Top Banner
Today’s Lecture 4/22/10 9.3 --More Practice with Direct Proofs for Pred Logic 9.4 --Intro to QN, RAA, CP for Pred Logic
90

TodayÕs Lecture 4/22/10 - CSUN

Dec 18, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: TodayÕs Lecture 4/22/10 - CSUN

Today’s Lecture 4/22/10

9.3

--More Practice with Direct Proofs for Pred Logic

9.4

--Intro to QN, RAA, CP for Pred Logic

Page 2: TodayÕs Lecture 4/22/10 - CSUN

Announcements

-- Final Exam on May 11th (now’s the time to start

studying)!

-- Next Tues is the deadline to turn in any late homework

-- Homework:

- Ex 9.4 pg. 469 Part A (1-10 All, 14, 15, 16).

[note that for #4 – the answer is in the back of the book – there is no need for a DN move. The last edition of our text required this, but it has since expanded the QN rule. In short, the DN

annotation is a mistake].

Page 3: TodayÕs Lecture 4/22/10 - CSUN

Announcements

Recommendation for the Homework:

-For problems 1-5, 8, and 16 use direct proof

-For problems 6,7,9, 14 use conditional proof.

-For problem 10 use RAA; for problem 15 use conditional proof but also use RAA to derive the consequent.

Page 4: TodayÕs Lecture 4/22/10 - CSUN

Ex 9.3 pg. 462 Part D (10-20 Even):

Page 5: TodayÕs Lecture 4/22/10 - CSUN

Some More Tips

-- Always employ EI before UI

-- If the conclusion is a universally quantified statement, derive an instance of it and apply UG to the instance.

Page 6: TodayÕs Lecture 4/22/10 - CSUN

#10

1. (y)(~Py ! ~Ly)

2. Lc " Ld # Pd " Pc

3. ~Pc ! ~Lc 1, UI

4. Lc ! Pc 3, Cont

5. ~Pd ! ~Ld 1, UI

6. Ld ! Pd 5, Cont

7. Pc " Pd 2,4,6 CD

8. Pd " Pc 7, Com

Page 7: TodayÕs Lecture 4/22/10 - CSUN

#12

1. (z)[Uz ! (Kz " Sz)]

2. (z)Uz

3. ($z)~Sz # ($z)Kz

4. ~Sa 3, EI

5. Ua ! (Ka " Sa) 1, UI

6. Ua 2, UI

7. Ka " Sa 5,6 MP

8. Ka 7,4 DS

9. ($z)Kz 8, EG

Page 8: TodayÕs Lecture 4/22/10 - CSUN

#14

1. (x)[Cx ! (Dx • ($y)Ey)]

2. ~Db # ($x)~Cx

3. Cb ! (Db • ($y)Ey) 1, UI

4. ~Db " ~($y)Ey 2, Add

5. ~(Db • ($y)Ey) 4, DeM

6. ~Cb 3,5 MT

7. ($x)~Cx 6, EG

Page 9: TodayÕs Lecture 4/22/10 - CSUN

#16

1. (z)~[~(x)Jx " ~Kz] # Jc • Kc

2. ~[~(x)Jx " ~Kc] 1, UI

3. ~~(x)Jx • ~~Kc 2, DeM

4. (x)Jx • Kc 3, DN DN

5. (x)Jx 4, Simp

6. Jc 5, UI

7. Kc 4, Simp

8. Jc • Kc 6,7 Conj

Page 10: TodayÕs Lecture 4/22/10 - CSUN

#18

1. (x)[(Bx ! (z)Az) ! ~P]

2. ($x)~Bx # ~P

3. ~Ba 2, EI

4. (Ba ! (z)Az) ! ~P 1, UI

5. (~Ba " (z)Az) ! ~P 4, MI

6. ~Ba " (z)Az 3, Add

7. ~P 5,6 MP

Page 11: TodayÕs Lecture 4/22/10 - CSUN

#20

1. (x)[(Sx • ~(z)Rz) ! Nd]

2. (x)~Nx

3. ($x)Sx # Rc

4. Sa 3, EI

5. (Sa • ~(z)Rz) ! Nd 1, UI

6. ~Nd 2, UI

7. ~(Sa • ~(z)Rz) 5,6 MT

8. ~Sa " ~~(z)Rz 7, DeM

9. ~~Sa 4, DN

10. ~~(z)Rz 8,9 DS

11. (z)Rz 10, DN

12. Rc 11, UI

Page 12: TodayÕs Lecture 4/22/10 - CSUN

Ex 9.3 pgs. 462-463 Part E (5-15 All)

Page 13: TodayÕs Lecture 4/22/10 - CSUN

#5

1. (x)(Jx ! ~Ex)

2. ( $x)(Jx " Jd) # ($y)(Ey ! ~Ed)

3. Ja " Jd 2, EI

4. Ja ! ~Ea 1, UI

5. Jd ! ~Ed 1, UI

6. ~Ea " ~Ed 3,4,5 CD

7. Ea ! ~Ed 6, MI

8. ($y)(Ey ! ~Ed) 7, EG

Page 14: TodayÕs Lecture 4/22/10 - CSUN

#6

1. (x)(Lx ! Mx) ! (x)(Nx ! Lx)

2. (x)~Lx # (x)~Nx

3. ~La 2, UI

4. ~La " Ma 3, Add

5. La ! Ma 4, MI

6. (x)(Lx ! Mx) 5, UG

7. (x)(Nx ! Lx) 1, 6 MP

8. Na ! La 7, UI

9. ~Na 8,3 MT

10. (x)~Nx 9, UG

Page 15: TodayÕs Lecture 4/22/10 - CSUN

#7

1. (x)(Sx ! Tx)

2. ($y)(Ry • ~Ty) # ($z)(Rz • ~Sz)

3. Ra • ~Ta 2, EI

4. Sa ! Ta 1, UI

5. ~Ta 3, Simp

6. ~Sa 4,5 MT

7. Ra 3, Simp

8. Ra • ~Sa 7,6 Conj

9. ($z)(Rz • ~Sz) 8, EG

Page 16: TodayÕs Lecture 4/22/10 - CSUN

#8

1. (x)(Bx ! Cx)

2. (x)(Ax ! Bx)

3. (x)(Cx ! Dx)

4. ($x)~Dx #($x)~Ax

5. ~Da 4, EI

6. Ca ! Da 3, UI

7. Aa ! Ba 2, UI

8. Ba ! Ca 1, UI

9. ~Ca 6,5 MT

10. ~Ba 8,9 MT

11. ~Aa 7, 10 MT

12. ($x)~Ax 11, EG

Page 17: TodayÕs Lecture 4/22/10 - CSUN

#9

1. (x)(Rx % Sx) # (x)(Rx ! Sx) • (x)(Sx ! Rx)

2. Ra % Sa 1, UI

3. (Ra ! Sa) • (Sa ! Ra) 2, ME

4. (Ra ! Sa) 3, Simp

5. (x)(Rx ! Sx) 4, UG

6. (Sa ! Ra) 3, Simp

7. (x)(Sx ! Rx) 6, UG

8. (x)(Rx ! Sx) • (x)(Sx ! Rx) 5,7 Conj

Page 18: TodayÕs Lecture 4/22/10 - CSUN

#10

1. (x)[(Bx " Ax) % Cx]

2. (x) ~Cx # (x)(Ax % Bx)

3. (Ba " Aa) % Ca 1, UI

4. [(Ba " Aa) ! Ca] • [Ca ! (Ba " Aa)] 3, ME

5. ~Ca 2, UI

6. (Ba " Aa) ! Ca 4, Simp

7. ~(Ba " Aa) 5,6 MT

8. ~Ba • ~Aa 7, DeM

9. ~Aa 8, Simp

10. ~Aa " Ba 9, Add

11. Aa ! Ba 10, MI

12. ~Ba 8, Simp

13. ~Ba " Aa 12, Add

14. Ba ! Aa 13, MI

15. (Aa ! Ba) • (Ba ! Aa) 11, 14 Conj

16. (Aa % Ba) 15, ME

17. (x)(Ax % Bx) 16, UG

Page 19: TodayÕs Lecture 4/22/10 - CSUN

#11

1. (x)(Dx ! ~Kx)

2. ($x)(Ex • Hx)

3. (x)(Hx ! Dx)

4. (x)(Jx ! Kx) # ($x)(Ex • ~Jx)

5. Ea • Ha 2, EI

6. Ha ! Da 3, UI

7. Ha 5, Simp

8. Da 6,7 MP

9. Da ! ~Ka 1, UI

10. ~Ka 8,9 MP

11. Ja !Ka 4, UI

12. ~Ja 10,11 MT

13. Ea 5, Simp

14. Ea • ~Ja 13, 12 Conj

15. ($x)(Ex • ~Jx) 14, EG

Page 20: TodayÕs Lecture 4/22/10 - CSUN

#12

1. (x)[Fx % (Hx • ~(y)Gy)]

2. ($x)~Fx

3. (z)Hz # Gc

4. ~Fa 2, EI

5. Fa %(Ha • ~(y)Gy) 1,UI

6. [Fa !(Ha • ~(y)Gy)] • [(Ha • ~(y)Gy) ! Fa] 5, ME

7. (Ha • ~(y)Gy) ! Fa 6, Simp

8. ~(Ha • ~(y)Gy) 4,7 MT

9. ~Ha " ~~(y)Gy 8 DeM

10. ~~Ha 3 UI, DN

11. (y)Gy 9, 10 DS, DN

12. Gc 11, UI

Page 21: TodayÕs Lecture 4/22/10 - CSUN

#13

1. (x)[Bx ! (Cx • Dx)]

2. ($x)Bx # ($x)~(~Cx " ~Dx)

3. Ba 2, EI

4. Ba ! (Ca • Da) 2, UI

5. Ca • Da 3,4 MP

6. ~~Ca • ~~Da 5, DN DN

7. ~(~Ca " ~Da) 6, DeM

8. ($x)~(~Cx " ~Dx) 7, EG

Page 22: TodayÕs Lecture 4/22/10 - CSUN

#14

1. (x)[Mx ! ($y)(Ny • Px)]

2. (x)(Nx ! ~G)

3. ($x)Mx # ~G

4. Ma 3, EI

5. Ma ! ($y)(Ny • Pa) I, UI

6. ($y)(Ny • Pa) 4,5 MP

7. Nb • Pa 6, EI

8. Nb 7, Simp

9. Nb ! ~G 2, UI

10. ~G 8,9 MP

Page 23: TodayÕs Lecture 4/22/10 - CSUN

#15

1. (x)[Rx ! (Sx " (y)Ty)]

2. (x)(Rx ! Sx) ! Pb

3. ~(y)Ty # Pb

4. Ra ! (Sa " (y)Ty) 1, UI

5. ~Ra " (Sa " (y)Ty) 4, MI

6. (~Ra " Sa) " (y)Ty 5, As

7. ~Ra " Sa 3,6 DS

8. Ra ! Sa 7 MI

9. (x)(Rx ! Sx) 8, UG

10. Pb 2,9 MP

Page 24: TodayÕs Lecture 4/22/10 - CSUN

An Equivalence Rule: QN

Consider:

“Something is red”. Symbolically, we can say, ($x)Rx.

Page 25: TodayÕs Lecture 4/22/10 - CSUN

An Equivalence Rule: QN

Consider:

“Something is red”. Symbolically, we can say, ($x)Rx.

This is equivalent to saying, “ it’s not the case that everything is not red”. Symbolically: ~(x)~Rx.

Page 26: TodayÕs Lecture 4/22/10 - CSUN

An Equivalence Rule: QN

Consider:

“Something is red”. Symbolically, we can say, ($x)Rx.

This is equivalent to saying, “ it’s not the case that everything is not red”. Symbolically: ~(x)~Rx.

[Everything is not red? No. For something is red].

Page 27: TodayÕs Lecture 4/22/10 - CSUN

An Equivalence Rule: QN

Consider:

“Something is not red”. ($x)~Rx.

Page 28: TodayÕs Lecture 4/22/10 - CSUN

An Equivalence Rule: QN

Consider:

“Something is not red”. ($x)~Rx.

This is equivalent to saying, “it’s not the case that everything is red”. ~(x)Rx

Page 29: TodayÕs Lecture 4/22/10 - CSUN

An Equivalence Rule: QN

Consider:

“Everything is red”. (x)Rx.

Page 30: TodayÕs Lecture 4/22/10 - CSUN

An Equivalence Rule: QN

Consider:

“Everything is red”. (x)Rx.

This is like saying, “it’s not the case that something is not red. ~($x)~Rx

Page 31: TodayÕs Lecture 4/22/10 - CSUN

An Equivalence Rule: QN

Consider:

“Everything is red”. (x)Rx.

This is like saying, “it’s not the case that something is not red. ~($x)~Rx

[Something is not red? No. For everything is red].

Page 32: TodayÕs Lecture 4/22/10 - CSUN

An Equivalence Rule: QN

Consider:

“Everything is not red”. (x)~Rx.

Page 33: TodayÕs Lecture 4/22/10 - CSUN

An Equivalence Rule: QN

Consider:

“Everything is not red”. (x)~Rx.

This is like saying, “it’s not the case that something is red”. ~($x)Rx

Page 34: TodayÕs Lecture 4/22/10 - CSUN

An Equivalence Rule: QN

The statements in each aforementioned pair logically imply one another. If one is true, the other must be true. They are, after all, just different ways of saying the same thing.

Page 35: TodayÕs Lecture 4/22/10 - CSUN

An Equivalence Rule: QN

The statements in each aforementioned pair logically imply one another. If one is true, the other must be true. They are, after all, just different ways of saying the same thing.

These statements illustrate the equivalence rule of Quantifier Negation (QN). Below are the four different forms:

($x)P is equiv. to ~(x)~P

($x)~P is equiv to ~(x)P

(x)P is equiv to ~($x)~P

(x)~P is equiv. to ~($x)P

Page 36: TodayÕs Lecture 4/22/10 - CSUN

An Equivalence Rule: QN

QN can be applied to parts of lines. So we can have inferences such as the following:

1. (x)~Hx ! (y)Ky

2. ~($x)Hx ! (y)Ky 1, QN

1. (y)By ! ~(x)Ax

2. (y)By ! ($x)~Ax 1, QN

Page 37: TodayÕs Lecture 4/22/10 - CSUN

Another Tip

As a general rule, you may find it helpful to apply QN to a line that contains a negated quantifier [e.g. ~($x), ~(x)]. This can set you up for a UI or EI move.

Page 38: TodayÕs Lecture 4/22/10 - CSUN

Practice Proof -- Direct

1. ~(x)(Ax ! Mx)

2. (x)(Rx ! Mx) # ($x)(Ax • ~Rx)

Page 39: TodayÕs Lecture 4/22/10 - CSUN

Practice Proof -- Direct

1. ~(x)(Ax ! Mx)

2. (x)(Rx ! Mx) # ($x)(Ax • ~Rx)

3. ($x)~(Ax ! Mx) 1, QN

Page 40: TodayÕs Lecture 4/22/10 - CSUN

Practice Proof -- Direct

1. ~(x)(Ax ! Mx)

2. (x)(Rx ! Mx) # ($x)(Ax • ~Rx)

3. ($x)~(Ax ! Mx) 1, QN

4. ~(Aa ! Ma) 3, EI

Page 41: TodayÕs Lecture 4/22/10 - CSUN

Practice Proof -- Direct

1. ~(x)(Ax ! Mx)

2. (x)(Rx ! Mx) # ($x)(Ax • ~Rx)

3. ($x)~(Ax ! Mx) 1, QN

4. ~(Aa ! Ma) 3, EI

5. ~(~Aa " Ma) 4, MI

Page 42: TodayÕs Lecture 4/22/10 - CSUN

Practice Proof -- Direct

1. ~(x)(Ax ! Mx)

2. (x)(Rx ! Mx) # ($x)(Ax • ~Rx)

3. ($x)~(Ax ! Mx) 1, QN

4. ~(Aa ! Ma) 3, EI

5. ~(~Aa " Ma) 4, MI

6. ~~Aa • ~Ma 5, DeM

Page 43: TodayÕs Lecture 4/22/10 - CSUN

Practice Proof -- Direct

1. ~(x)(Ax ! Mx)

2. (x)(Rx ! Mx) # ($x)(Ax • ~Rx)

3. ($x)~(Ax ! Mx) 1, QN

4. ~(Aa ! Ma) 3, EI

5. ~(~Aa " Ma) 4, MI

6. ~~Aa • ~Ma 5, DeM

7. ~Ma 6, Simp

Page 44: TodayÕs Lecture 4/22/10 - CSUN

Practice Proof -- Direct

1. ~(x)(Ax ! Mx)

2. (x)(Rx ! Mx) # ($x)(Ax • ~Rx)

3. ($x)~(Ax ! Mx) 1, QN

4. ~(Aa ! Ma) 3, EI

5. ~(~Aa " Ma) 4, MI

6. ~~Aa • ~Ma 5, DeM

7. ~Ma 6, Simp

8. Ra ! Ma 2, UI

Page 45: TodayÕs Lecture 4/22/10 - CSUN

Practice Proof -- Direct

1. ~(x)(Ax ! Mx)

2. (x)(Rx ! Mx) # ($x)(Ax • ~Rx)

3. ($x)~(Ax ! Mx) 1, QN

4. ~(Aa ! Ma) 3, EI

5. ~(~Aa " Ma) 4, MI

6. ~~Aa • ~Ma 5, DeM

7. ~Ma 6, Simp

8. Ra ! Ma 2, UI

9. ~Ra 7,8 MT

Page 46: TodayÕs Lecture 4/22/10 - CSUN

Practice Proof -- Direct

1. ~(x)(Ax ! Mx)

2. (x)(Rx ! Mx) # ($x)(Ax • ~Rx)

3. ($x)~(Ax ! Mx) 1, QN

4. ~(Aa ! Ma) 3, EI

5. ~(~Aa " Ma) 4, MI

6. ~~Aa • ~Ma 5, DeM

7. ~Ma 6, Simp

8. Ra ! Ma 2, UI

9. ~Ra 7,8 MT

10. ~~Aa 6, Simp

Page 47: TodayÕs Lecture 4/22/10 - CSUN

Practice Proof -- Direct

1. ~(x)(Ax ! Mx)

2. (x)(Rx ! Mx) # ($x)(Ax • ~Rx)

3. ($x)~(Ax ! Mx) 1, QN

4. ~(Aa ! Ma) 3, EI

5. ~(~Aa " Ma) 4, MI

6. ~~Aa • ~Ma 5, DeM

7. ~Ma 6, Simp

8. Ra ! Ma 2, UI

9. ~Ra 7,8 MT

10. ~~Aa 6, Simp

11. Aa 10, DN

Page 48: TodayÕs Lecture 4/22/10 - CSUN

Practice Proof -- Direct

1. ~(x)(Ax ! Mx)

2. (x)(Rx ! Mx) # ($x)(Ax • ~Rx)

3. ($x)~(Ax ! Mx) 1, QN

4. ~(Aa ! Ma) 3, EI

5. ~(~Aa " Ma) 4, MI

6. ~~Aa • ~Ma 5, DeM

7. ~Ma 6, Simp

8. Ra ! Ma 2, UI

9. ~Ra 7,8 MT

10. ~~Aa 6, Simp

11. Aa 10, DN

12. Aa • ~Ra 11, 9 Conj

Page 49: TodayÕs Lecture 4/22/10 - CSUN

Practice Proof -- Direct

1. ~(x)(Ax ! Mx)

2. (x)(Rx ! Mx) # ($x)(Ax • ~Rx)

3. ($x)~(Ax ! Mx) 1, QN

4. ~(Aa ! Ma) 3, EI

5. ~(~Aa " Ma) 4, MI

6. ~~Aa • ~Ma 5, DeM

7. ~Ma 6, Simp

8. Ra ! Ma 2, UI

9. ~Ra 7,8 MT

10. ~~Aa 6, Simp

11. Aa 10, DN

12. Aa • ~Ra 11, 9 Conj

13. ($x)(Ax • ~Rx) 12 EG

Page 50: TodayÕs Lecture 4/22/10 - CSUN

RAA Proofs for Predicate Logic

Note well that with RAA proofs (and conditional proofs), we cannot universally generalize from a constant that appears in an unboxed assumption.

If we were permitted to do this, then it becomes possible to show that clearly invalid arguments are valid. But it’s impossible to show that an invalid argument is valid (any proof that shows an invalid argument to be valid is mistaken). Thus we’re not permitted to univ. generalize from a constant that appears in an unboxed assumption.

There is no such problematic consequence though if we universally generalize from a constant that appears in a boxed assumption.

Page 51: TodayÕs Lecture 4/22/10 - CSUN

Universal Generalization (UG)

A Brief Summary of Universal Generalization (UG):

A line in a proof follows from some previous line via UG if and only if the line that follows is a universally quantified statement, and the line from which it follows is an instance of it (the universally quantified statement), and where the constant in the instance does not occur in a premise of the argument, a previous line derived by EI, in the universally quantified statement itself, nor in an unboxed (un-discharged) assumption.

Page 52: TodayÕs Lecture 4/22/10 - CSUN

Another Tip

As a general rule, it is oftentimes helpful to construct an RAA proof when the conclusion to be proved is an existentially quantified statement.

Page 53: TodayÕs Lecture 4/22/10 - CSUN

RAA Proofs for Predicate Logic

Use an RAA proof to show the following argument to be valid:

1. (x)(Px ! Sx)

2. Pa " Pb # ($x)Sx

Page 54: TodayÕs Lecture 4/22/10 - CSUN

RAA Proofs for Predicate Logic

Use an RAA proof to show the following argument to be valid:

1. (x)(Px ! Sx)

2. Pa " Pb # ($x)Sx

3. ~($x)Sx Assume for RAA

Page 55: TodayÕs Lecture 4/22/10 - CSUN

RAA Proofs for Predicate Logic

Use an RAA proof to show the following argument to be valid:

1. (x)(Px ! Sx)

2. Pa " Pb # ($x)Sx

3. ~($x)Sx Assume for RAA

4. (x)~Sx 3, QN

Page 56: TodayÕs Lecture 4/22/10 - CSUN

RAA Proofs for Predicate Logic

Use an RAA proof to show the following argument to be valid:

1. (x)(Px ! Sx)

2. Pa " Pb # ($x)Sx

3. ~($x)Sx Assume for RAA

4. (x)~Sx 3, QN

5. Pa ! Sa 1, UI

Page 57: TodayÕs Lecture 4/22/10 - CSUN

RAA Proofs for Predicate Logic

Use an RAA proof to show the following argument to be valid:

1. (x)(Px ! Sx)

2. Pa " Pb # ($x)Sx

3. ~($x)Sx Assume for RAA

4. (x)~Sx 3, QN

5. Pa ! Sa 1, UI

6. ~Sa 4, UI

Page 58: TodayÕs Lecture 4/22/10 - CSUN

RAA Proofs for Predicate Logic

Use an RAA proof to show the following argument to be valid:

1. (x)(Px ! Sx)

2. Pa " Pb # ($x)Sx

3. ~($x)Sx Assume for RAA

4. (x)~Sx 3, QN

5. Pa ! Sa 1, UI

6. ~Sa 4, UI

7. ~Pa 5,6MT

Page 59: TodayÕs Lecture 4/22/10 - CSUN

RAA Proofs for Predicate Logic

Use an RAA proof to show the following argument to be valid:

1. (x)(Px ! Sx)

2. Pa " Pb # ($x)Sx

3. ~($x)Sx Assume for RAA

4. (x)~Sx 3, QN

5. Pa ! Sa 1, UI

6. ~Sa 4, UI

7. ~Pa 5,6MT

8. Pb 2,7 DS

Page 60: TodayÕs Lecture 4/22/10 - CSUN

RAA Proofs for Predicate Logic

Use an RAA proof to show the following argument to be valid:

1. (x)(Px ! Sx)

2. Pa " Pb # ($x)Sx

3. ~($x)Sx Assume for RAA

4. (x)~Sx 3, QN

5. Pa ! Sa 1, UI

6. ~Sa 4, UI

7. ~Pa 5,6MT

8. Pb 2,7 DS

9. Pb ! Sb 1, UI

Page 61: TodayÕs Lecture 4/22/10 - CSUN

RAA Proofs for Predicate Logic

Use an RAA proof to show the following argument to be valid:

1. (x)(Px ! Sx)

2. Pa " Pb # ($x)Sx

3. ~($x)Sx Assume for RAA

4. (x)~Sx 3, QN

5. Pa ! Sa 1, UI

6. ~Sa 4, UI

7. ~Pa 5,6MT

8. Pb 2,7 DS

9. Pb ! Sb 1, UI

10. Sb 8,9 MP

Page 62: TodayÕs Lecture 4/22/10 - CSUN

RAA Proofs for Predicate Logic

Use an RAA proof to show the following argument to be valid:

1. (x)(Px ! Sx)

2. Pa " Pb # ($x)Sx

3. ~($x)Sx Assume for RAA

4. (x)~Sx 3, QN

5. Pa ! Sa 1, UI

6. ~Sa 4, UI

7. ~Pa 5,6MT

8. Pb 2,7 DS

9. Pb ! Sb 1, UI

10. Sb 8,9 MP

11. ~Sb 4, UI

Page 63: TodayÕs Lecture 4/22/10 - CSUN

RAA Proofs for Predicate Logic

Use an RAA proof to show the following argument to be valid:

1. (x)(Px ! Sx)

2. Pa " Pb # ($x)Sx

3. ~($x)Sx Assume for RAA

4. (x)~Sx 3, QN

5. Pa ! Sa 1, UI

6. ~Sa 4, UI

7. ~Pa 5,6MT

8. Pb 2,7 DS

9. Pb ! Sb 1, UI

10. Sb 8,9 MP

11. ~Sb 4, UI

12. Sb • ~Sb 10, 11 Conj

Page 64: TodayÕs Lecture 4/22/10 - CSUN

RAA Proofs for Predicate Logic

Use an RAA proof to show the following argument to be valid:

1. (x)(Px ! Sx)

2. Pa " Pb # ($x)Sx

3. ~($x)Sx Assume for RAA

4. (x)~Sx 3, QN

5. Pa ! Sa 1, UI

6. ~Sa 4, UI

7. ~Pa 5,6MT

8. Pb 2,7 DS

9. Pb ! Sb 1, UI

10. Sb 8,9 MP

11. ~Sb 4, UI

12. Sb • ~Sb 10, 11 Conj

13. ($x)Sx 3-12 RAA

Page 65: TodayÕs Lecture 4/22/10 - CSUN

RAA Proofs for Predicate Logic

Use an RAA proof to show the following argument to be valid:

1. (x)(Px ! Sx)

2. Pa " Pb # ($x)Sx

3. ~($x)Sx Assume for RAA

4. (x)~Sx 3, QN

5. Pa ! Sa 1, UI

6. ~Sa 4, UI

7. ~Pa 5,6MT

8. Pb 2,7 DS

9. Pb ! Sb 1, UI

10. Sb 8,9 MP

11. ~Sb 4, UI

12. Sb • ~Sb 10, 11 Conj

13. ($x)Sx 3-12 RAA

Page 66: TodayÕs Lecture 4/22/10 - CSUN

Another Tip

If the conclusion is a universally quantified statement that contains a conditional, use CP to derive the conditional and then apply UG

Page 67: TodayÕs Lecture 4/22/10 - CSUN

CP for Predicate Logic

1. (x)(Fx ! Gx)

2. (x)(Fx ! Hx) # (x)[Fx ! (Gx • Hx)]

Page 68: TodayÕs Lecture 4/22/10 - CSUN

CP for Predicate Logic

1. (x)(Fx ! Gx)

2. (x)(Fx ! Hx) # (x)[Fx ! (Gx • Hx)]

3. Fa Assume for CP

Page 69: TodayÕs Lecture 4/22/10 - CSUN

CP for Predicate Logic

1. (x)(Fx ! Gx)

2. (x)(Fx ! Hx) # (x)[Fx ! (Gx • Hx)]

3. Fa Assume for CP

4. Fa ! Ga 1, UI

Page 70: TodayÕs Lecture 4/22/10 - CSUN

CP for Predicate Logic

1. (x)(Fx ! Gx)

2. (x)(Fx ! Hx) # (x)[Fx ! (Gx • Hx)]

3. Fa Assume for CP

4. Fa ! Ga 1, UI

5. Fa ! Ha 2, UI

Page 71: TodayÕs Lecture 4/22/10 - CSUN

CP for Predicate Logic

1. (x)(Fx ! Gx)

2. (x)(Fx ! Hx) # (x)[Fx ! (Gx • Hx)]

3. Fa Assume for CP

4. Fa ! Ga 1, UI

5. Fa ! Ha 2, UI

6. Ga 3,4 MP

Page 72: TodayÕs Lecture 4/22/10 - CSUN

CP for Predicate Logic

1. (x)(Fx ! Gx)

2. (x)(Fx ! Hx) # (x)[Fx ! (Gx • Hx)]

3. Fa Assume for CP

4. Fa ! Ga 1, UI

5. Fa ! Ha 2, UI

6. Ga 3,4 MP

7. Ha 3,5 MP

Page 73: TodayÕs Lecture 4/22/10 - CSUN

CP for Predicate Logic

1. (x)(Fx ! Gx)

2. (x)(Fx ! Hx) # (x)[Fx ! (Gx • Hx)]

3. Fa Assume for CP

4. Fa ! Ga 1, UI

5. Fa ! Ha 2, UI

6. Ga 3,4 MP

7. Ha 3,5 MP

8. Ga • Ha 6,7 Conj

Page 74: TodayÕs Lecture 4/22/10 - CSUN

CP for Predicate Logic

1. (x)(Fx ! Gx)

2. (x)(Fx ! Hx) # (x)[Fx ! (Gx • Hx)]

3. Fa Assume for CP

4. Fa ! Ga 1, UI

5. Fa ! Ha 2, UI

6. Ga 3,4 MP

7. Ha 3,5 MP

8. Ga • Ha 6,7 Conj

9. Fa ! (Ga • Ha) 3-8 CP

Page 75: TodayÕs Lecture 4/22/10 - CSUN

CP for Predicate Logic

1. (x)(Fx ! Gx)

2. (x)(Fx ! Hx) # (x)[Fx ! (Gx • Hx)]

3. Fa Assume for CP

4. Fa ! Ga 1, UI

5. Fa ! Ha 2, UI

6. Ga 3,4 MP

7. Ha 3,5 MP

8. Ga • Ha 6,7 Conj

9. Fa ! (Ga • Ha) 3-8 CP

Page 76: TodayÕs Lecture 4/22/10 - CSUN

CP for Predicate Logic

1. (x)(Fx ! Gx)

2. (x)(Fx ! Hx) # (x)[Fx ! (Gx • Hx)]

3. Fa Assume for CP

4. Fa ! Ga 1, UI

5. Fa ! Ha 2, UI

6. Ga 3,4 MP

7. Ha 3,5 MP

8. Ga • Ha 6,7 Conj

9. Fa ! (Ga • Ha) 3-8 CP

10. (x)[Fx ! (Gx • Hx)] 9, UG

Page 77: TodayÕs Lecture 4/22/10 - CSUN

Ex 9.4 pg. 469-470 Part A (1-10 All, 14, 15, 16).

-For problems 1-5, 8, and 16 use direct proof

-For problems 6,7,9, 14 use conditional proof.

-For problem 10 use RAA; for problem 15 use conditional proof but also use RAA to derive the consequent.

Possible answers are on following slides:

Page 78: TodayÕs Lecture 4/22/10 - CSUN

#1

1. (x)Ax ! (x)Bx

2. ~(x)Bx # ($x)~Ax

3. ~(x)Ax 1,2 MT

4. ($x)~Ax 3, QN

Page 79: TodayÕs Lecture 4/22/10 - CSUN

#2

1. ~($y)Cy

2. (y)~Cy ! (z)Dz # Db

3. (y)~Cy 1, QN

4. (z)Dz 2,3 MP

5. Db 4, UI

Page 80: TodayÕs Lecture 4/22/10 - CSUN

#3

1. ~(x)~Fx # ($x)Fx

2. ($x)Fx 1, QN

Page 81: TodayÕs Lecture 4/22/10 - CSUN

#4

1. ~($x)~Gx #(x)Gx

2. (x)Gx 1, QN

Page 82: TodayÕs Lecture 4/22/10 - CSUN

#5

1. ($y)Hy ! ($y)Jy

2. (y)~Jy # ~Ha

3. ~($y)Jy 2, QN

4. ~($y)Hy 1,3 MT

5. (y)~Hy 4, QN

6. ~Ha 5, UI

Page 83: TodayÕs Lecture 4/22/10 - CSUN

#6

1. (z)[(Kz " Lz) ! Mz] # (z)(Lz ! Mz)

2. La Assume for CP

3. (Ka " La) ! Ma 1, UI

4. Ka " La 2, Add

5. Ma 3,4 MP

6. La ! Ma 2-5 CP

7. (z)(Lz ! Mz) 6, UG

Page 84: TodayÕs Lecture 4/22/10 - CSUN

#7

1. (x)(Nx ! Ox) # ~(x)Ox ! ~(x)Nx

2. ~(x)Ox Assume CP

3. ($x)~Ox 2, QN

4. ~Oa 3, EI

5. Na ! Oa 1, UI

6. ~Na 5,4 MT

7. ($x)~Nx 6, EG

8. ~(x)Nx 7, QN

9. ~(x)Ox ! ~(x)Nx 2-8 CP

Page 85: TodayÕs Lecture 4/22/10 - CSUN

#8

1. ~($x)~Px

2. ~($y)Sy " ~(x)Px # ~Sd

3. (x)Px 1, QN

4. ~~(x)Px 3, DN

5. ~($y)Sy 2,4 DS

6. (y)~Sy 5, QN

7. ~Sd 6, UI

Page 86: TodayÕs Lecture 4/22/10 - CSUN

#9

1. (x)~Rx ! ($x)~~Tx # (x)~Tx ! ($x)Rx

2. (x)~Tx Assume CP

3. ~($x)Tx 2, QN

4. (x)~Rx ! ($x)Tx 1, DN

5.~(x)~Rx 3,4 MT

6. ($x)Rx 5, QN

7. (x)~Tx ! ($x)Rx 2-6 CP

Page 87: TodayÕs Lecture 4/22/10 - CSUN

#10

1. (x)(Ax ! ~Bx)

2. (y)Ay # (z)~Bz

3. ~(z)~Bz Assume RAA

4. ($z)Bz 3, QN

5. Ba 4, EI

6. Aa ! ~Ba 6, UI

7. Aa 2, UI

8. ~Ba 6,7 MP

9. Ba • ~Ba 5,8 Conj

10. (z)~Bz 3-9 RAA

Page 88: TodayÕs Lecture 4/22/10 - CSUN

#14

1. ($x)[Fx • (y)(Gy ! Hx)]

2. (x)[Fx ! (y)(By ! ~Hx)] # (x)(Gx ! ~Bx)

3. Ga Assume CP

4. Fb • (y)(Gy ! Hb) 1, EI

5. Fb 4, Simp

6. (y)(Gy ! Hb) 4, Simp

7. Fb ! (y)(By ! ~Hb) 2, UI

8. (y)(By ! ~Hb) 5, 7 MP

9. Ga ! Hb 6, UI

10. Hb 3,9 MP

11. Ba ! ~Hb 8, UI

12. ~~Hb 10, DN

13. ~Ba 11, 12 MT

14. Ga ! ~Ba 3-13 CP

15. (x)(Gx ! ~Bx) 14, UG

Page 89: TodayÕs Lecture 4/22/10 - CSUN

#15

1. (x)[Dx ! ($y)(Fy • Gy)] # (x)~Fx ! ~($y)Dy

2. (x)~Fx Assume CP

3. ($y)Dy Assume RAA

4. Da 3, EI

5. Da ! ($y)(Fy • Gy) 1, UI

6. ($y)(Fy • Gy) 4,5 MP

7. Fb • Gb 6, EI

8. ~Fb 2, UI

9. Fb 7, Simp

10. ~Fb • Fb 8,9 Conj

11. ~($y)Dy 3-10 RAA

12. (x)~Fx ! ~($y)Dy 2-11 CP

Page 90: TodayÕs Lecture 4/22/10 - CSUN

#16

1. ~(x)Mx " ($x)~Mx

2. ($x)Sx ! (x)Mx

3. Sb " (x)~Px # ~Pa

4. ~(x)Mx " ~(x)Mx 1, QN

5. ~(x)Mx 4, Re

6. ~($x)Sx 2,5 MT

7. (x)~Sx 6, QN

8. ~Sb 7, UI

9. (x)~Px 3,8 DS

10. ~Pa 9, UI