Top Banner
Top-down approach for formation of nanostructures: Lithography with light, electrons and ions Seminar Nanostrukturierte Festkörper, 30.10.2002 Martin Hulman
27

Top-down approach for formation of nanostructures: Lithography with light, electrons and ions Seminar Nanostrukturierte Festkörper, 30.10.2002 Martin Hulman.

Dec 25, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Top-down approach for formation of nanostructures: Lithography with light, electrons and ions Seminar Nanostrukturierte Festkörper, 30.10.2002 Martin Hulman.

Top-down approach for formation of nanostructures: Lithography with light, electrons and ions

Seminar Nanostrukturierte Festkörper, 30.10.2002

Martin Hulman

Page 2: Top-down approach for formation of nanostructures: Lithography with light, electrons and ions Seminar Nanostrukturierte Festkörper, 30.10.2002 Martin Hulman.

Seminar Nanostrukturierte Festkörper, 30.10.2002Seminar Nanostrukturierte Festkörper, 30.10.2002

Top-down approach for formation of nanostructures: Lithography with light, electrons and ions

Seminar Nanostrukturierte Festkörper, 30.10.2002

Outline

• History• Physical foundations of lithography • Overview of lithographic techniques• Resists • Future and perspectives• Lithography in our lab

Page 3: Top-down approach for formation of nanostructures: Lithography with light, electrons and ions Seminar Nanostrukturierte Festkörper, 30.10.2002 Martin Hulman.

Seminar Nanostrukturierte Festkörper, 30.10.2002

LITHOGRAPHY = „STONE DRAWING“

Page 4: Top-down approach for formation of nanostructures: Lithography with light, electrons and ions Seminar Nanostrukturierte Festkörper, 30.10.2002 Martin Hulman.

Seminar Nanostrukturierte Festkörper, 30.10.2002

A piece of history

• invented in 1798

• first technique for colorprinting

•pictures made by impressing flat embossed slabs (of limestone), each

covered with greasy ink of a particular color, onto a piece of stout paper

Page 5: Top-down approach for formation of nanostructures: Lithography with light, electrons and ions Seminar Nanostrukturierte Festkörper, 30.10.2002 Martin Hulman.

Seminar Nanostrukturierte Festkörper, 30.10.2002

SEMICONDUCTOR MANUFACTURING PROCESS

Page 6: Top-down approach for formation of nanostructures: Lithography with light, electrons and ions Seminar Nanostrukturierte Festkörper, 30.10.2002 Martin Hulman.

Seminar Nanostrukturierte Festkörper, 30.10.2002

Lithographic techniques

with electromagnetic waves:

• optical

• ultra-violet

• deep UV

• X-ray

with charged particles:

• electrons

• ions

Page 7: Top-down approach for formation of nanostructures: Lithography with light, electrons and ions Seminar Nanostrukturierte Festkörper, 30.10.2002 Martin Hulman.

Seminar Nanostrukturierte Festkörper, 30.10.2002

Physical basis of lithography

finite resolution of the image-forming system results in the light distribution which does not have clearly defined edges

Diffraction!

Page 8: Top-down approach for formation of nanostructures: Lithography with light, electrons and ions Seminar Nanostrukturierte Festkörper, 30.10.2002 Martin Hulman.

Seminar Nanostrukturierte Festkörper, 30.10.2002

Physical basis of lithography

two ingredients of image formation:

• optics

• photo-resist

The quality of image is determined by:

• resolution power of the optics

• focusing accuracy

•contrast of the resist process

Page 9: Top-down approach for formation of nanostructures: Lithography with light, electrons and ions Seminar Nanostrukturierte Festkörper, 30.10.2002 Martin Hulman.

Seminar Nanostrukturierte Festkörper, 30.10.2002

Physical basis of lithography:

Diffraction

a circular aperture illuminated by a point source of light

the light intensity distribution from a point sourceprojected through a circular aperture

Airy function

x=r d z

Page 10: Top-down approach for formation of nanostructures: Lithography with light, electrons and ions Seminar Nanostrukturierte Festkörper, 30.10.2002 Martin Hulman.

Seminar Nanostrukturierte Festkörper, 30.10.2002

Physical basis of lithography:

the Rayleigh criterion for resolution

two point sources of light separated by a small angle

the total light intensity is a sum of individual intensities

The Rayleigh criterion:

maximum of the Airy pattern from one source falls on the first zero of the Airy pattern from the other source

the minimum resolved distance d betweenthe peak and the first minimum of the Airy function

d = 0.61n sin

n sinis a numerical aperture

Page 11: Top-down approach for formation of nanostructures: Lithography with light, electrons and ions Seminar Nanostrukturierte Festkörper, 30.10.2002 Martin Hulman.

Seminar Nanostrukturierte Festkörper, 30.10.2002

Physical basis of lithography:

typical parameters for optics

Page 12: Top-down approach for formation of nanostructures: Lithography with light, electrons and ions Seminar Nanostrukturierte Festkörper, 30.10.2002 Martin Hulman.

Seminar Nanostrukturierte Festkörper, 30.10.2002

Optical printing lithography techniques

Contact printing:• a photomask is in direct or intimate contact with a resist-covered wafer;• the photomask is pressed against the wafer with a pressure of 0.05 - 0.3 atm; • exposed to light with wavelength of about 400nm; • a high resolution of less than 0.5 µm m is possible but the resolution varies across the wafer • the mask used in contact printing is frequently replaced after short period of use

Proximity printing:• there is a typical separation between the mask and the wafer in a range of 20 - 50 m; • the defects resulting from proximity printing are not as bad as contact printing ; • its resolution is not as good as compared to that of contact printing ; • the mask used has a longer lifetime

Projection printing:• larger separation between mask and wafer; • higher resolution than proximity printing; • the system cost is approximately five times that of contact printing

Page 13: Top-down approach for formation of nanostructures: Lithography with light, electrons and ions Seminar Nanostrukturierte Festkörper, 30.10.2002 Martin Hulman.

Seminar Nanostrukturierte Festkörper, 30.10.2002

Drawbacks of optical systems:

Aberrations

• chromatic aberration: inability to focus light over a range of wavelength

• distortions: higher resolutions in the center of the fields

• astigmatism: points to appear as lines

Page 14: Top-down approach for formation of nanostructures: Lithography with light, electrons and ions Seminar Nanostrukturierte Festkörper, 30.10.2002 Martin Hulman.

Seminar Nanostrukturierte Festkörper, 30.10.2002

Optical Lithography:

the smallest working device -- with 80 nm features

(1999)

a flash memory cell made of silicon

Page 15: Top-down approach for formation of nanostructures: Lithography with light, electrons and ions Seminar Nanostrukturierte Festkörper, 30.10.2002 Martin Hulman.

Seminar Nanostrukturierte Festkörper, 30.10.2002

X - ray lithography

• X – ray wavelength 6 – 14 nm

• diffraction effects can be ignored because of a small wavelength

• masks consists of an absorber (Au) on a transmissive membrane substrate (Si, SiC, Si3N4)

• ability to define very high resolution images

Page 16: Top-down approach for formation of nanostructures: Lithography with light, electrons and ions Seminar Nanostrukturierte Festkörper, 30.10.2002 Martin Hulman.

Seminar Nanostrukturierte Festkörper, 30.10.2002

Electron beam lithography

• no masks required !

• the diameter of the electron beam as small as 50 nm

• electrons with energy 10 – 50 keV(150 eV => 1 A)

• resolution not limited by diffraction but by scattering in the resist

• masks for optical lithography

• aberrations still present

• slow compared to optical lithography

• expensive and complicated

Page 17: Top-down approach for formation of nanostructures: Lithography with light, electrons and ions Seminar Nanostrukturierte Festkörper, 30.10.2002 Martin Hulman.

Seminar Nanostrukturierte Festkörper, 30.10.2002

Electron beam lithography

Page 18: Top-down approach for formation of nanostructures: Lithography with light, electrons and ions Seminar Nanostrukturierte Festkörper, 30.10.2002 Martin Hulman.

Seminar Nanostrukturierte Festkörper, 30.10.2002

Ion beam lithography

• lithography with charged ions (He+ and Ar +) at energies up to 200keV

• very small particle wavelength ~10-5 nm

• electrostatic ion optics with a small numerical aperture ~ 10-5

• resolution down to 50 nm

• diffraction limit 3 nm

Page 19: Top-down approach for formation of nanostructures: Lithography with light, electrons and ions Seminar Nanostrukturierte Festkörper, 30.10.2002 Martin Hulman.

Seminar Nanostrukturierte Festkörper, 30.10.2002

Resists • positive resist – more soluble after exposing to light, chemical bonds are destroyed in a photoactive component

• negative resist – less soluble after exposing to light, crosslinks between molecules are created

• PMMA for UV, deep-UV, X-ray and e-beam lithography• higher resolution is possible with positive resists in OL• factors limiting resist resolution: - swelling of the resist in the developer - index of refraction > 1 (for OL) - electron scattering (neglible for X-ray)

Page 20: Top-down approach for formation of nanostructures: Lithography with light, electrons and ions Seminar Nanostrukturierte Festkörper, 30.10.2002 Martin Hulman.

Seminar Nanostrukturierte Festkörper, 30.10.2002

Comparison of various lithographic techniques

Page 21: Top-down approach for formation of nanostructures: Lithography with light, electrons and ions Seminar Nanostrukturierte Festkörper, 30.10.2002 Martin Hulman.

Seminar Nanostrukturierte Festkörper, 30.10.2002

Future and perspectives: Moore´ s Law

Year of introduction Transistors (per IC)

4004 1971 2,250

8008 1972 2,500 8080 1974 5,000 8086 1978 29,000 286 1982 120,000 386™ processor 1985 275,000 486™ DX processor 1989 1,180,000 Pentium® processor 1993 3,100,000 Pentium II processor 1997 7,500,000 Pentium III processor 1999 24,000,000 Pentium 4 processor 2000 42,000,000

Violation of theMoore´s law ?

Current technology: 0.13 µm,down to 0.065 µm in 2007

physical limitations

Page 22: Top-down approach for formation of nanostructures: Lithography with light, electrons and ions Seminar Nanostrukturierte Festkörper, 30.10.2002 Martin Hulman.

Seminar Nanostrukturierte Festkörper, 30.10.2002

Future and perspectives

trends for technology for the scaling into deep nanometer regime

Page 23: Top-down approach for formation of nanostructures: Lithography with light, electrons and ions Seminar Nanostrukturierte Festkörper, 30.10.2002 Martin Hulman.

Seminar Nanostrukturierte Festkörper, 30.10.2002

Future and perspectives: Direct imprint

S. Chu et al., Nature 2002

Resolution down to 10 nm

no masks required !

Page 24: Top-down approach for formation of nanostructures: Lithography with light, electrons and ions Seminar Nanostrukturierte Festkörper, 30.10.2002 Martin Hulman.

Seminar Nanostrukturierte Festkörper, 30.10.2002

Lithography in our lab:

Raman microspectroscopy on individual carbon nanotubes

carbon nanotubes on a silicon surface

position of a nanotube with respect to a predefined marker system

AFM images, scale bars 1µm

Page 25: Top-down approach for formation of nanostructures: Lithography with light, electrons and ions Seminar Nanostrukturierte Festkörper, 30.10.2002 Martin Hulman.

Seminar Nanostrukturierte Festkörper, 30.10.2002

Lithography in our lab:

Raman spectra

150 200 250

0

1

2

3

4

2.41

2.50

2.60

Eexc

(eV)

174.1

214.4

230.7178.0

174.8

Inte

nsi

ty (

a.u

.)

Raman shift (cm-1)

150 200 250

0

2

4

6

Eexc

(eV)

2.60

2.50

2.41

2.18

1.92

181.7

206.9

231.9212.2180.6

180.7

Inte

nsi

ty (

a.u

.)

Raman shift (cm-1)

Page 26: Top-down approach for formation of nanostructures: Lithography with light, electrons and ions Seminar Nanostrukturierte Festkörper, 30.10.2002 Martin Hulman.

Seminar Nanostrukturierte Festkörper, 30.10.2002

Lithography in our lab:

marker system

masks made bye-beam lithography

size of letters 1.2 µm

Page 27: Top-down approach for formation of nanostructures: Lithography with light, electrons and ions Seminar Nanostrukturierte Festkörper, 30.10.2002 Martin Hulman.

Seminar Nanostrukturierte Festkörper, 30.10.2002

Lithography in our lab:

Suspended carbon nanotubes

G.T. Kim et al., Appl. Phys. Lett. 80 (2002)