Top Banner
THE OPTIMAL WALK TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona)
45

TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

Nov 02, 2019

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

THE OPTIMAL WALK

TO THE RANDOM WALK

Daniel Campos (Universitat Autònoma de Barcelona)

Page 2: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

1. Introduction (Random search theory: applications and tools)

2. The optimal walk to the (Lévy) walk

3. The optimal walk to the (intermittent) walk

4. The optimal walk to the (myopic) walk

5. The optimal walk to the (mortal) walk

6. The optimal walk to the (systematic?) walk

Contents

Page 3: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

1. Introduction (Random search theory: applications and tools)

Page 4: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

A

B

The first-passage problem:

How do we measure search efficiency? i) Time distribution to the first passage: 𝑓(𝑡; 𝑥0)

ii) Mean time to the first passage: 𝑇 = 𝑡𝑓 𝑡; 𝑥0 𝑑𝑡∞

0

iii) First-passage probability up to time 𝑡𝑚: 𝑆 𝑡𝑚 = 𝑓 𝑡; 𝑥0 𝑑𝑡𝑡𝑚0

1. Introduction (Random search theory: applications and tools)

𝐿

Page 5: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

A A

A

A

A

A

A

B B

B

B

B

B

Random search theory: 𝐴 + 𝐵 → 𝐴 We will describe the position of the 𝑖-th particle through a stochastic process 𝑋𝑖(𝑡).

1. Introduction (Random search theory: applications and tools)

𝐿

Page 6: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

A A

A

A

A

A

A

B B

B

B

B

B

The target problem:

1. Introduction (Random search theory: applications and tools)

𝐿

Page 7: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

A A

A

A

A

A

A

B B

B

B

B

B

The trapping problem:

1. Introduction (Random search theory: applications and tools)

𝐿

Page 8: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

1. Introduction (Random search theory: applications and tools)

Page 9: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

Movement ecology represents a new area of ecology which requires a detailed data processing of individual animal trajectories (obtained through telemmetry, GPS,…).

1. Introduction (Random search theory: applications and tools)

Page 10: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

Search at the microscopic level

1. Introduction (Random search theory: applications and tools)

Page 11: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

Human searches:

1. Introduction (Random search theory: applications and tools)

SAR applications

Experiments

Everyday experiences

Page 12: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

A Wiener process 𝑊(𝑡) is defined as a stationary process whose increments 𝑊(𝑡2) −𝑊(𝑡1) follow a Gaussian distribution with zero mean and variance 𝑡2 − 𝑡1 .

If we assume that 𝑋 𝑡 = 𝑥0 + 2𝐷𝑊(𝑡) then: i) The probability density 𝑝(𝑥, 𝑡) follows a Gaussian distribution with 𝑋 = 𝑥0 and

𝑋2 = 2𝐷𝑡 + 𝑥02

ii) It becomes impossible to define a characteristic speed for A iii) The problem of infinite propagation signals emerge

…but the advantage is that we can describe 𝑋 𝑡 as a Gaussian (stable) process.

A

Types of motion (I): ‘Pure’ diffusion model

1. Introduction (Random search theory: applications and tools)

Page 13: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

We define the position of the particle after 𝑛 jumps as: 𝑋𝑛 = 𝑍𝑖𝑛𝑖=1

…and the time it takes to perform these 𝑛 jumps as: 𝑇𝑛 = Θ𝑖𝑛𝑖=1

…where 𝑍𝑖 and Θ𝑖 each are i.i.d. random variables distributed, respectively, according to

ϕ 𝑥 : Jump-length probability distribution function (dispersal kernel) 𝜑 𝑡 : Waiting-time probability distribution function

(This is typically known as a Continuous-Time Random Walk –CTRW- and includes the Lévy Flight case as a particular case)

A

Types of motion (II): ‘Jump’ model

1. Introduction (Random search theory: applications and tools)

Page 14: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

We use the same definition as before 𝑋𝑛 = 𝑍𝑖𝑛𝑖=1 𝑇𝑛 = Θ𝑖

𝑛𝑖=1

…where now 𝜑 𝑡 and ϕ 𝑥 are not independent, but coupled through a velocity distribution ℎ(𝑣) in the form

ϕ 𝑥 = 𝑑𝑡∞

0

𝜑(𝑡) 𝑑𝑡 𝛿 𝑥 − 𝑣𝑡 ℎ(𝑣)∞

−∞

(This is typically known as the “velocity version” of the CTRW, and includes the Lévy walk case, together with some other that ‘mimic’ the Ornstein-Uhlenbeck process in 𝑣)

A

Types of motion (III): ‘Velocity’ model

CTRW Velocity CTRW

𝑣1 𝑣2

𝑣3

1. Introduction (Random search theory: applications and tools)

𝑋(𝑡)

Page 15: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

Direct resolution: We formally define the problem as 𝐿𝐹𝑃 𝑝(𝑥, 𝑡) = 0 with boundary condition 𝑝(𝛺, 𝑡) = 0, being 𝛺 the surface of the target, and computing the flux at 𝛺. For the

Wiener process, for example, 𝐿𝐹𝑃 =𝜕

𝜕𝑡− 𝐷

𝜕2

𝜕𝑥2.

Master equation approach: For the Bernoulli random walk (with probability ½ to each side, jump size 𝑎 and waiting time 𝜏) we have

𝑇 𝑥0 =1

2𝑇 𝑥0 + 𝑎 + 𝜏 +

1

2𝑇 𝑥0 − 𝑎 + 𝜏

𝑎2

2𝜏 𝜕2 𝑇 (𝑥0)

𝜕𝑥02

= −1

𝑇 (𝑥0) =𝑥0 𝐿 − 𝑥0 𝜏

𝑎2

Methods for finding 𝑓(𝑡) and/or 𝑇

1. Introduction (Random search theory: applications and tools)

Page 16: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

Methods for finding 𝑓(𝑡) and/or 𝑇

The renewal approach We assume one target located at 𝑥 = 𝑥𝑡 and introduce 𝑘𝑛(𝑡; 𝑥0) as the rate at which the 𝑛-th passage occurs. Using a renewal assumption we have

𝑘 𝑡; 𝑥0 𝑑𝑡 = 𝑘1 𝑡; 𝑥0 𝑑𝑡 + 𝑘2 𝑡; 𝑥0 𝑑𝑡 + 𝑘3 𝑡; 𝑥0 𝑑𝑡 + ⋯ = = 𝑓 𝑡; 𝑥0 + 𝑓 𝑡; 𝑥0 ∗ 𝑓 𝑡; 𝑥𝑡 + 𝑓 𝑡; 𝑥0 ∗ 𝑓 𝑡; 𝑥𝑡 ∗ 𝑓 𝑡; 𝑥𝑡 +⋯ 𝑑𝑡

𝑘 𝑠; 𝑥0 = 𝑓 𝑠; 𝑥0 𝑓 𝑠; 𝑥𝑡𝑖

𝑖=0

=𝑓(𝑠; 𝑥0)

1 − 𝑓(𝑠; 𝑥𝑡)

𝑓 𝑠; 𝑥0 =𝑘(𝑠; 𝑥0)

1 + 𝑘(𝑠; 𝑥𝑡)

1. Introduction (Random search theory: applications and tools)

Page 17: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

𝑻𝟏

An essential advantage of this framework is that it allows a very general and intuitive understanding of the Mean First Passage Time (MFPT):

𝑇 = 𝑑𝑡 𝑡𝑓(𝑡; 𝑥0)∞

0

= lim𝑠→0

𝑑𝑓(𝑠; 𝑥0)

𝑑𝑠= lim

𝑠→0

𝑘∗ 𝑠; 𝑥𝑡𝑘(∞)

−𝑘∗(𝑠; 𝑥0)

𝑘 ∞+

1

𝑘(∞)

𝑻𝟐

1. Introduction (Random search theory: applications and tools)

Page 18: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

2. The optimal walk to the (Lévy) walk

Page 19: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

WHAT ARE LEVY FLIGHTS AND LEVY WALKS?

The Lévy Flight fits our ‘jump’ model scheme with ϕ 𝑥 a jump length distribution which decays according to lim

𝑡→∞ϕ 𝑥 ~𝑥−𝜇, with 1 < 𝜇 < 3

The Lévy Walk fits our ‘velocity’ model scheme, with 𝑣 fixed and 𝜑 𝑡 a flight time distribution which decays according to lim

𝑡→∞𝜑 𝑡 ~𝑡−𝜇, with 1 < 𝜇 < 3.

Note that this implies that 𝑥𝑞 ≡ 𝑑𝑥ϕ 𝑥 𝑥𝑞∞

−∞ and 𝑡𝑞 ≡

𝑑𝑡𝜑(𝑡)𝑡𝑞∞

0, respectively, diverge for 𝑞 − 𝜇 ≥ −1

In the Lévy Flight case these divergences extend to the overall behavior of the particle, so 𝑋2 also diverges. In contrast, for the Lévy Walk case, thanks to the coupling between flight durations and lengths through 𝑣:

𝑋2 ~ 𝑡2 , 1 < 𝜇 < 2

𝑡4−𝜇 , 2 < 𝜇 < 3

2. The optimal walk to the (Lévy) walk

Page 20: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

2. The optimal walk to the (Lévy) walk

THE LÉVY FLIGHT OPTIMAL SOLUTION

Define the search efficiency 1

𝑙 𝑁 , where 𝑙 is the mean flight distance between

targets and 𝑁 the mean number of flights to cover the distance between targets Given ϕ 𝑥 ~𝑥−𝜇 and a mean path between targets of 𝛽,

𝑙 ≈ 𝑑𝑥 𝑥1−𝜇𝛽

0+ 𝛽 𝑑𝑥 𝑥−𝜇∞

𝛽

𝑑𝑥 𝑥−𝜇∞

0

and the mean number of flights satisfies 𝑁~𝛽(𝜇−1)/2 if the target is close enough. All this leads to a search efficiency optimization for 𝜇 = 2. INTUITIVE MEANING Optimal ballistic approach Optimal reorientation (‘correction’)

0 𝐿 0 𝐿

(Viswanathan et. al. Nature 401, 911 (1999)

Page 21: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

2. The optimal walk to the (Lévy) walk

THE LEVY FLIGHT FORAGING HYPOTHESIS “Given Lévy Flight optimality, evolution should have favoured sensorymotor mechanisms that facilitate the emergence of motion patterns similar to the Lévy case in search situations of poor information.”

Page 22: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

ARE LÉVY FLIGHTS SO SPECIAL?

2. The optimal walk to the (Lévy) walk

Page 23: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

3. The optimal walk to the (intermittent) walk

Page 24: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

Practical example 1: DNA facilitated target location (1D sliding + jumping)

3. The optimal walk to the (intermittent) walk

Practical example 2: Saltatory search strategies

Page 25: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

3. The optimal walk to the (intermittent) walk

O. Bénichou et. al. Rev. Mod. Phys. 83, 81 (2011)

Page 26: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

3. The optimal walk to the (intermittent) walk

Static mode (1D)

For a domain of size b:

Page 27: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

3. The optimal walk to the (intermittent) walk

Diffusive mode (1D) 𝑏𝐷2 < 𝑎3𝑉2 𝑏𝐷2 > 𝑎3𝑉2

Page 28: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

3. The optimal walk to the (intermittent) walk

Diffusive mode (1D) O. Bénichou et. al. Phys. Rev. Lett. 94, 198101 (2005)

𝜏1 ≫ 𝐷/𝑉2 𝜏1 ≪ 𝐷/𝑉2

Page 29: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

4. The optimal walk to the (myopic) walk

Page 30: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

4. The optimal walk to the (myopic) walk

For a constant probability 𝛼 of detection, 𝑘 𝑡; 𝑥0 → 𝛼𝑘(𝑡; 𝑥0) For a speed-dependent probability 𝛼 = 𝛼(𝑣): In general, 𝛼 = 𝛼(𝑥, 𝑣, 𝑡):

𝑘 𝑡; 𝑥0 𝑑𝑡 = 𝑑𝑣∞

0

𝑑𝑥0

0−𝑣𝑑𝑡

𝛼(𝑣)𝑝 𝑥, 𝑣, 𝑡; 𝑥0 + 𝑑𝑣0

−∞

𝑑𝑥𝑣𝑑𝑡

0

𝛼(𝑣)𝑝 𝑥, 𝑣, 𝑡; 𝑥0 ≈

≈ 𝑑𝑣∞

0

𝑣𝛼(𝑣)𝑝 0, 𝑣, 𝑡; 𝑥0 𝑑𝑡 + 𝑑𝑣0

−∞

𝑣𝛼(𝑣)𝑝 0, 𝑣, 𝑡; 𝑥0 𝑑𝑡

𝑘 𝑡; 𝑥0 𝑑𝑡 ≈ 𝑑𝑣∞

0

𝑣𝛼 𝑥, 𝑣, 𝑡 𝑝 0, 𝑣, 𝑡; 𝑥0 𝑑𝑡 − 𝑑𝑣0

−∞

𝑣𝛼(𝑥, 𝑣, 𝑡)𝑝 0, 𝑣, 𝑡; 𝑥0 𝑑𝑡

Page 31: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

4. The optimal walk to the (myopic) walk

𝑻𝟏

𝑻𝟐

Case 1D ‘velocity’ model with 𝑣 fixed and 𝜑 𝑡 = 𝜆𝑒−𝜆𝑡 or 𝜑 𝑠 = 𝑒−𝑎 𝑘 𝜇, 𝛼 = 𝑒−𝛾𝑣

𝑇 =2𝑥0 𝐿−𝑥0 𝜆

𝑣2+

𝐿

𝑣𝛼(𝑣)

Page 32: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

4. The optimal walk to the (myopic) walk

𝑻𝟏

𝑻𝟐

Case 2D or higher ‘velocity’ model with 𝑣 fixed and 𝜑 𝑡 = 𝜆𝑒−𝜆𝑡, 𝛼 = 𝑒−𝛾𝑣

𝑇 =𝐿2

𝑣2𝑔𝑑 𝑥0 +

𝐿𝑑

𝐴𝑣𝛼(𝑣)=

𝐿2

𝑣2𝑔𝑑 𝑥0 +

1

𝜌

1

𝐴𝑣𝛼(𝑣)

Page 33: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

4. The optimal walk to the (myopic) walk

Case 2D with 𝑣 fixed and 𝜑 𝑡 = 𝜆𝑒−𝜆𝑡 or 𝜑 𝑠 = 𝑒−𝑎 𝑘 𝜇, 𝛼 = 𝑒−𝛾𝑣

Page 34: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

5. The optimal walk to the (mortal) walk

Page 35: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

For a constant mortality rate 𝜔: Here 𝑆(∞) is the most relevant parameter: For the ‘pure’ diffusion model:

For the ‘velocity’ model with 𝑣 fixed and 𝜑 𝑡 = 𝜆𝑒−𝜆𝑡:

𝑘 𝑡; 𝑥0 → 𝑒−𝜔𝑡𝑘(𝑡; 𝑥0) → 𝑘 𝑠; 𝑥0 → 𝑘 𝑠 + 𝜔; 𝑥0 → 𝑓 𝑠; 𝑥0 =𝑘(𝑠+𝜔;𝑥0)

1+𝑘(𝑠+𝜔;𝑥𝑡)

𝑆 ∞ = 𝑑𝑡 𝑓(𝑡; 𝑥0)∞

0

= lim𝑠→0

𝑑𝑡 𝑒−𝑠𝑡𝑓(𝑡; 𝑥0)∞

0

= lim𝑠→0

𝑓(𝑠; 𝑥0)

𝑆 ∞ = 1 −𝜔(𝜔 + 𝜆) 𝑒− 𝜔 𝜔+𝜆 𝑥0/𝑣 + 𝑒− 𝜔 𝜔+𝜆 𝐿−𝑥0 /𝑣

𝜔 1 − 𝑒− 𝜔 𝜔+𝜆 𝐿/𝑣 + 𝜔(𝜔 + 𝜆) 1 + 𝑒− 𝜔 𝜔+𝜆 𝐿/𝑣

𝑆 ∞ = 1 −𝜔𝜆 𝑒− 𝜔𝜆 𝑥0/𝑣 + 𝑒− 𝜔𝜆 𝐿−𝑥0 /𝑣

1 + 𝑒− 𝜔𝜆 𝐿/𝑣

5. The optimal walk to the (mortal) walk

Page 36: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

Implications for the Lévy flight paradigm:

5. The optimal walk to the (mortal) walk

Page 37: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

6. The optimal walk to the (systematic?) walk

Page 38: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

NON-PERFECT DETECTION: SACCADE-FIXATION MECHANISM

𝑐 = 1 𝑐 = 0.2

6. The optimal walk to the (systematic?) walk

Page 39: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

6. The optimal walk to the (systematic?) walk

Optimal search theory:

“Random” search

Page 40: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

6. The optimal walk to the (systematic?) walk

Optimal effort allocation vs optimal path planning

Parallel Sweep (PS)

Archimedean spiral (AS)

Page 41: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

6. The optimal walk to the (systematic?) walk

Errors in pattern sizing

Page 42: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

6. The optimal walk to the (systematic?) walk

Errors in prior information

Page 43: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

6. The optimal walk to the (systematic?) walk

Example: Ellberg’s paradox

30 balls Red: 10 Yellow+Black: 20

Does it make any sense to foresee human errors? According to psychologycal research during the last 50 years, yes

Page 44: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

6. The optimal walk to the (systematic?) walk

Page 45: TO THE RANDOM WALK - Universitat de Barcelona - Home · TO THE RANDOM WALK Daniel Campos (Universitat Autònoma de Barcelona) 1. Introduction (Random search theory: applications and

Collaborators: Vicenç Méndez

Universitat Autònoma de Barcelona

Frederic Bartumeus Centre d’Estudis Avançats de Blanes, Girona

Xavier Espadaler

Jordi Catalán John Palmer

Centre de Recerca Ecològica i Aplicacions Forestals, UAB

Enrique Abad Santos Bravo Yuste

Universidad de Extremadura

Will Ryu University of Toronto

José Soares de Andrade Jr

Universidade Federal do Ceará

Katja Lindenberg University of California San Diego