Top Banner
Top school in India By: school.edhole.com
56

Top School in delhi

Nov 15, 2014

Download

Education

Edhole.com

On this website people get all information of schools
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Top School in delhi

Top school in India

By:

school.edhole.com

Page 2: Top School in delhi

8-2

Chapter 8 Differential Equations

• An equation that defines a relationship between an unknown function and one or more of its derivatives is referred to as a differential equation.

• A first order differential equation:

• Example:

),( yxfdx

dy

5.05.2 obtain we,1 and 2 ngSubstituti

2

5get weit, Solving

.1at 2 conditionboundary with,5

2

2

xyx y

cxy

xyxdx

dy

school.edhole.com

Page 3: Top School in delhi

8-3

• Example:

• A second-order differential equation:

• Example:

),,(2

2

dx

dyyxf

dx

yd

)( xycdx

dy

'2'' yxyxy

school.edhole.com

Page 4: Top School in delhi

8-4

Taylor Series Expansion

• Fundamental case, the first-order ordinary differential equation:

Integrate both sides

• The solution based on Taylor series expansion:

00 at subject to )( xxyyxfdx

dy

x

x

y

ydxxfdy

00

)( x

xdxxfyxgy

0

)()(or 0

)()(' and )( where

...)(''!2

)()(')()()(

0000

0

20

00

xfxgxgy

xgxx

xgxxxgxgy

school.edhole.com

Page 5: Top School in delhi

8-5

Example : First-order Differential Equation

Given the following differential equation:

The higher-order derivatives:

1at 1such that 3 2 xyxdx

dy

4nfor 0

6

6

3

3

2

2

n

n

dx

yd

dx

yd

xdx

yd

school.edhole.com

Page 6: Top School in delhi

8-6

The final solution:

1 where

)1()1(3)1(31

)6(!3

)1()6(

!2

)1()3)(1(1

!3

)1(

!2

)1()1(1)(

0

32

3

0

22

0

3

33

2

22

x

xxx

xx

xxx

dx

ydx

dx

ydx

dx

dyxxg

school.edhole.com

Page 7: Top School in delhi

8-7

x One Term Two Terms Three Terms Four Terms

1 1 1 1 1

1.1 1 1.3 1.33 1.331

1.2 1 1.6 0.72 1.728

1.3 1 1.9 2.17 2.197

1.4 1 2.2 2.68 2.744

1.5 1 2.5 3.25 3.375

1.6 1 2.8 3.88 4.096

1.7 1 3.1 4.57 4.913

1.8 1 3.4 5.32 5.832

1.9 1 3.7 6.13 6.859

2 1 4 7 8

Table: Taylor Series Solution

school.edhole.com

Page 8: Top School in delhi

8-8school.edhole.com

Page 9: Top School in delhi

8-9

General Case

• The general form of the first-order ordinary differential equation:

• The solution based on Taylor series expansion:

00 at subject to ),( xxyyyxfdx

dy

...),(''!2

)(),(')(),()( 00

000000

yxg

xxyxgxxyxgxgy

school.edhole.com

Page 10: Top School in delhi

8-10

Euler’s Method

• Only the term with the first derivative is used:

• This method is sometimes referred to as the one-step Euler’s method, since it is performed one step at a time.

edx

dyxxxgxg )()()( 00

school.edhole.com

Page 11: Top School in delhi

8-11

Example: One-step Euler’s Method

• Consider the differential equation:

• For x =1.1

Therefore, at x=1.1, y=1.44133 (true value).

1at 1such that 4 2 xyxdx

dy

1.1

1

2

14 dxxdy

y

44133.03

41

1.1

1

3 xy

school.edhole.com

Page 12: Top School in delhi

8-12

0.008373. iserror The

1.43296g(1.10)

valueestimated thesteps, fiveafter 0.02, of size stepa For

0.020833. toreduced iserror The

4205.1])05.1(4)[05.110.1()05.1()10.1(

2.12.01])1(4)[00.105.1()1()05.1(

:)05.1 and 1(at

twiceequation sr'apply Eule and 0.05 of size stepa Use

value).absolute (in 0.04133error The

4.1])1(4[1.01)1.1(

get we,1.0)( of size stepa With

2

2

2

0

gg

gg

xx

g

xxx

school.edhole.com

Page 13: Top School in delhi

8-13

Errors with Euler`s Method

• Local error: over one step size.

Global error: cumulative over the range of the solution.

• The error using Euler`s method can be approximated using the second term of the Taylor series expansion as

• If the range is divided into n increments, then the error at the end of range for x would be n.

].,[ in maximum theis where

!2

)(

02

2

2

220

xxdx

yd

dx

ydxx

school.edhole.com

Page 14: Top School in delhi

8-14

Example: Analysis of Errors

0088.0)02.0)(1.1)(4(5

022.0)05.0)(1.1)(4(2

044.0)1.0)(1.1(4

:1.1at

error theon limitsupper the0.02. and 0.05, 0.1, of sizes stepFor

)(4)8(!2

)(by bounded iserror theThus,

8

1at 1 that such 4

202.0

205.0

21.0

20

20

2

2

2

x

xxxxxx

xdx

yd

xyxdx

dy

school.edhole.com

Page 15: Top School in delhi

8-15

Table: Local and Global Errors with a Step Size of 0.1.

x Exact solution

Numerical Solution

Local Error(%)

Global Error(%)

1 1 1 0 0

1.1 1.4413333 1.4 -2.8677151 -2.8677151

1.2 1.9706667 1.884 -2.300406 -4.3978349

1.3 2.596 2.46 -1.9003595 -5.238829

1.4 3.3253333 3.136 -1.6038492 -5.6936648

1.5 4.1666667 3.92 -1.396 -5-92

1.6 5.128 4.82 -1.1960478 -6.0062402

1.7 6.2173333 5.844 -1.0508256 -6.004718

1.8 7.4426667 7 -0.9315657 -5.947689

1.9 8.812 8.296 -0.8321985 -5.8556514

2 10.333333 9.74 -0.7483871 -5.7419355school.edhole.com

Page 16: Top School in delhi

8-16

x Exact solution

Numerical Solution

Local Error(%)

Global Error(%)

1 1 1 0 0

1.05 1.2101667 1.2 -0.8401047 -0.8401047

1.1 1.4413333 1.4205 -0.7400555 -1.4454209

1.15 1.6945 1.6625 -0.6589948 -1.8884627

1.2 1.9706667 1.927 -0.5920162 -2.2158322

1.25 2.2708333 2.215 -0.5357798 -2.4587156

1.3 2.596 2.5275 -0.4879301 -2.6386749

1.35 2.9471667 2.8655 -0.4467568 -2.771023

1.4 3.3253333 3.23 -0.4109864 -2.8668805

1.45 3.7315 3.622 -0.3796507 -2.9344768

1.5 4.1666667 4.4025 -0.352 -2.98

Table: Local and Global Errors with a Step Size of 0.05.

school.edhole.com

Page 17: Top School in delhi

8-17

x Exact solution

Numerical Solution

Local Error(%)

Global Error(%)

1.55 4.6318333 4.4925 -0.3274441 -3.0081681

1.6 5.128 4.973 -0.3055122 -3.0226209

1.65 5.6561667 5.485 -0.2858237 -3.0261956

1.7 6.2173333 6.0295 -0.2680678 -3.0211237

1.75 6.8125 6.6075 -0.2519878 -3.0091743

1.8 7.4426667 7.22 -0.2373701 -2.9917592

1.85 8.1088333 7.868 -0.2240355 -2.9700121

1.9 8.812 8.5525 -0.2118323 -2.9448479

1.95 9.5531667 9.2745 -0.2006316 -2.9170083

2 10.333333 10.035 -0.1903226 -2.8870968

Table: Local and Global Errors with a Step Size of 0.05 (continued).

school.edhole.com

Page 18: Top School in delhi

8-18

x Exact solution Numerical Solution Local Error(%) Global Error(%)

1 1 1 0 0

1.02 1.0816107 1.08 -0.1489137 -0.1489137

1.04 1.1664853 1.163232 -0.1408219 -0.2789005

1.06 1.254688 1.24976 -0.1334728 -0.392767

1.08 1.3462827 1.339648 -0.1267688 -0.4928138

1.1 1.4413333 1.43296 -0.120629 -0.5809436

1.2 1.9706667 1.95312 -0.0963464 -0.8903924

1.3 2.596 2.56848 -0.0793015 -1.0600924

1.4 3.3253333 3.28704 -0.0667201 -1.1515638

1.5 4.1666667 4.1168 -0.057088 -1.1968

1.6 5.128 5.06876 -0.049506 -1.2137285

1.7 6.2173333 6.14192 -0.0434055 -1.212953

1.8 7.4426667 7.35328 -0.0384092 -1.2010032

1.9 8.812 8.70784 -0.0342563 -1.1820245

2 10.333333 10.2136 -0.0307613 -1.1587097

Table: Local and Global Errors with a Step Size of 0.02.

school.edhole.com

Page 19: Top School in delhi

8-19

Modified Euler’s Method

• Use an average slope, rather than the slope at the start of the interval :

a. Evaluate the slope at the start of the intervalb. Estimate the value of the dependent variable y at the

end of the interval using the Euler’s metod.c. Evaluate the slope at the end of the interval.d. Find the average slope using the slopes in a and c.e. Compute a revised value of the dependent variable y

at the end of the interval using the average slope of step d with Euler’s method.

school.edhole.com

Page 20: Top School in delhi

8-20

Example : Modified Euler’s Method

1at 1 that such xyyxdx

dy

10768.1)07684.1(1.01)0.11.1()0.1()1.1( 1e.

07684.1)15369.11(2

1 1d.

15369.11.11.1 c.1

1.1)1(1.01)0.11.1()0.1()1.1( 1b.

111 a.1

:1.0for iterationfirst theof steps five The

1.1

1

1

a

a

dx

dygg

dx

dy

dx

dy

dx

dygg

dx

dy

x

school.edhole.com

Page 21: Top School in delhi

8-21

23193.1)1.12.1()1.1()2.1( 2e.

24251.1)(2

1 2d.

32732.122345.12.1 c.2

22345.1)15771.1(1.010768.1)1.12.1()1.1()2.1( 2b.

15771.110768.11.1 a.2

:interval second for the steps The

2.11.1

2.1

1.1

1.1

a

a

dx

dygg

dy

dx

dy

dx

dy

dx

dx

dy

dx

dygg

yxdx

dy

school.edhole.com

Page 22: Top School in delhi

8-22

Second-order Runge-Kutta Methods

• The modified Euler’s method is a case of the second-order Runge-Kutta methods. It can be expressed as

xhxxx

xxgyxgy

hyxhfyhxfyxfyy

ii

iiii

iiiiiiii

,

),( ),( where

))],(,(),([5.0

1

1

1

school.edhole.com

Page 23: Top School in delhi

8-23

• The computations according to Euler’s method:

1. Evaluate the slope at the start of an interval, that is, at (xi,yi) .

2. Evaluate the slope at the end of the interval (xi+1,yi+1) :

3. Evaluate yi+1 using the average slope S1 of and S2 :

),(1 ii yxfS

),( 12 hSyhxfS ii

hSSyy ii )(5.0 211

school.edhole.com

Page 24: Top School in delhi

8-24

Third-order Runge-Kutta Methods

• The following is an example of the third-order Runge-Kutta methods :

hyxhfyhxhfyxhfyhxf

yxhfyhxfyxfyy

iiiiiiii

iiiiiiii

)))],(5.0,5.0(2),(,(

)),(5.0,5.0(4),([6

11

school.edhole.com

Page 25: Top School in delhi

8-25

• The computational steps for the third-order method:

1. Evaluate the slope at (xi,yi).

2. Evaluate a second slope S2 estimate at the mid-point in of the step as

3. Evaluate a third slope S3 as

4. Estimate the quantity of interest yi+1 as

)5.0,5.0( 12 hSyhxfS ii

)2,( 213 hShSyhxfS ii

hSSSyy ii ]4[6

13211

),(1 ii yxfS

school.edhole.com

Page 26: Top School in delhi

8-26

Fourth-order Runge-Kutta Methods

1. Compute the slope S1 at (xi,yi).

2. Estimate y at the mid-point of the interval.

3. Estimate the slope S2 at mid-interval.

4. Revise the estimate of y at mid-interval

. at that such ),( 00 hxxxyyyxfdx

dy

),(1 ii yxfS

),(22/1 iiii yxfh

yy

)5.0,5.0( 12 hSyhxfS ii

22/1 2S

hyy ii

school.edhole.com

Page 27: Top School in delhi

8-27

5. Compute a revised estimate of the slope S3 at mid-interval.

6. Estimate y at the end of the interval.

7. Estimate the slope S4 at the end of the interval

8. Estimate yi+1 again.

)5.0,5.0( 23 hSyhxfS ii

31 hSyy ii

),( 34 hSyhxfS ii

)22(6 43211 SSSSh

yy ii

school.edhole.com

Page 28: Top School in delhi

8-28

Predictor-Corrector Methods

• Unless the step sizes are small, Euler’s method and Runge-Kutta may not yield precise solutions.

• The Predictor-Corrector Methods iterate several times over the same interval until the solution converges to within an acceptable tolerance.

• Two parts: predictor part and corrector part.

school.edhole.com

Page 29: Top School in delhi

8-29

Euler-trapezoidal Method

• Euler’s method is the predictor algorithm.

• The trapezoidal rule is the corrector equation.

• Eluer formula (predictor):

• Trapezoidal rule (corrector):

The corrector equation can be applied as many times as necessary to get convergence.

,*,*,1

iiji dx

dyhyy

][2 1,1,*

,*,1

jii

iji dx

dy

dx

dyhyy

school.edhole.com

Page 30: Top School in delhi

8-30

Example 8-6: Euler-trapezoidal Mehtod

1at 1 that such :Problem xyyxdx

dy

1.1)1(1.01

1.0

111

is 1.1at for estimate )(predictor initial The

0,1

0,0,*00,1

0,0

y

dx

dyyy

dx

dy

xy

15369.11.11.1

:estimate theimprove toused is equationcorrector The

0,1

dx

dy

school.edhole.com

Page 31: Top School in delhi

8-31

10789.115782.112

1.01

2

15782.110789.11.1

10789.115771.112

1.01

2

15771.110768.11.1

10768.115369.112

1.01

2

2,10,0,*03,1

2,1

1,10,0,*02,1

1,1

0,10,0,*01,1

dx

dy

dx

dyhyy

dx

dy

dx

dy

dx

dyhyy

dx

dy

dx

dy

dx

dyhyy

. have weAnd

.1.1at 1.10789 toconverges , Since

3,1,*1

2,13,1

yy

xyyy

school.edhole.com

Page 32: Top School in delhi

8-32

22367.1)15782.1(1.010789.1

:equationpredictor the,2.1at of estimate For the

,*1,*10,2

dx

dyhyy

xy

33203.123215.12.1

23215.132744.115782.12

1.010789.1

2

32744.122367.12.1

:equationcorrector The

2,2

1,2,*1,*11,2

1,2

dx

dy

dx

dy

dx

dyhyy

dx

dy

school.edhole.com

Page 33: Top School in delhi

8-33

1.23239. is 2.1at of estimate The

.iterations threein converges algorithmcorrector theAgain,

23239.133215.115782.12

1.010789.1

2

33215.123238.12.1

23238.133203.115782.12

1.010789.1

2

3,2,*1,*13,2

3,2

2,2,*1,*12,2

xy

dx

dy

dx

dyhyy

dx

dy

dx

dy

dx

dyhyy

school.edhole.com

Page 34: Top School in delhi

8-34

Milne-Simpson Method

• Milne’s equation is the predictor euqation.• The Simpson’s rule is the corrector formula. • Milne’s equation (predictor):

For the two initial sampling points, a one-step method such as Euler’s equation can be used.

• Simpsos’s rule (corrector):

]22[3

4

,*2,*1,*,*30,1

iiiii dx

dy

dx

dy

dx

dyhyy

]4[3 ,*1,*,1

,*1,1

iiji

iji dx

dy

dx

dy

dx

dyhyy

school.edhole.com

Page 35: Top School in delhi

8-35

Example 8-7: Milne-Simpson Mehtod

.4.1 and 3.1at estimate want toWe

1at 1 that such :Problem

xxy

xyyxdx

dy

1 1 1

1.1 1.10789 1.15782

1.2 1.23239 1.33215

Assume that we have the following values, obtained from the Euler-trapezoidal method in Example 8-6.

x y dx

dy

school.edhole.com

Page 36: Top School in delhi

8-36

51917.136560.13.1

36560.1)33215.1(1.023239.1

:used be can method sEuler'

, 3.1at for estimate )(predictor initial thecompute To

0,3

,*2,*20,3

dx

dy

dx

dyhyy

xy

37474.1

15782.1)33215.1(451917.13

1.010789.1

43

1.0

:formularcorrector The

,*1,*20,3,*11,3

dx

dy

dx

dy

dx

dyyy

school.edhole.com

Page 37: Top School in delhi

8-37

37492.1

15782.1)33215.1(452434.13

1.010789.1

52434.137491.13.1

37491.1

15782.1)33215.1(452424.13

1.010789.1

52424.137474.13.1

3,3

2,3

2,3

1,3

y

dx

dy

y

dx

dy

The computations for x=1.3 are complete.

school.edhole.com

Page 38: Top School in delhi

8-38

The Milne predictor equation for estimating y at x=1.4:

53762.1

15782.1233215.152434.123

1.041

223

4

,*1,*2,*3,*00,4

dx

dy

dx

dy

dx

dyhyy

73610.153762.14.11,4

dx

dy

The corrector formular:

school.edhole.com

Page 39: Top School in delhi

8-39

complete. isit Then

53791.133215.152434.1473617.13

1.023239.1

73617.153791.14.1

53791.1

33215.152434.1473601.13

1.023239.1

43

2,4

2,4

,*2,*30,4,*21,4

y

dx

dy

dx

dy

dx

dy

dx

dyhyy

school.edhole.com

Page 40: Top School in delhi

8-40

Least-Squares Method

• The procedure for deriving the least-squares function:

1. Assume the solution is an nth-order polynomial:

2. Use the boundary condition of the ordinary differential equation to evaluate one of (bo,b1,b2,…,bn).

3. Define the objective function:

nnx xbxbbby 2

210ˆ

dxeFx 2

dx

dy

dx

yde

ˆ where

school.edhole.com

Page 41: Top School in delhi

8-41

4. Find the minimum of F with respect to the unknowns (b1,b2, b3,…,bn) , that is

5. The integrals in Step 4 are called the normal equations; the solution of the normal equations yields value of the unknowns (b1,b2, b3,…,bn).

xallii

dxb

ee

b

F02

school.edhole.com

Page 42: Top School in delhi

8-42

Example 8-8: Least-squares Method

2/2

:solution Analytical

1.x0 interval for theit Solve

0at 1 that such :Problem

xey

xyxydx

dy

1

1

0

10

10

ˆ

is modellinear theThus .1 yields

)0(1ˆ

conditionboundary theUsing

ˆ

bdx

yd

xby

b

bby

xbby

• First, assume a linear model is used:

school.edhole.com

Page 43: Top School in delhi

8-43

0)543

2

2(

0)1)](1([22

1

)1(

:functionerror The

0

51

431

2

1

0 0

211

1

2

1

111

x

x x

xbxxbxxb

dxxxbxbdxdb

dee

xdb

de

xbxbxybe

xy

x

x

3215

32

151

Thus, .bget we,1 withintegral above

thesolve ,10 range thein interested are weSince

school.edhole.com

Page 44: Top School in delhi

8-44

x True y Value Numerical y Value Error (%)

0 1. 1. -

0.2 1.0202 1.0938 7.2

0.4 1.0833 1.1875 9.6

0.6 1.1972 1.2812 7.0

0.8 1.3771 1.3750 0.0

1.0 1.6487 1.46688 -10.9

Table: A linear model for the least-squares method

2/2xey xy 32151ˆ

school.edhole.com

Page 45: Top School in delhi

8-45

• Next, to improve the accuracy of estimates, a quadratic model is used:

xxxbxb

xbxbxxbbxyxbbe

xbbdx

yd

b

bbby

xbxbby

)2()1(

)1(22

is functionerror The

.1 yields

)0()0(1ˆ

conditionboundary theUsing

ˆ

32

21

2212121

21

0

2210

2210

school.edhole.com

Page 46: Top School in delhi

8-46

4

1

12

5

15

8

:limitupper theas 1 Using

046524

3

3

2

0121

1

21

0

462

51

2422

2

31

1

0

232

21

2

1

bb

x

xxbxbxxbxb

xbxb

dxxxxxbxb

xb

e

x

x

school.edhole.com

Page 47: Top School in delhi

8-47

2

21

21

0

572

51

252

42

412

1

0

332

21

3

2

78776.014669.01ˆ

.78776.0 and 14669.0get We15

7

105

71

20

9

:limitupper theas 1 Using

05753

2

5

4

3

4

4

2

02212

2

xxy

bb

bb

x

xxbxbxxbxbxbxb

dxxxxxxbxb

xxb

e

x

x

school.edhole.com

Page 48: Top School in delhi

8-48

x True y Value Numerical y Value Error (%)

0 1. 1. -

0.2 1.0202 1.0022 -1.8

0.4 1.0833 1.0674 0.0

0.6 1.1972 1.1956 0.0

0.8 1.3771 1.38668 0.0

1.0 1.6487 1.6411 0.0

Table: A quadratic model for the least-squares method

2/2xey 278776.014669.01ˆ xxy

school.edhole.com

Page 49: Top School in delhi

8-49

Galerkin Method

• Example: Galerkin Method

The same problem as Example 8-8.

Use the quadratic approximating equation.

ii

i

x i

b

ew

w

niedxw

method, squaresleast For the

factor. nga weighti is where

...2,1 0

. and Let 221 xwxw

school.edhole.com

Page 50: Top School in delhi

8-50

2

21

21

1

0

232

21

1

0

32

21

85526.026316.01ˆ

:result final The4

1

3

1

15

2

3

1

15

7

12

1

:equations normal following get the We

0])2()1([

0])2()1([

xxy

bb

bb

dxxxxxbxb

xdxxxxbxb

school.edhole.com

Page 51: Top School in delhi

8-51

Table: Example for the Galerkin method

x True y value Numerical y value Error (%)

0 1. 1. --

0.2 1.0202 0.9816 0.0

0.4 1.0833 1.0316 0.0

0.6 1.1972 1.1500 0.0

0.8 1.3771 1.3368 0.0

1.0 1.6487 1.5921 0.0

2/2xey 285526.026316.01ˆ xxy

school.edhole.com

Page 52: Top School in delhi

8-52

Higher-Order Differential Equations

• Second order differential equation:

Transform it into a system of first-order differential equations.

dx

dy

dx

dyyyy

ydx

dy

yyxfdx

dy

121

21

212

and where

),,(

dx

dyyxf

dx

yd,,

2

2

school.edhole.com

Page 53: Top School in delhi

8-53

• In general, any system of n equations of the following type can be solved using any of the previously discussed methods:

),...,,(

),...,,(

),...,,(

),...,,(

21

2133

2122

2111

nnn

n

n

n

yyyxfdx

dy

yyyxfdx

dy

yyyxfdx

dy

yyyxfdx

dy

school.edhole.com

Page 54: Top School in delhi

8-54

Example: Second-order Differential Equation

EI

XX

EI

M

dX

Yd 2

2

2 10 :Problem

ZdX

dYEI

XX

EI

M

dX

dZ

10

:into med transforbe canIt 2

hZYXfYY

hZYXfZZ

ZYXEI

iiiii

iiiii

),,(

),,(

:equations following thesolve tomethod s Euler'Use

02314.0 and 0,0at 3600 Assume

11

21

school.edhole.com

Page 55: Top School in delhi

8-55

Table: Second-order Differential Equation

Using a Step Size of 0.1 FtX

(ft)

Y

(ft)

Exact Z Exact Y

(ft)

0 0 -0.0231481 0 -0.0231481 0

0.1 0.000275 -0.0231481 -0.0023148 -0.0231344 -0.0023144

0.2 0.0005444 -0.0231206 -0.0046296 -0.0230933 -0.004626

0.3 0.0008083 -0.0230662 -0.0069417 -0.0230256 -0.0069321

0.4 0.0010667 -0.0229854 -0.0092483 -0.0229319 -0.0092302

0.5 0.0013194 -0.0228787 -0.0115469 -0.0228125 -0.0115177

0.6 0.0015667 -0.0227468 -0.0138347 -0.0226681 -0.0137919

0.7 0.0018083 -0.0225901 -0.0161094 -0.0224994 -0.0160505

0.8 0.0020444 -0.0224093 -0.0183684 -0.0223067 -0.018291

0.9 0.002275 -0.0222048 -0.0206093 -0.0220906 -0.020511

dX

dZ

dX

dYZ

school.edhole.com

Page 56: Top School in delhi

8-56

Table: Second-order Differential Equation

Using a Step Size of 0.1 Ft (continued)

dX

dZ

dX

dYZ

X

(ft)

Y

(ft)

Exact Z Exact Y

(ft)

1 0.0025 -0.0219773 -0.0228298 -0.0218519 -0.0227083

2 0.0044444 -0.0185565 -0.0434305 -0.0183333 -0.04296663

3 0.0058333 -0.0134412 -0.0298019 -0.0131481 -0.0588194

4 0.0066667 -0.007187 -0.0704998 -0.0068519 -0.0688889

5 0.0069444 -0.0003495 -0.0746352 0.00000000 -0.071228

6 0.0066667 0.0065157 -0.0718747 0.0068519 -0.0688889

7 0.0058333 0.0128532 -0.06244066 0.0131481 -0.0588194

8 0.0044444 0.0181074 -0.0471107 0.0183333 -0.042963

9 0.0025 0.0217227 -0.0272183 0.0278519 -0.0227083

10 0.000000 0.0231435 -0.00466523 0.0231481 0.000000

school.edhole.com