Top Banner

of 41

Topic7_Jan13.pptw

Apr 14, 2018

Download

Documents

MinNie Yee
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/27/2019 Topic7_Jan13.pptw

    1/41

    Discrete Probability

    Distributions[Week 13]

    TOPIC 7

    1

  • 7/27/2019 Topic7_Jan13.pptw

    2/41

    Chap 7-2

    Objectives

    After completing this chapter, you should beable to:

    Interpret the mean and standard deviation for a

    discrete probability distribution Explain covariance and its application in finance

    Use the binomial probability distribution to findprobabilities

    Describe when to apply the binomial distribution Use the hypergeometric and Poisson discrete

    probability distributions to find probabilities

  • 7/27/2019 Topic7_Jan13.pptw

    3/41

    Chap 7-3

    Introduction to ProbabilityDistributions

    Random Variable

    Represents a possible numerical value froman uncertain event

    Random

    Variables

    Discrete

    Random Variable

    Continuous

    Random Variable

  • 7/27/2019 Topic7_Jan13.pptw

    4/41

    Chap 7-4

    Discrete Random Variables

    Can only assume a countable number of values

    Examples:

    Roll a die twiceLet X be the number of times 4 comes up(then X could be 0, 1, or 2 times)

    Toss a coin 5 times.Let X be the number of heads(then X = 0, 1, 2, 3, 4, or 5)

  • 7/27/2019 Topic7_Jan13.pptw

    5/41

    Chap 7-5

    Experiment: Toss 2 Coins. Let X = # heads.

    T

    T

    Discrete Probability Distribution

    4 possible outcomes

    T

    T

    H

    H

    H H

    Probability Distribution

    0 1 2 X

    X Value Probability

    0 1/4 = .25

    1 2/4 = .50

    2 1/4 = .25

    .50

    .25Probability

  • 7/27/2019 Topic7_Jan13.pptw

    6/41

    Chap 7-6

    Discrete Random VariableSummary Measures

    Expected Value (or mean) of a discretedistribution (Weighted Average)

    Example: Toss 2 coins,

    X = # of heads,compute expected value of X:E(X) = (0 x .25) + (1 x .50) + (2 x .25)

    = 1.0

    X P(X)

    0 .25

    1 .50

    2 .25

    N

    1i

    ii )X(PXE(X)

  • 7/27/2019 Topic7_Jan13.pptw

    7/41Chap 7-7

    Variance of a discrete random variable

    Standard Deviation of a discrete random variable

    where:E(X) = Expected value of the discrete random variable X

    Xi = the ith outcome of X

    P(Xi

    ) = Probability of the ith occurrence of X

    Discrete Random VariableSummary Measures

    N

    1i

    i

    2

    i

    2 )P(XE(X)][X

    (continued)

    N

    1ii

    2

    i

    2

    )P(XE(X)][X

  • 7/27/2019 Topic7_Jan13.pptw

    8/41Chap 7-8

    Example: Toss 2 coins, X = # heads,compute standard deviation (recall E(X) = 1)

    Discrete Random VariableSummary Measures

    )P(XE(X)][X i2

    i .707.50(.25)1)(2(.50)1)(1(.25)1)(0 222

    (continued)

    Possible number of heads= 0, 1, or 2

  • 7/27/2019 Topic7_Jan13.pptw

    9/41Chap 7-9

    The Covariance

    The covariance measures the strength of thelinear relationship between two variables

    The covariance:

    )YX(P)]Y(EY)][(X(EX[N

    1i

    iiiiXY

    where: X = discrete variable XXi = the i

    th outcome of XY = discrete variable YYi = the i

    th outcome of YP(XiYi) = probability of occurrence of the condition affecting

    the ith outcome of X and the ith outcome of Y

  • 7/27/2019 Topic7_Jan13.pptw

    10/41Chap 7-10

    Computing the Mean forInvestment Returns

    Return per $1,000 for two types of investments

    P(XiYi) Economic condition Passive Fund X Aggressive Fund Y.2 Recession - $ 25 - $200

    .5 Stable Economy + 50 + 60

    .3 Expanding Economy + 100 + 350

    Investment

    E(X) = X = (-25)(.2) +(50)(.5) + (100)(.3) = 50

    E(Y) = Y = (-200)(.2) +(60)(.5) + (350)(.3) = 95

  • 7/27/2019 Topic7_Jan13.pptw

    11/41Chap 7-11

    Computing the Standard Deviationfor Investment Returns

    P(XiYi) Economic condition Passive Fund X Aggressive Fund Y

    .2 Recession - $ 25 - $200

    .5 Stable Economy + 50 + 60

    .3 Expanding Economy + 100 + 350

    Investment

    43.30

    (.3)50)(100(.5)50)(50(.2)50)(-25 222X

    71.193

    )3(.)95350()5(.)9560()2(.)95200-( 222Y

  • 7/27/2019 Topic7_Jan13.pptw

    12/41Chap 7-12

    Computing the Covariancefor Investment Returns

    P(XiYi) Economic condition Passive Fund X Aggressive Fund Y

    .2 Recession - $ 25 - $200

    .5 Stable Economy + 50 + 60

    .3 Expanding Economy + 100 + 350

    Investment

    8250

    95)(.3)50)(350(100

    95)(.5)50)(60(5095)(.2)200-50)((-25 YX,

  • 7/27/2019 Topic7_Jan13.pptw

    13/41Chap 7-13

    Interpreting the Results forInvestment Returns

    The aggressive fund has a higher expectedreturn, but much more risk

    Y = 95 > X = 50

    butY = 193.21 > X = 43.30

    The Covariance of 8250 indicates that the twoinvestments are positively related and will varyin the same direction

  • 7/27/2019 Topic7_Jan13.pptw

    14/41Chap 7-14

    The Sum ofTwo Random Variables

    Expected Value of the sum of two random variables:

    Variance of the sum of two random variables:

    Standard deviation of the sum of two random variables:

    XY2Y

    2X

    2YX 2Y)Var(X

    )Y(E)X(EY)E(X

    2YXYX

  • 7/27/2019 Topic7_Jan13.pptw

    15/41Chap 7-15

    Portfolio Expected Returnand Portfolio Risk

    Portfolio expected return (weighted averagereturn):

    Portfolio risk (weighted variability)

    Where w = portion of portfolio value in asset X

    (1 - w) = portion of portfolio value in asset Y

    )Y(E)w1()X(EwE(P)

    XY2Y22X2P w)-2w(1)w1(w

  • 7/27/2019 Topic7_Jan13.pptw

    16/41Chap 7-16

    Portfolio Example

    Investment X: X = 50 X = 43.30

    Investment Y: Y = 95 Y = 193.21

    XY = 8250

    Suppose 40% of the portfolio is in Investment X and60% is in Investment Y:

    The portfolio return and portfolio variability are between the values

    for investments X and Y considered individually

    77)95()6(.)50(4.E(P)

    04.133

    8250)2(.4)(.6)((193.21))6(.(43.30)(.4) 2222P

  • 7/27/2019 Topic7_Jan13.pptw

    17/41Chap 7-17

    Probability Distributions

    Continuous

    ProbabilityDistributions

    Binomial

    Poisson

    ProbabilityDistributions

    Discrete

    ProbabilityDistributions

    Normal

    Uniform

    Exponential

  • 7/27/2019 Topic7_Jan13.pptw

    18/41Chap 7-18

    Binomial Probability Distribution

    A fixed number of observations, n e.g., 15 tosses of a coin; ten light bulbs taken from a warehouse

    Two mutually exclusive and collectively exhaustive

    categories e.g., head or tail in each toss of a coin; defective or not defective

    light bulb

    Generally called success and failure

    Probability of success is p, probability of failure is 1 p

    Constant probability for each observation e.g., Probability of getting a tail is the same each time we toss

    the coin

  • 7/27/2019 Topic7_Jan13.pptw

    19/41Chap 7-19

    Binomial Probability Distribution(continued)

    Observations are independent The outcome of one observation does not affect the

    outcome of the other

    Two sampling methods Infinite population without replacement

    Finite population with replacement

  • 7/27/2019 Topic7_Jan13.pptw

    20/41Chap 7-20

    Possible Binomial DistributionSettings

    A manufacturing plant labels items aseither defective or acceptable

    A firm bidding for contracts will either get acontract or not

    A marketing research firm receives surveyresponses of yes I will buy or no I will

    not

    New job applicants either accept the offeror reject it

  • 7/27/2019 Topic7_Jan13.pptw

    21/41Chap 7-21

    Rule of Combinations

    The number ofcombinations of selecting Xobjects out of n objects is

    )!Xn(!X

    !n

    X

    n

    where: n! =n(n - 1)(n - 2) . . . (2)(1)

    X! = X(X - 1)(X - 2) . . . (2)(1)

    0! = 1 (by definition)

  • 7/27/2019 Topic7_Jan13.pptw

    22/41Chap 7-22

    P(X) = probability ofX successes in n trials,

    with probability of success pon each trial

    X = number of successes in sample,

    (X = 0, 1, 2, ..., n)n = sample size (number of trials

    or observations)

    p = probability of success

    P(X)n

    X ! n Xp (1-p)

    X n X!

    ( )!

    Example: Flip a coin fourtimes, let x = # heads:

    n = 4

    p = 0.5

    1 - p = (1 - .5) = .5

    X = 0, 1, 2, 3, 4

    Binomial Distribution Formula

  • 7/27/2019 Topic7_Jan13.pptw

    23/41

    Chap 7-23

    Example:Calculating a Binomial Probability

    What is the probability of one success in fiveobservations if the probability of success is .1?

    X = 1, n = 5, and p = .1

    32805.

    )9)(.1)(.5(

    )1.1()1(.)!15(!1

    !5

    )p1(p)!Xn(!X

    !n)1X(P

    4

    151

    XnX

  • 7/27/2019 Topic7_Jan13.pptw

    24/41

    Chap 7-24

    n = 5 p = 0.1

    n = 5 p = 0.5

    Mean

    0

    .2

    .4

    .6

    0 1 2 3 4 5

    X

    P(X)

    .2

    .4

    .6

    0 1 2 3 4 5

    X

    P(X)

    0

    Binomial Distribution

    The shape of the binomial distribution depends on thevalues of p and n

    Here, n = 5 and p = .1

    Here, n = 5 and p = .5

  • 7/27/2019 Topic7_Jan13.pptw

    25/41

    Chap 7-25

    Binomial DistributionCharacteristics

    Mean

    Variance and Standard Deviation

    npE(x)

    p)-np(12

    p)-np(1 Where n = sample size

    p = probability of success

    (1 p) = probability of failure

  • 7/27/2019 Topic7_Jan13.pptw

    26/41

    Chap 7-26

    n = 5 p = 0.1

    n = 5 p = 0.5

    Mean

    0.2

    .4

    .6

    0 1 2 3 4 5

    X

    P(X)

    .2

    .4

    .6

    0 1 2 3 4 5

    X

    P(X)

    0

    0.5(5)(.1)np

    0.6708

    .1)(5)(.1)(1p)-np(1

    2.5(5)(.5)np

    1.118

    .5)(5)(.5)(1p)-np(1

    Binomial Characteristics

    Examples

  • 7/27/2019 Topic7_Jan13.pptw

    27/41

    Chap 7-27

    Using Binomial Tables

    n = 10

    x p=.20 p=.25 p=.30 p=.35 p=.40 p=.45 p=.50

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0.1074

    0.2684

    0.3020

    0.2013

    0.0881

    0.0264

    0.0055

    0.0008

    0.0001

    0.0000

    0.0000

    0.0563

    0.1877

    0.2816

    0.2503

    0.1460

    0.0584

    0.0162

    0.0031

    0.0004

    0.0000

    0.0000

    0.0282

    0.1211

    0.2335

    0.2668

    0.2001

    0.1029

    0.0368

    0.0090

    0.0014

    0.0001

    0.0000

    0.0135

    0.0725

    0.1757

    0.2522

    0.2377

    0.1536

    0.0689

    0.0212

    0.0043

    0.0005

    0.0000

    0.0060

    0.0403

    0.1209

    0.2150

    0.2508

    0.2007

    0.1115

    0.0425

    0.0106

    0.0016

    0.0001

    0.0025

    0.0207

    0.0763

    0.1665

    0.2384

    0.2340

    0.1596

    0.0746

    0.0229

    0.0042

    0.0003

    0.0010

    0.0098

    0.0439

    0.1172

    0.2051

    0.2461

    0.2051

    0.1172

    0.0439

    0.0098

    0.0010

    10

    9

    8

    7

    6

    5

    4

    3

    2

    1

    0

    p=.80 p=.75 p=.70 p=.65 p=.60 p=.55 p=.50 x

    Examples:

    n = 10, p = .35, x = 3: P(x = 3|n =10, p = .35) = .2522

    n = 10, p = .75, x = 2: P(x = 2|n =10, p = .75) = .0004

  • 7/27/2019 Topic7_Jan13.pptw

    28/41

    Chap 7-28

    The Poisson Distribution

    Binomial

    Poisson

    ProbabilityDistributions

    Discrete

    ProbabilityDistributions

  • 7/27/2019 Topic7_Jan13.pptw

    29/41

    Chap 7-29

    The Poisson Distribution

    Apply the Poisson Distribution when:

    You wish to count the number of times an eventoccurs in a given area of opportunity

    The probability that an event occurs in one area ofopportunity is the same for all areas of opportunity

    The number of events that occur in one area ofopportunity is independent of the number of eventsthat occur in the other areas of opportunity

    The probability that two or more events occur in anarea of opportunity approaches zero as the area ofopportunity becomes smaller

    The average number of events per unit is (lambda)

  • 7/27/2019 Topic7_Jan13.pptw

    30/41

    Chap 7-30

    Poisson Distribution Formula

    where:

    X = number of successes per unit

    = expected number of successes per unite = base of the natural logarithm system (2.71828...)

    !X

    e)X(P

    x

  • 7/27/2019 Topic7_Jan13.pptw

    31/41

    Chap 7-31

    Poisson DistributionCharacteristics

    Mean

    Variance and Standard Deviation

    2

    where = expected number of successes per unit

  • 7/27/2019 Topic7_Jan13.pptw

    32/41

    Chap 7-32

    Using Poisson Tables

    X

    0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

    0

    1

    2

    34

    5

    6

    7

    0.9048

    0.0905

    0.0045

    0.00020.0000

    0.0000

    0.0000

    0.0000

    0.8187

    0.1637

    0.0164

    0.00110.0001

    0.0000

    0.0000

    0.0000

    0.7408

    0.2222

    0.0333

    0.00330.0003

    0.0000

    0.0000

    0.0000

    0.6703

    0.2681

    0.0536

    0.00720.0007

    0.0001

    0.0000

    0.0000

    0.6065

    0.3033

    0.0758

    0.01260.0016

    0.0002

    0.0000

    0.0000

    0.5488

    0.3293

    0.0988

    0.01980.0030

    0.0004

    0.0000

    0.0000

    0.4966

    0.3476

    0.1217

    0.02840.0050

    0.0007

    0.0001

    0.0000

    0.4493

    0.3595

    0.1438

    0.03830.0077

    0.0012

    0.0002

    0.0000

    0.4066

    0.3659

    0.1647

    0.04940.0111

    0.0020

    0.0003

    0.0000

    Example: Find P(X = 2) if = .50

    .07582!

    (0.50)e

    !X

    e)2X(P

    20.50X

  • 7/27/2019 Topic7_Jan13.pptw

    33/41

    Chap 7-33

    Graph of Poisson Probabilities

    0.00

    0.10

    0.20

    0.30

    0.40

    0.50

    0.60

    0.70

    0 1 2 3 4 5 6 7

    x

    P(x)

    X

    =0.50

    0

    1

    2

    34

    5

    6

    7

    0.6065

    0.3033

    0.0758

    0.01260.0016

    0.0002

    0.0000

    0.0000P(X = 2) = .0758

    Graphically:

    = .50

  • 7/27/2019 Topic7_Jan13.pptw

    34/41

    Chap 7-34

    Poisson Distribution Shape

    The shape of the Poisson Distributiondepends on the parameter :

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    1 2 3 4 5 6 7 8 9 10 11 12

    x

    P(x)

    0.00

    0.10

    0.20

    0.30

    0.40

    0.50

    0.60

    0.70

    0 1 2 3 4 5 6 7

    x

    P(x)

    = 0.50 = 3.00

  • 7/27/2019 Topic7_Jan13.pptw

    35/41

    Chap 7-35

    Using Poisson Distribution toApproximate Binomial Distribution

    The Poisson Distribution can be used toapproximate the Binomial Distribution when:

    n is large, and

    p is very small

    The larger the n and the smaller the p, the better is theapproximation.

  • 7/27/2019 Topic7_Jan13.pptw

    36/41

    Chap 7-36

    where:

    P(X) = probability of X successes given the parameters n and p

    n = sample sizep = true probability of success

    e = mathematical constant approximated by 2.71828

    X = number of successes in the sample (X = 0, 1, 2, , n)

    !

    )()(

    X

    npeXP

    xnp

    Using Poisson Distribution toApproximate Binomial Distribution

    U i P i Di ib i

  • 7/27/2019 Topic7_Jan13.pptw

    37/41

    Chap 7-37

    Mean

    Standard Deviation

    npXE )(

    np

    where = expected number of successes per unit

    n = sample size

    p = probability of success

    (1 p) = probability of failure

    Using Poisson Distribution toApproximate Binomial Distribution

    U i P i Di t ib ti t

  • 7/27/2019 Topic7_Jan13.pptw

    38/41

    Chap 7-38

    Using Poisson Distribution toApproximate Binomial Distribution

    U i P i Di t ib ti t

  • 7/27/2019 Topic7_Jan13.pptw

    39/41

    Chap 7-39

    Using Poisson Distribution toApproximate Binomial Distribution

  • 7/27/2019 Topic7_Jan13.pptw

    40/41

    Chap 7-40

  • 7/27/2019 Topic7_Jan13.pptw

    41/41

    Summary

    Addressed the probability of a discrete random

    variable

    Defined covariance and discussed itsapplication in finance

    Discussed the Binomial distribution

    Discussed the Hypergeometric distribution Reviewed the Poisson distribution