Top Banner
Today 1 3phase inverter (DCtoAC ) + a b c 0 V bus v a0 v b0 v c0 Q 1 D 1 D 2 Q 2 Q 3 D 3 D 4 Q 4 D 6 Q 6 D 5 Q 5 V bus i bus n T m rm rm i a i b i c PMSM + v a + v b + v c 3phase electric machine Finish inverter+PMSM simulation example Electric drive (inverter+PMSM): losses and efficiency Overview of induction machine, an alternative to PMSM Summary and conclusions
28

Today - Electrical, Computer & Energy Engineeringecee.colorado.edu/~ecen5017/lectures/CU/L38_out.pdf0 50 100 150 200 250 300 350 400 450 500-400-200 0 200 400 Phase Voltages [V] v

Oct 21, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Today

    1

    3‐phase inverter (DC‐to‐AC )

    +–

    abc

    0

    Vbus va0 vb0 vc0

    Q1

    D1

    D2

    Q2

    Q3

    D3

    D4

    Q4 D6Q6

    D5Q5

    Vbusibus

    n

    Tmrmrm

    ia

    ib

    ic

    PMSM+ va

    + vb

    + vc

    3‐phase electric machine

    • Finish inverter+PMSM simulation example• Electric drive (inverter+PMSM): losses and efficiency• Overview of induction machine, an alternative to PMSM• Summary and conclusions

  • Vector controlled electric drive(“field‐oriented”, “rotor reference frame” control)

    2

    +–

    abc

    0

    Vbus va0 vb0 vc0

    Q1

    D1

    D2

    Q2

    Q3

    D3

    D4

    Q4 D6Q6

    D5Q5

    Vbusibus

    n

    Tmrmrm

    ia

    ib

    ic

    PMSM+ va

    + vb

    + vc

    Id

    Kr

    Iq

    r

    Tref Iqref

    Iq

    Idref

    Current‐loopcompensators PWM db

    dc

    Kr-1MP 12

    32

    Id

    da

    r

    vqref

    vdref

    va0refvb0ref

    vc0ref

  • Drive‐cycle example: 0‐60 mph‐0

    3

    Electric drive parameters:# of poles: P = 4Maximum torque: Tmmax = 200 NmMaximum current amplitude: 533 AFlux linkage M = 0.125 VsPhase resistance: r = 0.04 Phase inductance:  L = 0.5 mHCurrent‐loop BW: 10 HzDC bus voltage: Vbus = 600 V

    Top-level model of EV for use in ECEN 5017 course. Driving cycle is a speed-vs-time profile for the vehicle, operating on flat road. Driver uses torque command (gas & brake

    pedals) to follow the reference speed.

    Top-Level EV Model

    m

    Vref

    speedsForces

    Pdist

    SOCIinvIbat

    VbatvabciabcTm

    iqd0vqd0dabc

    Unit Conversion

    Scope1

    Scope

    Electric VehicleDriver model

    Driving cycleReference Speed

    Vehicle Speed

    Torque command(gas & brake pedals)

  • 4

    0 50 100 150 200 250 300 350 400 450 5000

    20

    40

    60

    80

    Spe

    ed [m

    ph]

    Reference SpeedVehicle Speed

    0 50 100 150 200 250 300 350 400 450 500-200

    -100

    0

    100

    200To

    rque

    [Nm

    ]

    Motor Torque

    0 50 100 150 200 250 300 350 400 450 500-1000

    -500

    0

    500

    1000

    Rot

    or R

    ef. F

    rm. C

    urre

    nts

    [A]

    iqidi0

    0 50 100 150 200 250 300 350 400 450 500-200

    -100

    0

    100

    200

    300

    Rot

    or R

    ef. F

    rm. V

    olta

    ges

    [V]

    vqvdv0

  • 5

    0 50 100 150 200 250 300 350 400 450 500-400

    -200

    0

    200

    400

    Pha

    se V

    olta

    ges

    [V]

    vavbvc

    0 50 100 150 200 250 300 350 400 450 500-200

    -100

    0

    100

    200

    300R

    otor

    Ref

    . Frm

    . Vol

    tage

    s [V

    ]

    vqvdv0

    0 50 100 150 200 250 300 350 400 450 500-1000

    -500

    0

    500

    1000

    Rot

    or R

    ef. F

    rm. C

    urre

    nts

    [A]

    iqidi0

    0 50 100 150 200 250 300 350 400 450 500-1000

    -500

    0

    500

    1000

    Pha

    se C

    urre

    nts

    [A]

    iaibic

  • 6

    0 50 100 150 200 250 300 350 400 450 5000

    20

    40

    60

    80

    Spe

    ed [m

    ph]

    Reference SpeedVehicle Speed

    0 50 100 150 200 250 300 350 400 450 500-200

    -100

    0

    100

    200

    Torq

    ue [N

    m]

    Motor Torque

    0 50 100 150 200 250 300 350 400 450 500-400

    -200

    0

    200

    400

    Pha

    se V

    olta

    ges

    [V]

    vavbvc

    0 50 100 150 200 250 300 350 400 450 500-0.5

    0

    0.5

    1

    1.5

    Pha

    se D

    uty

    Cyc

    les

    dadbdc

  • 7

    249.8 250 250.2 250.4 250.6 250.8 2510

    20

    40

    60

    80

    Spe

    ed [m

    ph]

    Reference SpeedVehicle Speed

    249.8 250 250.2 250.4 250.6 250.8 251-200

    -150

    -100

    -50

    0

    50

    Torq

    ue [N

    m]

    Motor Torque

    249.8 250 250.2 250.4 250.6 250.8 251-600

    -400

    -200

    0

    200

    Rot

    or R

    ef. F

    rm. C

    urre

    nts

    [A]

    iqidi0

    249.8 250 250.2 250.4 250.6 250.8 251-100

    0

    100

    200

    300

    Rot

    or R

    ef. F

    rm. V

    olta

    ges

    [V]

    vqvdv0

  • 8

    249.8 250 250.2 250.4 250.6 250.8 251-400

    -200

    0

    200

    400

    Pha

    se V

    olta

    ges

    [V]

    vavbvc

    249.8 250 250.2 250.4 250.6 250.8 251-100

    0

    100

    200

    300

    Rot

    or R

    ef. F

    rm. V

    olta

    ges

    [V]

    vqvdv0

    249.8 250 250.2 250.4 250.6 250.8 251-600

    -400

    -200

    0

    200

    Rot

    or R

    ef. F

    rm. C

    urre

    nts

    [A]

    iqidi0

    249.8 250 250.2 250.4 250.6 250.8 251-1000

    -500

    0

    500

    1000

    Pha

    se C

    urre

    nts

    [A]

    iaibic

  • 9

    249.8 250 250.2 250.4 250.6 250.8 2510

    20

    40

    60

    80

    Spe

    ed [m

    ph]

    Reference SpeedVehicle Speed

    249.8 250 250.2 250.4 250.6 250.8 251-200

    -150

    -100

    -50

    0

    50

    Torq

    ue [N

    m]

    Motor Torque

    249.8 250 250.2 250.4 250.6 250.8 251-400

    -200

    0

    200

    400

    Pha

    se V

    olta

    ges

    [V]

    vavbvc

    249.8 250 250.2 250.4 250.6 250.8 251-0.5

    0

    0.5

    1

    1.5

    Pha

    se D

    uty

    Cyc

    les

    dadbdc

  • 10

    250.03 250.04 250.05 250.06 250.07 250.08 250.09 250.154

    56

    58

    60

    Spe

    ed [m

    ph]

    Reference SpeedVehicle Speed

    250.03 250.04 250.05 250.06 250.07 250.08 250.09 250.1-20

    -10

    0

    10

    20

    Torq

    ue [N

    m]

    Motor Torque

    250.03 250.04 250.05 250.06 250.07 250.08 250.09 250.1-40

    -20

    0

    20

    40

    Rot

    or R

    ef. F

    rm. C

    urre

    nts

    [A]

    iqidi0

    250.03 250.04 250.05 250.06 250.07 250.08 250.09 250.1-50

    0

    50

    100

    150

    Rot

    or R

    ef. F

    rm. V

    olta

    ges

    [V]

    vqvdv0

  • 11

    250.03 250.04 250.05 250.06 250.07 250.08 250.09 250.1-200

    -100

    0

    100

    200

    Pha

    se V

    olta

    ges

    [V]

    vavbvc

    250.03 250.04 250.05 250.06 250.07 250.08 250.09 250.1-50

    0

    50

    100

    150

    Rot

    or R

    ef. F

    rm. V

    olta

    ges

    [V]

    vqvdv0

    250.03 250.04 250.05 250.06 250.07 250.08 250.09 250.1-40

    -20

    0

    20

    40

    Rot

    or R

    ef. F

    rm. C

    urre

    nts

    [A]

    iqidi0

    250.03 250.04 250.05 250.06 250.07 250.08 250.09 250.1-40

    -20

    0

    20

    40

    Pha

    se C

    urre

    nts

    [A]

    iaibic

  • 12

    250.03 250.04 250.05 250.06 250.07 250.08 250.09 250.154

    56

    58

    60

    Spe

    ed [m

    ph]

    Reference SpeedVehicle Speed

    250.03 250.04 250.05 250.06 250.07 250.08 250.09 250.1-20

    -10

    0

    10

    20

    Torq

    ue [N

    m]

    Motor Torque

    250.03 250.04 250.05 250.06 250.07 250.08 250.09 250.1-200

    -100

    0

    100

    200

    Pha

    se V

    olta

    ges

    [V]

    vavbvc

    250.03 250.04 250.05 250.06 250.07 250.08 250.09 250.10.2

    0.4

    0.6

    0.8

    1

    Pha

    se D

    uty

    Cyc

    les

    dadbdc

  • 13

    269.96 269.98 270 270.02 270.04 270.06 270.08 270.10

    0.5

    1

    1.5

    2

    Spe

    ed [m

    ph]

    Reference SpeedVehicle Speed

    269.96 269.98 270 270.02 270.04 270.06 270.08 270.1-11.4

    -11.3

    -11.2

    -11.1

    -11

    -10.9

    Torq

    ue [N

    m]

    Motor Torque

    269.96 269.98 270 270.02 270.04 270.06 270.08 270.1-40

    -30

    -20

    -10

    0

    Rot

    or R

    ef. F

    rm. C

    urre

    nts

    [A]

    iqidi0

    269.96 269.98 270 270.02 270.04 270.06 270.08 270.10

    1

    2

    3

    Rot

    or R

    ef. F

    rm. V

    olta

    ges

    [V]

    vqvdv0

  • 14

    269.96 269.98 270 270.02 270.04 270.06 270.08 270.1-4

    -2

    0

    2

    4

    Pha

    se V

    olta

    ges

    [V]

    vavbvc

    269.96 269.98 270 270.02 270.04 270.06 270.08 270.10

    1

    2

    3

    Rot

    or R

    ef. F

    rm. V

    olta

    ges

    [V]

    vqvdv0

    269.96 269.98 270 270.02 270.04 270.06 270.08 270.1-40

    -30

    -20

    -10

    0

    Rot

    or R

    ef. F

    rm. C

    urre

    nts

    [A]

    iqidi0

    269.96 269.98 270 270.02 270.04 270.06 270.08 270.1-40

    -20

    0

    20

    40

    Pha

    se C

    urre

    nts

    [A]

    iaibic

  • 15

    269.96 269.98 270 270.02 270.04 270.06 270.08 270.10

    0.5

    1

    1.5

    2

    Spe

    ed [m

    ph]

    Reference SpeedVehicle Speed

    269.96 269.98 270 270.02 270.04 270.06 270.08 270.1-11.4

    -11.3

    -11.2

    -11.1

    -11

    -10.9To

    rque

    [Nm

    ]

    Motor Torque

    269.96 269.98 270 270.02 270.04 270.06 270.08 270.1-4

    -2

    0

    2

    4

    Pha

    se V

    olta

    ges

    [V]

    vavbvc

    269.96 269.98 270 270.02 270.04 270.06 270.08 270.10.495

    0.5

    0.505

    0.51

    Pha

    se D

    uty

    Cyc

    les

    dadbdc

  • PMSM Electric Drive Modeling and Control Conclusions

    16

    • PMSM dynamic model in rotor reference frame retains all dynamics but removes the need to look at angle dependences

    • In steady state, rotor reference frame voltages and currents are all DC• Techniques used to extent speed range:

    • DC bus voltage control using the Boost DC‐DC converter • Field‐weakening using the direct component of the current 

    • Modern electric drives employ “vector” i.e. “field‐oriented” control techniques based on the dynamic model in rotor reference frame

    • Typical control systems includes inner current control loops that take advantage of the fact that torque produced is directly proportional to the quadrature component of the current

    • 3‐phase inverters = 3 Buck converter legs, modulated to produce stator voltages necessary to generate requested stator currents. Voltage amplitude limited by the DC bus voltage. Typical switching frequency: kHz – 10’s kHz. 

    • Hierarchical modeling and control techniques• Switching transitions in the inverter or Boost DC‐DC converter: 

  • PMSM drive averaged model, including losses

    17

    PMSM

    +–

    +–

    +–

    Vbus

    ia

    ib

    ic

    r

    r

    r

    L

    L

    L

    rm

    rm

    rm

    rxa

    rxb

    rxc

    vxa

    vxb

    vxc

    dcVbusdbVbusdaVbusdaia dbib dcic

    Isw

    Ibus+

    _

    Inverter

    0 ,

    0 ,

    aDaCESa

    aDaCESaxa iVdVd

    iVdVdv

    0 ,0 ,

    aDaCEa

    aDaCEaxa iRdRd

    iRdRdr

    swcswbswasw IIII

  • PMSM drive efficiency map example

    18

    Evaluation of 2004 Toyota Prius Hybrid Electric Drive System(2005 report by Oak Ridge National Lab)

  • An alternative: Induction Machine

    A two‐phase induction motor Tesla demonstrated in a lecture onMay 16, 1888, before the American Institute of Electrical Engineersat Columbia University. The motor developed 1/5 horsepower andshowed the commutator and brushes could be dispensed with.

    Induction Machine (IM), also known as Asynchronous Machine• Short‐circuited rotor windings, “squirrel‐cage” rotor bars

    • Rotor‐winding currents (rotor field) induced by stator currents

    • Rotor speed not equal to synchronous speed, hence “asynchronous” machine

  • Induction Machine: principles of operation

    20

    Figure 6.12‐1 from P.Krause, O.Wasynczuk, S.Pekarek, Electromechanical Motion Devices, 2nd edition, Wiley 2012

    • Stator voltages and currents are 3‐phase sinusoidal waveforms at electrical frequency

    P = 2 poles

    • Rotor turns at mechanical speede

    rmr • Frequency of the current induced in the rotor is

    reer • MMF vector generated by stator currents rotates at speed  

    e• MMF vector generated by rotor currents rotates at speed  

    eerr • Torque is generated by interaction between the stator and the rotor generated MMFs, both rotating at synchronous speed 

    e

  • Induction Machine: slip s

    21

    P = 2 pole machine

    • Electrical frequency of stator voltages and currents = Speed of rotation of magnetic fields = Synchronous speed = Speed of rotation of synchronous reference frame = 

    • Mechanical speed of rotation =

    • Slip frequency =

    • Slip  

    e

    r

    erre

    e

    res

  • Induction Machine Equations in Synchronous Reference Frame

    22

    dseqs

    qssqs dtd

    irv

    qseds

    dssds dtdirv

    drreqrqrr dtd

    ir

    0

    qrredrdrr dtdir 0

    qrMqssqs iLiL

    drMdssds iLiL

    0 qsMqrrqr iLiL

    dsMdrrdr iLiL

    qsdrr

    Mqrdr iL

    LPiPT 22

    322

    3

    Flux linkagesVoltage equations

    Stator dq

    Rotor dq

    Torque

  • Induction Machine:Torque in terms of stator currents

    23

    dtdir drdrr

    0

    qsdrr

    Mqrdr iL

    LPiPT 22

    322

    3

    dtd

    rLiL dr

    r

    rdrdsM

    dsr

    Mdr is

    L

    1

    qsdsrr

    M iisL

    LPT

    1

    122

    3 2

    dsMdrrdr iLiL Eliminate idr and solve for dr

  • Induction Machine Equations: slip and synchronous frequency calculations

    24

    0 qsMqrrqr iLiL

    qsr

    Mqr iL

    Li

    drreqrrir 0

    dr

    qrrre

    ir

    dsr

    Mdr is

    L

    1

    dr

    qs

    r

    Mrre

    iLLr

    where

  • Field‐oriented (vector) control of induction machine

    25

    +–

    abc

    0

    Vbus va0 vb0 vc0

    Q1

    D1

    D2

    Q2

    Q3

    D3

    D4

    Q4 D6Q6

    D5Q5

    Vbusibus

    n

    Tmrmrm

    ia

    ib

    ic

    PMSM+ va

    + vb

    + vc

    Ids

    Kr

    Iqs

    e

    Tref Iqsref

    Iqs

    Idref

    Current‐loopcompensators PWM db

    dc

    Kr-1dsrefM

    r

    ILL

    P12

    32

    2

    Ids

    da

    e

    vqsref

    vdsref

    va0refvb0ref

    vc0ref

    IM

    Slip and sync.frequency& angle calc.

    Iqsref

    Idref rmIdsref

  • 26

    • Higher efficiency at low and medium speeds

    • Simpler control• Active R&D

    • Higher efficiency at high speeds• No need for rare‐earth permanent magnet materials, lower cost

    • More mature motor technology

    PMSM IM

    Comparison of PMSM and IM

  • Another alternative: Variable Reluctance (VR)

    27

    Variable Reluctance (VR) machine, also Switched Reluctance machines

    • Salient poles: inductance of the stator windings depends on position

    • Many configurations possible

    • Good efficiency over wide range of speeds

    • Relatively low cost

    • Pulsating torque, higher noise levels

    • In R&D for automotive applications

  • More Research and Development Directions“Hub” or “In‐Wheel” Motors

    28

    Example:http://www.proteanelectric.com