each d-dimensional face independently and with probability p decide whether to include it in X(dnp) or not

In the evolution of these complexes with d ge 2 the first occurring cycle is almost surely either

bull 11133231113323 The boundary of a (d + 1)-dimensional simplex or

bull 11133231113323 A cycle that includes Ω(n^d) faces of dimension d

Consequently when d ge 2 different kinds of phase transitions occur

Costa and

Farber and

phase diagrams

Kahle Topology of

random simplicial

complexes a survey

Bobrowski and Kahle

Topology of random

geometric complexes

31

Different local structures

Simple perturbed lattice Poisson point process Cox point process

32

(Un) Perturbed lattices

Structured point processes lead to a narrower range of topological behaviour

Models for clouds of interacting points

Growth of Betti numbers (YD)

Betti numbers taken over the Cech complex with radii rn over growing regions of the form

Two fluctuation theorems (DY ES)

bullDistributions with compact support on

bullDistributions with unbounded support on

Core Crackle

Draw random balls with a fixed radius

What is crackle and why would one care

Crackle - Definitions

How Power-Law Noise Crackles

core

Theorem

where

How Exponential Noise Crackles

core

Theorem

where

Gaussian Noise Does Not Crackle

Theorem

core no crackle

Recall

So

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 2: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

Topological Phase Transitions

Robert Adler

Electrical Engineering

Technion ndash Israel Institute of Technology

Stochastic Geometry ndash Poitiers ndash August 2015

Robert Adler

Electrical Engineering

Technion ndash Israel Institute of Technology

and many others

Topological Phase Transitions

(Nature abhors complexity)

ISING MODEL

Starling murmuration Rahat Israel

The wonderful world of geotopology

ALGEBRAIC TOPOLOGY Homology homotopy dimensions of groups Betti numbers persistence

DIFFERENTIAL TOPOLOGY Curvature forms Betti numbers Morse theory integration Lipschitz-Killing curvatures

INTEGRAL GEOMETRY Convexity convex ring kinematic formulae Minkowski functionals

SIMPLICIAL TOPOLOGY Simplices complexes cycles numbers of simplices Betti numbers

9

A 1-slide course on Gaussian random fields

On a topological space M (maybe a stratified Riemannian manifold)

Then take independent Gaussian random variables

and define a Gaussian random field

choose a set of dense functions on M (eg Eigenfunctions of the Laplacian)

Excursion sets

11

The Gaussian Kinematic Formula

Theorem

12

GKF - Examples

13

GKF and phase transitions

The separation of homologies

15

An example

Spin glasses and Gaussian critical points

METHOD OF PROOF bull Rice formula for mean bull Exploitation of specific covariance bull Variance for concentration

18

The Euler characteristic heuristic

As well as a general theory of the critical points a Gaussian and related via Kac-Slepian models

20

The Čech Complex

bullTake a set of vertices P (0-simplexes)

bullDraw balls with radius

bullIntersection of 2 balls an edge (1-simplex)

bullIntersection of 3 balls a triangle (2-simplex)

bullIntersection of n balls a (n-1)-simplex

NERVE THEOREM The Cech complex and union of balls have the same homology

E(EC) for Cech complexes on Td

Decreusefond Ferraz Randriam Vergne by counting simplices

2 Poisson process

1 Points (n) chosen at random

E(EC) for Cech complexes

n=100d=3

n=100d=8

n=100d=6

n=100d=10

Cech complex on 1000 points in [01]3

24

Phase transitionspersistence for complexes

Dust or subcritical phase

Thermodynamic or critical or percolation phase

Connectivity or supercritical phase

Theory MK EM OB YD inter alia

fd Dust subcritical

Critical percolative thermodynamic

Dense supercrictical

Recall = critical points p with

26

Three phases of rigorous results (OB)

bull

bull

bull

Theorem

27

Subcritical (dust) phase

Theorem

Erdos-Renyi graphs and complexes

The graph is on n vertices where each edge appears with probability p independently for each edge

Traditionally only the graph structure is studied The literature is extensive and rich

This is a mean field model Unrealistic but mathematically tractable and often representative

Increasing p increases the topological nature of the graph

Linial-Meshulam model

bull X(dnp) A generalization of the Erdos-Renyi graph G(np)

bull Start with a full (d minus 1)-dimensional skeleton

bull For each d-dimensional face independently and with probability p decide whether to include it in X(dnp) or not

In the evolution of these complexes with d ge 2 the first occurring cycle is almost surely either

bull 11133231113323 The boundary of a (d + 1)-dimensional simplex or

bull 11133231113323 A cycle that includes Ω(n^d) faces of dimension d

Consequently when d ge 2 different kinds of phase transitions occur

Costa and

Farber and

phase diagrams

Kahle Topology of

random simplicial

complexes a survey

Bobrowski and Kahle

Topology of random

geometric complexes

31

Different local structures

Simple perturbed lattice Poisson point process Cox point process

32

(Un) Perturbed lattices

Structured point processes lead to a narrower range of topological behaviour

Models for clouds of interacting points

Growth of Betti numbers (YD)

Betti numbers taken over the Cech complex with radii rn over growing regions of the form

Two fluctuation theorems (DY ES)

bullDistributions with compact support on

bullDistributions with unbounded support on

Core Crackle

Draw random balls with a fixed radius

What is crackle and why would one care

Crackle - Definitions

How Power-Law Noise Crackles

core

Theorem

where

How Exponential Noise Crackles

core

Theorem

where

Gaussian Noise Does Not Crackle

Theorem

core no crackle

Recall

So

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 3: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

Robert Adler

Electrical Engineering

Technion ndash Israel Institute of Technology

and many others

Topological Phase Transitions

(Nature abhors complexity)

ISING MODEL

Starling murmuration Rahat Israel

The wonderful world of geotopology

ALGEBRAIC TOPOLOGY Homology homotopy dimensions of groups Betti numbers persistence

DIFFERENTIAL TOPOLOGY Curvature forms Betti numbers Morse theory integration Lipschitz-Killing curvatures

INTEGRAL GEOMETRY Convexity convex ring kinematic formulae Minkowski functionals

SIMPLICIAL TOPOLOGY Simplices complexes cycles numbers of simplices Betti numbers

9

A 1-slide course on Gaussian random fields

On a topological space M (maybe a stratified Riemannian manifold)

Then take independent Gaussian random variables

and define a Gaussian random field

choose a set of dense functions on M (eg Eigenfunctions of the Laplacian)

Excursion sets

11

The Gaussian Kinematic Formula

Theorem

12

GKF - Examples

13

GKF and phase transitions

The separation of homologies

15

An example

Spin glasses and Gaussian critical points

METHOD OF PROOF bull Rice formula for mean bull Exploitation of specific covariance bull Variance for concentration

18

The Euler characteristic heuristic

As well as a general theory of the critical points a Gaussian and related via Kac-Slepian models

20

The Čech Complex

bullTake a set of vertices P (0-simplexes)

bullDraw balls with radius

bullIntersection of 2 balls an edge (1-simplex)

bullIntersection of 3 balls a triangle (2-simplex)

bullIntersection of n balls a (n-1)-simplex

NERVE THEOREM The Cech complex and union of balls have the same homology

E(EC) for Cech complexes on Td

Decreusefond Ferraz Randriam Vergne by counting simplices

2 Poisson process

1 Points (n) chosen at random

E(EC) for Cech complexes

n=100d=3

n=100d=8

n=100d=6

n=100d=10

Cech complex on 1000 points in [01]3

24

Phase transitionspersistence for complexes

Dust or subcritical phase

Thermodynamic or critical or percolation phase

Connectivity or supercritical phase

Theory MK EM OB YD inter alia

fd Dust subcritical

Critical percolative thermodynamic

Dense supercrictical

Recall = critical points p with

26

Three phases of rigorous results (OB)

bull

bull

bull

Theorem

27

Subcritical (dust) phase

Theorem

Erdos-Renyi graphs and complexes

The graph is on n vertices where each edge appears with probability p independently for each edge

Traditionally only the graph structure is studied The literature is extensive and rich

This is a mean field model Unrealistic but mathematically tractable and often representative

Increasing p increases the topological nature of the graph

Linial-Meshulam model

bull X(dnp) A generalization of the Erdos-Renyi graph G(np)

bull Start with a full (d minus 1)-dimensional skeleton

bull For each d-dimensional face independently and with probability p decide whether to include it in X(dnp) or not

In the evolution of these complexes with d ge 2 the first occurring cycle is almost surely either

bull 11133231113323 The boundary of a (d + 1)-dimensional simplex or

bull 11133231113323 A cycle that includes Ω(n^d) faces of dimension d

Consequently when d ge 2 different kinds of phase transitions occur

Costa and

Farber and

phase diagrams

Kahle Topology of

random simplicial

complexes a survey

Bobrowski and Kahle

Topology of random

geometric complexes

31

Different local structures

Simple perturbed lattice Poisson point process Cox point process

32

(Un) Perturbed lattices

Structured point processes lead to a narrower range of topological behaviour

Models for clouds of interacting points

Growth of Betti numbers (YD)

Betti numbers taken over the Cech complex with radii rn over growing regions of the form

Two fluctuation theorems (DY ES)

bullDistributions with compact support on

bullDistributions with unbounded support on

Core Crackle

Draw random balls with a fixed radius

What is crackle and why would one care

Crackle - Definitions

How Power-Law Noise Crackles

core

Theorem

where

How Exponential Noise Crackles

core

Theorem

where

Gaussian Noise Does Not Crackle

Theorem

core no crackle

Recall

So

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 4: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

ISING MODEL

Starling murmuration Rahat Israel

The wonderful world of geotopology

ALGEBRAIC TOPOLOGY Homology homotopy dimensions of groups Betti numbers persistence

DIFFERENTIAL TOPOLOGY Curvature forms Betti numbers Morse theory integration Lipschitz-Killing curvatures

INTEGRAL GEOMETRY Convexity convex ring kinematic formulae Minkowski functionals

SIMPLICIAL TOPOLOGY Simplices complexes cycles numbers of simplices Betti numbers

9

A 1-slide course on Gaussian random fields

On a topological space M (maybe a stratified Riemannian manifold)

Then take independent Gaussian random variables

and define a Gaussian random field

choose a set of dense functions on M (eg Eigenfunctions of the Laplacian)

Excursion sets

11

The Gaussian Kinematic Formula

Theorem

12

GKF - Examples

13

GKF and phase transitions

The separation of homologies

15

An example

Spin glasses and Gaussian critical points

METHOD OF PROOF bull Rice formula for mean bull Exploitation of specific covariance bull Variance for concentration

18

The Euler characteristic heuristic

As well as a general theory of the critical points a Gaussian and related via Kac-Slepian models

20

The Čech Complex

bullTake a set of vertices P (0-simplexes)

bullDraw balls with radius

bullIntersection of 2 balls an edge (1-simplex)

bullIntersection of 3 balls a triangle (2-simplex)

bullIntersection of n balls a (n-1)-simplex

NERVE THEOREM The Cech complex and union of balls have the same homology

E(EC) for Cech complexes on Td

Decreusefond Ferraz Randriam Vergne by counting simplices

2 Poisson process

1 Points (n) chosen at random

E(EC) for Cech complexes

n=100d=3

n=100d=8

n=100d=6

n=100d=10

Cech complex on 1000 points in [01]3

24

Phase transitionspersistence for complexes

Dust or subcritical phase

Thermodynamic or critical or percolation phase

Connectivity or supercritical phase

Theory MK EM OB YD inter alia

fd Dust subcritical

Critical percolative thermodynamic

Dense supercrictical

Recall = critical points p with

26

Three phases of rigorous results (OB)

bull

bull

bull

Theorem

27

Subcritical (dust) phase

Theorem

Erdos-Renyi graphs and complexes

The graph is on n vertices where each edge appears with probability p independently for each edge

Traditionally only the graph structure is studied The literature is extensive and rich

This is a mean field model Unrealistic but mathematically tractable and often representative

Increasing p increases the topological nature of the graph

Linial-Meshulam model

bull X(dnp) A generalization of the Erdos-Renyi graph G(np)

bull Start with a full (d minus 1)-dimensional skeleton

bull For each d-dimensional face independently and with probability p decide whether to include it in X(dnp) or not

In the evolution of these complexes with d ge 2 the first occurring cycle is almost surely either

bull 11133231113323 The boundary of a (d + 1)-dimensional simplex or

bull 11133231113323 A cycle that includes Ω(n^d) faces of dimension d

Consequently when d ge 2 different kinds of phase transitions occur

Costa and

Farber and

phase diagrams

Kahle Topology of

random simplicial

complexes a survey

Bobrowski and Kahle

Topology of random

geometric complexes

31

Different local structures

Simple perturbed lattice Poisson point process Cox point process

32

(Un) Perturbed lattices

Structured point processes lead to a narrower range of topological behaviour

Models for clouds of interacting points

Growth of Betti numbers (YD)

Betti numbers taken over the Cech complex with radii rn over growing regions of the form

Two fluctuation theorems (DY ES)

bullDistributions with compact support on

bullDistributions with unbounded support on

Core Crackle

Draw random balls with a fixed radius

What is crackle and why would one care

Crackle - Definitions

How Power-Law Noise Crackles

core

Theorem

where

How Exponential Noise Crackles

core

Theorem

where

Gaussian Noise Does Not Crackle

Theorem

core no crackle

Recall

So

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 5: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

Starling murmuration Rahat Israel

The wonderful world of geotopology

ALGEBRAIC TOPOLOGY Homology homotopy dimensions of groups Betti numbers persistence

DIFFERENTIAL TOPOLOGY Curvature forms Betti numbers Morse theory integration Lipschitz-Killing curvatures

INTEGRAL GEOMETRY Convexity convex ring kinematic formulae Minkowski functionals

SIMPLICIAL TOPOLOGY Simplices complexes cycles numbers of simplices Betti numbers

9

A 1-slide course on Gaussian random fields

On a topological space M (maybe a stratified Riemannian manifold)

Then take independent Gaussian random variables

and define a Gaussian random field

choose a set of dense functions on M (eg Eigenfunctions of the Laplacian)

Excursion sets

11

The Gaussian Kinematic Formula

Theorem

12

GKF - Examples

13

GKF and phase transitions

The separation of homologies

15

An example

Spin glasses and Gaussian critical points

METHOD OF PROOF bull Rice formula for mean bull Exploitation of specific covariance bull Variance for concentration

18

The Euler characteristic heuristic

As well as a general theory of the critical points a Gaussian and related via Kac-Slepian models

20

The Čech Complex

bullTake a set of vertices P (0-simplexes)

bullDraw balls with radius

bullIntersection of 2 balls an edge (1-simplex)

bullIntersection of 3 balls a triangle (2-simplex)

bullIntersection of n balls a (n-1)-simplex

NERVE THEOREM The Cech complex and union of balls have the same homology

E(EC) for Cech complexes on Td

Decreusefond Ferraz Randriam Vergne by counting simplices

2 Poisson process

1 Points (n) chosen at random

E(EC) for Cech complexes

n=100d=3

n=100d=8

n=100d=6

n=100d=10

Cech complex on 1000 points in [01]3

24

Phase transitionspersistence for complexes

Dust or subcritical phase

Thermodynamic or critical or percolation phase

Connectivity or supercritical phase

Theory MK EM OB YD inter alia

fd Dust subcritical

Critical percolative thermodynamic

Dense supercrictical

Recall = critical points p with

26

Three phases of rigorous results (OB)

bull

bull

bull

Theorem

27

Subcritical (dust) phase

Theorem

Erdos-Renyi graphs and complexes

The graph is on n vertices where each edge appears with probability p independently for each edge

Traditionally only the graph structure is studied The literature is extensive and rich

This is a mean field model Unrealistic but mathematically tractable and often representative

Increasing p increases the topological nature of the graph

Linial-Meshulam model

bull X(dnp) A generalization of the Erdos-Renyi graph G(np)

bull Start with a full (d minus 1)-dimensional skeleton

bull For each d-dimensional face independently and with probability p decide whether to include it in X(dnp) or not

In the evolution of these complexes with d ge 2 the first occurring cycle is almost surely either

bull 11133231113323 The boundary of a (d + 1)-dimensional simplex or

bull 11133231113323 A cycle that includes Ω(n^d) faces of dimension d

Consequently when d ge 2 different kinds of phase transitions occur

Costa and

Farber and

phase diagrams

Kahle Topology of

random simplicial

complexes a survey

Bobrowski and Kahle

Topology of random

geometric complexes

31

Different local structures

Simple perturbed lattice Poisson point process Cox point process

32

(Un) Perturbed lattices

Structured point processes lead to a narrower range of topological behaviour

Models for clouds of interacting points

Growth of Betti numbers (YD)

Betti numbers taken over the Cech complex with radii rn over growing regions of the form

Two fluctuation theorems (DY ES)

bullDistributions with compact support on

bullDistributions with unbounded support on

Core Crackle

Draw random balls with a fixed radius

What is crackle and why would one care

Crackle - Definitions

How Power-Law Noise Crackles

core

Theorem

where

How Exponential Noise Crackles

core

Theorem

where

Gaussian Noise Does Not Crackle

Theorem

core no crackle

Recall

So

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 6: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

The wonderful world of geotopology

ALGEBRAIC TOPOLOGY Homology homotopy dimensions of groups Betti numbers persistence

DIFFERENTIAL TOPOLOGY Curvature forms Betti numbers Morse theory integration Lipschitz-Killing curvatures

INTEGRAL GEOMETRY Convexity convex ring kinematic formulae Minkowski functionals

SIMPLICIAL TOPOLOGY Simplices complexes cycles numbers of simplices Betti numbers

9

A 1-slide course on Gaussian random fields

On a topological space M (maybe a stratified Riemannian manifold)

Then take independent Gaussian random variables

and define a Gaussian random field

choose a set of dense functions on M (eg Eigenfunctions of the Laplacian)

Excursion sets

11

The Gaussian Kinematic Formula

Theorem

12

GKF - Examples

13

GKF and phase transitions

The separation of homologies

15

An example

Spin glasses and Gaussian critical points

METHOD OF PROOF bull Rice formula for mean bull Exploitation of specific covariance bull Variance for concentration

18

The Euler characteristic heuristic

As well as a general theory of the critical points a Gaussian and related via Kac-Slepian models

20

The Čech Complex

bullTake a set of vertices P (0-simplexes)

bullDraw balls with radius

bullIntersection of 2 balls an edge (1-simplex)

bullIntersection of 3 balls a triangle (2-simplex)

bullIntersection of n balls a (n-1)-simplex

NERVE THEOREM The Cech complex and union of balls have the same homology

E(EC) for Cech complexes on Td

Decreusefond Ferraz Randriam Vergne by counting simplices

2 Poisson process

1 Points (n) chosen at random

E(EC) for Cech complexes

n=100d=3

n=100d=8

n=100d=6

n=100d=10

Cech complex on 1000 points in [01]3

24

Phase transitionspersistence for complexes

Dust or subcritical phase

Thermodynamic or critical or percolation phase

Connectivity or supercritical phase

Theory MK EM OB YD inter alia

fd Dust subcritical

Critical percolative thermodynamic

Dense supercrictical

Recall = critical points p with

26

Three phases of rigorous results (OB)

bull

bull

bull

Theorem

27

Subcritical (dust) phase

Theorem

Erdos-Renyi graphs and complexes

The graph is on n vertices where each edge appears with probability p independently for each edge

Traditionally only the graph structure is studied The literature is extensive and rich

This is a mean field model Unrealistic but mathematically tractable and often representative

Increasing p increases the topological nature of the graph

Linial-Meshulam model

bull X(dnp) A generalization of the Erdos-Renyi graph G(np)

bull Start with a full (d minus 1)-dimensional skeleton

bull For each d-dimensional face independently and with probability p decide whether to include it in X(dnp) or not

In the evolution of these complexes with d ge 2 the first occurring cycle is almost surely either

bull 11133231113323 The boundary of a (d + 1)-dimensional simplex or

bull 11133231113323 A cycle that includes Ω(n^d) faces of dimension d

Consequently when d ge 2 different kinds of phase transitions occur

Costa and

Farber and

phase diagrams

Kahle Topology of

random simplicial

complexes a survey

Bobrowski and Kahle

Topology of random

geometric complexes

31

Different local structures

Simple perturbed lattice Poisson point process Cox point process

32

(Un) Perturbed lattices

Structured point processes lead to a narrower range of topological behaviour

Models for clouds of interacting points

Growth of Betti numbers (YD)

Betti numbers taken over the Cech complex with radii rn over growing regions of the form

Two fluctuation theorems (DY ES)

bullDistributions with compact support on

bullDistributions with unbounded support on

Core Crackle

Draw random balls with a fixed radius

What is crackle and why would one care

Crackle - Definitions

How Power-Law Noise Crackles

core

Theorem

where

How Exponential Noise Crackles

core

Theorem

where

Gaussian Noise Does Not Crackle

Theorem

core no crackle

Recall

So

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 7: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

9

A 1-slide course on Gaussian random fields

On a topological space M (maybe a stratified Riemannian manifold)

Then take independent Gaussian random variables

and define a Gaussian random field

choose a set of dense functions on M (eg Eigenfunctions of the Laplacian)

Excursion sets

11

The Gaussian Kinematic Formula

Theorem

12

GKF - Examples

13

GKF and phase transitions

The separation of homologies

15

An example

Spin glasses and Gaussian critical points

METHOD OF PROOF bull Rice formula for mean bull Exploitation of specific covariance bull Variance for concentration

18

The Euler characteristic heuristic

As well as a general theory of the critical points a Gaussian and related via Kac-Slepian models

20

The Čech Complex

bullTake a set of vertices P (0-simplexes)

bullDraw balls with radius

bullIntersection of 2 balls an edge (1-simplex)

bullIntersection of 3 balls a triangle (2-simplex)

bullIntersection of n balls a (n-1)-simplex

NERVE THEOREM The Cech complex and union of balls have the same homology

E(EC) for Cech complexes on Td

Decreusefond Ferraz Randriam Vergne by counting simplices

2 Poisson process

1 Points (n) chosen at random

E(EC) for Cech complexes

n=100d=3

n=100d=8

n=100d=6

n=100d=10

Cech complex on 1000 points in [01]3

24

Phase transitionspersistence for complexes

Dust or subcritical phase

Thermodynamic or critical or percolation phase

Connectivity or supercritical phase

Theory MK EM OB YD inter alia

fd Dust subcritical

Critical percolative thermodynamic

Dense supercrictical

Recall = critical points p with

26

Three phases of rigorous results (OB)

bull

bull

bull

Theorem

27

Subcritical (dust) phase

Theorem

Erdos-Renyi graphs and complexes

The graph is on n vertices where each edge appears with probability p independently for each edge

Traditionally only the graph structure is studied The literature is extensive and rich

This is a mean field model Unrealistic but mathematically tractable and often representative

Increasing p increases the topological nature of the graph

Linial-Meshulam model

bull X(dnp) A generalization of the Erdos-Renyi graph G(np)

bull Start with a full (d minus 1)-dimensional skeleton

bull For each d-dimensional face independently and with probability p decide whether to include it in X(dnp) or not

In the evolution of these complexes with d ge 2 the first occurring cycle is almost surely either

bull 11133231113323 The boundary of a (d + 1)-dimensional simplex or

bull 11133231113323 A cycle that includes Ω(n^d) faces of dimension d

Consequently when d ge 2 different kinds of phase transitions occur

Costa and

Farber and

phase diagrams

Kahle Topology of

random simplicial

complexes a survey

Bobrowski and Kahle

Topology of random

geometric complexes

31

Different local structures

Simple perturbed lattice Poisson point process Cox point process

32

(Un) Perturbed lattices

Structured point processes lead to a narrower range of topological behaviour

Models for clouds of interacting points

Growth of Betti numbers (YD)

Betti numbers taken over the Cech complex with radii rn over growing regions of the form

Two fluctuation theorems (DY ES)

bullDistributions with compact support on

bullDistributions with unbounded support on

Core Crackle

Draw random balls with a fixed radius

What is crackle and why would one care

Crackle - Definitions

How Power-Law Noise Crackles

core

Theorem

where

How Exponential Noise Crackles

core

Theorem

where

Gaussian Noise Does Not Crackle

Theorem

core no crackle

Recall

So

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 8: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

Excursion sets

11

The Gaussian Kinematic Formula

Theorem

12

GKF - Examples

13

GKF and phase transitions

The separation of homologies

15

An example

Spin glasses and Gaussian critical points

METHOD OF PROOF bull Rice formula for mean bull Exploitation of specific covariance bull Variance for concentration

18

The Euler characteristic heuristic

As well as a general theory of the critical points a Gaussian and related via Kac-Slepian models

20

The Čech Complex

bullTake a set of vertices P (0-simplexes)

bullDraw balls with radius

bullIntersection of 2 balls an edge (1-simplex)

bullIntersection of 3 balls a triangle (2-simplex)

bullIntersection of n balls a (n-1)-simplex

NERVE THEOREM The Cech complex and union of balls have the same homology

E(EC) for Cech complexes on Td

Decreusefond Ferraz Randriam Vergne by counting simplices

2 Poisson process

1 Points (n) chosen at random

E(EC) for Cech complexes

n=100d=3

n=100d=8

n=100d=6

n=100d=10

Cech complex on 1000 points in [01]3

24

Phase transitionspersistence for complexes

Dust or subcritical phase

Thermodynamic or critical or percolation phase

Connectivity or supercritical phase

Theory MK EM OB YD inter alia

fd Dust subcritical

Critical percolative thermodynamic

Dense supercrictical

Recall = critical points p with

26

Three phases of rigorous results (OB)

bull

bull

bull

Theorem

27

Subcritical (dust) phase

Theorem

Erdos-Renyi graphs and complexes

The graph is on n vertices where each edge appears with probability p independently for each edge

Traditionally only the graph structure is studied The literature is extensive and rich

This is a mean field model Unrealistic but mathematically tractable and often representative

Increasing p increases the topological nature of the graph

Linial-Meshulam model

bull X(dnp) A generalization of the Erdos-Renyi graph G(np)

bull Start with a full (d minus 1)-dimensional skeleton

bull For each d-dimensional face independently and with probability p decide whether to include it in X(dnp) or not

In the evolution of these complexes with d ge 2 the first occurring cycle is almost surely either

bull 11133231113323 The boundary of a (d + 1)-dimensional simplex or

bull 11133231113323 A cycle that includes Ω(n^d) faces of dimension d

Consequently when d ge 2 different kinds of phase transitions occur

Costa and

Farber and

phase diagrams

Kahle Topology of

random simplicial

complexes a survey

Bobrowski and Kahle

Topology of random

geometric complexes

31

Different local structures

Simple perturbed lattice Poisson point process Cox point process

32

(Un) Perturbed lattices

Structured point processes lead to a narrower range of topological behaviour

Models for clouds of interacting points

Growth of Betti numbers (YD)

Betti numbers taken over the Cech complex with radii rn over growing regions of the form

Two fluctuation theorems (DY ES)

bullDistributions with compact support on

bullDistributions with unbounded support on

Core Crackle

Draw random balls with a fixed radius

What is crackle and why would one care

Crackle - Definitions

How Power-Law Noise Crackles

core

Theorem

where

How Exponential Noise Crackles

core

Theorem

where

Gaussian Noise Does Not Crackle

Theorem

core no crackle

Recall

So

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 9: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

11

The Gaussian Kinematic Formula

Theorem

12

GKF - Examples

13

GKF and phase transitions

The separation of homologies

15

An example

Spin glasses and Gaussian critical points

METHOD OF PROOF bull Rice formula for mean bull Exploitation of specific covariance bull Variance for concentration

18

The Euler characteristic heuristic

As well as a general theory of the critical points a Gaussian and related via Kac-Slepian models

20

The Čech Complex

bullTake a set of vertices P (0-simplexes)

bullDraw balls with radius

bullIntersection of 2 balls an edge (1-simplex)

bullIntersection of 3 balls a triangle (2-simplex)

bullIntersection of n balls a (n-1)-simplex

NERVE THEOREM The Cech complex and union of balls have the same homology

E(EC) for Cech complexes on Td

Decreusefond Ferraz Randriam Vergne by counting simplices

2 Poisson process

1 Points (n) chosen at random

E(EC) for Cech complexes

n=100d=3

n=100d=8

n=100d=6

n=100d=10

Cech complex on 1000 points in [01]3

24

Phase transitionspersistence for complexes

Dust or subcritical phase

Thermodynamic or critical or percolation phase

Connectivity or supercritical phase

Theory MK EM OB YD inter alia

fd Dust subcritical

Critical percolative thermodynamic

Dense supercrictical

Recall = critical points p with

26

Three phases of rigorous results (OB)

bull

bull

bull

Theorem

27

Subcritical (dust) phase

Theorem

Erdos-Renyi graphs and complexes

The graph is on n vertices where each edge appears with probability p independently for each edge

Traditionally only the graph structure is studied The literature is extensive and rich

This is a mean field model Unrealistic but mathematically tractable and often representative

Increasing p increases the topological nature of the graph

Linial-Meshulam model

bull X(dnp) A generalization of the Erdos-Renyi graph G(np)

bull Start with a full (d minus 1)-dimensional skeleton

bull For each d-dimensional face independently and with probability p decide whether to include it in X(dnp) or not

In the evolution of these complexes with d ge 2 the first occurring cycle is almost surely either

bull 11133231113323 The boundary of a (d + 1)-dimensional simplex or

bull 11133231113323 A cycle that includes Ω(n^d) faces of dimension d

Consequently when d ge 2 different kinds of phase transitions occur

Costa and

Farber and

phase diagrams

Kahle Topology of

random simplicial

complexes a survey

Bobrowski and Kahle

Topology of random

geometric complexes

31

Different local structures

Simple perturbed lattice Poisson point process Cox point process

32

(Un) Perturbed lattices

Structured point processes lead to a narrower range of topological behaviour

Models for clouds of interacting points

Growth of Betti numbers (YD)

Betti numbers taken over the Cech complex with radii rn over growing regions of the form

Two fluctuation theorems (DY ES)

bullDistributions with compact support on

bullDistributions with unbounded support on

Core Crackle

Draw random balls with a fixed radius

What is crackle and why would one care

Crackle - Definitions

How Power-Law Noise Crackles

core

Theorem

where

How Exponential Noise Crackles

core

Theorem

where

Gaussian Noise Does Not Crackle

Theorem

core no crackle

Recall

So

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 10: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

12

GKF - Examples

13

GKF and phase transitions

The separation of homologies

15

An example

Spin glasses and Gaussian critical points

METHOD OF PROOF bull Rice formula for mean bull Exploitation of specific covariance bull Variance for concentration

18

The Euler characteristic heuristic

As well as a general theory of the critical points a Gaussian and related via Kac-Slepian models

20

The Čech Complex

bullTake a set of vertices P (0-simplexes)

bullDraw balls with radius

bullIntersection of 2 balls an edge (1-simplex)

bullIntersection of 3 balls a triangle (2-simplex)

bullIntersection of n balls a (n-1)-simplex

NERVE THEOREM The Cech complex and union of balls have the same homology

E(EC) for Cech complexes on Td

Decreusefond Ferraz Randriam Vergne by counting simplices

2 Poisson process

1 Points (n) chosen at random

E(EC) for Cech complexes

n=100d=3

n=100d=8

n=100d=6

n=100d=10

Cech complex on 1000 points in [01]3

24

Phase transitionspersistence for complexes

Dust or subcritical phase

Thermodynamic or critical or percolation phase

Connectivity or supercritical phase

Theory MK EM OB YD inter alia

fd Dust subcritical

Critical percolative thermodynamic

Dense supercrictical

Recall = critical points p with

26

Three phases of rigorous results (OB)

bull

bull

bull

Theorem

27

Subcritical (dust) phase

Theorem

Erdos-Renyi graphs and complexes

The graph is on n vertices where each edge appears with probability p independently for each edge

Traditionally only the graph structure is studied The literature is extensive and rich

This is a mean field model Unrealistic but mathematically tractable and often representative

Increasing p increases the topological nature of the graph

Linial-Meshulam model

bull X(dnp) A generalization of the Erdos-Renyi graph G(np)

bull Start with a full (d minus 1)-dimensional skeleton

bull For each d-dimensional face independently and with probability p decide whether to include it in X(dnp) or not

In the evolution of these complexes with d ge 2 the first occurring cycle is almost surely either

bull 11133231113323 The boundary of a (d + 1)-dimensional simplex or

bull 11133231113323 A cycle that includes Ω(n^d) faces of dimension d

Consequently when d ge 2 different kinds of phase transitions occur

Costa and

Farber and

phase diagrams

Kahle Topology of

random simplicial

complexes a survey

Bobrowski and Kahle

Topology of random

geometric complexes

31

Different local structures

Simple perturbed lattice Poisson point process Cox point process

32

(Un) Perturbed lattices

Structured point processes lead to a narrower range of topological behaviour

Models for clouds of interacting points

Growth of Betti numbers (YD)

Betti numbers taken over the Cech complex with radii rn over growing regions of the form

Two fluctuation theorems (DY ES)

bullDistributions with compact support on

bullDistributions with unbounded support on

Core Crackle

Draw random balls with a fixed radius

What is crackle and why would one care

Crackle - Definitions

How Power-Law Noise Crackles

core

Theorem

where

How Exponential Noise Crackles

core

Theorem

where

Gaussian Noise Does Not Crackle

Theorem

core no crackle

Recall

So

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 11: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

13

GKF and phase transitions

The separation of homologies

15

An example

Spin glasses and Gaussian critical points

METHOD OF PROOF bull Rice formula for mean bull Exploitation of specific covariance bull Variance for concentration

18

The Euler characteristic heuristic

As well as a general theory of the critical points a Gaussian and related via Kac-Slepian models

20

The Čech Complex

bullTake a set of vertices P (0-simplexes)

bullDraw balls with radius

bullIntersection of 2 balls an edge (1-simplex)

bullIntersection of 3 balls a triangle (2-simplex)

bullIntersection of n balls a (n-1)-simplex

NERVE THEOREM The Cech complex and union of balls have the same homology

E(EC) for Cech complexes on Td

Decreusefond Ferraz Randriam Vergne by counting simplices

2 Poisson process

1 Points (n) chosen at random

E(EC) for Cech complexes

n=100d=3

n=100d=8

n=100d=6

n=100d=10

Cech complex on 1000 points in [01]3

24

Phase transitionspersistence for complexes

Dust or subcritical phase

Thermodynamic or critical or percolation phase

Connectivity or supercritical phase

Theory MK EM OB YD inter alia

fd Dust subcritical

Critical percolative thermodynamic

Dense supercrictical

Recall = critical points p with

26

Three phases of rigorous results (OB)

bull

bull

bull

Theorem

27

Subcritical (dust) phase

Theorem

Erdos-Renyi graphs and complexes

The graph is on n vertices where each edge appears with probability p independently for each edge

Traditionally only the graph structure is studied The literature is extensive and rich

This is a mean field model Unrealistic but mathematically tractable and often representative

Increasing p increases the topological nature of the graph

Linial-Meshulam model

bull X(dnp) A generalization of the Erdos-Renyi graph G(np)

bull Start with a full (d minus 1)-dimensional skeleton

bull For each d-dimensional face independently and with probability p decide whether to include it in X(dnp) or not

In the evolution of these complexes with d ge 2 the first occurring cycle is almost surely either

bull 11133231113323 The boundary of a (d + 1)-dimensional simplex or

bull 11133231113323 A cycle that includes Ω(n^d) faces of dimension d

Consequently when d ge 2 different kinds of phase transitions occur

Costa and

Farber and

phase diagrams

Kahle Topology of

random simplicial

complexes a survey

Bobrowski and Kahle

Topology of random

geometric complexes

31

Different local structures

Simple perturbed lattice Poisson point process Cox point process

32

(Un) Perturbed lattices

Structured point processes lead to a narrower range of topological behaviour

Models for clouds of interacting points

Growth of Betti numbers (YD)

Betti numbers taken over the Cech complex with radii rn over growing regions of the form

Two fluctuation theorems (DY ES)

bullDistributions with compact support on

bullDistributions with unbounded support on

Core Crackle

Draw random balls with a fixed radius

What is crackle and why would one care

Crackle - Definitions

How Power-Law Noise Crackles

core

Theorem

where

How Exponential Noise Crackles

core

Theorem

where

Gaussian Noise Does Not Crackle

Theorem

core no crackle

Recall

So

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 12: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

The separation of homologies

15

An example

Spin glasses and Gaussian critical points

METHOD OF PROOF bull Rice formula for mean bull Exploitation of specific covariance bull Variance for concentration

18

The Euler characteristic heuristic

As well as a general theory of the critical points a Gaussian and related via Kac-Slepian models

20

The Čech Complex

bullTake a set of vertices P (0-simplexes)

bullDraw balls with radius

bullIntersection of 2 balls an edge (1-simplex)

bullIntersection of 3 balls a triangle (2-simplex)

bullIntersection of n balls a (n-1)-simplex

NERVE THEOREM The Cech complex and union of balls have the same homology

E(EC) for Cech complexes on Td

Decreusefond Ferraz Randriam Vergne by counting simplices

2 Poisson process

1 Points (n) chosen at random

E(EC) for Cech complexes

n=100d=3

n=100d=8

n=100d=6

n=100d=10

Cech complex on 1000 points in [01]3

24

Phase transitionspersistence for complexes

Dust or subcritical phase

Thermodynamic or critical or percolation phase

Connectivity or supercritical phase

Theory MK EM OB YD inter alia

fd Dust subcritical

Critical percolative thermodynamic

Dense supercrictical

Recall = critical points p with

26

Three phases of rigorous results (OB)

bull

bull

bull

Theorem

27

Subcritical (dust) phase

Theorem

Erdos-Renyi graphs and complexes

The graph is on n vertices where each edge appears with probability p independently for each edge

Traditionally only the graph structure is studied The literature is extensive and rich

This is a mean field model Unrealistic but mathematically tractable and often representative

Increasing p increases the topological nature of the graph

Linial-Meshulam model

bull X(dnp) A generalization of the Erdos-Renyi graph G(np)

bull Start with a full (d minus 1)-dimensional skeleton

bull For each d-dimensional face independently and with probability p decide whether to include it in X(dnp) or not

In the evolution of these complexes with d ge 2 the first occurring cycle is almost surely either

bull 11133231113323 The boundary of a (d + 1)-dimensional simplex or

bull 11133231113323 A cycle that includes Ω(n^d) faces of dimension d

Consequently when d ge 2 different kinds of phase transitions occur

Costa and

Farber and

phase diagrams

Kahle Topology of

random simplicial

complexes a survey

Bobrowski and Kahle

Topology of random

geometric complexes

31

Different local structures

Simple perturbed lattice Poisson point process Cox point process

32

(Un) Perturbed lattices

Structured point processes lead to a narrower range of topological behaviour

Models for clouds of interacting points

Growth of Betti numbers (YD)

Betti numbers taken over the Cech complex with radii rn over growing regions of the form

Two fluctuation theorems (DY ES)

bullDistributions with compact support on

bullDistributions with unbounded support on

Core Crackle

Draw random balls with a fixed radius

What is crackle and why would one care

Crackle - Definitions

How Power-Law Noise Crackles

core

Theorem

where

How Exponential Noise Crackles

core

Theorem

where

Gaussian Noise Does Not Crackle

Theorem

core no crackle

Recall

So

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 13: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

15

An example

Spin glasses and Gaussian critical points

METHOD OF PROOF bull Rice formula for mean bull Exploitation of specific covariance bull Variance for concentration

18

The Euler characteristic heuristic

As well as a general theory of the critical points a Gaussian and related via Kac-Slepian models

20

The Čech Complex

bullTake a set of vertices P (0-simplexes)

bullDraw balls with radius

bullIntersection of 2 balls an edge (1-simplex)

bullIntersection of 3 balls a triangle (2-simplex)

bullIntersection of n balls a (n-1)-simplex

NERVE THEOREM The Cech complex and union of balls have the same homology

E(EC) for Cech complexes on Td

Decreusefond Ferraz Randriam Vergne by counting simplices

2 Poisson process

1 Points (n) chosen at random

E(EC) for Cech complexes

n=100d=3

n=100d=8

n=100d=6

n=100d=10

Cech complex on 1000 points in [01]3

24

Phase transitionspersistence for complexes

Dust or subcritical phase

Thermodynamic or critical or percolation phase

Connectivity or supercritical phase

Theory MK EM OB YD inter alia

fd Dust subcritical

Critical percolative thermodynamic

Dense supercrictical

Recall = critical points p with

26

Three phases of rigorous results (OB)

bull

bull

bull

Theorem

27

Subcritical (dust) phase

Theorem

Erdos-Renyi graphs and complexes

The graph is on n vertices where each edge appears with probability p independently for each edge

Traditionally only the graph structure is studied The literature is extensive and rich

This is a mean field model Unrealistic but mathematically tractable and often representative

Increasing p increases the topological nature of the graph

Linial-Meshulam model

bull X(dnp) A generalization of the Erdos-Renyi graph G(np)

bull Start with a full (d minus 1)-dimensional skeleton

bull For each d-dimensional face independently and with probability p decide whether to include it in X(dnp) or not

In the evolution of these complexes with d ge 2 the first occurring cycle is almost surely either

bull 11133231113323 The boundary of a (d + 1)-dimensional simplex or

bull 11133231113323 A cycle that includes Ω(n^d) faces of dimension d

Consequently when d ge 2 different kinds of phase transitions occur

Costa and

Farber and

phase diagrams

Kahle Topology of

random simplicial

complexes a survey

Bobrowski and Kahle

Topology of random

geometric complexes

31

Different local structures

Simple perturbed lattice Poisson point process Cox point process

32

(Un) Perturbed lattices

Structured point processes lead to a narrower range of topological behaviour

Models for clouds of interacting points

Growth of Betti numbers (YD)

Betti numbers taken over the Cech complex with radii rn over growing regions of the form

Two fluctuation theorems (DY ES)

bullDistributions with compact support on

bullDistributions with unbounded support on

Core Crackle

Draw random balls with a fixed radius

What is crackle and why would one care

Crackle - Definitions

How Power-Law Noise Crackles

core

Theorem

where

How Exponential Noise Crackles

core

Theorem

where

Gaussian Noise Does Not Crackle

Theorem

core no crackle

Recall

So

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 14: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

Spin glasses and Gaussian critical points

METHOD OF PROOF bull Rice formula for mean bull Exploitation of specific covariance bull Variance for concentration

18

The Euler characteristic heuristic

As well as a general theory of the critical points a Gaussian and related via Kac-Slepian models

20

The Čech Complex

bullTake a set of vertices P (0-simplexes)

bullDraw balls with radius

bullIntersection of 2 balls an edge (1-simplex)

bullIntersection of 3 balls a triangle (2-simplex)

bullIntersection of n balls a (n-1)-simplex

NERVE THEOREM The Cech complex and union of balls have the same homology

E(EC) for Cech complexes on Td

Decreusefond Ferraz Randriam Vergne by counting simplices

2 Poisson process

1 Points (n) chosen at random

E(EC) for Cech complexes

n=100d=3

n=100d=8

n=100d=6

n=100d=10

Cech complex on 1000 points in [01]3

24

Phase transitionspersistence for complexes

Dust or subcritical phase

Thermodynamic or critical or percolation phase

Connectivity or supercritical phase

Theory MK EM OB YD inter alia

fd Dust subcritical

Critical percolative thermodynamic

Dense supercrictical

Recall = critical points p with

26

Three phases of rigorous results (OB)

bull

bull

bull

Theorem

27

Subcritical (dust) phase

Theorem

Erdos-Renyi graphs and complexes

The graph is on n vertices where each edge appears with probability p independently for each edge

Traditionally only the graph structure is studied The literature is extensive and rich

This is a mean field model Unrealistic but mathematically tractable and often representative

Increasing p increases the topological nature of the graph

Linial-Meshulam model

bull X(dnp) A generalization of the Erdos-Renyi graph G(np)

bull Start with a full (d minus 1)-dimensional skeleton

bull For each d-dimensional face independently and with probability p decide whether to include it in X(dnp) or not

In the evolution of these complexes with d ge 2 the first occurring cycle is almost surely either

bull 11133231113323 The boundary of a (d + 1)-dimensional simplex or

bull 11133231113323 A cycle that includes Ω(n^d) faces of dimension d

Consequently when d ge 2 different kinds of phase transitions occur

Costa and

Farber and

phase diagrams

Kahle Topology of

random simplicial

complexes a survey

Bobrowski and Kahle

Topology of random

geometric complexes

31

Different local structures

Simple perturbed lattice Poisson point process Cox point process

32

(Un) Perturbed lattices

Structured point processes lead to a narrower range of topological behaviour

Models for clouds of interacting points

Growth of Betti numbers (YD)

Betti numbers taken over the Cech complex with radii rn over growing regions of the form

Two fluctuation theorems (DY ES)

bullDistributions with compact support on

bullDistributions with unbounded support on

Core Crackle

Draw random balls with a fixed radius

What is crackle and why would one care

Crackle - Definitions

How Power-Law Noise Crackles

core

Theorem

where

How Exponential Noise Crackles

core

Theorem

where

Gaussian Noise Does Not Crackle

Theorem

core no crackle

Recall

So

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 15: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

18

The Euler characteristic heuristic

As well as a general theory of the critical points a Gaussian and related via Kac-Slepian models

20

The Čech Complex

bullTake a set of vertices P (0-simplexes)

bullDraw balls with radius

bullIntersection of 2 balls an edge (1-simplex)

bullIntersection of 3 balls a triangle (2-simplex)

bullIntersection of n balls a (n-1)-simplex

NERVE THEOREM The Cech complex and union of balls have the same homology

E(EC) for Cech complexes on Td

Decreusefond Ferraz Randriam Vergne by counting simplices

2 Poisson process

1 Points (n) chosen at random

E(EC) for Cech complexes

n=100d=3

n=100d=8

n=100d=6

n=100d=10

Cech complex on 1000 points in [01]3

24

Phase transitionspersistence for complexes

Dust or subcritical phase

Thermodynamic or critical or percolation phase

Connectivity or supercritical phase

Theory MK EM OB YD inter alia

fd Dust subcritical

Critical percolative thermodynamic

Dense supercrictical

Recall = critical points p with

26

Three phases of rigorous results (OB)

bull

bull

bull

Theorem

27

Subcritical (dust) phase

Theorem

Erdos-Renyi graphs and complexes

The graph is on n vertices where each edge appears with probability p independently for each edge

Traditionally only the graph structure is studied The literature is extensive and rich

This is a mean field model Unrealistic but mathematically tractable and often representative

Increasing p increases the topological nature of the graph

Linial-Meshulam model

bull X(dnp) A generalization of the Erdos-Renyi graph G(np)

bull Start with a full (d minus 1)-dimensional skeleton

bull For each d-dimensional face independently and with probability p decide whether to include it in X(dnp) or not

In the evolution of these complexes with d ge 2 the first occurring cycle is almost surely either

bull 11133231113323 The boundary of a (d + 1)-dimensional simplex or

bull 11133231113323 A cycle that includes Ω(n^d) faces of dimension d

Consequently when d ge 2 different kinds of phase transitions occur

Costa and

Farber and

phase diagrams

Kahle Topology of

random simplicial

complexes a survey

Bobrowski and Kahle

Topology of random

geometric complexes

31

Different local structures

Simple perturbed lattice Poisson point process Cox point process

32

(Un) Perturbed lattices

Structured point processes lead to a narrower range of topological behaviour

Models for clouds of interacting points

Growth of Betti numbers (YD)

Betti numbers taken over the Cech complex with radii rn over growing regions of the form

Two fluctuation theorems (DY ES)

bullDistributions with compact support on

bullDistributions with unbounded support on

Core Crackle

Draw random balls with a fixed radius

What is crackle and why would one care

Crackle - Definitions

How Power-Law Noise Crackles

core

Theorem

where

How Exponential Noise Crackles

core

Theorem

where

Gaussian Noise Does Not Crackle

Theorem

core no crackle

Recall

So

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 16: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

20

The Čech Complex

bullTake a set of vertices P (0-simplexes)

bullDraw balls with radius

bullIntersection of 2 balls an edge (1-simplex)

bullIntersection of 3 balls a triangle (2-simplex)

bullIntersection of n balls a (n-1)-simplex

NERVE THEOREM The Cech complex and union of balls have the same homology

E(EC) for Cech complexes on Td

Decreusefond Ferraz Randriam Vergne by counting simplices

2 Poisson process

1 Points (n) chosen at random

E(EC) for Cech complexes

n=100d=3

n=100d=8

n=100d=6

n=100d=10

Cech complex on 1000 points in [01]3

24

Phase transitionspersistence for complexes

Dust or subcritical phase

Thermodynamic or critical or percolation phase

Connectivity or supercritical phase

Theory MK EM OB YD inter alia

fd Dust subcritical

Critical percolative thermodynamic

Dense supercrictical

Recall = critical points p with

26

Three phases of rigorous results (OB)

bull

bull

bull

Theorem

27

Subcritical (dust) phase

Theorem

Erdos-Renyi graphs and complexes

The graph is on n vertices where each edge appears with probability p independently for each edge

Traditionally only the graph structure is studied The literature is extensive and rich

This is a mean field model Unrealistic but mathematically tractable and often representative

Increasing p increases the topological nature of the graph

Linial-Meshulam model

bull X(dnp) A generalization of the Erdos-Renyi graph G(np)

bull Start with a full (d minus 1)-dimensional skeleton

bull For each d-dimensional face independently and with probability p decide whether to include it in X(dnp) or not

In the evolution of these complexes with d ge 2 the first occurring cycle is almost surely either

bull 11133231113323 The boundary of a (d + 1)-dimensional simplex or

bull 11133231113323 A cycle that includes Ω(n^d) faces of dimension d

Consequently when d ge 2 different kinds of phase transitions occur

Costa and

Farber and

phase diagrams

Kahle Topology of

random simplicial

complexes a survey

Bobrowski and Kahle

Topology of random

geometric complexes

31

Different local structures

Simple perturbed lattice Poisson point process Cox point process

32

(Un) Perturbed lattices

Structured point processes lead to a narrower range of topological behaviour

Models for clouds of interacting points

Growth of Betti numbers (YD)

Betti numbers taken over the Cech complex with radii rn over growing regions of the form

Two fluctuation theorems (DY ES)

bullDistributions with compact support on

bullDistributions with unbounded support on

Core Crackle

Draw random balls with a fixed radius

What is crackle and why would one care

Crackle - Definitions

How Power-Law Noise Crackles

core

Theorem

where

How Exponential Noise Crackles

core

Theorem

where

Gaussian Noise Does Not Crackle

Theorem

core no crackle

Recall

So

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 17: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

E(EC) for Cech complexes on Td

Decreusefond Ferraz Randriam Vergne by counting simplices

2 Poisson process

1 Points (n) chosen at random

E(EC) for Cech complexes

n=100d=3

n=100d=8

n=100d=6

n=100d=10

Cech complex on 1000 points in [01]3

24

Phase transitionspersistence for complexes

Dust or subcritical phase

Thermodynamic or critical or percolation phase

Connectivity or supercritical phase

Theory MK EM OB YD inter alia

fd Dust subcritical

Critical percolative thermodynamic

Dense supercrictical

Recall = critical points p with

26

Three phases of rigorous results (OB)

bull

bull

bull

Theorem

27

Subcritical (dust) phase

Theorem

Erdos-Renyi graphs and complexes

The graph is on n vertices where each edge appears with probability p independently for each edge

Traditionally only the graph structure is studied The literature is extensive and rich

This is a mean field model Unrealistic but mathematically tractable and often representative

Increasing p increases the topological nature of the graph

Linial-Meshulam model

bull X(dnp) A generalization of the Erdos-Renyi graph G(np)

bull Start with a full (d minus 1)-dimensional skeleton

bull For each d-dimensional face independently and with probability p decide whether to include it in X(dnp) or not

In the evolution of these complexes with d ge 2 the first occurring cycle is almost surely either

bull 11133231113323 The boundary of a (d + 1)-dimensional simplex or

bull 11133231113323 A cycle that includes Ω(n^d) faces of dimension d

Consequently when d ge 2 different kinds of phase transitions occur

Costa and

Farber and

phase diagrams

Kahle Topology of

random simplicial

complexes a survey

Bobrowski and Kahle

Topology of random

geometric complexes

31

Different local structures

Simple perturbed lattice Poisson point process Cox point process

32

(Un) Perturbed lattices

Structured point processes lead to a narrower range of topological behaviour

Models for clouds of interacting points

Growth of Betti numbers (YD)

Betti numbers taken over the Cech complex with radii rn over growing regions of the form

Two fluctuation theorems (DY ES)

bullDistributions with compact support on

bullDistributions with unbounded support on

Core Crackle

Draw random balls with a fixed radius

What is crackle and why would one care

Crackle - Definitions

How Power-Law Noise Crackles

core

Theorem

where

How Exponential Noise Crackles

core

Theorem

where

Gaussian Noise Does Not Crackle

Theorem

core no crackle

Recall

So

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 18: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

E(EC) for Cech complexes

n=100d=3

n=100d=8

n=100d=6

n=100d=10

Cech complex on 1000 points in [01]3

24

Phase transitionspersistence for complexes

Dust or subcritical phase

Thermodynamic or critical or percolation phase

Connectivity or supercritical phase

Theory MK EM OB YD inter alia

fd Dust subcritical

Critical percolative thermodynamic

Dense supercrictical

Recall = critical points p with

26

Three phases of rigorous results (OB)

bull

bull

bull

Theorem

27

Subcritical (dust) phase

Theorem

Erdos-Renyi graphs and complexes

The graph is on n vertices where each edge appears with probability p independently for each edge

Traditionally only the graph structure is studied The literature is extensive and rich

This is a mean field model Unrealistic but mathematically tractable and often representative

Increasing p increases the topological nature of the graph

Linial-Meshulam model

bull X(dnp) A generalization of the Erdos-Renyi graph G(np)

bull Start with a full (d minus 1)-dimensional skeleton

bull For each d-dimensional face independently and with probability p decide whether to include it in X(dnp) or not

In the evolution of these complexes with d ge 2 the first occurring cycle is almost surely either

bull 11133231113323 The boundary of a (d + 1)-dimensional simplex or

bull 11133231113323 A cycle that includes Ω(n^d) faces of dimension d

Consequently when d ge 2 different kinds of phase transitions occur

Costa and

Farber and

phase diagrams

Kahle Topology of

random simplicial

complexes a survey

Bobrowski and Kahle

Topology of random

geometric complexes

31

Different local structures

Simple perturbed lattice Poisson point process Cox point process

32

(Un) Perturbed lattices

Structured point processes lead to a narrower range of topological behaviour

Models for clouds of interacting points

Growth of Betti numbers (YD)

Betti numbers taken over the Cech complex with radii rn over growing regions of the form

Two fluctuation theorems (DY ES)

bullDistributions with compact support on

bullDistributions with unbounded support on

Core Crackle

Draw random balls with a fixed radius

What is crackle and why would one care

Crackle - Definitions

How Power-Law Noise Crackles

core

Theorem

where

How Exponential Noise Crackles

core

Theorem

where

Gaussian Noise Does Not Crackle

Theorem

core no crackle

Recall

So

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 19: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

Cech complex on 1000 points in [01]3

24

Phase transitionspersistence for complexes

Dust or subcritical phase

Thermodynamic or critical or percolation phase

Connectivity or supercritical phase

Theory MK EM OB YD inter alia

fd Dust subcritical

Critical percolative thermodynamic

Dense supercrictical

Recall = critical points p with

26

Three phases of rigorous results (OB)

bull

bull

bull

Theorem

27

Subcritical (dust) phase

Theorem

Erdos-Renyi graphs and complexes

The graph is on n vertices where each edge appears with probability p independently for each edge

Traditionally only the graph structure is studied The literature is extensive and rich

This is a mean field model Unrealistic but mathematically tractable and often representative

Increasing p increases the topological nature of the graph

Linial-Meshulam model

bull X(dnp) A generalization of the Erdos-Renyi graph G(np)

bull Start with a full (d minus 1)-dimensional skeleton

bull For each d-dimensional face independently and with probability p decide whether to include it in X(dnp) or not

In the evolution of these complexes with d ge 2 the first occurring cycle is almost surely either

bull 11133231113323 The boundary of a (d + 1)-dimensional simplex or

bull 11133231113323 A cycle that includes Ω(n^d) faces of dimension d

Consequently when d ge 2 different kinds of phase transitions occur

Costa and

Farber and

phase diagrams

Kahle Topology of

random simplicial

complexes a survey

Bobrowski and Kahle

Topology of random

geometric complexes

31

Different local structures

Simple perturbed lattice Poisson point process Cox point process

32

(Un) Perturbed lattices

Structured point processes lead to a narrower range of topological behaviour

Models for clouds of interacting points

Growth of Betti numbers (YD)

Betti numbers taken over the Cech complex with radii rn over growing regions of the form

Two fluctuation theorems (DY ES)

bullDistributions with compact support on

bullDistributions with unbounded support on

Core Crackle

Draw random balls with a fixed radius

What is crackle and why would one care

Crackle - Definitions

How Power-Law Noise Crackles

core

Theorem

where

How Exponential Noise Crackles

core

Theorem

where

Gaussian Noise Does Not Crackle

Theorem

core no crackle

Recall

So

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 20: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

24

Phase transitionspersistence for complexes

Dust or subcritical phase

Thermodynamic or critical or percolation phase

Connectivity or supercritical phase

Theory MK EM OB YD inter alia

fd Dust subcritical

Critical percolative thermodynamic

Dense supercrictical

Recall = critical points p with

26

Three phases of rigorous results (OB)

bull

bull

bull

Theorem

27

Subcritical (dust) phase

Theorem

Erdos-Renyi graphs and complexes

The graph is on n vertices where each edge appears with probability p independently for each edge

Traditionally only the graph structure is studied The literature is extensive and rich

This is a mean field model Unrealistic but mathematically tractable and often representative

Increasing p increases the topological nature of the graph

Linial-Meshulam model

bull X(dnp) A generalization of the Erdos-Renyi graph G(np)

bull Start with a full (d minus 1)-dimensional skeleton

bull For each d-dimensional face independently and with probability p decide whether to include it in X(dnp) or not

In the evolution of these complexes with d ge 2 the first occurring cycle is almost surely either

bull 11133231113323 The boundary of a (d + 1)-dimensional simplex or

bull 11133231113323 A cycle that includes Ω(n^d) faces of dimension d

Consequently when d ge 2 different kinds of phase transitions occur

Costa and

Farber and

phase diagrams

Kahle Topology of

random simplicial

complexes a survey

Bobrowski and Kahle

Topology of random

geometric complexes

31

Different local structures

Simple perturbed lattice Poisson point process Cox point process

32

(Un) Perturbed lattices

Structured point processes lead to a narrower range of topological behaviour

Models for clouds of interacting points

Growth of Betti numbers (YD)

Betti numbers taken over the Cech complex with radii rn over growing regions of the form

Two fluctuation theorems (DY ES)

bullDistributions with compact support on

bullDistributions with unbounded support on

Core Crackle

Draw random balls with a fixed radius

What is crackle and why would one care

Crackle - Definitions

How Power-Law Noise Crackles

core

Theorem

where

How Exponential Noise Crackles

core

Theorem

where

Gaussian Noise Does Not Crackle

Theorem

core no crackle

Recall

So

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 21: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

Theory MK EM OB YD inter alia

fd Dust subcritical

Critical percolative thermodynamic

Dense supercrictical

Recall = critical points p with

26

Three phases of rigorous results (OB)

bull

bull

bull

Theorem

27

Subcritical (dust) phase

Theorem

Erdos-Renyi graphs and complexes

The graph is on n vertices where each edge appears with probability p independently for each edge

Traditionally only the graph structure is studied The literature is extensive and rich

This is a mean field model Unrealistic but mathematically tractable and often representative

Increasing p increases the topological nature of the graph

Linial-Meshulam model

bull X(dnp) A generalization of the Erdos-Renyi graph G(np)

bull Start with a full (d minus 1)-dimensional skeleton

bull For each d-dimensional face independently and with probability p decide whether to include it in X(dnp) or not

In the evolution of these complexes with d ge 2 the first occurring cycle is almost surely either

bull 11133231113323 The boundary of a (d + 1)-dimensional simplex or

bull 11133231113323 A cycle that includes Ω(n^d) faces of dimension d

Consequently when d ge 2 different kinds of phase transitions occur

Costa and

Farber and

phase diagrams

Kahle Topology of

random simplicial

complexes a survey

Bobrowski and Kahle

Topology of random

geometric complexes

31

Different local structures

Simple perturbed lattice Poisson point process Cox point process

32

(Un) Perturbed lattices

Structured point processes lead to a narrower range of topological behaviour

Models for clouds of interacting points

Growth of Betti numbers (YD)

Betti numbers taken over the Cech complex with radii rn over growing regions of the form

Two fluctuation theorems (DY ES)

bullDistributions with compact support on

bullDistributions with unbounded support on

Core Crackle

Draw random balls with a fixed radius

What is crackle and why would one care

Crackle - Definitions

How Power-Law Noise Crackles

core

Theorem

where

How Exponential Noise Crackles

core

Theorem

where

Gaussian Noise Does Not Crackle

Theorem

core no crackle

Recall

So

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 22: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

Recall = critical points p with

26

Three phases of rigorous results (OB)

bull

bull

bull

Theorem

27

Subcritical (dust) phase

Theorem

Erdos-Renyi graphs and complexes

The graph is on n vertices where each edge appears with probability p independently for each edge

Traditionally only the graph structure is studied The literature is extensive and rich

This is a mean field model Unrealistic but mathematically tractable and often representative

Increasing p increases the topological nature of the graph

Linial-Meshulam model

bull X(dnp) A generalization of the Erdos-Renyi graph G(np)

bull Start with a full (d minus 1)-dimensional skeleton

bull For each d-dimensional face independently and with probability p decide whether to include it in X(dnp) or not

In the evolution of these complexes with d ge 2 the first occurring cycle is almost surely either

bull 11133231113323 The boundary of a (d + 1)-dimensional simplex or

bull 11133231113323 A cycle that includes Ω(n^d) faces of dimension d

Consequently when d ge 2 different kinds of phase transitions occur

Costa and

Farber and

phase diagrams

Kahle Topology of

random simplicial

complexes a survey

Bobrowski and Kahle

Topology of random

geometric complexes

31

Different local structures

Simple perturbed lattice Poisson point process Cox point process

32

(Un) Perturbed lattices

Structured point processes lead to a narrower range of topological behaviour

Models for clouds of interacting points

Growth of Betti numbers (YD)

Betti numbers taken over the Cech complex with radii rn over growing regions of the form

Two fluctuation theorems (DY ES)

bullDistributions with compact support on

bullDistributions with unbounded support on

Core Crackle

Draw random balls with a fixed radius

What is crackle and why would one care

Crackle - Definitions

How Power-Law Noise Crackles

core

Theorem

where

How Exponential Noise Crackles

core

Theorem

where

Gaussian Noise Does Not Crackle

Theorem

core no crackle

Recall

So

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 23: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

27

Subcritical (dust) phase

Theorem

Erdos-Renyi graphs and complexes

The graph is on n vertices where each edge appears with probability p independently for each edge

Traditionally only the graph structure is studied The literature is extensive and rich

This is a mean field model Unrealistic but mathematically tractable and often representative

Increasing p increases the topological nature of the graph

Linial-Meshulam model

bull X(dnp) A generalization of the Erdos-Renyi graph G(np)

bull Start with a full (d minus 1)-dimensional skeleton

bull For each d-dimensional face independently and with probability p decide whether to include it in X(dnp) or not

In the evolution of these complexes with d ge 2 the first occurring cycle is almost surely either

bull 11133231113323 The boundary of a (d + 1)-dimensional simplex or

bull 11133231113323 A cycle that includes Ω(n^d) faces of dimension d

Consequently when d ge 2 different kinds of phase transitions occur

Costa and

Farber and

phase diagrams

Kahle Topology of

random simplicial

complexes a survey

Bobrowski and Kahle

Topology of random

geometric complexes

31

Different local structures

Simple perturbed lattice Poisson point process Cox point process

32

(Un) Perturbed lattices

Structured point processes lead to a narrower range of topological behaviour

Models for clouds of interacting points

Growth of Betti numbers (YD)

Betti numbers taken over the Cech complex with radii rn over growing regions of the form

Two fluctuation theorems (DY ES)

bullDistributions with compact support on

bullDistributions with unbounded support on

Core Crackle

Draw random balls with a fixed radius

What is crackle and why would one care

Crackle - Definitions

How Power-Law Noise Crackles

core

Theorem

where

How Exponential Noise Crackles

core

Theorem

where

Gaussian Noise Does Not Crackle

Theorem

core no crackle

Recall

So

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 24: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

Erdos-Renyi graphs and complexes

The graph is on n vertices where each edge appears with probability p independently for each edge

Traditionally only the graph structure is studied The literature is extensive and rich

This is a mean field model Unrealistic but mathematically tractable and often representative

Increasing p increases the topological nature of the graph

Linial-Meshulam model

bull X(dnp) A generalization of the Erdos-Renyi graph G(np)

bull Start with a full (d minus 1)-dimensional skeleton

bull For each d-dimensional face independently and with probability p decide whether to include it in X(dnp) or not

In the evolution of these complexes with d ge 2 the first occurring cycle is almost surely either

bull 11133231113323 The boundary of a (d + 1)-dimensional simplex or

bull 11133231113323 A cycle that includes Ω(n^d) faces of dimension d

Consequently when d ge 2 different kinds of phase transitions occur

Costa and

Farber and

phase diagrams

Kahle Topology of

random simplicial

complexes a survey

Bobrowski and Kahle

Topology of random

geometric complexes

31

Different local structures

Simple perturbed lattice Poisson point process Cox point process

32

(Un) Perturbed lattices

Structured point processes lead to a narrower range of topological behaviour

Models for clouds of interacting points

Growth of Betti numbers (YD)

Betti numbers taken over the Cech complex with radii rn over growing regions of the form

Two fluctuation theorems (DY ES)

bullDistributions with compact support on

bullDistributions with unbounded support on

Core Crackle

Draw random balls with a fixed radius

What is crackle and why would one care

Crackle - Definitions

How Power-Law Noise Crackles

core

Theorem

where

How Exponential Noise Crackles

core

Theorem

where

Gaussian Noise Does Not Crackle

Theorem

core no crackle

Recall

So

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 25: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

Linial-Meshulam model

bull X(dnp) A generalization of the Erdos-Renyi graph G(np)

bull Start with a full (d minus 1)-dimensional skeleton

bull For each d-dimensional face independently and with probability p decide whether to include it in X(dnp) or not

In the evolution of these complexes with d ge 2 the first occurring cycle is almost surely either

bull 11133231113323 The boundary of a (d + 1)-dimensional simplex or

bull 11133231113323 A cycle that includes Ω(n^d) faces of dimension d

Consequently when d ge 2 different kinds of phase transitions occur

Costa and

Farber and

phase diagrams

Kahle Topology of

random simplicial

complexes a survey

Bobrowski and Kahle

Topology of random

geometric complexes

31

Different local structures

Simple perturbed lattice Poisson point process Cox point process

32

(Un) Perturbed lattices

Structured point processes lead to a narrower range of topological behaviour

Models for clouds of interacting points

Growth of Betti numbers (YD)

Betti numbers taken over the Cech complex with radii rn over growing regions of the form

Two fluctuation theorems (DY ES)

bullDistributions with compact support on

bullDistributions with unbounded support on

Core Crackle

Draw random balls with a fixed radius

What is crackle and why would one care

Crackle - Definitions

How Power-Law Noise Crackles

core

Theorem

where

How Exponential Noise Crackles

core

Theorem

where

Gaussian Noise Does Not Crackle

Theorem

core no crackle

Recall

So

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 26: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

31

Different local structures

Simple perturbed lattice Poisson point process Cox point process

32

(Un) Perturbed lattices

Structured point processes lead to a narrower range of topological behaviour

Models for clouds of interacting points

Growth of Betti numbers (YD)

Betti numbers taken over the Cech complex with radii rn over growing regions of the form

Two fluctuation theorems (DY ES)

bullDistributions with compact support on

bullDistributions with unbounded support on

Core Crackle

Draw random balls with a fixed radius

What is crackle and why would one care

Crackle - Definitions

How Power-Law Noise Crackles

core

Theorem

where

How Exponential Noise Crackles

core

Theorem

where

Gaussian Noise Does Not Crackle

Theorem

core no crackle

Recall

So

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 27: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

32

(Un) Perturbed lattices

Structured point processes lead to a narrower range of topological behaviour

Models for clouds of interacting points

Growth of Betti numbers (YD)

Betti numbers taken over the Cech complex with radii rn over growing regions of the form

Two fluctuation theorems (DY ES)

bullDistributions with compact support on

bullDistributions with unbounded support on

Core Crackle

Draw random balls with a fixed radius

What is crackle and why would one care

Crackle - Definitions

How Power-Law Noise Crackles

core

Theorem

where

How Exponential Noise Crackles

core

Theorem

where

Gaussian Noise Does Not Crackle

Theorem

core no crackle

Recall

So

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 28: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

Models for clouds of interacting points

Growth of Betti numbers (YD)

Betti numbers taken over the Cech complex with radii rn over growing regions of the form

Two fluctuation theorems (DY ES)

bullDistributions with compact support on

bullDistributions with unbounded support on

Core Crackle

Draw random balls with a fixed radius

What is crackle and why would one care

Crackle - Definitions

How Power-Law Noise Crackles

core

Theorem

where

How Exponential Noise Crackles

core

Theorem

where

Gaussian Noise Does Not Crackle

Theorem

core no crackle

Recall

So

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 29: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

Growth of Betti numbers (YD)

Betti numbers taken over the Cech complex with radii rn over growing regions of the form

Two fluctuation theorems (DY ES)

bullDistributions with compact support on

bullDistributions with unbounded support on

Core Crackle

Draw random balls with a fixed radius

What is crackle and why would one care

Crackle - Definitions

How Power-Law Noise Crackles

core

Theorem

where

How Exponential Noise Crackles

core

Theorem

where

Gaussian Noise Does Not Crackle

Theorem

core no crackle

Recall

So

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 30: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

Two fluctuation theorems (DY ES)

bullDistributions with compact support on

bullDistributions with unbounded support on

Core Crackle

Draw random balls with a fixed radius

What is crackle and why would one care

Crackle - Definitions

How Power-Law Noise Crackles

core

Theorem

where

How Exponential Noise Crackles

core

Theorem

where

Gaussian Noise Does Not Crackle

Theorem

core no crackle

Recall

So

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 31: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

bullDistributions with compact support on

bullDistributions with unbounded support on

Core Crackle

Draw random balls with a fixed radius

What is crackle and why would one care

Crackle - Definitions

How Power-Law Noise Crackles

core

Theorem

where

How Exponential Noise Crackles

core

Theorem

where

Gaussian Noise Does Not Crackle

Theorem

core no crackle

Recall

So

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 32: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

Crackle - Definitions

How Power-Law Noise Crackles

core

Theorem

where

How Exponential Noise Crackles

core

Theorem

where

Gaussian Noise Does Not Crackle

Theorem

core no crackle

Recall

So

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 33: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

How Power-Law Noise Crackles

core

Theorem

where

How Exponential Noise Crackles

core

Theorem

where

Gaussian Noise Does Not Crackle

Theorem

core no crackle

Recall

So

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 34: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

How Exponential Noise Crackles

core

Theorem

where

Gaussian Noise Does Not Crackle

Theorem

core no crackle

Recall

So

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 35: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

Gaussian Noise Does Not Crackle

Theorem

core no crackle

Recall

So

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 36: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

42

Postdoctoral FellowshiPs at the

technion

The preceding slides were brought to you by

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 37: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

43

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 38: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

44

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45
Page 39: Topological Phase Transitions - Mathématiques · Linial-Meshulam model • X(d,n,p ): A generalization of the Erdos-Renyi graph G(n,p • Start with a full (d − 1)-dimensional

In collaboration with

bull Omer Bobrowski bull Moshe Cohen bull Sunder Ram Krishnan bull Anthea Monod bull Gregory Naitzat bull Takashi Owada bull Tony Reiser bull Yonatan Rosmarin bull Gennady Samorodnitsky bull Eliran Subag bull Jonathan Taylor bull Gugan Thoppe bull Shmuel Weinberger bull Dhandapani Yogeshwaran

  • Diapositive numeacutero 1
  • Topological Phase Transitions
  • Diapositive numeacutero 3
  • Diapositive numeacutero 4
  • Diapositive numeacutero 5
  • Diapositive numeacutero 6
  • Diapositive numeacutero 7
  • Diapositive numeacutero 8
  • Diapositive numeacutero 9
  • Diapositive numeacutero 10
  • Diapositive numeacutero 11
  • Diapositive numeacutero 12
  • Diapositive numeacutero 13
  • Diapositive numeacutero 14
  • Diapositive numeacutero 15
  • Diapositive numeacutero 16
  • Diapositive numeacutero 17
  • Diapositive numeacutero 18
  • Diapositive numeacutero 19
  • Diapositive numeacutero 20
  • Diapositive numeacutero 21
  • Diapositive numeacutero 22
  • Diapositive numeacutero 23
  • Diapositive numeacutero 24
  • Diapositive numeacutero 25
  • Diapositive numeacutero 26
  • Diapositive numeacutero 27
  • Diapositive numeacutero 28
  • Diapositive numeacutero 29
  • Diapositive numeacutero 30
  • Diapositive numeacutero 31
  • Diapositive numeacutero 32
  • Diapositive numeacutero 33
  • Diapositive numeacutero 34
  • Diapositive numeacutero 35
  • Diapositive numeacutero 36
  • Diapositive numeacutero 37
  • Diapositive numeacutero 38
  • Diapositive numeacutero 39
  • Diapositive numeacutero 40
  • Diapositive numeacutero 41
  • Diapositive numeacutero 42
  • Diapositive numeacutero 43
  • Diapositive numeacutero 44
  • Diapositive numeacutero 45