Top Banner
I.o. FINAL REPORT 0 THEORETICAL STUDY OF STRUCTURAL RESPONSE TO HEAR-FIELD AND FAR-FIELD SONIC BOOMS C By John H. Wiggins, Jr. "Mx and Bruce Kennedy C: C > Contract No. AF49 (638) 1777 October. 1966 Prepared for z mU) Natonal Sonirc Boom Evaluation Office Deoartment of the Arr Force The Pentagon Z Washington, D.C. z > In > -:n m z t- I .- SDATACRAFT, INC. UARDENA, CALIF. .. .. '"m
204

to hear-field and far-field sonic booms - DTIC

May 12, 2023

Download

Documents

Khang Minh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: to hear-field and far-field sonic booms - DTIC

I.o.

FINAL REPORT

0 THEORETICAL STUDY OF STRUCTURAL RESPONSETO HEAR-FIELD AND FAR-FIELD SONIC BOOMS

C

By John H. Wiggins, Jr."Mx and Bruce Kennedy

C:

C

> Contract No. AF49 (638) 1777October. 1966

Prepared forzmU) Natonal Sonirc Boom Evaluation Office

Deoartment of the Arr Force

The PentagonZ Washington, D.C.

z

>

In>

-:n

m

z

t-

I .-

SDATACRAFT, INC.UARDENA, CALIF.

.. .. '"m

Page 2: to hear-field and far-field sonic booms - DTIC

FINAL R[PQP7l

I'HEORETICAL STUDY OF STRUCTURAL RESPONSE TONEAR-FIELD AND FAR-FIELD SONIC BOOMS

By john H. Wiggins, jr.and Bruce Kennedy

Contract iNo. AF 49 (638)-1777October, 1966

Prepared forN.3tional Sonlic Boorn [valuation Office

Denartrnt of the Air ForceI te Pentagon

Washington, D.C.

D~i DAT'ACR A FT, I NC:.JU ? ~GARDE.No C AL-i

Page 3: to hear-field and far-field sonic booms - DTIC

FOREWORD

This study has been conducted.--nder project-task number7908 for the_AirForce Office of Scientific Research, Col oi el

-------> C~rlesR. Foster AFRST-SB monitoring. The study was conductedbetwen I July 1966 and 30 September 1966 and the final reportsubmitted on October 12, 1966.

The authors expres2-y want to thank Mr. H, 14. Carlson ofNASA Langley Research Center for the waveforms and advicesupplied in support of the study.

Publication of this report does not constitute Air Forceapproval of the report's findings or conclusions, it is pub-lished only for the exchange and stimulation of ideas.

ii

Page 4: to hear-field and far-field sonic booms - DTIC

ABSTRACT

Th>s study investigates the difference between near-field andfar-fiid sonic boom intensities. To do so, it defines a newintenslty standard, effective static load which depends onload wveform as well as magn i tudI Many sonic boom loadingwavefo;.rms are computed for 19 structural elements f varioustypes produced by two SST designs as, well as F-104, B-58 andXB-70 aircraft. It is cor cluded that near-field booms are lessintense than far-field booms, the magnitude of the differencedePendino on the character of the waveform. The more the wave-.orm is distorted from a symetrical far-fiela (N-wave) waveshape, the lower the near-field intensity. It is recommendedthat further theoretical study be made in order to quantifyresjlts and isolate the influence r specific parameters onboom intensity.

iii

Page 5: to hear-field and far-field sonic booms - DTIC

TABLE OF CONTENTS

Page No.

I. Summary, ronclusions and Recommendations ........... 1

A . Summary ............................ ............. 1B. Conclusions ...................................... 1C, Recommendations .................................. 2

iI. Introduction ......................................... 5

A. General .......................................... 5B. Prediction of the Free-Field Boom

and Boom Intensity ............................... 5C. Objective of Investigation ....................... 6

IIi. Theoretical Approach ................................. 7

A. Rationale ........................................ 7B. Analysis of the Response of Linear,

Time-Invariant Systems ........................... 7C. Choice of Free-Field Perturbations ............... 9

IV. Fabrication of the Loading Wave ...................... 13

A. General .......................................... 13B. The Racking Load .................................. 13

-C. The Plate Load...................18

D. The Roof Load .................................... 19

V. Modeling and Selection of Element. for Test .......... 21

A . Se lection ........................................ 2 1B. Modeling Procedure ............................... . 21

VI. Analysis of Results ...................... ........... 25

A. General ............ ............................. . 25B. Comparison of Near-Field with

Far-Field Intensities ........................... 40C. Effects of Airplane Size and Speed

on Racking and wlaL Intensities ................. . 82

V

Page 6: to hear-field and far-field sonic booms - DTIC

_IBLIOGRAPHY

APPENDIX A - Representative Free-Field, Loading,and Response Curves...................... A-I

APPENDIX B - Tabulated ir-,ul Ls ....................... B-I

FORM 1473

List of Figures

Fi . No. Paq

1 Shock Tube Schlieren Photographs of a 14blast wave traveling over a simulated building.. 14

2 Net Load is the Summation of Many Parameters .... 203 Free-Field, Contractor A SST, Condition 1 ....... 274 Free-Field, Contractor A SST, Condition 2 ....... 285 Free-Field, Contractor A SST, Condition 3 ....... 296 Free-Field, Contractor A SST, Condition 4 ....... 307 Free-Field, Contractor B SST, Condition 1 ....... 318 Free-Field, Contractor B SST, Cordition 2 ....... 329 Free-Field, Contractor B SST, Condition 3 ....... 33

10 Free-Field, Contractor B SSI, Condition 4 ....... 3411 Free-Field, XB-70, Mach 1.22 .................... 3512 Free-Field, XB-70, Mach 1.40 .................... 3613 Free-Field XB-70, Mach 1.36 .................... 3714 Free-Field, B-58, Mach 1.22 ..................... 3815 Free-Field, F-104, Mach 1.50 .................... 39

16-52 Comparison of Near-Field With Far-FieldEffective Static Load For Elemets 1-19,Contractors A & B ............................... 41-77

vi

Page 7: to hear-field and far-field sonic booms - DTIC

List Of Symbols

imbol Definition

A Area of exposed el ementB Base dimension of buildingCa Speed of sound at aircraft altitudeCo Speed of sound at buildingDAF Ratio of Peff/PmaxH Height of structureK ConstantL Length of buildingM Mach numberPF Maximum free-field oressure at height of

el ementPLOAD Point of loaaing from base of structurePeff Effective static loadPmax Maximum dynamic load acting on elementp(t) Variation of pressure with timeR Distance between airplane and observerRS Reflectivity coefficient for structural

el ementS Shortest distance between PLOAD and a free

surfacetGeneral timeta Delay time for backwave cleanuptb Delay time for wave to travel from front

to back of structuretg Ground reflection delay timets Bleedoff time for reflected waveW Weighting FunctionX Response of a single-degree-of-freedom

sys ternci Roof angle

Damping factorAp Free-field overpressure dt ground levelApo Free-field ov rpressure in the free airi Free-field overpressure within a building.' p1 Free-field overpressure reflected from the

ground I

Arbitrary functionStandard deviation

7 Duration of free-field source boom waveW Forcing frequency orWo Intersection of Fouric envelopes of free-

field boom wavesWn Natural circular frequency of a structural

el ement

vii

Page 8: to hear-field and far-field sonic booms - DTIC

U

I SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

A. Summary:

The supersonic transports of the future will be so big thatthe sonic boom produced during the acceleration phase of theirflight will have a near-field character. Boom waves ir thenear-field differ from those in the far-field (N-wave) in thatthey possess secondary shocks and have qreater positive thannegative impulse. With the advent of a more refined theoryto predi-+ - 4 ...... 4 ... . L .... -, , _... as well asthe far-field, the question is asked about their combined effecton structural intensity. Investigators have recorded the be-havior of structures to far-field and near-field boom waves fromsmall aircraft, but no clear-cut analysis of effects has beenmade. Further, no intensity studies have been made for thepredicted SST boom waves. This study attempts to answer somequestions about the effect of boom waveform intensity. It istheoretical in nature and is intended to supplement and comple-ment near and far-field boom data gathered and analyzed duringthe Edwards Experiment being conducted by the U.S.A.F. Spe-cifically, the study compares the intensities of near-fieldand far-field booms from various SST configurations predictedfrom the more exact (near-field) theory and the less exact(far-field) theories.

The definition of intensity is also modified and refined fromthe current measure of peak overpressure to a new measure, theeffective static load produced by a boom on the element inquestion. To ccmpute the new intensity, however, loadino wave-forms must be derived. This study computes these based onavailable tneory and empirical results from blasting researchand empirical results from sonic boom experiments. It thenapplies the net loads to 19 structural elements of variouskinds. Known perturbations of the free-field waveforms arealso introduced into the computer proqrams prior to loadingwaveform fabrication to simulate nature as closely as )!,si-ble. Finally, near-field intensities, as newly defi ed, arecompared with far-field intensities.

B. Con-lusions:

The following conclusions are based on theoretical resultsand are subject to tie imitations of the theory discussed inthe text.

Page 9: to hear-field and far-field sonic booms - DTIC

1. Near-field intensities in general are lower than far-field intensities. They are lower than those predictedby the peak overoressure criterion. Several factorscombire to produce the differences:

a. near-field, free-field overpressures are lower thanthose predicted by the far-fied theory,

b. the near-field loading ,raves have lower maximumloads than the far-field waves, and

c. the dynamic amplification factors are slightlylower.

In general, the larger the variation in waveform appear-ance between near-and far-field theory, the lower thenear-field intensity.

2. No significant differences of coefficient of variationbetween near- and far-field intensities are noted.

3. The coefficient of variation of i-tensity is lower thanthat for maximum free-field overpressure.

4. Racking -ntensities decrease slightly with increasingsize and speed ot airplane.

5. Plate intensities increase sliqhtly with increasingsize and speed of airplane.

C. RecommenJations:

1. Th! wave fabrication technique described herein hasdefinite limitations and should be refinea by furtherempirical studies of data combines wit h element modelbuilding theories.

2. More elements should be theoretically tested and tresults categorized with bu idinq siZe, eleiertheiqht, etc.

3. Weighting factors for the various structural elementcategories should be derived which describe a crosssection 'f tne caracteristics of b'uildings througi-out the coun trY. Jsing these, a general intensityscale can be computed from theory

4. oere analyses of the data in Appendi B car be Cton-ducted. For example, tieight of glass abo. e the cjround

Page 10: to hear-field and far-field sonic booms - DTIC

affects intensity to some degree. This has not yetbeen thoroughly studied.

5. Furthev analysis of loadinq dna response plots, ex-amples of wnich are shown in Appendix A, are neces-sary to expose the influence of parameters in govern-inq intensity.

Page 11: to hear-field and far-field sonic booms - DTIC

1I i NTRODUCTION

A. Genera

As the various concepts for a supersonic transport desi-n andfli .t profile become finalized, and 0ith the advent of newtheories for predicting the free-fielk sonic boom character.it becomes apparent that a More satisfactory means for judgingsonic boom intensity must be developed. As used herein, "in-tensity" pertains to the effect of boom on structural response.Of particular interest is the comparison of intensity undernear-field and far-field sonic boom waveform conditions.

Until recently, it was commonly thought that the SST boom vouldbe of the far-field, symetric N-wave variety. It is not. Theacceleration portion of the flight profile will produce pro-nounced near-field boom waves and, indeed, in cruise, the wave-form will be an unsvmetric N-wave with the positive impulsebeing greater .an the negative. is there a difference in pre-dicted boom inte.:ity as there is in predicted boom signature-The study attempts to answer this question.

B. Prediction of the Free-Field Boom and Boom Intensity:

Theories for predicting the free-K-ield boom, waveform have beenrefined over t a vcrs. To a first -)proximation, the boomstrength might be predicted simply from knowledge of the shockenergy generated by an aircraft and the geometric divergence(/R o r I/R+, wh ere P is the distance from airplane to observer).in this case, only an estimate of the peak overpressure and noknowledge of the wa-,form is obtained. To a second approxi-mation, the free-field waveform and peak overpressure is pre-dicted by the far-field theory (l)*. In this case, the waveformtakes the shape of the letter N. in field observations (2, 3)and in wind tunnel tests (4, 5, 6), it has been observed thatwhen the observer is relatively close to the aircraft, the Napproximation is not v lid. Rather, a series of spikes distortthe N shape. It has also been noted that the peak overnress.ure.in a near-field boom wave is lower than that which would bepredicted with the far-field theory (7, 8). Is there a corre-sponding decrease in intensity?

*Numbers in parentheses tefer to a reference in the bibliography.

5

Page 12: to hear-field and far-field sonic booms - DTIC

r-e -, eo fr~ r- er nn re e c t i-n q~ free -f ie dson ic boo.m wave ha s oird i-St3nced the eo~ or pred ict irigint enrs i -withl- r es pe ct +tc st r c t ures. in The case of humanb icios, ner e i v edo oi sP r a rng sChem.e s h a ve r;e en d ev e e d

h ,ch on v er t a me a s nfle - S ou nd i Ft a sU.C : ti0j t 've -esp o r.edo mai-nr ( 9). For s tructurts, t-he 1-:a ximum'. Ove 1-res su re cri teri onis c-u rr en-tly us ed a ec enty the s o -c a 1d r e:; pise s p ec tru m

or s norck s pec trum tecrnn- uci has beer s uu Est'ed to repl11ace theoverp'es~ure criterion. Iti sdetniely in earthquakeanrd o th er i ns t;.rice s o f f o rced vibra tiocn w h er e feed back fromthe s ource to tune s tr:.c t ura I sys tem is I ow In the case ofa c ti4ve ai Shc load _1S OC noet S on c et 'DIs 9ot enti relyaccurate due to feedback and other ;effects. A di fferent scheme

isneeded.

The P~eff) or effecti v, static load cri tenion is proposed as asecond azpproximati on, for m e a s uri4ng i nt"Ie n si-ty is str uctures u nde ractive sinic boon loads. This is defined as the equivalentstatic load applied to a structural system under active shock"Dad. Knowl edge of both tile load magnitude and character as we..

as the response of the equivalent element in question is neededto predict intensity thus defined.

C. Obe c tive__of 1.n ve s tj~a t on:

This study will compare the structural int-isity of theoreticallypredicted near-fie"1d and far-fi1eld sonic lboomns from representa-tivye suk-,er~onic trans ,ports supplied by NASA*. It will use thePteff) criterion to dO SO. 1he SST intensitie!s computed alsowi 'l be compared wi th those generated by smal ler F-104 l0),i3-58 and XB.*70 1111) aircraft.

*The waveforis were supplied by Mr. H. W. Carlson of NASA,Langley Research Center.

6

Page 13: to hear-field and far-field sonic booms - DTIC

IlI TH' ORETiCAL APPROACH

A. Rationale:

The basic approach taken in this study was to fabricate fairlydetailed near-field and far-field loadino waveforms. Then,using these waveforms, the response of relatively simple modelsof structural elements was computed. For comparison purposes,however, more than one value of response was computed for eachelement subjected to each waveform. The free-field conditionswere perturbed by known amounts prior to calculating responsein order to represent nature as closely as possible. Meanvalues of response are then compared.

Previous theoretical studies have used either relatively simplefar-field, free-field waveforms applied to both simple andfairly detailed models of structural elements (12, 13, 14, 15)or simple far-field, loading waveforms z'pplied to simple models(16), None of the previous studies, however, are able todifferentiate between t.he relative structural response to near-field and far-field waveforms.

The selection of the structural element m.odels was based on acompromise between realism and the true model which is largelyunknown. After careful study, it was decided to use a single-degree-of-freedom approximation for all structural elemen:t.oWhile it would have been desirable to use multiple-degree-of-freedom models, the time, cost of solution and unknown degreeof resolution did not seem warranted.

The results from a single-degree-of-freedom model is not asbad as it might seem. First, elements with both high and lowfrequency first modcs are considered in the study. Comparisonof these cases will indicate any differences between near-fieldand far-field waveforms with regard to frequency effects.Second, the energy in a given mode is inversely related to themode number (l , 2, 3, 4) and directly related to energy inthe waveform at the appropriate frequency. These effects combineso that most of the energy is confined to a single mode (usuallythe first mode) of the elements. Cheng (14) has shown thathigher modes participate little in complex elements under free- Ifield waveforms.

B. Analjsis of_ the.Response of Linear, Time-Invariant SJstems

Analysis of the transient response of linear, time-invariantsystems can be carried out either in the frequency domain using

7

Page 14: to hear-field and far-field sonic booms - DTIC

the transfe- function concept or in the time domain usingeither the weighting function and the Duhamel integral or bydirectly integrating the aifferential equations. Both methodsgive exact answers but, depending on the form of the inputdata, one is usually simpler computationally than the other.

The connection between the two is as shown below. Let theresponse of the system X(t), due to a pressure time historyp(t), e given by the expression:

tX(t) --I W(t-,)p(T)d-, (I

0

where W(t-T) is the weighting function (impulse response) ofthe system which is described by the differential equation,

X + 2 L, n X + wn2X = K p(t), (2)

where *n is the natural circular frequency of the system andK is a constant. Equation (I) can be expressed in the frequencydomain in terms of the transfer function by taking the Fouriertransform of both sides. The result is:

X fj') = / dte -J-tX(t),

,C t/ dte -jtt / diW(t- )p(i),

0

G(j w,)p( i!) , (3)

whe -e ,, is the forcing frequency. For the system described byEquation (2) it follows that,

W(t.- ) K e n t sin i -4 2 t

n(4)

KG(j 2

+ 2n, n(j,) .n

8e

111n

Page 15: to hear-field and far-field sonic booms - DTIC

It is clear from Equation (2) that if p(jj), which is the spec-trum of the pressure wave p(t), is known, then the spectrumof X(t) is simply found by multiplication. However, to findX(t), the inverse transform of X(jw) must be calculated usingthe equation,

X(t) = 2 dwe jt 5()) (5)

Because of the difficulty of this calculation and the calcu-lation of p(j ) according to Equation (3), it is usuallypreferable to use Equation (1) to compute X(t) or to ingegrateEquation (2) directly. The former was done.

Generally speaking, Equation (3) is used only when the systemresponse is easily interpreted in the frequency domain suchas is the case in terms of energy considerations. For example,if one wants to find the integral of X2 (t) one has,

f dt X2 (t) = f dw

= f d IG(jw 1)2 !p(jL') 2 (6)- 00

by Parseval's identity. In ttis case, G(j,,;) ;L has the inter-pretation of energy response of the system to inputs at fre..quency w. Equation (6) is analogous tp the equation used inrandom vibration worL in which IP(j,.,) z is replaced by thespectral density of the output. Equation (6) cannot be use'to find the peak of X(t) becduse the pha,- of G( j,,) and P(j,,,)has been lost in the process.

C. Choice of Free-Field Perturbations:

Experimental results have shown that the coefficient of varia-tion of peak free-fild overpr' sure is on the order of 40percent (17). Likewise, the cuefficieFt of variation of the boomwave duration is on the order of 10 per-ent (17). These knownvariations are incorporated in the study as perturbations ofthe free-field waveforms so t'at mean intensity values underpseudo real conditions can be compared.

Because of linearity of the model used, ;uperposition is usedin the computatiori; to account for peak overpressure variations.

9i

Page 16: to hear-field and far-field sonic booms - DTIC

If, fur example, only the variation in overpressure were used,he variation of peak response would also be 40 percent and

cormpari son Of mean values of intensity would be superfluous.But the wave duration is also erturbed by atmospheric hetero-geneity However, variations n wave duration are more diffi-cult to account for cimply because the relationship between peakresponse and wave duration is non linear. After considerablethought, it ,wjas apparent that the best approach to take was tocompute a number of response values for waves whose durationsvaried in accordance with a coefficient of variation of 10percent. Four multiplicative time coefficients, accordingly,modified each waveform: 0.918, 0.972, 1.028 and 1.082.

In addition to variations in peak overpressure and wave dura-tion, it is known that low level turbulence causes "noise"in the signatures of sonic boom waves ,18, 19, 20, 21). Thenoise factor either peaks the shock pulses or rounds them offfor the most part. It i clear from physical reasoning thatthe noise is caused by two effects: dispersion and attenua-tion (22). Dispersion results from two sources: t-- varyingindex of refraction as a function of frequency and turbulenceand wind. Absorption of energy during passage through theatmosphere causes attenuation. Further, a multiplicative noisemodel should be used. Because variations in the random atmos-pheric characteristics are slow compared with the duration ofa typical N-wave, it is expected that successive peaks in agiven waveform would exhibit essentially identical noise charac-terist cs (20).

The above di scuss ion leads to one form of a model for wi ,eformvariation due to random dispersion,

p (x,t) d P(.)e J (t-x/W), (7)

where W is a function uf local tel;;perature which is random inx a nd t, and P( ) is the Fourier transform of p(x,O). As i mplIer. , arid perhaps cetter ,:odel for tho random effects atso me fi xed pus it ion is,

pK t) "d ( )e j( t + ( ))

Where the ( is a random function of correrl uondirT.q toradom de lays for e ac h freue n cy. In either case, the mu I

M0

Page 17: to hear-field and far-field sonic booms - DTIC

plicative nature of the noise is apparent through the oresenceof P(M).

In using either of the above models, some description of P(w)and 0(w) is necessary. It is extremely difficult to realistic-ally model these effects in terms of known characteristics ofthe atmosphere such as mean temperature profile, low altitudeturbulence spectra, etc. Moreover, the cost of a suitableMonte Carlo simulation would have been prohibitive. For thesereasons, empirical "noise" perturbations based on past expreri-mental records were used in the fabrication of waveforms. Whilethis is not the most desirable procedure it will certainlyindicate the first-order effects of such perturbations.

In a study by NASA, conducted at Oklahoma City, a large numberof waveforms were obtained under different weather conditions(10). The investigators labeled the waveforms to be of theP (peaked), NP (normal-pe'ked), N((normal), NR (normal-rounded),or R (rounded) type in order of degrading "peakiness". Whenthe nu ber of observations made under each category were tabu-lated for altitudes above 30,000 feet, it was shown t'at themajority of records were of the normal or NR type.

The average rise time of the NR records was on the order of10 milliseconds. The noise portion of the study was, there-fore, limited to studying two types of equally weighted condi-tions, those with normal waveforms and those waveforms that hada rise tine of 10 milliseconds.

II]

Page 18: to hear-field and far-field sonic booms - DTIC

IV FABRICATION OF THE LOADING WAVE

General:

There are many variables that moJiy a free-field wave uponstriking a building element. Sorne of t ,,ese are:

I. Shape and dimensions of the structure,2. Position of element within the structure,3. Mach angle,4. Refle:Lion coefficient of the structural

elemeit loaded,5. Reflection coefficient of the ground,6. Transiiissibility of the structure in toto,7. Speed of sound,8, Manner of load (racking or plate),9. 'eakacie of structure, and

10. Angle of attack (heal-on, side-on or trailing).

In this study, the critical vector Or head-on vector is theonly one considered. A 1 of the other variables mentioned above,however, are treated in one form or another.

The technique of fabricating loading waveforms was developeddurinq nuclear weapons effects research (23, 24, 25). Becauseof the extremely high pressures of interest, however, refine-ment to the degree necessary for computation of response to.onic boom was nev:r accomplished. Also, research in loadfabrication was different in that design rather than analysisof effects was the end product. As a result of this and otherfactors, plrameters 2 5, 6 and 9 werc not treated. Parameter3 was assumed always to be 90o.

The fo'lowing discusses the logic, some of which is old andsome new, that as used in aenerating the loading waveforms.Almnost all of t !, 'anirulations, even thc Cd ones, are hasedon empirical results from f'eld or shock tube data, not theoryper se.

B. The Rack i ?1 Load:

Th- rackinq load dist;,rts a structure in the s...a mcde. Noteini th, photographs of i shock wave hitt innq a simuiated structurin a shock tube how a front and a back load will be dispIacedin time iFi .q. I I wte further the large time necessary fort r ( ack load o cie,. up.

-3

Page 19: to hear-field and far-field sonic booms - DTIC

Co .,d i o

o X i t o

F4 i e 1 ,)e S h

a., v . Ii g O e a Sifu

Page 20: to hear-field and far-field sonic booms - DTIC

* ~ '''4 M

Condition 3

t r> i 1

e r

Page 21: to hear-field and far-field sonic booms - DTIC

IW 4z

.~, I-

~VIA,,

T"-- elf,

Condition 5

Page 22: to hear-field and far-field sonic booms - DTIC

In ths study, th,- net racking load was fabricated by sub-tracting the back from th f. ront load at some de lay timetb =L/CaM (where L =structure length, Ca =sound speed ataircraft ard M =Mach number). Thje front load is computedas follows:

1. The a ir f ree-f ieldu wave, . i0 is appl ied to tn2struc-ture. It is computed ,y dividing all groundfrc- field wave pressures supplied by NASA, , cp,by 1 .9. Tne val ue 1 .9 i s the ground reflIec t iont CC-efficient used by NASA.

2. To each shock 'in the wave is added d tr'ianguldr pulse.T ' ight is determined by the product of the struc-

coural r 'fiection coefficient ond the shock strength,p0 . Th. base of the triangle or bleed-off time is

equal to 3S/C 0 ( wh e re ,is the T1i nimum- di stancE f rom,"he equivalert mass point to a free surface and C.is the speed of sound at grounid level.0

T. The cr-,u r d ~ef e cted t ,e-field w a ve, iq s addedC1 e dH adV time equal tLO,

t2 t of t ceq ui iV flen ma~ abcve~r~ ~ o~san O.~ ~ te s~ljare of te

r e c c e f''r c e- U e M ac ra st I r;' r'A f" -C e r t e ot of the

re~ f 'e' 0 0 CN~ 1!k n eront 'D t halt

iesli1I aoo

C~ I - Cr e

c ton: C f :c t : ~~

Page 23: to hear-field and far-field sonic booms - DTIC

C. Hi. h late Load:

The front loading wave minus the internal pressure wave com-prises the plate loading wave. The front loading wave fabri-cation procedure has already been described above. The internalloadirg wave is more difficult to describe.

Experimental measurements at White Sands (26) and OklahomaCity (10) have indicated that the internal loading waveformis essentially a Hightly damped sine wave of a frequency slightlylarger than wo , the intercept of curves enveloping the Fourierspectrum of an N-wave. Superimposed on the damped sine waveare usually some higher frequency perturbations.

This can be explained in the following manner. Since reflec-tivity increases and transmissibility decreases with increasingforced frequency, the initial response of an elemert (and hence,the internal pressure) is roughly the transient response of thefirst mode of the element to a step input. Superimposed on theinternal pressure wave, however, is the forced response of theelement at the fLndamental frequency of the boom wave, approxi-matelyyT (T = wave duration). In the free vibration interval,the internal wave must take on the free vibration frequencycharacteristics of the element. The net observed internalwave is a damped sine wave having a frequency of roughly 1/!.5-.

The word "element" has been used in a general sense. In fact,the entire structure loaded and not just a wall or a windowwithin the structure must be considered as the "element" whenspeaking of the internal wave. All parts of the structure,therefore, participate in the internal wave fabrication.

It is obvious that a detailed theory for fabricating this wavemust take more time for thought than that available in the study.For this reason and Decause empirical fabrication techniques havebeen used in other parts of the procedure, the internal waveis treated herein simply as follows:

APi(t) wF (2"Rs)e s t (9)

where APit) = the internal wave pressure at time t,

PF = the maximum free-field pressure on the element inquestion,

Rs = reflectivity coefficient,

18

Page 24: to hear-field and far-field sonic booms - DTIC

= damping facto- resulting from leakage and

internal damoing of structural elements, and

-1= 2 ./.5 .

Observations (26) have revelaed that very flexible structuresor structures with large wirdows have a reflectivity coefficientof about 1.4. Structures or rooms of medium stiffness and withsmaller windows have a reflectivity coefficient of about 1.5.Relati.ely, stiff structures with few of small windows have areflectivity coefficient of about 1.7.

An example of fabricating the plate loading wave is shcwn inFia. 2. The wave fabricated resembles net loading waves describedin (26) and (17) quite well.

D. The Roof Load:

The roof loading wave is fabricated in the same manner as theplate loadirg wave with the following exception. The wavereflected from the ground does not, in most instances, load theroof directly but must "bleed around" the edge of t~e roof,Fromi observations which confirm this Iiiie of reasoning (26)the gr, und reflected wave portion of the front loading wave istreated in the same manner at the back loading wave.

19

Page 25: to hear-field and far-field sonic booms - DTIC

Air free-field, far-field N wave with a peakpressure Apo

~Apo

Structure stiffness governs height ofreet o: *P 0

ss

Dimensions of structure determine duration_of reflection t s oA o ,re t Reflectivity of ground

g s - determines pg

t depends on wave angle and height aboveground. Reflectivity of ground and wall

ApgRs I\ determine RsAPg APgRs __----__"__

ts s

Atmospheric conditions govern associated noise

'.'

Transmissibility governs inside load size and shape

Net loading wave differs considerably from

Figure 2 -Net load is the summation of many parameters.The above example shows how a far-field N wavecan be fabricated for plate or diaphragm load.The same technique can be used for racking loadsand near-field boom waves.

20

Page 26: to hear-field and far-field sonic booms - DTIC

V MODELING AND SELECTION OF ELEMENTS FOR TEST

A. Selection:

Just as all people are different, so too are all structuresdifferent. As a matter of fact, there may be more differencesin structures than in people from the standpoint of a transferfunction and, therefore, intensity. Several scales of "respon-siveness" to sound have been described for people in reference(9). These scales are based on the judgment of the investigatorciting the scale and his impression of the mean response charac-teristic of a human being. We are not yet at the stage of beingable to say what the mean characteristic of all the structuresacoss the nation may be. A selection of elements for testmust be made, however.

The Edv, rds AF Base Sonic Boom Experiment has as its structuralsubjects three buildings which are considered to be "represent-ative". They are generally described by the following:

1. One story house - This dwelling is roughly 28 feetby 40 feet in plan. It has a living room, kitchen,family room and three bedrooms. The construction isof wood framing materials, wood 3iding and gypsumboard.

2. Two story house - The two story hse has in addi-tion to the rooms in the one story house, a diningroom. There are roughly 2,000 square feet internally.The construction is of wood frame, wood siding andgypsum board interior.

3. Bowling Alley - This building is of interest becauseof the long span, low frequency roof. The buildingis roughly 75 feet by 120 feet with no internalposts. Four steel girders span the 12n foot length

In addition to the two houses and bowling alley roof, two hypo-thetical ten story buildings having low fundamental frequenciesand three windows of different size located at three differentheights above ground were selected for study. Table 1 detailsthe 19 characteristics of the window and structure elementsexami ned.

B. Modelir- Procedure:

In the aerospace industry, a detaii 4ledge of an airplaneor a space vehicle's character is requlied to insure confidence

21

Page 27: to hear-field and far-field sonic booms - DTIC

4- c- < - k < c < <0cC -- ZC .4 af 4-- 4'C 'C ;2n' oc C ;2: us mC .. 'C

-C U) C, ) C, ") In In In - -)

C4- CD , ) CD C-- CD CD CCDD C, C f)D , CD 21 D CE u

C)1 CD C, CD CDD C I- ,~ ) C ) C, 0D C) C3 C,

C) U

zC) ~ , C C) C D CD ol C) D j DCD C, C, C, C, C S , C, C)'2) (U~ '2) CD C, C) r CD ~ 0 4 C ) CD ID7-. C, ,- .

C, , - C,) 7-. C, 10.D , - C - - 0 ~ - C

-L . - C , 7. > I,-)7) X - - . -

a,- In~ CD ,o 00 m w

E

L) I,) I) C C DC

L) In C) C)D

* ~ ~ I Cl 11 C,) 13 C, C ,,,C ) C D D ) C

JI W0 V Q , 4 IL0 1 4 V1. 1 )

'4-~ ~~~ 0) -3 C, 0) C ,, C ) (C C ) ) ' 'C) 'C 7- C, ~~~ ~~~ ~~~c, , C , CCl~. - C ) C ' C ) C

Page 28: to hear-field and far-field sonic booms - DTIC

in design. In civil engineering, however, the extra money thatmay be required to insure confidence in design is insignificantcompared to testing costs. Too, dynamics is seldom a considera-tion to the civil engineer. For these and other reasons, thedynamic characteristics of buildings ana their elements are,for the most part, unknown. For example, references (26) (28)and (29) are about the only test reports on the dynamic proper-ties of residential buildings or their elements. As a resultof the abov discussion, a simplified modeling technique wasused to describe the elements tested. Reference (23) describe<the procedure in detail and reference (27) justifies its use.

Racking Mode - The racking mode of vibration refers to theshear distortion that a structure undergoes as the result oflateral loads. in the simplified method of analysis, the shearwalls provide the spring while the mass is distributed accordingto design of the house and unit weights of the materials used.The unit stiffness used for a shear wall element was measuredat White Sands (26) and the value determined used tL calculatefrequencies in the report. The point of load applicaLton(PLOAD) was selected as the gravity center of the loaded wallshape.

An exaiple for calculatinq the natural frequency of a shearbeam is given below for the one story structure.

Fin

1.84 PLOAD I1.53 PLOAD 3

PLOAD i

0.76 PLOAD

23

Page 29: to hear-field and far-field sonic booms - DTIC

where: k = stiffness of shear wall at point PLOAD,1.045 x 106 lb/in.,

m = mass of truss, wood roofing, and shingles,8420 lb.,

m2 = mass of gypboard ceiling and insulation,4650 lb., and

m3 = mass of inner and outer walls, 11,880 lb.

In the above example, the unit shear stiffness of similarlybuilt structures has been observed to be 4.44 x 103 lb/in.ft. (26). The shear area available in he N-S direction of thestructure is 8 ft. x 153 ft. = 1224 ft . PLOAD is 5.26 ft.above the slab. Therefore,

k 4.44 x 103 x 1224 lb.

5.26 in.

The natural frequency is:

f I .045 x 106 x 386 cs1 1/2n 2-W . cps

1.84 x 8420 + 1.53 x 4620 + 0.7E x 11,88

fn = 18.3 cps.

Racking frequencies of the other elements selected were calcu-lated in the same manner. As a check, the measured rackingfrequency of the N-S direction of the two story structure wasabout 8.8 cps (30). The calculated ealue is 9.7 cps.

Plate Mode - The frequency for tne plate or diaphragm ,-de ofviat'T-onfor a wall element raving studs, outside sheathingand a gypsum board interior was computed assuming it to be asimply supForttd beam. A full description of the procedureis given in reference (23). The value computed, 15.5 cps, agreeswell with the value observed, about 16 cps (30). However, thereco-d shown in (30) indicates that a higher mode is participatingin the vibration history to some minor extent.

Windows were assumed to be plates rather than simple beams.This is probably a good assumption for smaller windows but itmay be sliqhtlv in Prror for larQer windows. Data in refejence(17) indicates that the frequencies computed for th- 50 ft.L

and tte 100 ft. 2 windows are reasonable, however. A detaileddescription of the method for computing the plate frequency isgiven in reference (23).

24

Page 30: to hear-field and far-field sonic booms - DTIC

V1 ANALYSIS OF RESULTS

A. General:

The 19 elements described in Table 1 were subjected to 8 near-field and 8 far-field SST loading waves f3bricated via the pro-cedures described in the foregoing usinq the data in Figs. 8-10.The three XB-70 and the B-58 and F-104 waves (Figs. 11-15) werealso applied to all elements. No perturbaticns were used onthe data waves. All results are tabulated in Appendix B.

The near-field waves appearing in Figs. 3-10 were calculatedby H. W. Carlson of NASA, Lanqley Research Center for the con-tractor aircraft characteristics and conditions noted in thefigures. The most appropriate lift conditions for the proposedcontractor aircraft at the various positions within the flightprofile were used. A description of the theory used by Carlsonis given in reference (6). The maximum far-field overpressure,alues were also calculated by Carlsor while the far-field waveJurations were computed from equation (6) in reference (4) usingthe atmospheric constants given for the 1962 standard atmosphere(31). The xB-70, B-58 and F-10 boom data waves shown inFigs. 11-15 were taken from references (10) and (11). The far-field overpressures for these flights were computed from thenomograms in reference 1'32) and the wave duration from equation(6) in reference (4).

The figures appearing in Appendix A qive examples of the loadingwaveforms fabricated and the instantaneous values of P(eff).The free-field waveforms are plotted as well for comparison pur-poses. Elements 13 and 1 are used as examn-! s.

Fiqures A-3 to ,--10 in Appendix A have no "noise"perturbationwhile Figs. A-1l to A-18 do. The "noise' or rounding processtends to loner the intensity "or the element considered and forall elements as well. Tables in Appendix B give P(max), P(efr)an d AF values computed for eight representative waveforms with,nd i thout the rourdinq. The odd tabul ated values startingfrom I hft to riqht in these tables have no rounding whereas theeven ,i'ues do. Removal of just a little energy at the firstof ttle wave hds a considerable effect on the intensity derived.ihis suqgosts that maximum overpres sure is a r important parameter1 nf I , c n Q ntens i ty.

Figures .1-3 to ,-, can be used to compare the near and far-fieldeffects on the two elements considered for both contractor wave-

25

Page 31: to hear-field and far-field sonic booms - DTIC

forms. One can see that the near-field loading waves seem tocause lower values of response than do those from the far-field.Only a detailed analysis of all the loading and response plotswill s-ww which simple parameters in a boom wave govern re-sponse, however.

These plots, along with hundreds of others, generated for theremaining elements show that the loading waveforms are quitedifferent from the free-field waves. And indeed, response datashown in reference (30) look scmewhat similar to the P(eff)wave shown. We are, however, quite skeptical of the large roofand large building racking waves computed for the F-104 airplane.A good deal of loading data on big buildings or big roofs mustbe derived in experimental programs before the theoretical valuescomputed can be trusted.

F-104, B-58, and XB-70 data and the associated far-field wave-forms are plotted in Figs. A-48 to A-52 for one example of theracking response, element number 1. Differences in responsemay be noted, but they are usually within one standard deviationof one another as is shown in Appendix B.

26

Page 32: to hear-field and far-field sonic booms - DTIC

Contr-actor A

AlIt itujde =40,82994 0 00 l sTake off Wt. 4000lsNear-Field Wt. 450,000 lbs.A 9Prox. Far-Field wt. 423,900 lbs.

+3.0-

+2 . 0

4--

+1. .70

Figure 3. Fe-KContractor ASST, Condition1

? 17

Page 33: to hear-field and far-field sonic booms - DTIC

Contractor A

Allitud-- 44,599Take-Off Wt. 4B-0,000 lbs.Nea- Field' Wt, 4,0?lbs.Ao pro x Fa r -F ie I Wt.L 419,700 lbs.

+3,0

44,

%. 0,

~~~ue 4 Fre-~Q~d, C c't r c to r ASS ~ cnItc"

Page 34: to hear-field and far-field sonic booms - DTIC

Contractor A

,Altituce =49,599Take-off 'Wt. 450,000 lbs.Near-Field Wt. 450,000 lbs.ADD rcx . Fdr-Field Wt. 410,000 lbs.

t2 .J

0C

LiI-ej7I -ci

Page 35: to hear-field and far-field sonic booms - DTIC

Contractor a

M 2.7Altitude 65,00DTake-off Wt. 150,000 lbs..ear -ieI" Wt. 450 00 hs.Approx. Far-Field Wt. 375,:"01 lbs.

+2 ' , D

+ .

U.,,

-.,

-2,

1 0

000.1 0.2 0.3 0.4

T im e (S ec)

Figure 6. Free-Field, Contractor A SST, Condition 4

---3

Page 36: to hear-field and far-field sonic booms - DTIC

Contractor B

Altitude = 38,,100Take-off Wt. 420,000 lbs.NIear FKeld W.420,000 lbs.Approx. Far"Field W't. 396,000 iLs.

+3.

0.0 _0__ _ _

0.0 0.1 0.2 0.3 0.4

'Time (Sec)

Figure 7. Free-Field, Contractor B SST, Condition 1

31

Page 37: to hear-field and far-field sonic booms - DTIC

Contractor B=.5

Altitude = 40,500

Tak2-off Wt. 420,000 lbs.1Near Field Wt. 420,000 lbs.jApprox. Far Field Wt. 393,000 lbs.

+3 . 0

+1 .01

0.0 0020. .

Time (Sec)

Figure 8. Free-Field, Contractor B SST, Condition 2

32

Page 38: to hear-field and far-field sonic booms - DTIC

Contractor B,= 2. 2

Altitude = 45,000Take-off Wt. 420,uOO lbs.Near Field Wt. 420,000 lbs.Approx. Far Field Wt. 385,000 lbs.

+3.0

V-

+2 .0

+1.

02. 0- _____Qc

0. .100. .

Time (Sc

Fiur 9 re-FedCotacorBSS, odiio

33

Page 39: to hear-field and far-field sonic booms - DTIC

Contractor BM = 2.7Altitude = 59,000Take-off Wt. 420,000 lbs.Near Field Wt. 420,000 lbs.Approx. Far Field Wt. 377,770 lbs.

+3.0-

+2.0- ,.

+1 .0-

-2.0-

0.0 0 . 1 0.2 0.3 0.4

Time (Sec)

Figure 10. Free-Field, Contractor B SST, Condition 4

34

Page 40: to hear-field and far-field sonic booms - DTIC

XB - 70M 1.22Altitude 27,000 Ft.Weight = 423,000 lbs.

+3. O-

+2.0-i

0.-

+ 1 0 . -0 - a) 2

2.- o

-3 0

0.0 0.1 0.2 0.3 0.4

Time kSec)

Figure 11. Free-Field, XB-70, Mach 1.22

35

.4

Page 41: to hear-field and far-field sonic booms - DTIC

B -70

M 1. 4Altitude 738,700 Ft.We i jht 3 357 ,000 1lb.

+3 .0-

+2.0

+1 .0 - C

-1 .0

-2.0

-3.0-

-1.0 0.10.2 .

-3.0

Page 42: to hear-field and far-field sonic booms - DTIC

B - 70= 1.86

Altitude z48,000 Ft.Weiqht 352,000 lbs.

.30-

+2.0-

4Q-

2 ..

0

.0 O. 1 O.2 0.3 0.4

T i e (Sec)

Figure 13. Free-Field, XB-70, Mach 1.0,6

37

Page 43: to hear-field and far-field sonic booms - DTIC

B - 58M = ].22Altitude = 27,000 Ft.

Weight i20,000 Its.

+3.01

QQ)

+2.0-

4- -

Q.)

oC

+1 , 0-. 0CjC

-1 .04

38

e C.)

Page 44: to hear-field and far-field sonic booms - DTIC

F -104M = 1. 5Altitude = 28,000 Ft.Length = 63 Ft.WeigiLt 14,500 lbs.

ie a r F ielIJ Ac tualI

*1. 0 Far ciel d Calculation

T r

4 l

39

Page 45: to hear-field and far-field sonic booms - DTIC

B. Comparison of Near-Field With Far-Field Intensities:

Charts plotting the mean values of intensity and the associatedstandard deviations for each near-field and its counterpart far-field wave are shown in Figs. 16-52. 'he uata which producedthese plots are given in Appendix B. Note that the individualmaximum values of P(max), P(eff), and DAF are shown along withmean values and standard deviations.

It can be easi '. been that "he near--ield waves produce ar n-tensity lower than that generateo b. the far-field waves. Thedifferences are greater than simply the differences in peakoverpressure. Further, all the near-field waves were computedassuming a weight equal to the take-off weight while the far-field waves used the actual weight at various parts of theflight profile. In other words, a nomalizing factor accountingfor weight differences would lower the near-field intensitiescomputed even further.

How much lower are the near-field intensities than the far-field intensities? What is causing the intensitiec to be lower?To answer these questions the ratios of the far to near-fieldmean values of P(max), P(eff) and DAF regarding te 19 elementswere averaged. The results are presented below:

Ratios for Average Far vs. Near-FieldValues of P(max), P(eff) ard DAF*

Contractor A Contractor G

Condition P(max) P(eff) OAF P(max e P~eff) DAF

1 1. 1.27 1.03 1 < 13422 1.27 02 2.97 .33 1.24 0. 93 1.04 9 1.05 05 I 1.044 1.03 1.01 .97 1.00 1 1.01

The above table snows that as ' e o ori chances fro." "ear-f i dto far-IF1ld conditions (1 to . tre i ntensiti s tiequalize. Ti s see7s reasonaU 'Il rn. ce tr-e e in co diti0n

*not norm:alized for weiaht differerce . All values f .r axand P(eff) wruld be larger if n r!7ali:in;-; ere Uone.

40,

Page 46: to hear-field and far-field sonic booms - DTIC

COMPARISON OF NEAR-FIEL L Wi FAR-FiELD ,-

EFFECTIVE STATIC LOAD

TYPE ILiti, LENGTH 41.tS 41 7 f-MEAN NEAR-FIELO, PCEFF)

DAMPING Its cPt i PITCH ANGLE I-MEAN FAR-FIELD. PCEFF)

HEIGHT I My, AREA i-ONE Si:NOARD DEVIATION

BASE Ma.l ,19 CONTR 1CTOR A

Ciitii I T T .. ,.

i

ltylPIC --ii4 -- _ _ 1 - i

STATIC LOAD .

trip)

lot' to 3 1

Fag( L K. -.3 L', is LI 1

III Ii) 46

V. -* l? - I. 7 ..) f*,+

P+ i ' II . I I P.$ II P,| II p., ll

ct .&11 i6 1 3 0.

sAI~CS8PV, tic.

.....................p

Page 47: to hear-field and far-field sonic booms - DTIC

COMPARISON OF NEAR-FIELD WITH FAR-FIELD A-l

EFFECTIVE STATIC LOAD

1YPE ELIET ' LENGTH *.w .- MEAN NEAR-FIELD, PCEFF)DAMPING s Pgg*gy PITCH ANGLE x-MEAN FAR-FIE'.D, PCEFF)HEIGHT ,1 AREA T i-nNE STANDARO DEVIATIONBASE u.6 psil'y CONTR CTOR

F Ic 11,01 ',11CTal - f--cT-

EFFECIV EV

STATIC LOA DT

PC|FF) It

so 79 114 2920. 1.94 P. LIs of LIP 1.7

.21. .22

T .2 P T .27 7. .10

OATACRAPI. abC.

Figure 7

42

Page 48: to hear-field and far-field sonic booms - DTIC

COMPARISON OF NEAR-FIELC WITH FAR-FIELO -

EFFECTIVE STATIC LOAD

TYPE *Nt i LENGTH 1Ts " e-MEAN NEAR-FIELD, P(EFF)

DAMPING SP64 dinT PITC- ANGLE i-MEAN FAR-FIELD. PCEFF)

HEIGT , ir AREA i-ONE STANDARD DEVIATION

BASE 42.65 MgIT CONTRrTOR A

* Ovae IO SSIIat

TT

EFFECTIVEUTI~ON

IIll|d - -OO

VTtIC LOADIt

PIs ) 292P5P)

306 325 iii 232

fac NN4p& IP Y N

.31 1-2 .306 fI .3S T- . .. 1

0-N. L9 PILO apc a

1-.3? T. .3*3 2 .33 1. .43

"Ail 1 . 2 4 0. 2.36 P1.10 21 P 2.1

AL ITUDE 46.969 44.M3 41. ovt as.06e

SATACXAFT. ImC.

Figure 18

43

Page 49: to hear-field and far-field sonic booms - DTIC

COMPARISON OF NEAR-FIELD WITH FA7-FIELD-

EFFECTIVE STATIC LOAD

TYPE 'i''~2LENGTH 21.611 FEET *-MEAN NEAR-FIELD. PCE-F)

DAMPING % pgocorse PITCH ANGLE K-MEAN FAR-FIELD, PCEFt)

HEIGHT 9 alAREA i-ONE STANDARD DEVIATIO.NBASE 'Fe.es ri CONTP-tCTOR

SV6RPEIIf Iv~: IsuScmCASTE

A.cCI 1 04 CCUSB

lTAT;C LOA*t

1L414MIFFS

IS 6 114 213.1.4 p. Lis6 ASI P. LIS P. 9.76

NERF.1. I\- 1. .21 1. .26 1 2

Fagg P. I.ts po 2.1 P. 2.26 Ps.Al

AP IELO N \ 2"

I..22 T. .27 1. .27 T. .36

"Ac" 1.3 1.1 2.2 2.1

ALTITUOR 26.000 41.900 41.4605.6

OATAC"AfT. IFIC.

F i ure .

44

Page 50: to hear-field and far-field sonic booms - DTIC

COMPARISON OF NEAR-FIELD WITH FAR-FIELD-

EFFECTIVE SlATIC LOAD

TYPE SLENGTHI 2'.5 'r4g *-MEAN NEAR-FIELD. P(EFFJDAMPING 9 P94coy PITCH ANGLE i-MEAN FAR-FIELD. P(EFF)HEIGHT 19.5 F99T AREA i-ONE STANDARD DEVIATIONBASE at F99T CONTR ICTOR A

StATIC LOAD

1..7 3 .1 L.4 {L

Fag 21 14

mA-P IlLS

3. 3 .203 .21 . 4

NACH 1.211 IS 2. .

ALI I 48.893 44.199 49.599 $5.110

IATACRAFT. INC.

Figure 20

4 5

Page 51: to hear-field and far-field sonic booms - DTIC

COMPARISON OF NEAR-FIELD WITH FAR-FIELD AVW

EFFECTIVE STATIC LOAD

TYPE ILiKEN, 3 LENGT 27.s C, @-MEAN NEAR-FIELD. P[EFF)

DAMPING , iecu, PITCH ANGLE x-MEAN FAR-FIELD. P(EFF)

HEIGHT to.$ fet AREA I-ONE STANDARD CEVIATION

BASE ii Vig1 CONTR CTOR 0

gygpI IIUs L SiTP iIUf--tCIIili- j Cia¥1SlO-

_ __T

STATIC LOAi

!0

p. k.94 P- LIS "I p* . 5 PIS p. .

1- .36 1* .210T .216 1. .32

past F. 2.10 0. L.5SP 2.20 p. 1.66

F Al-F LO'

\ p\S

MAC" I.3 I.S 2.1

ALTIBIUO 38.06 48.1109 45.066 56..ees

SAYACOAF?. IN1C.

Figure 21

46

Page 52: to hear-field and far-field sonic booms - DTIC

COMPARISON OF NEAR-FIELD WITH FAR-FIELD ANO

EFFECTIVE STATIC LOAD

TYPE KLINvmv 4 LENGTI 31 PWi *-MEAN NEAR-FIELD. P(EFF)DAMPING 9 PER c"Im PITCH ANGLE i-MEAN FAR-FIELD, PCEFF)

HEIGHT 19.5 FEET AREA I-ONE STANDARD DEVIATION

BASE 2.11 My7 CONTRICTOR A

C IL E 7 aC I

STATIC LOAD FIEFFIPvc .31 3-3 mP 2 go P& 2.27 P. .4' 4J

1- .37 1- .12 4*"

P1M .25 in.,

Figure 22

47

Page 53: to hear-field and far-field sonic booms - DTIC

COMPARISON OF NEAR-FIELD WJTrH FAR-FIELD-

EFFECTIVE STATIC LOAD

TYPE IL10101 4 LENGTH 3 cl *-MEAN NEAR*-FIELO, P(EFF)DAMPING 9*4coT PITCH ANGLE x-MEAN FAR-FIELO. P(EFF)HEIGHT to.11F9 AREA t -ONE STANDARD DEVIATIONB3ASE 2'.3 regy CONTRACTOR .

* [j~~fj-7,-7,sunjg *g~gs~- csz~iuzoC

*CCELIR 1 11911 1Q S

STATIC LOAD

tPSF) Iso 16 34 23

1..P. 1.4IlI$L-2.1

1.30 I..27 T. .276.)

MAC" i's 1. 1 .0 1.7

*LIuO ~00640.540 43.0041 39.0641

*AVA4QA'i. ifte.

Figure 23

Page 54: to hear-field and far-field sonic booms - DTIC

COMPARISON OF NEAR-FIELD WITH FAR-FIELD

EFFECTIVE STATIC LOAD

TYPE ELEMNT S LENGTH siFEE *-MEAN NEAR-FIELO. P(EFF)OAMPING 9 ioc.T PITCH ANGLE x-MEAN FAR-FIELO. PCEFFJHEIGHT is@ FEET AREA i-ONE STANDARD DEVIATIONBA',s FEET CONTRACTOR A

€ I tli I ON-*i .', Eb *fIoS Ciul ___

4 1itAlIC LOAS

,.., ,,,,,jr -

io IIR EL.10 .3?

gA I~ iti 1. CI "1' - i \ \ -- I~

I.\

V .3$ F T. .3 I. V .3) I .43

NACH I I I.?

ALTITlO ! 4 .091 44.199 40.199 .1.9IO

0AACiiFT. INC.

Figure "24

49

A.

Page 55: to hear-field and far-field sonic booms - DTIC

COMPARISON OF NEAR-FIELD WITH FAR-FIELD -

EFFECTIVE STATIC LOAD

TYPE ELC,,B. : LENGTH so foi e-MEAN NEAR F!ELD. P(EFF)

DAMPING S 0pg'Clot PITCH ANGLE x-MEAN FAR-FIELO. P(EFF)

HEIGHT Itsoc AREA -CNE ST. NL RD -VIATION

BASE is ,l, CONTRACTOR a

-- '--i €11 T O- €cIlIlOm - V

I1... LI£ATl b Si IAS

SCIS,

4 .- __ __ __ __ __ _ __ __------

Se IS ,:. 1

BFFEC I L t*A 0

111vatic LO,.

pC9,F)

le~ I. .t I., * 3)

F. 1.04 P. LIS LIS N .70

If U O||,Ol 0 i 4S, i a. P, LEO

.34- .26

\aJACSAFT. ant.

Figure 25

50

Page 56: to hear-field and far-field sonic booms - DTIC

COMPARISON OF NEAR-FIELD WITH FAR-FIELD -

EFFECTIVE STATIC LOAD

TYPE CLEMENT s LENGTH i., rfav *-MEAN NEAR-I:IELD, PCEFF)

DAMPING ipla eg? PITCH ANGLE x-MEAN FAR-FIELD, PCEFF)

HEIGHT too AREA i-ONE STANDARD DEVIATION

BASE t, FEEt CONTRACTOR A

CC AII Om cii TliomACCLIIAIlOp -guiIIt i

Ac. 0N CC.VlII..

Iffqfcflvg T

i1itic LOAi

IIFI~ TIL

lee10 2 292P 1 - JL I P. &36 go 0 LI7 P I1

00141.10 f* .21 1. .41

ra., s. .

polll P. fILSI f- LIS P- IS

1. 3 I.33 I.I T .41

NAC" -i 1.1 2.3.?

AI'TOI 44.119 44.199 49.iii i1l1.0

OAIACOAIT. let.

Figure 26

5]1

Page 57: to hear-field and far-field sonic booms - DTIC

COMPARISON JF NEAR-FIELD WITH FAR-FIELD -

EFFECTIVE STATIC LOAD

TYPE ILgagar * LENGTH Its Felt *-MEAN NEAR-FIELD, P(EFF)

DAMPING 1P94 tI PITCH ANGLE x-MEAN FAR-FIELD, PCEFF)

HEIGHT ie FaT AREA i-ONE STANOARD DEVIATION

3ASE i$ et* CONTRACTOR I

1I1111lOI " i I

STATIC L e h@I

T it

ITI

( I

t.0, " Ii &I T II r •Ii

1S ?''I4 263

Pll -.. PLeDLI

v,

Ni

N

0. LO ... .Of

SCCN I.) I.1.2

2-.'

f Il OolOI 41. 0* it. got

*hT4CIIA.. INC-

v ure ,:

5:

~rm

Page 58: to hear-field and far-field sonic booms - DTIC

COMPA RSON OF NEAR-FIELI. WTH FA..,IELO ,

EFFECTIVE STATIC LOAD

TYPE £:ity LENGTH *-MEAN NEAR-FIELD, P(EFF)

DAMPING I,,*c. PITCH ANGLF x-MEAN FAR-FIELD. P(E -,cT

HEIGHT AREA z-ONE STANDARD OEV'ATION

BASE 27. ra CONTRA.C TOP

T Aj9j A fi C44,061

StATIC LOAD

I F, I1

lotpm Zia6v *ls-

Ip I

fell

!2 1JI .41

-tic

Fa L tI I i

I a..3 of I-I -..

SA'hCIal !. IS,

( p.gfl

Page 59: to hear-field and far-field sonic booms - DTIC

COMPARISON OF NEAR-FIE' n WITH FAR-FIELD -

EFFECTIVE STATIC LOAD

TYPE i,.gng,,, LENGTH *-MEAN NEAR-FIELD. PCEFF)

DAMPING 9 P9c ,mm PITCH ANGLE x-MEAN FAR-FIELD, C(EF)

HEIGHT o FET AREA i-ONE STANDARD DEVIATION

BASE 27.s, FEET CONTRICTOR 9

CUITEL-IO CRT ,ON- h*-1

ACCLEET [ T muw

:2'LCO I 'I 1

F,,,•3so To-- 1,--4-

Pw 94 &24.t P. LIS P-1.

Fall

11600-F Mie

Pelg P. &.so P. &So, 1636 * ,

rfAA-F I L

s '3

MACH 1.9 2.2 2.7

ALVIIUK 2.44 40.101 41.160 16.600

IATACRAFI. INC.

Figure 29

54

Page 60: to hear-field and far-field sonic booms - DTIC

COMPARISON OF NEAR-FIELD WITH FAR-FIELD -

EFFECTIVE STATIC LOAD

TYPE ELEMENT a LENGTH *-MEAN NEAR-FIELD., PCEFF)

DAMPING SERCENT PITCH ANGLE x-MEAN FAR-FIELD. PEFF)

HEIGHT .3, FIRST AREA i-ONE STANDARD DEVIATION

BASE 2I FEET CONTRACTOR A

ctImIITou I

ACC6L1QAT I C"0199 J

ITf I II I

STATIC LOAD

'PS,)

all 121 102 0ft 2,3b Po2&36 fit is t~.3 .0II IP III•

NEAR-PICLO N*1. 7 t. .3. t .24

FlEE v. L96 , aSs Pg its P. Is6

1- .3 3. .23 1- .23 T. .43

NACH 1.2) 1. 2.0 2.1

ALTIUOI 46.600 44,10 46.1 9 M0 111IsAACNAFI, INC,

Figure 30

55

Au

Page 61: to hear-field and far-field sonic booms - DTIC

COMPARISON OF NEAR-FIELD WITH FAR-FIELD -

EFFECTIVE STATIC LOAD

TYPE CLEMNT 9 LENGTH o-MEAN NEAR-FIELD. P(EFF)DAMPING s ', ctav PITCH ANGLE x-MEAN FAR-FIELD, P(L. F)HEIGHT If.s.,ui AREA i-ONE STANDARD DEVIATION

BASE IIIsuT CONTRACTOR

ACCILCUATt ISI:

. |ffllTIVII

*AT IC L a-

is 71 14 293

P% 1.34 p- LI, *l Pw LIS p 1.70

?. .-26Le, ' T, .. .26 7. .32

poz p. 2.96 Plo LS2 PP Op 26 P..66

PAP-V I. I .LS.

U.20 T. .27 1. .27 7 .36

PACM 1.2 I.s 2.2 2.7

ALITtUII 36.666 40.26 42,60 19.066

OATACRAF?, INC.

Figure 31

56

Page 62: to hear-field and far-field sonic booms - DTIC

COMPARISON OF NEAR-FIELD WITH FAR-FIELD -

EFFECTIVE STATIC LOAD

TYPE INW * LENGTH 2.6 FEET e-MEAN NEAR-FIELD. P(EFF)

DAMPING PER citf PITCH ANGLE 12.4 o,R, x-MEAN FAR-FIELD. PCEFF)

HEIGHT , F,, AREA x-ONE STANDARD DEVIATION

BASE 40.85 ,,,, CONTRACTOR 1%

cs8606 C:fRote-cCZ L AIL R o CAUTIO I

IFF9,1vtT

STATIC LOAO I*il

II

lot IIs 162 193

p.2 L1 p- *I I P. &27 P. 1.6

P61"mIal-; IELO

1. .37 1. 3* \ t .**1 .*41

P 9lE P. L1 P. &56 P. 231 p. IJO

PAR-V I.lLS. I , .

1. .25 1- .33 1. .33 t.3

6ACM .5. 9 2.7

L fllUOI 4.899 44.919 49.569 61,1441

G6TA*CAFT. Io.

Figure 32

57

Page 63: to hear-field and far-field sonic booms - DTIC

COMPARISON OF NEAR-FIELD WITH FAR-FIELD-

EFFECTIVE STATIC LOAD

TYPE LIhY LENGTH 26.6% FIT *-MEAN NEAR-FIELD. PCEFF)OAMPING S Pan cgrnT PITCH ANGLE 10.4 0164 x-MEAN FAR-FIELD. PCEFF)HEIGHT I 0"6t AREA i-ONE STANDARD DEVIATION

BASE 4.5 CONTRACTOR a

6 1 SESPOIIUA *,g~mSUrng

4

IFFICTIVE

SITIC LOAD T

crop I

1ag 11 ITo.3 .6 -1.- . -- F.-.-

po. p.6 P.t o- 3 LS L 26 1.34

AS It F I I 0

\ " \ f \1.j T .0 1. .21 1-.32

F1.2%6 . 1.%2 Y. 1 . 1 2.7

ALII fuel 39.0 46.1100 41.000 $9.044

GATACRAFI. Inc.

Figure 33

58

Page 64: to hear-field and far-field sonic booms - DTIC

COMPARISON OF NEAR-FIELD WITH FAR-FIELD -NO

EFFECFIVE STATIC LOAD

TYPE 21.1"fol 16 LENGTH is*-MEAN NEAR-FIELO. P.'EFF

DAMPING 9pi -vt? clotiTCH ANGLE x-MEAN FAR.-FIELD, PLtFF)

HEIGHT 0PITAREA i-ONE STANDARD DEVIATION

BASE ?S FET CONTRACTOR A

CRTII -C.141 ::IS- 1 -ACCILIATIORCRUISE

EFFECTIlVE

STATIC LOAD

TI

f'. .3? 1 .

F-\\

PuttP. .10P. 250 . 31 P. 1.01

1. .35 1. .2) 1. .32 1- .43

MAC" ~S . 2.9 2.?

ALTITUDE 40.829 44.111 49.110 09.46

SAIACOAP?. INC.

Figure 34

5 9

Page 65: to hear-field and far-field sonic booms - DTIC

COMPARISON OF NEAR-FIELD WITH FAR-FIELD -OM

EFFECTIVE STATIC LOAD

TYPE ILININT 14 LENGTH 120 FEET &-MEAN NEAR-FIELD, P(EFF)

DAMPING IFallcalif PITCH ANGLE ae0969111 x-MEAN FAR-FIELD, P(EFF)

HEIGHT 26 FEET AREA i-ONE STANDARD DEVIATION

BASE 7 grCONTRACTOR .

*yEOFREIVUR'CUISPES~R

SlaTic LOAD

MIFF) t

is 1 114 2*3

P. t.94 FL I " 5 p. L13 P1.70

1. .30 1..26 f. .16 1. .22

:::6.Flat@I

SATACIFI. loc.

Figure 35

60

Page 66: to hear-field and far-field sonic booms - DTIC

COMPARISON OF NEAR-FIELD WITH FAF -FIELD -

EFFECTIVE STATIC LOAD

TYPE ELEMN.T It LENGT 32FEE? a-MEAN NEAR-FIELD. P(EFF)

DAMPING , PRO CENT PITCH IANGLE x-MEAN FAR-FIELD. PCEFF.

HEIGHT ''uE AREA i-ONE STANDARD DEVIATION

BASE is FE CON RACTOR AiU T --opcg~, T

CI flIT C110:10

SJ1S _0

(POP)To 114 291

P- 331 p. 2.14 "1 3.ts 1b.4

F >7F

1- .32 t* .313T .33 Y .43

MACH 15,I1 1.1 3.9

Ah0 1IO( 41.000 44.11911 42.10 3 1,

*A",CQAI1, SC*.

Figure 36'

61

Page 67: to hear-field and far-field sonic booms - DTIC

COMPARISON OF* NEAR-SIELD WTTH FAR-FIELD-

EFFECTIVE STATIC LOAD

TYPE ILENKU? li L1NG4 o3 Fi -MEAN NEAR-FIELO. PCEFF)

DAMPING I to CENT PITCHIANGLE K-MEAN FAR-FIELO, OCEFF)

HE IGHT 9 otAREA ' i-ONE 'TANOARO OEV1ATTAON

BASE I 11 CONTR4 CTOR

S T T c : _-: -I

SlAfic LOADI

ptH IItrop)

SO I ZVIIi

&IS 2.1 V*s N..1 iu

INC.

F qur 37

6 2

WAWWzr

Page 68: to hear-field and far-field sonic booms - DTIC

COMPARISON OF NEAR-FIELD WITH FAR-FIELD-

EFFECTIVE STATIC LOAD "m

TYPE LE(V LENGTH 32 F91 -MEAN NEAR-FIELO. PCEFF)

DAMPING IE ~tcloy PITCH ANGLE x-MEAN FAR-FIELD, PCEFF)

HEIGHT IETAREA i-ONE STANDARD DEVIATION

BASE 'f all CONTR CTOR A

caf atm CR4t1lJ80-

ACKL99ATO 0tcSIJII(

iTATIC LGODIjj

fits i tSa

T-.I

MA.AI I A .

ALIUE494111 44.111 41.14 lot6

okAIccAfr. lot.

Fiourc 38

__ j

Page 69: to hear-field and far-field sonic booms - DTIC

'COMPARIkSON OF NEAR--IELD WITH FAR-FIELD-

EFFECTIVE STATIC LOAD

TYPE CLXEEN G T H eFl -MEAN NEAR-FIELD. PtEFF)

DAMPING ' "'PITCH hNGLE x-MEAN FAR-FIELD, PCEFF)

HEIGHT le vw AREA i-ONE 'STANDARD DEVIATION

BASE i Eto CONTRACTOR

F CCLRUAYI ff~l

'I4T

so TO 1'416

~1.4 p LlB a ON & IS P1.70

Face N12 2

polP. &96 P. &243 Pt6 %.6p.tso

?-J 12 . .17 I.N .1? T.3.

MACH 1.3 1.3 2.1 2.1

ALYITU01 36.06 46.S66. 41.86 11.606

GATACUAFT. INC.

Figure 39

64

Page 70: to hear-field and far-field sonic booms - DTIC

COMPARISON OF NLAR-FIELO WITH FAR-FIELO -NO

EFFECTIVE STATIC LOAD

T YPrE ftfo, 12 LENGTH 44 VCEr *-MEAN NEAR-FIELD, P(EFF)

DAMPING a C C* PITCH ANGLE T -MEA,4 FAR-FIELD. PCEF 7)

HE 1G:HiT s~A-REA, T i-ONE STANDARr) DEVIATION

BASE 9fi;CONTP ICTO.- TA

a Fi I

ee12S 142 292Pm',P" L31 PP &30 PS L21~

P.N.

"Ak1.25 1.9 2.6 .

AL I I 46.699 44.599 48,1419,se

Figure 40 AAUP uc

65

Page 71: to hear-field and far-field sonic booms - DTIC

COMPARISON OF NEAR--FIrEL WITH FAR-FIELD -T ?

EFFECTIVE STATIC LOAD

TYPE iLNT 13 LENGTH' 4, FW E-MEAN NEAR-FIELD. PCEFF)DAMPING I CENT PITCH "ANGLF x-MEAN FAR-FIELD,, KEFFIHEIGHT 12,F99 AREA I i-ONE STANDARD DEVIATIONBASE 42 FEE? CONTR1 CTOR

- &cT "I cot ful

of T

STATIC 1.414.

OIFP

so TOI 1)"

pin I

,.....,oP. ?.IS ., -

1. .20 T, .3? 1. .2? 1. ,39

PACN I.3 .1 3.1 2.?

ALTIUII , 40 40.5 6 45.00 1

Figure 41

66

Wor .l

Page 72: to hear-field and far-field sonic booms - DTIC

COMPARISON OF NEAR-FIELD WIT FA-IL-EFFECTIVE STATIC LOAD

TYPE 949uiut Z4 LENGTH 22 *-MEAN NEAR-FIELD, PCEFF)DAMPING I* cit PITCH ANGLE K-MEAN FAR-FIELD, PCEFF)HE ISH T u.10 0vi AREA i-ONE STANDARD DEVIATIONBASE to M CONTRACTOR A

TT

3f I i I

16@ Cal lot 23

P.- L31 LP 9 91 Pr 2LI3 P. tA

.37 J3 .41

Figue .42

6i7.oP-L*P LSP ~

T..5.2\\F -. \

Page 73: to hear-field and far-field sonic booms - DTIC

COMPARISON OF NEAR-FIELD WITH FAR FIELD-

EFFrECTIVE STATIC LOAD

TYPE ILVNEENT 14 LENGTH 32FI -MEAN NEAR-FIELD, P(EFF)DAMPI1 .3 1 'fctof PITCH ANGLE x-MEAN' rAR-FiELO P(EFF)HEIGHT 14.6.'"' AREA i-ONE STANDARD DEVIATIONBASE as'"CONTRACTOR

STATIC LSO0.. ~

P( coop I II

P .34VLi S .11S 010

m~alN IlLS

P~lP. LSIt pp.1.46 ~ P. 2.2 P. 1.6%

MACH 2I.S T

*ITACQAPT. INC.

Figure 43

Page 74: to hear-field and far-field sonic booms - DTIC

fm ii

COMPARISON OF NEAR-FIELD WITH FAR-FIELD

EFFECTIVE STATIC LOAD

T7PE 6%.2"c : LENGTH 32n' a-MEAN NEAR-FIELD. P(EFFJDAMPING t OtE"7 PITCH ANGLE x-MEAN FAR-FIELD, PCEFF)

HEIGHT ;,.st Flat AREA i-ONE STANDARD DEVIATION

BASE is #919 CONTROCTOR A

ACCELISAT I cul

SAfIC LOA* I

--- 4-----------

of i Is-lot 293

Spo L0 pa L38 19 Ow Ll pl "

OI .ll , L1 1 21 1.4V

P?.P~ k

N3 ""' 13 ? .ai N* .4

V. as 1. .31 1- .33 . aRAC14 1.10 t.'s a..,

Figure 44

C9

Page 75: to hear-field and far-field sonic booms - DTIC

COMPARISON OF NEAR-FIELD WITH FA -FIELD AY-

EFFECTIVE STATIC LOAD

TYPE ILIs LENGTH 32 "'1 a-MEAN NEAR-FIELD, PCEFF)

DAMPING "pee,, PITCH ANGLE X-MEAN FAR-FIELD. P(EFF)HEIGHT M.s4,wT AREA i-ONE STANDARD DEVIATIONBASE to FeT CONTRACTOR 0

ACCelEATIW clUIE -

IFVECTivg

STATIC LSAS

51 {I {IPIEFF) a

P. ., P. &,0 0. P.

Ml._ 1.01 .36 V..26 I .26 V..32

Pg P . .&0 Pv 3.26 P .,

A R-FI LO

N \ * \ 4

\ .2 T. .2. 1. .3M.A I, .2 8.1

ALTIIullf $0.608 4t,1 411.10 $9.04.

9AIACIAPI. tlc.

Figure 45

70

Page 76: to hear-field and far-field sonic booms - DTIC

COMPARISON OF NEAR-FIELD WITH FAR-FIELD -

EFFECTIVE STATIC LOAD

TYPE ILEMENT to LENGTH of F9T o-MEAN NEAR-FIELD, P(EFF)

DAMPING I le c.T PITCH ANGLE x-MEAN FAR-FIELD. PCEFF)

HEIGHT 24 FEET AREA i-ONE STANDARD DEVIATION

BASE of FEET CONTRPCTOR A

cayui -C111194101- -

A.CILETIC € CQU IS

STATIC LOAG

I' ,

E FFCTIVE

STATIC P .0 IS ,.aa ' O

VIP. 2.50 P. 2.E P. 272 .69i

ratt

Il 81 LSIl

S.1 P. .) p. .111 0. t.46

AA-FA AC0

.31 , f .33 Y .12 T .4!

A1L1ItUOt 4lO99 44.1199 49.590 61.809

041490AFT, INC.

Figure 46

71

Page 77: to hear-field and far-field sonic booms - DTIC

COMPARISON OF NEAR-FIELD WITH FAP-FIELD --

EFFECTIVE STATIC LOAD

TYPE ELEENT If LENGTH * fr o-MEAN NEAR-FIELD. PCEFF)

DAMPING a Pcm comT PITCH ANGLE x-MEAN FAR-FIELD. PCEFF)

HEIGHT 24 PT, AREA i-ONE STANDARD DEVIATION

BASE so ,EET CONTR CTOR 9

6 * IRPRlSuR I OWIIF~fSJT[

r cllla- It~t0# -

ACCILIRATIO CRUIS F]

S

PP,

P. 1.94 o L I

1111 ICTlILO

PAII-P lLS

PAR-P ELI I

1.1. .2? I. .. o ..3MAC" .2. 2.2 2.1

61.1171191.11 41.1164 41.440 30.401

DATCRAPI. INC.

Figure 47

72

Page 78: to hear-field and far-field sonic booms - DTIC

COMPARISON 0F7 NEAR-FIELD WITH FARJ-FIELD-

EFFECTIVE STATIC LOAD

TYPE ~ to .1W" 1 LENGTH I## frill .- MEAN NEAR-FIELD. PCEFF)

DAMPING i 9 clnt PITCH ANGLE x-MEAN FAR-FIELD. PCEFF)

HEIGHT is# FEE AREA i-ONE 3TANDARD DEVIATION

BASE too F991 CON TRACTOR A%

A cc~ni~ro c fgig j

pt~ppItropt

0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Ie is Its lot

.3\. F'..4

Y. .31 . .3 1\'1. .It

44 12340.132si . 121

F i re 48

73

Page 79: to hear-field and far-field sonic booms - DTIC

COMPARISON OF NEAR-FIELO WITH FAR-FIELD -

EFFECTIVE STATIC LOAD

TYPE ILININT 17 LENGTH Aleelqv *-MEAN NEAR-FIELD. PIEFF)

DAMPING I POO cint PITCH ANGLE x-MEAN FAR-FIELD. PCEFF)

HEIGHT if.$ pct AREA i-ONE ,STANDARD DEVIATON

BASE Is$ Pltt CONTRICTOR u

II.IAII¢1CIItEl ob.

CILISA? 20 CRUM

II4

( PiPl) I

is v voQlt

P l. -4P &1 9 LisPegg" \1 'rV54 .o v .,10 v. f..I*

*egg~ L Po LIS P. 0.111 0. JIad P. SAO

WACO i.I 1.*?

A%. t I Tve %P4,11e 414. 1 of 41.le 1. 1*8 11 . 6

SAvACS.,?. l1uc.

Figure 49

74

Page 80: to hear-field and far-field sonic booms - DTIC

COMPARISON OF NEAR-FIELD WITH FAq-FIELD 1

EFFECTIVE STATIC LOAD

TYPE EL(ERIO to LENGTH #. , -MEAN NEAR-FIELD. P(EFF)

DAMPING I PeIM PITCH ANGLE i-MEAN FAR-FIELD. PCEFF)

HEIGHT M fes' AREA i-ONE STANDARD DEVIATION

BASE lot 010 CONTRACTOR Is

Cc TILIOW- SilTi*IOw-

I.I -

II~CTlvi _

StAtIC LAO

Cas c I 163

ow L31 Pp L38 I oP L2? 1_46O

1..1 . .4 T..1V4

restf &90 p. Lot P L71 1.4 0

FAS-P IgikS

.. .41

MAC. 1.21 1.$ 1.0 I'l

Akp t 1 TU1 4009 44.3119 $11.1111 111. off

eatactAf?. Inc.

Figure 5C

75=

Page 81: to hear-field and far-field sonic booms - DTIC

COM~PARISON OF NEAR.-FliK 0WITHi PAR-FIELDEFFECTIVE STATIC LOAD

TYPE WLNW to LENGTH 1#9 o'wa o-MEAI~ NE;.R-F IrLO. P,. cFpDAM~PING t Psncsny PITCH ANG'LE x-i!At# FA' sFIELID, PCEFF)HEIGHT a@FITe ARLC i-ONE STANOARf D EVIATIONBASE Is@ ' ~ CNTRtrT OR u

6 twitSum

Gtl LORO L LaQ T

ft

Fal P.s 1 0OpL6P LSp. 1.94

P- .24 .2. . J.s

04H .3 4*.2S 43.0

Figure 51

76

Page 82: to hear-field and far-field sonic booms - DTIC

COMPARISON O' NEAR-F ! ELD WITH FAR-FI LD Now

'-FECT.YE STATTC _e'J--

TYPE CLIRKUT . LENGTH ,o Fti3 *-MEAN NEAR-vTI EL D , PCEFF)DAMPING % PxQ CftT PITCH' ANGLE x+-MEAN FAR-FIELD. P[E-FF34EI+GHT ;@0,- Fil tEA t-C-NE STANDARO DEVIATION

BASE Al* l( ,iy ONTRACTOR a

5' i~ !i

4,

VIAI LOAD

114

.a +?0le Or&4O 62 F16

.23 I .1 .3

MAH12 .2 825

AL.. VI I~ 40.0,9III 44.11994 , +) b+ 41

SAVA.A NCII.

Figure 52 !

7 7

aAM.3 .

Page 83: to hear-field and far-field sonic booms - DTIC

4 look quite similar, Even so, the near-field or t-hird ordertheory wouc give tower intensity value- or the a veraqge forall coriditlions, This results probably because thi-. negativeimpulse is somewhat smaller for near than for the symetricfar-field waves in all con~ditions.

At this point, we mrust repeat that 'the near-field theory shouldnot be confused with near-field condition5 . T,:2 near-fieldtheory gives a finer approximation ofl the noomn wave than thefar-field theory. Near-field conditlons, on the othier hand,are 4those where the observer is in such a position t !at auxil-iary shocks from various parts of the aircratft can still bedi stinguished.

The above table can indicate what is causing the near-fieldintensity to be lower than the far. DAF is -(.,li7t%. ely unchangedbut the P(max) ratios are virtually the same as the P(eff)rati os . Near-field intensity is lower because of lower effectiveloading feedback conditions. One might question, theo-efore, thewave fabrication technique, but the identical procedure was useain each case.

Ratios of standard deviation for far vs. near-fiele values ofP (max), PNeff) and OAF were compared in a similar manner as thatabove for mean values, The results are presented below:

Ratios fcr Far vs. Near-FieldValues of o[P(max)], o[P(eff)] anid uIDAF)

_______Contractor AContractor B

Condition o[P(max)] a(P(eff)] c(DAF) c[P'max)] .7[P(eff)] oIDAF)

1 1 36 1 .26 1 .08 1,4 9 1 .43 1.272 1 .36 1 .26 1 .04 1 .49 1 .25 1 133 0.98 1.09 1.04 1.19 1.12 1.204 0.99 1.03 0.88 0.96 1.04 1.04

The standard deviotion ratios of intensity vary little from theratios of the mean. This indicates that no significant differ-ences in the coefficient of variation should exist between nearand far-fiellA cond-!Lions.

As a final ob eriatior,, coef-icients of variation for P(eff)were computed for selected waveforms and elements (Appendix B).It wa! rGted in all cases tltt they were lower for P(eff) that,for e ither Pimax) or the 40 percent value introduced into the

78

Page 84: to hear-field and far-field sonic booms - DTIC

peak free-field overperssure during computation. This suggeststhat the coefficient of variation for structural damage to anyone particular element will be lower than that expected for free-field overpressure.

Some feeling for differences between near-field and far-field(N-wave) waveforms car be obtaired by comparing their Fourierspectra. The spectrum of an N wave of the form shnwn below is:

p t

POW) 2P T cos T + 2 sin (10)

The high frequency asymptote of the peaks is given by,

2PP(jJ) j 0 (11)

and the low frequency asymptote by,

pOj ') j Po w T 2 12

6

If a near-field wave is approximated by the sum of two N waves,

p1 l 2. --- 2 - .. ..

K-T1/2

79

Page 85: to hear-field and far-field sonic booms - DTIC

its spectrum is given by,

Poj")=.J Lw T cos I + 2 sin _Tl

j2P F ;T T 2 si wT2l (1)

T2 2 7Tj

The coriresponding high frequency and low frequency asymptotesare given by,

p(jw) z j2 (PI + P2 ) (14)

and

P(j) 6 (PiTl2 + P2 T22 ) (15)

Examination of the asymptotic behavior for the two cases in-dicates that, wo, the peak of P(jw) ,fwill be shifted to asomewhat higher frequency for the near-field case. The high andlow frequency asymptotes for Lne N-wave intersect at a frequency,

0o, determined by the equat-ion,

20 PuI0 T0 2:2o = jiooo

0 6

or

W = 12/T 0 (16)

in reality, the near-field waveform is not symetrical as shownabove. It looks more like the following:

80

-softL

Page 86: to hear-field and far-field sonic booms - DTIC

... T 1/2 - --- "

P2 t r- T/2 -

And:

P(j,,) j K Tl cos TI + 2 sin '

T I - 2 T

+ 2 - (coslt j-sin .t) 2 sin 2 - co (17)

81

Page 87: to hear-field and far-field sonic booms - DTIC

The spectral envelopes of such a function lies, for 'he mostpart, below those for both the symetrical near-field and far-field cases. Unfortunately, reality is still not modeled evenwith the more complex waveform, because the positive impulses'ift suggested by Young (33) is not yet introduced into thewave. Introducing this added effect would have the effect oflowering the true near-field spectral envelopes in the fre-quency ranges of interest even further, keeping maximum posi-tive overpressure constant.

The results derived seem to correlate with those derived duringdamage tests. During investigation of glass breakage, Maglieriet al (34) showed that the F-104 aircraft, which generates asomewhat cleaner signature in the near-field than does the F-105,was more effective in breaking glass than the F-105 at equalfree-field overpressures. This would suggest from a gross stand-point that either: 1) distorted waveforms produce lower inten-sities than the clean N-wave; or 2) waveforms distorted in theF-l04 manner produce greater intensities than the clean N-wave.Unfortunately, no clean sonic boom N-waves could be generatedit the high overpressures necessary to break the glass and checkthe suppositions. Nevertheless, the less distorted waveformbroke m're glass than the more distorted one.

Simple intensity quantities have been suggested by Mayes andNewman (35) and Wiggins (17) based on the response spectrumtechnique. Maximum overpresstir. governs at certain frequenciesand positive impulse governs at others. Results given belowsuggest that this criteria could be improved, however.

C. Effects of Airplane Size on Rackinq and Plate Intensities:

The intensities from far-field wdves for the F-104, B-58, XB-70and the two SST's were averaged and normalized with peak free-field overpressure for the six racking elements considerel (seeAppendix B). The relative results are shown in the table below:

Normalized and Averaged Values of Far-Field P(eff)

For the 6 Racking Elements Considered

F-104 B-58 XB-70 SST

Mean i(sec.) n.082 0.141 0.230 0.410Mach No. 1.50 1.22 1 86 2.7'.p (psf) 1.60 2.50 1.80 1.66Normalized 2.00 1.80 1.43 1.27P(eff)(psf)

82

Page 88: to hear-field and far-field sonic booms - DTIC

The above table shows that racking decreases as T and Machnumber increase. Comparing only the racking values for the twosmall houses revealed virtually the same results. For platevibrations, the reverse seems to be the case.

Niormalized and Averaged Far-Field Values

of P(eff) for 12 of the Plate Cases Consicered

F-104 B-58 XB-70 SST_

Mean - (sec.) 0.082 0.147 0.230 0.410Mach 1.50 1.22 1.86 2.7Ap (psf) 1.60 2.50 1.80 1.66Normalized 0.80 1.31 1,31 1.44P(eff)(psf)

The above table shows -hat plate vibrations can be larger underequal free-field overpressure SST's than F-104's. This mightexplain why the internal pressures under B-58 booms are greaterthan those generated by F-104's. Of course, all statements madeare general and might not be true in specific instances.

83

Page 89: to hear-field and far-field sonic booms - DTIC

-

Bibliography

(1) Whitham, G.C., "The Behavior of Superson 4 Flow Past aBody of Revolution, Far from the Axis," Proc. Roy. Soc.London, Ser. A, Vol 201 No. 1064 (1950).

(2) Maglieri, D.J. et al, In-Flight Shock Wave PressureMeasurements above and below a Bomber Airplane at MachNumbers from 1.42 to 1.69, NASA TN D-1968 (Oct. 1963-T

(3) Maglieri, D.J., et al, Ground Measurements of Shock WavePressure for Fighter Aircraft Flying at Very Low Alti-tudes and Comments on Associated Response Phenomena,AD326913 NASA (Dec. 1961).

(.) Carlson, H.W., Correlation of Sonic Boom Theory, withWind Tunnel and Flight Measurements, NASA TR R-2T3(Dec. 1964).

(5) Carlson, H.W., et al, A Wind-Tunnel Investigation of theEffect of Body Shape on Sonic Boom Pressure Distributions,NASA TN D-3106 (Nov. 1965).

(6) Middleton, W.D. and Carlson, H.W. A Numerical Method forCalculating Near-Field Sonic-Boom Pressure Signatures,NASA TN D-3082 (Nov.1965--.

(7) "Presentation for National Academy of Sciences Committeeon SST Sonic Boom," The Boeing Co. Supersonic TransportDivision May 6, 1966).

(8) Presentation, 'Lockheed Sonic Boom Studies for theSupersonic Tra n s- ,or , k report to the president sSonic Boom Committee of the National Academy of Sciences(May 26, 1966).

(9 Bruel and .aer Technical Review No. 2, (1962)

(10) Hilton, D A. et al, Sonic Boom _Exposures ur- rin, FA!ACommun ;kt -Resporse Studies Over a 6-Mont h Poried i. theyk 13. ho.d C .ty.t. _ _,ee , NASA ,Y N W - W . .. B ..

1 Andrews, W. H SumwiarY ot PreIl id r1 3 ,,ta -erived fromt. he X -70 A i rNl a-n.- S - XU n e

Page 90: to hear-field and far-field sonic booms - DTIC

(12) Cheng, D.H. Some Dynamic Effects of Sonic Booms onBuildin Structural Elements, NASA, Langley Working Paper,LWP-2 5 Aug.-14, 1964).

(13) Cheng, D.H., Dynamic Response of Structural Elements toTraveling N-Shaped Pressure Waves, NASA, Langley Work-ing Paper, LWP-147 (Sept. 15, 1965).

(14) Cheng, D.i. and Benveniste, J.E., Dynamic Response of

Structural Elements to Sonic Booms of Arbitrary PressureWave Shapes, Rept. No. 1, Grant NGR-33- O13-OI , NASTJa n.T96' Y.

(15) Cheng, D.H. and Benveniste, J.E., Dynamic Resnonse toSonic Booms of Structural Elements Loosely Bound to theirSupports, Rept. No. 2, Grant NGR-33-013-ol1, NASAP-une 1966).

( 6) ARDE Associates, Response of Structures to AircraftGe,;erated Snock Waves, WADC Tech. Rept. 53-169 April

17) Wi irs , J.H . Jr, The Effect of Sonic Boom on StructuralBcna,1iur, Federal Aviation Aqency, SST 65-18 (Oct. 19657 .

) rssler, R and FrEdio h ..... At'ro sp her'ic Scatterinof SJni; Boo0 Intensities, Pro- . nterral Ccnqress Aero.SC , i 1S - 9 641 ;.. .......

J ~d W i c r )b a o q a p Ma su r t1 e nt s anI)d 1ner p r et dLA ' ut n - i onCf o : o C;" C e C t Biq Bo f!, S a:dla

'I'l 'inC D 0.F I m Pam r tt", I) I Corr a Sc l _Aje ct S ft So n ic L r , e Avi t o n ,, SIS Rp N

C1I c oo i natr;Cs, 1resentat or tS C Eft fj In-i........ ..... t u . ...... e. s e n. ti . ......

S jIna-I an e C 9AC e- 1 C r eSS

Page 91: to hear-field and far-field sonic booms - DTIC

(23) Norris, C.H. et al, Structural Design for Dynamic Loads,McGraw Hill, New York N.Y. (1959,.

(24) Melin, D.W. and Sutcliffe, S., Development of Proceduresfor Rapid Computation ofpD2'namic Structural Response,University of Illinois, SRS No. 171 (Jan. 1959).

(25) Glasstcne, S., The Effects of Nuclear Weapons, USAEC(June 1957).

(26) Wiggins, J.H. Jr., Structural Reaction Program, NationalSonic Boom Study Project, Federal Aiation Agency, SST6 5 LO1.1 and 2 (Apr7i 1965).

(27) Newmark, N.M., "A Method of Computation for StructuralDynamics - Shock, Vibration, Earthquake and Blast"University of Illinois Monograph (Oct. 1958).

(28) Clary, R.R. and LeadLetter, S.A., Experimental Investi-gation of the Vibratory Responses and Structural Char-acteristics of some Simulated W.aI Panels, NASA LWP-41

ov. 1964". 1-9 64

(2) Thoensen, ,.R. and Windes, S.L., Seisimic Effects ofQuarry Blasting, U.S. Bureau of Mines Bull 442 (1942).

30) Blume, J.A. Supplement to: Response of Test Structuresto Selected Sonic Booms, Interim Report (Sept. 21, 1966).

(31 Champion, K.S.W. et ali U.S._ Standard At'.osphere, 1962,L S. Government Printing Of ice, wasn -noton D. C . Dc .1962)

32 Jacksor, C. , r r. and Carl son, .. , Norora,s torDetermini Son c-.-om Over Lressure, Jcurnl. cf fir-craft, {l9c6).

(33 Y'uno, 0 ,! f~o~~Y f un o. S tt L ; o th e Fffec ts oeopl5f r- , e. ST k)r - , ,uc-to, r -s, e o e Jii~ r f n'.,a

Pres(it I. t e r e u' irc'a' nq at , fr .,C A

6 i r ,st, c . n! .

Page 92: to hear-field and far-field sonic booms - DTIC

(35) Mayes, W.H. and Newman, J.W. Jr. , An AnalilicalStudy ofthe Response of~ -ingle-Degree-of-Freedom.System toSonic Boom Ty ~eLo d1 , NASA, Langley Working Paper,LWP-154 (Feb f96-6.

Page 93: to hear-field and far-field sonic booms - DTIC

AppendixA

REPRESENTATIVE FREE-FIELO

LOADING AND RESPONSE C~URVES

Page 94: to hear-field and far-field sonic booms - DTIC

NEAR FIELD THEORYCONTRACTOR 8 MACH 1.3

tLTITUDE 38,000THEORETIC L WEIGHT 420,000AICTUAL PROFILE WT 398.000ELEMENT NUMBER 13LOADING WAVE PLATEO - PEFX = LOADING WAVE

altf

I JL~ ~...................................................

-:T:

I JHi t - * .i

>I

I, I9- +

TIME (SEC)

Page 95: to hear-field and far-field sonic booms - DTIC

FAR F!ELO THEORYCONTRACTOR~ 8 MACH 1.3ALTITUiDE 39000ThEGRETICAL WEIGHT 420. 000ACTUAL PROF1LF WT. 396,000ELENT NUMB&, 13LOADING WAVE PLATE0 PFX LO'A0IN15 WAVE

4 -- -I_ _

6.6 ~ - . i~AL- ~-r I-77

wjj .4

t +) +.-.

4'~~I-- --- --- ~-i.~-

.4- h-r r ----- ±4 - -. -- ' . -

0.-7-7--7-

-3A-4

t~~4 ~ __

Page 96: to hear-field and far-field sonic booms - DTIC

NEAR FIELD THEORYCONTRACTOR B MACH 1.5ALTITUDE 40,500THEORETICAL WEIGHT 420,.000ACTUAL PROFILE WT. 39-3,000ELEMENT NUMBER 13LOADINS WAVE PLATEO = PEFFX zLOADING WAVE

C~cr

---------

-7777:-~~,-.T- -.----

-71

h i K ... ~ . . -. ..f .K:...........SEC) V

I- ~ A-5

Page 97: to hear-field and far-field sonic booms - DTIC

FAR FIELD THEORYCONTRACTOR 8 MACH 1.5ALTITUDE 40,500THEORETICAL WEIGHT 420.000ACTUAL PROFILE WT. 193. 000ELEMENT NUMBER 13LOADING WAVE PLATE0 = PEFFX =LOADING WAVE

2.0~~- -7~-~- -

w7 ---7

4 4

w-Ki+ ±Lt>H&Kj

A-

Page 98: to hear-field and far-field sonic booms - DTIC

NEAR FIELD THEORYCONTRACTOR B MACH 2.2ALTIrUDE 45.000THEORETICAL WEIGHT 420.000ACTUAL PROFILE WT. 385.000ELEMENT NUMBER 13LOADING WAVE PLATE0 =PEFFX =LOADING WAVE

...........

1.0Twr 7777 ..

c __ Hc.- _ _

7-7

Page 99: to hear-field and far-field sonic booms - DTIC

FAR FIELD THEORYCONTRACTOR B MACH 2.2ALTITUDE 45,000THEORETICAL WEIGHT 420. 000ACTUAL PROFILE WT. 385,000ELEMENT NUMBER 13LOADING WAVE PLATE0 xPEFFX = LOADING WAVE

-t - I t.. ... .. ..

.4 +t-.. .t

. .... ... ..

a..

.- ~~- -.7-7:::

-3. .- 7- 7 i-7 7 .

LiTT

t t

A-8

Page 100: to hear-field and far-field sonic booms - DTIC

NEAR FIELD THEORYCONTRACTOR B MACH 2.7ALTITUDE 59.000THEORETiCAL WEIGHT 420,000ACTUAL PROFILE WT. 377.770ELEMENT NUMBER 13LOADING WAVE PLATEO PEFFX =LOADING WAVE

i . -7 -

..:v: ..siz .-

.. . . .. . . .

V.4..................E (SEC)IL.._ _

Page 101: to hear-field and far-field sonic booms - DTIC

FAR FIELD THEORYCONTRACTOR B MACH 2.7ALTITUDE 59.,000THEORETICAL WEIGHT 420.000ACTUAL PROFILE WT. 377,770ELEMENT NUMBER 13LOADING WAVE PLATE0 =PEFFX = LOADING WAVE

t::

(ion .. . . . ..... ......

7Vv. :7.-. .-.

.. ......... fi. . ..- -- -

77 .

S-. ..-.-... j7 ..

TIME (SEC)

A-10

Page 102: to hear-field and far-field sonic booms - DTIC

NEAR 51ELD THEORYCONTRACTOR 9 MACH 1.3ALrITuOF "18.000THEORETICAL WEIGHT 420. 000ACTUAL PROFILE WT. 396.000ELEMENT NUMBER 13LOADING WAVE PLATE0 =PEFFX =LOAOING WAVE

LLJ ~ . . . . . . . . . .. t. . .. . . .

... . ..... . . . . .:J.

-r \I .. . .T ~ :

--- ~~~~~~~~, - - -- -- .. ..

t.~ .I

Page 103: to hear-field and far-field sonic booms - DTIC

FAR FIELD tHEORYCONTRACTOR 3 MACH 1.3ALTITUDE 38.000THEORETICAL WEIGHT 420.000ACTUAL PROFILE WT. 398.000

ELEMENT NUMBER 13LOADING WAVE PLA[EO PEFFX =LOADING WAVE

-:7 ... .... > . . .. . .

-r: :-

-.:

I-.

3 i 7II -LLj----

ti Iit

-4. .1 ... .

Vf

_

T4. iij

Page 104: to hear-field and far-field sonic booms - DTIC

NEAR FIELD THEORYCONTRACTOR 9 !MACH 1.5ALT TTUDE 40,500THEORETICAL WEIGHT 420. 000ACTUAL PROFILE WT. 393,000

ELEMENT NUMBER 13LOADING WAVE PLATE0 =PEFF

X =LOADING WAVE

... ...7 ....

LL .0 -- ----:j :

.... ......

---- ----

T 1 (SEC)

Page 105: to hear-field and far-field sonic booms - DTIC

FAR FIELD THEORYCONTRACTOR 6 MACH 1.5ALTITUDE 40,500THEORETICAL WEIGHT 420.000ACTUAL PROFILE WT. 393,000ELEMENT NUMBER 13LOADING WAVE PLATE0 PEFFX =LOADING WAVE

t -.. .

.. ....

LLrK~~~j4hirr

0. -1~ .~T

.... . ... . .. .

t

t- . . l+ +.-

....... ................

SO2

A-14

Page 106: to hear-field and far-field sonic booms - DTIC

NEAR FIELD THEORYCONTRACTOR 8 MACH 2.2ALTITUDE 45,000THEORETICAL WEIGHT 420.000ACTUAL PROFILE WT. 385.000ELEMENT NUMBER 13LOADING WAVE PLATEO PEFF

X =LOADING WAVE

LLI

Li.~ t-- -T

so .. t

TIM (SC

. . . . . .. . . . . . . . . . . . . . ..15:

Page 107: to hear-field and far-field sonic booms - DTIC

FAR FIELD THEORYCONTRACTOR 83 MACH 2.2ALTITUDE 45.000ACTUAL PROFILE wT, 385, 000ELEM1ENT NUMBER 13

LOAGING WAVE PLATE

Y, LOADING WAvE

U--

, 1-

U),

w

o -. -.

.6.16 .8 40.0.0

TIME (SEC)

A-1 6

Page 108: to hear-field and far-field sonic booms - DTIC

rn-EOW

NEAR FIELO THEORYCONTRACTOR B MACH 2.7ALTITUDE 59,000THEORETICAL WEIGHT 4209000ACTUAL PROFILE WT. 377,770ELEMENT NUMBER 13LOADING WAVE PLATEO = PEFFX =LOADING WAVE

4.4

-L - - - .-

a.. +

+A 17

Page 109: to hear-field and far-field sonic booms - DTIC

FAR FIELD THEORYCONTRACTOR B MACH 2.7ALTITUDE 59.000THEORETICAL WEIGHT 420.000ACTUAL PROFILE WT. 377,770ELSMENT NUMBER 13LOADING WAVE PLATE0 - PEFFX =LOADING WAVE

U.4

i .. .. .......... - r t - - -"

4 ,+ + t.

., ......... ... .....

....... ..1 , 477

w I

YIME (SEC)

A-18

Page 110: to hear-field and far-field sonic booms - DTIC

NEAR FIELD THEORYCONTRACTOR A MACH 1.25ALTITUDE 40.899THEORETICAL WEIGHT 150.000ACTUAL PROFILE WT 423.900ELEMENT NUMBER 13LOADING WAVE PLATE0 =PEFFX =LOADING WAVE

I ... . . . . , .

. . . . . . . . . . . . .. . . . . .. ~ ::: .... .... ...

... .. .. .. .. ... .. .. .. .. .. ... ... t . . . .

.. .. ... . ...

..................................... .. .:. I.. .. ..... ..-7 7- t---

7-77__ 7-- 7- -7--

..

..

..

TIME (SEC) . . . . . . . . . . .. . . . . . . . . . . .

j~ A- 19

Page 111: to hear-field and far-field sonic booms - DTIC

FAR FIELD THEORYCONTRACTOR A MACH 1.25ALTITUDE 40,899THEORETICAL WEIGHT 450,000ACTUAL PROFILE WT 423,900ELEMENT NUMBER 13LOADING WAVE PLATEO x PEFFX = LOADING WAVE

L .0 .. .

w a

77VIIf b 7

7"7

... .7 +... ... .....VT?177-

. ... . . .

TIME (SEC

A-2

Page 112: to hear-field and far-field sonic booms - DTIC

NEAR FIELD THEORYCONTRACTOR A MACH 1.50ALTITUDE 44.599THEORETICAL WEIGHT 450,0rACTUAL PROFILE WT 4i3,700ELEMENT NtM@ER 13LOADING WAVE PLATE0 =PEPFX= LOADING WAVE

_.0 -77 - 17

T~+IULII:1<1v>l v_ _ a ....... .

7 I- ..K. . 7 . .. .~ ... ..

7V7 77T.1:117 .v.r{ I-. T~7Pt - 2 -1

Page 113: to hear-field and far-field sonic booms - DTIC

FAR FIELD THEORYCONTRACTOR A MACH 1.50ALTITUDE 44.599THEORETICAL WEIGHT 450.000ACTUAL PROFILE WT 419,700ELEMENT NUMBER 13LOADING WAVE PLATE0o PEFFX =LOADING WAVE

VGt.. ...

: :......... .......CA- -- 4-

7-

3.07

Ti... -- T7T

7 . 7 .. .

t -

-4.0.

so.90 .59.m 64rT IME (SEC)

A 2 2

Page 114: to hear-field and far-field sonic booms - DTIC

NEAR FIELD THEORYrONTRACTOR A MACH 2.00ALTITUDE 49,599THEORETICAL WEIGHT 450. 000ACTUAL PROFILE WT 410.000ELEMENT NUMBER 13LOADING WAVE PLATEO PEFFX =LOADING WAVE

3.0 t

4.4.

.r . t

w 1 0 4- -. ,. -

15.0.. V.

U, -so

TIM (SEC

Page 115: to hear-field and far-field sonic booms - DTIC

FAR FIELD THEORYCONTRACTOR A MACH 2.00ALTIUJE 49.599THEORETIrAL WEIGHT 450. 000ACTUAL PROFILE WT 410.000ELLNENT NUMBER 13LOADING WAVE PLATEO PEFF

X z LOADING WAVE

> jii .~ ... . . . . . . .

77177_..

V.. . . ..... ...

La....,.m +1 -

U)4iii__

..... ....

.. -. . . . .. . . . . ... .. ... ....- - --- - -

-4..0

TIME (SEC)

P' ,4

Page 116: to hear-field and far-field sonic booms - DTIC

NEAR FIELD THEORYCONTRACTOR A MACH 2.70ALTITUDE 65. 000THEORETICAL WEIGHT 450.000ACTUAL PROFfLE WT 375 000ELEMENT NUMBER 13LOADiNG WAVE PLATE0 =PEFFX =LOADING WAVE

...............

. .. . . . . . . . . . . .......... ~ .~

L 717iY7i;:::...u ........cr . . . . . .

.. .. . .. . .

. . . . . . . . . . . . . . . . . . . . ........

- - - - -- - - -- - -- - .~ . . . .. . .

TV: IM SC

Page 117: to hear-field and far-field sonic booms - DTIC

-110 m

FAR FIELD THEORYCONfRACTOR A MACH 2.70ALT7,:UOE 65,000THEORETICAL WEIGHT 450,000ACTUAL PROFILE WT 375,000ELEMENT NUMCE, 13LOADING WAVE PLATE0 = PEFFX =LOADING WAVE

S4 ... ... ...

1 1.0

" _-ii ---__-__

0 _-.. ...

. ... ... ... ... 4

V.,, . ,,t,-i

l.t l l IIt

.6 .1i .10 .50 .40 .10 .60 .10

TIME (SEC)

A-26

Page 118: to hear-field and far-field sonic booms - DTIC

NEAkR FIELO0 THEORY S-C ofe,.. -

CO.4TRACTOR A MACH 1~hALTITUDE 40,899THEORETICAL WEIGHT 450.000ACTUAL PROFILE WT 423.900ELEMENT NUMBER 1LOADING WAVE RACKING !TYPE0 PEFFX =LOADING WAVE

J--

I T

L j

of .. , Y t 77 1 7 7 t'

>........ .. ... . . .......... f ...-

...... .....

.... .... .... . .

75. -4 "'A.

.6.10 lo .0 ..% .60 .00.,TIME (SEC)

A-27

Page 119: to hear-field and far-field sonic booms - DTIC

FAR FIELD THEORYCONTRACTOR A MACH 1.25ALT ITUDE 40,399THEORETICAL WEIGHT 450,000ACTUAL PROFILE WT 423,900ELEMENT NUMBER ILOADING WAVE RACKING TYPE0 = PEFFX =LOADING WAVE

-- --- --- ---

1 ! ! .I :I t 1 1 T

T IM (SEC)

_A -28

Page 120: to hear-field and far-field sonic booms - DTIC

NEAR FIELD THEORYCONTRACTOR A MACH 1.5UALTITUDE ~44,599THEORETICAL WEIGHT 450.000)ACTUAL PROFILE WT 419,700ELEMENT NUMBERALOAOING WAVE RACKING TYPEO PEFFX =LOADING WAVE

+ t

0. ~- --

.... 4% ... ...

41 .41 '

7- 7 7. ... .. . .... _

.6.1 .0 5 .40 .60.0.1

TIME (SEC)

A-29

Page 121: to hear-field and far-field sonic booms - DTIC

FAR FIELD THEORYCONTRACTOR A MACH 1.56ALTITUDE 44.599THEORETICAL WEIGHT 450.000ACTUAL. PROFILE WT 419.700ELEMENT NUMBERILOADING WAVE RACK ING !TYPEO PEFF

I,( =!OING WAVE

1- 4-

-:T 441 ------ -7

- j

.0

TfTI

.~ .. .: .:

4. -H

t i I ' l '"

IA 3

Page 122: to hear-field and far-field sonic booms - DTIC

NEAR FIELD THEORYCONTRACTOR A MACH 2. 00ALTITUDE 49.599THEORETICAL WEIGHT 450,000ACTUAL PROFILE WT 410.000ELEMENT NUMBER 1LOADING WAVE RACKING T'PE0o PEFFX a LOADING WAVE

+ +*

WL4:4

~~ L~ffi~~iiL - - - -- - - - -

S.77.

Li. . - = - A-41

lo

Page 123: to hear-field and far-field sonic booms - DTIC

FAR FIELD THEORYCONTRACTOR A MACH 2.00ALTITUDE 49.599THEORETICAL WEIGHT 450.000ACTUAL PROFILE WT 410.000ELEMENT NUMBERILOADING WAVE RACKING TYPEO = PEFFX =LOADING WAVE

-r- -P ______

TM...................

~ -77

Ix ~_

ITIc-,

4 +.....................................

w~

,,+t

TIE(SC

A-3

V l a 4 4 4 4 .7o

Page 124: to hear-field and far-field sonic booms - DTIC

NEAR FIELD THEORY'CONTRACTOR A MACH 2.70ALTITUDE 65,000THEORETICAL WEIGHT 450.000ACTUAL PROFILE WT 375.000ELEMENT NUMBER ILOADING WAVE RACKING TPE0 = PEFFX zLOADING WAVE

~~~~~- 444:4 14 4

.--- -~- + d

L*.

cr::t

w0

o1: .6 .0

TIE(SCA-331

Page 125: to hear-field and far-field sonic booms - DTIC

FAR FiELD THEORYCONTRACTOR A Cr4 _70ALTITUDE sE;.WrOTHEORETICAL WEIGHT 4'50.0f)ACTUAL PROFILE WT 375.OOPELEMENT NUMBERLOADING WAVE 3RACKING TYO = PEFFX =LOADING WAVE

Tt t , .4. , , . . ++I: :i-t- .

1777 .. .. ..- .

4 .'

'.go .4 .4 i <

A-3

Page 126: to hear-field and far-field sonic booms - DTIC

NEAR FIELD THEORYCONTRACTOR B MACH 1.3ALTITUDE 38.000THEORETICAL WEIGHT 420,000ACTUAL PROFILE WT. 396,000

ELEMENT NUMBER ILOADIl(G WAVE RACKING TYPE0 = PEFFX = LOADING WAVE

I t:~:

4 +.+.. .. . ::: . ..[ i E " "

5.0 ..

......

-~ . . . ..... . . . . ....

t t .. ... .. 1*~

. . . . . . ..

.... . . . ...

.. .. ..

.1 - -

!' F ....

77~7t7 ---

K7 .. +..jz > f777...... .> ...

I j . '.

*l . 0 5| 0 .40 . |0 .OS,

:iME (SEC)

A-35

Page 127: to hear-field and far-field sonic booms - DTIC

FAR FIELD THEORY

CONTRACTOR B MACH 1.3ALTITUDE 38. 000THEORETICAL WEIGHT 420.000ACTUAL PROF'-.E WT. 396,000ELEMENT NLI" dER1LOADING WAVE RACKING TYPEO = PEFFX zLOADING WAVE

- .~~ ~~ ~ ~~~~~~ ~~~~~~ .- .. . .. .4--.,------.-----.--,.-- .------. . -----

1.47

3 _j

+..+............ ........... .

-9.

~ , goa~IM (SEC)~.. ..

A-3

Page 128: to hear-field and far-field sonic booms - DTIC

NEAR FIELD THEORYCDNiRACTOR 8 MACH 1.5ALTITUDE 40.500THEORETICAL WEIGHT 420, 00JACTUAL PROFILE WT. 333,000ELEMENT NUMBERLOADING3 WAVE RACKING TYPF0 =PEFFx= LOADING WAVE

.......... ... ....

. . .-....... ..

7. t ..4- .444~ .4 *.-.....-

. .j.............

............. .. .. ...................................................~~~n f~~~~tf.............

~I.............................

LrV 77Ln77...........LA V' AfJiwr

cctT I E C.

Page 129: to hear-field and far-field sonic booms - DTIC

PAR FIELD T8,,ORYCONTRACTOP, rj MACH 1.5ALT I IJOE 40,500THEORETICAL WEIGHT 420,U00ACTUAL PROFILE WT. 393,000ELEMENT NUMBERILOADING WAVE RACK'ING TYPE0 =PE F FX =LOAOING WAVE

a4.1 4 4 t

:+ - -7 -7

LLIcr~~~~ .4 .... . II£

0 7

-1.5-~ I t1__1

:

77-77+ + r

.0 to.80 .40 .6 s

TIME (SEC) I 1

A-38

Page 130: to hear-field and far-field sonic booms - DTIC

NEAQ FIELD THEORYCONTRACTOR 8 MACH 2.2ALTITUDE 45,000THEORETICAL WEIGHT 420.000ACTUAL PROFILE WT. 385,000

ELEM1ENT NUMBERILOADING WAVE RACr(INU IYPEt0 z PEFF

X=LOADING WAVE

4.0 ~p rtt 27-" I .. __.2ii~u ill : -. 7

.W -L 71~x:

j.. S. r . ... ... . .

I .. 1.. T.:

.a so .20 .So .40 .50 .60

TIME (SLC)

A -3 9

Page 131: to hear-field and far-field sonic booms - DTIC

F AR P IE LO T E)CONTRACTOR 8 MACH 2.2-ALTITUDE 45.000THEORETICAL WEIGH'T 420. 000ACTUAL PROFILE WT. 385, 000ELEMENT NUMBER ILOADING WAVE RACKING TYPEO PEFFX zLOAOING WAVE

14 1 .... .. . .

- 13

44, + . .. i7 7 7777W *.a -. -41jK 7~

+ ... III tCU dl>j2 :+Lj+7~1

01 .

I. X :::

A-.40

Page 132: to hear-field and far-field sonic booms - DTIC

NEAR FIELD THEORYCONTRACTOR 6 MACH 2.7ALT ITUDE 59.000THEORETICAL WEIGHT 420.000ACTUAL PROFILE hwT. 377.72/0ELEMENT NUMBER 1LOADING WAVE RACKING TYPE0 =PEFFX =LOADING WAVE

-

---

. f -. - - -

I ~.. E~~i~ .....

A-1

Page 133: to hear-field and far-field sonic booms - DTIC

FAR FIELD THEORYCONTRACTOR B MALH 2.7ALTITUDE 59.000THEORETICAL WEIGHT 420,000ACTUAL PROFILE WT. 377,770ELEMENT NUMBER 1LOADING WAVE RACKING ITYP0 = PEFF

=LOADING WAVE

1 4 . _ _

~ Itti

.. . ... . . . . . . . . .

"U~~~~~~~TM F(SECj)v i~i: ;:x:7~

* ~,iA-421

Jim:

Page 134: to hear-field and far-field sonic booms - DTIC

RECORDED DATAF-1 04 1.5ALrIrUoE 28.000ACTUAL PROFILE WT. 14.500ELEMENT NUMBERI

LOADING WAVE RACKING TYPEO PEF

XLOADING WAVE

t~ . .. . ..

.. .. .. .

U)++

I ........... ......... . .

~tI.I1211iI... ... .....

TIME (SEC)

A-43

Page 135: to hear-field and far-field sonic booms - DTIC

FAR FIELD THEORYF-I 104 15ALTIT E 29,000ACTUA PR~OFILE WT. 14.500ELEMENr NUMBERI

LOADING WAVE RACKING T'YPE0 =PEFFX =LOADING WAVE

7.7.. . .. .... { 7.. 7T 7 7-7

A-4

Page 136: to hear-field and far-field sonic booms - DTIC

RECORDED. nATA8 1 s1.22

ALT[TUJE 27,000ACTUAL PROFIL.E WT. 120, 000ELEMENT NUMBEfR

LOADING WAVE RACKING TYPE0 =PEFFX 7LCA.PING WAVE

4

LVLt

'4-'

Or ... ... .. .

Uy :-.:-:,

-I -4

TIME (SEC)

Page 137: to hear-field and far-field sonic booms - DTIC

FAR o-IELO THEORY10-58 1.22ALT ITUOE 27. 000ACTUAL PROFILE WT. 120,000ELEMENT NUMBERI

LOADING WAV~E RACKING TYPE0 =PEFFX =LOADING IV

-- 7--.- -

4.0.4'-

4.0 4

+ v

7v T

7 .Iw . .

0. .1 .t .5 .4 .S. . . 0

TIME (SEC*)

Page 138: to hear-field and far-field sonic booms - DTIC

xEOdE al~ .7 .22A' T IrIu3E 2 ' O 0 0ACTUAL PRut-ILE wT. 4 2 3,300"ELEMENT NUmBrER

LOADING WAVF RACKING TYPE

X zLOADING WAVE

4.0

Lf.0 . .~. .. .

9.0~LfLJ- -- - - -

-- -- - - - .. .

t.0.

to ..T*I [M C3

Page 139: to hear-field and far-field sonic booms - DTIC

FAR FIELD THEORYXB-70 1,22ALTITUDE 27. 000ACTUAL PRO ' ci.E WT 4239900ELEMENT NUMBERI

LOADING WAVE RACKING TYPE0 PUFF

X LOADI~NG WtVE

~1 V

.. ~IL 4i

.10 it0 40 .t ____0TIME (SEC

1-; 4A -8

Page 140: to hear-field and far-field sonic booms - DTIC

RECORD DATA £

x e- - r 1.40ALTTDE 38.700ACTUAL PROFILE wT. '357,.000ELEMENT NUMBER

LOADING WAVE RACKING TYPE0 PEFR7X LOADING WA'vE

1...................................... .....

I.NIL _

0.~~~. . ..... .f-..- ._

............................................................... .... ......

__~~.. ........~ >V#

TiME (SEC)

A 49

Page 141: to hear-field and far-field sonic booms - DTIC

Fr

FAR FIELD THEORYX8-70 1.40ALT ITUDE 38,700ACTUAL PROFILE WT. 357,000ELEMENT NUMBER I

LOADING WAVE RACKING TYPE0 ='PEFF

X=LOADING WAVE

1 ~ - .......... , _____4

LLi t

4- ____j

crT j.X - 4jL

-A-

T t

(' - , - . - -- -I , . +

V+

SO ... -- *

I ~ ~M (SEC) ......

Page 142: to hear-field and far-field sonic booms - DTIC

RECORDED DATAXB-70 1.86ALI IT OCE 48.000ACTUAL PROFILE WT. 352, 000ELEMENT NUMBERI

LOADING WAVE RACKING TYPE0 =PEFFX =LOADING WAVE

4_

4- ___n 4

_ t 4--4TZ -

T- 4-"

A-

Page 143: to hear-field and far-field sonic booms - DTIC

FAR FIELD THEORYfxB-70 1e

ALTITUDE 49, 0100ACTUAL PROFILE WT. 352.000

ELEMENT NUMPER I

LOADING WAVE RACKING TYPE~0 =PEFFX x LOADING WAVE

-4 - -V-

t4- ~ -- ~ - '

I

4 --

.iH t - tjIjff

-e~ IP~ 1r I} i

TIME (SEC)

A-52

MINIM~~UUI

Page 144: to hear-field and far-field sonic booms - DTIC

III

Appe~idix a

1

TABULATED RESULTS

4

V

4'VV

II

- *Wfltyt~twg

Page 145: to hear-field and far-field sonic booms - DTIC

m~m''L~l"%'KPAG[

1$MNO

Page 146: to hear-field and far-field sonic booms - DTIC

ELEMENT TYPE CCNTRACTOR MACH ALTITUDE FIELDI RACK A 1.25 40,899 NEAR

PMAX 3.31 2.16 3.37 2.16 3.37 2.16 3.37 2.16 MEAN 2.76 S.D. I.06PEFF 4.83 3.76 4.72 3.71 5.50 4.23 4.61 3.46 MEAN 4.35 S.D. 1 53OAF 1.46 1.74 1.40 1,72 l.'3 1.96 1.37 1.60 MEAN 1.61 S.D. 0.20

ELEMENT TYPE CCNTRACTOR MACH ALTITUDE FIELDI RACK A 1.25 40,899 FAR

PMAX 4.3f6 2.54 4.36 2.54 4.36 2.54 4.?6 2.54 MEAN 3.45 S.D. L 45PEFF 6.42 5.24 5.85 4.16 5.97 4.54 6.06 4 82 MEAN 5.' S.D. 1.88O&F 1.47 2.06 1.34 1.64 1.37 1.7, 1.39 1.90 MEAN 1.62 S.D. 0.27

ELEMENT TYPE CCNTRACTOR MACH ALTITUDE FIELD1 RACK A 1.50 44,599 NEAR

PMAX 3.15 2.13 3.19 2 10 3.21 2.13 3.20 2.13 MEAN 2.65 S.D, 1.01PEFF 5.44 4.11 4.77 3.18 4.74 3.37 4.80 3.48 MEAN 4.24 S.D. 1.56DAF 1.73 1.93 1.50 1.52 1.48 1.59 1.50 1.64 MEAN 1.61 S.D, 0.16

ELEMENT TYPE CCNTRACTOR MACH ALTITUDE FIELDI RACK A l.50 44,599 FAR

PMAX 4.07 2.55 4.06 2.52 4.04 2.55 4.03 2.55 MEAN 3.30 S.D. 1.31PFFF 5.88 4.68 6.58 4.69 5.63 3.66 5.75 4.20 MEAN 5.13 S.D. 1.88OAF 1.44 1.63 1.62 1.86 1.39 1.43 1.43 1.65 MEAN 1.58 S.D. 0.19

ELEMENT TYPE CENTRACTOR MACH ALTITUDE FIELDI RACK A 2.00 49,599 NEAR

PMAX 3.62 1.85 3.60 1.83 3.59 1.80 3.57 1.45 MEAN 2.66 S.D. 1.30PEFF 4.92 2.92 4.93 2.83 5.06 3.06 4.73 2.07 MEAN 3.81 S.D. 1.69OAF 1.36 1.58 1.37 1.55 1.41 1.69 1.32 1.43 MEAN 1.46 S.D. 0.13

ELEMENT TYPE CCNTRACTOR MACH ALTITUDE FIELDI RACK A 2.00 49t599 FAR

PM,'X 3.62 2?GC 3.60 2.02 3.60 2.01 3.60 1.70 MEAN 2.77 S.D. 1.-4 -

PEFF 4.97 3.10 6.00 3.86 5.50 3.29 4.76 2.27 MEAN 4.22 S.D. 1.84OAF 1.37 1.52 1.66 1.91 1.53 1.63 1.32 1.34 MEAN 1.54 S.D. 0.20

ELEMENT TYPE CCNTRACIOR M'ACH ALTITUDE FiELDI ACK A 2.70 65,000 NEAR

PMAX 2.49 1.05 2.47 1.04 2.67 1.19 2,-j6 0.77 MEAN 1.79 S.D. I. oiPEFF 3.25 1.57 3.29 1.65 3.64 1.75 3.36 1.07 MEAN 2.45 S.D. 1.28OAF 1.31 1.50 1.33 1.59 1,36 1.47 1.26 1.38 MEAN 1.40 S.D. 0.11

ELEMENT TYPE CCNTRACTOR MACH ALTITUDE FIELDI RACK A 2.70 65,000 FAR

PMAX 2.48 1.15 2.46 1.11 2.66 1.26 2.,? 0.85 MEAN 1.83 g '. 0.97PEFF 3.86 2.08 3.20 1.69 3.82 1.99 3.74 1.34 MEAN 2.72 S.D. 1.34DAF 1.5 , 1.81 1.30 1.52 1.43 1.58 1,42 1.59 MEAN 1.53 S.D. 0.15

B-3

Page 147: to hear-field and far-field sonic booms - DTIC

ELEMENT TYPE CCNTRACTOR MACH ALTITUDE FIELD

I RACK 8 1.3 38,000 NEAR

PMAX 2.77 1.94 2.85 1.94 2.84 1.94 3.09 1.94 MEAN 2.41 S.D. 0.91

PEFF 4.55 3.49 3.90 3.13 4.79 3.80 5.22 3.76 MEAN 4.08 S.D. 1.46

DAF 1.64 1.80 1.37 1.61 1,69 1.96 1.69 1.94 MEAN 1.71 S.D. 2.19

rLENENT TYPE CCNTRACTOR MACH ALTITUDE FIELD

I RACK B 1.3 38,000 FAR

PMAX 4.03 2.52 4.01 2.52 4.00 2.52 4.36 2.52 MEAN 3.31 S.D. 1.34

PEFF 5.9e 5.13 6.67 5.C9 5.54 3.85 5.58 4.09 MEAN 5.24 S.o. 1.89

DAF 1,48 2.04 1.66 2.02 1.39 1.53 1.28 1.62 MEAN 1.63 S.D. 0.28

ELEMENT TYPE CCNTRACTOR MACH ALTITUDE FIELD

1 RACK 0 1.5 40,500 NEAR

PMAX 2.85 1.96 2.88 1.91 2.91 1.96 2.90 1.96 MEAN 2.42 S.D. 0.91

PEFF 4.22 3.29 4.76 3.60 4.65 3.31 4.33 2.88 MEAN 3.88 S.D. 1.40

DAF 1.48 1.68 1.65 1.88 ).60 1.69 1.49 1.47 MEAN 1.62 S.D. 0.14

ELEMENI TYPE CCNTRACTOP MACH ALTITUDE FIELD

I RACK E I.'j 40,500 FAR

PM4X 4.06 2.41 4.05 2.36 4.03 2.41 4.02 2.41 MEAN 3.22 S.D. 1.33

PEFF 5.6C 3.66 6.24 4.57 6.43 4.47 5.42 3.30 MEAN 4,96 S.D. 1.93

D F 1.38 1.52 1.54 1.94 1.53 1.15 1,35 1.37 MEAN 1.57 S.D. 0.22

ELEENT TYPE CCNTRACTOR MACH ALTITUCE FIELD

I RACK 8 2.2 45,000 NEAR

PMAX 3.31 1.'69 3.42 l.71 3.41 1.70 3.40 !,o)6 MEAN 2.53 S.D. 1.21

PEFF 4.47 2.69 4.71 2.60 4.84 2.72 4.18 2.34 MEAN 3.64 S.D. 161

OAF 1.35 1.5) 1.38 1.50 1.42 1.60 1.41 1.50 MEAN 1.47 S.D. 0.09

FLE .T TYi-: CCNTRACTqR MACH ALTITUCE FIELD

I RACK B 2 .2 45.000 EAR

PMAX 3 31 1.74 3.67 1.72 3.65 1.69 3.64 1.66 MEAN 2.63 S.D. 1.29

PEF F4 2.c4 4.79 2.69 5.8i 1,28 5.11 2.43 MEAN 3.90 S.f). I.40

OAF 1 . 3 1.4b 1. 31 1 .56 1.60 1. 14 1.41 1.47 14EAN 1.51 S.D. 0.20

ELEM2\ TYPEF CF7NTR ACTTT MACH ALT I I U[k> I ELt'

1 RACK p 2.7 59,000 NEAR

Pm IX 2.52 1.27 2.50 1. 6 2.72 1.19 2.il 0.77 MEAN 1.82 S.D. 1.03

PEFF 3.3C 1.~0 3.34 1 2 . t) 1.74 3.41 1.08 MEAN 2.,.1 S. . 1.30

DAF 1.31 1.50 1.14 1.54 1.36 1.46 1.26 1.39 HEAN 1.39 S. ). 0.10

c1- E, N I T YPE CCNTRACTC ICrH ALT ITWEE f IELC

I RACK P ?.1 59,000 [A,

P'AX 2.4'1 1.15 2.46 1.11 2.66 1.2 2 .?.t 0.5 MEAN 1l9 S.). 0.97

P E F 3. - 2.I]9 3.20 1. 70 3.83 2.)1 3.75 1.35 ME AN 2.72 S.D. 1.34

OF 1,5 1 W, 1.30 1.5 1 1. 14 1.41 1.60 MEAN 1.51 S. . 0.15

4 la ,

Page 148: to hear-field and far-field sonic booms - DTIC

ELLE NT TYPE CUNTRACTOR MACH ALT iUCE F A'EL

2 RACK A 1 .2. 40, 899 NFA"

PMAX 3.26 2.16 3.32 1.91 3.31 1.90 50 2.16 MEAN 2.u4 S.D. 1.10

PEFF 4.36 ".16 5.27 3.27 5.04 2.92 3.9? 2.49 MEAN 3.80 S.D. 1.56

DAF 1.34 L.47 1. . 7 1 1.52 1.54 1.12 1,16 MEAN 1.43 S.0. 0.21

ELEMFNT T Vo : CCNTRACT'R PACH ALT ITU CE FIELC2 RACK e 1.25 40,899 FAR

PMAX 4.05 2.54 4.03 2.25 4.01 2.23 4.36 2.54 MEAN 3.25 S.D. 1.38PEFF 5.81 3.89 5.36 3.C7 6.2() 3.92 6.11 1.67 MEAN 4.75 S.D. 1.94

DAF 1.43 1.53 1.33 1.37 1.5, 1.7s 1.40 1.45 MEAN 1.48 SD. 0.14

ELEPENT TYPF CCNIRACTOR MACH ALT ITUE FIELL

2 PACK A 1.50 44, 599 NEARPMAX 3.27 1.90 3.31 1.88 3.33 1.61 3.31 1.59 MEAN 2.53 S.D. 1.15PEFF 3.q6 2.51 4.55 2.86 5.16 2.85 4.44 2.21 MEAN 3.57 S.D. 1.56

OAF 1.21 1.32 1.3 1.52 1.55 1.71 1.34 1.39 MEAN 1.43 S.D. 0.17

E LE N, TYPe CCNTRACT0q C ACH ALTITUCE FIELC2 RACK 18 1.50 44,599 FAR

PMAX 4.07 2.25 4 ' ) 6 6 4. 04 1.92 4.03 1.39 MEAN 3.06 S.D . 1.42PEFF 5.56 4.2b 5.3o 3.22 5,24 2.78 6.00 2.99 MEAN 4.55 S.D- 2.03

OAF 1.61 ].89 J.i2 1.43 1.30 1.45 1.4q 1.59 MEAN 1.51 S.D. 0.19

,CNiI TYPE CONTRACTCR mACH ALTITUIE FIELC

2 RACK A 2.00 49,5,9 NEAR

PMAX 3. 32 1. 5- 3.2 .37 3 .0'4 1.22 3.57 1.00 MEAN 2.28 S.D. 1.32PEFF 4.11 2,.'2 4.31 2 7 3.87 1.68 4.10 1.36 MEAN 2.97 S.D. .54

OAF 1.24 1.+5 1.31 1. 5 1.27 1.38 1.i5 1.76 MEAN 1.35 S.D. 0.15

tLEW , T TYPE CCNTRACTR R ACr-j ALTITUFE FIELL

2 RACK 6 2.00 49, 599 ARPMAX 3.41 1.57 3.38 .g? 3.0') 1. ,4 3.69 1.15 MFAN 2.38 7.2. 1.30PEFF 5.Cc; 2.)6 4.' , 2.53 3.87 1.62 4.41 1.68 MEAN 3.35 S.U. 1.75

OAF .4 1.0 1 .4 1 .6 7 1.25 1. 1 1.23 1. 5 ' MEAN 1.43 S.D. 0.19

FLE N T TYPE C[-NTRACTCR MACH ALt I TUCE FIE t

2 RACK A 2.TO 65,00 NEARPUAX 2.3 C . 2,2') : ,5 2.25 0.94 2.02 1.06 "EAN 1.60 S.D. 0.83

PEFF 2.7 1.20 2.8 1.28 2.81 1,.21 2.67 1.12 MEAN 2.00 S.D. 1.06CAF 1.1', 1.23 1.27 1.32 1.29 1.28 1.3? 1.05 MEAN 1.24 S.D. 0.09

ULL, NI TYPF CCNTRACTU- ACH LTITULEF FIELD2 RACK A .0 65, 000 FAR

M,4X 2.33 1.20 2.30 0.99 2.2 70.97 2.04 1.08 MEAN 1.62 S.D. 0.83

P F, 2.96 1. 33 2.78 1.15 3.26 1 42 2.89 1.26 MEAN 2.13 S.D. 1.120AF 1.27 1. 1,2 1.21 1.17 1. ,4 1.47 1.42 1.17 MEAN 1.31 S.O. 0.12

B- 5

Page 149: to hear-field and far-field sonic booms - DTIC

ELEMENI TYPE CON TRAC TR MACH ALTITUDE FI FEt2 RACK B 1.3 38,000 NEAR

PMAX 2.98 1.74 3.00 1.7? 2.99 1.71 2.99 1.70 MEAN 2.3, S.D. 1.10

PEFF 4.13 2.76 4.56 2.37 4.75 2.77 3.67 ?.12 MEAN 1.45 S.1). 1.44DAF 1.39 1.58 1.52 1.67 1.59 1.62 1.23 1.25 MEAN 1.49 ;.r. 0.17

ELEMENT TYPE CONTRA(TOR MACH 4LTI iUDE FIELD

2 RACK B 1. 3 38,000 FARPMAX 4.03 ?.26 4.01 2.23 4.00 2.21 3.94 ?.2C MEAN 3.11 S.D. '.36PEFF 6.04 3.73 5.25 2.98 5.58 3.56 6.59 3.7i MEAN 4.69 S. n. i. POAF 1.50 1.65 1.31 1.34 1.40 1.61 1.66 1.72 MFAN I. 1 S.D. 0.16

ELEMENT rYPE CONIRACTOR MACH ALTITUDE FI ELD2 PAC K B 1.5 40,t rO0c NEAR

PMAX 2.99 1.74 3.02 1.73 3.04 1.48 3.03 1.46 MEAN ?.31 S.D. . rPEFF 5.10 3. ) 4.35 2.61 3.75 1.96 4.13 2.14 MEAN 3.43 S.0. l.

OAF 1.71 1.96 1.44 1.51 1.23 1.12 1.33 1.47 MEAN 1.5r) S.Di. 0.21

ELEMENT TYPE C')NTRACTJR MACH ALTITUDE FIELD

2 RACK B 1.5 40,500 F RPMAX 4.1( 2.14 4.05 2.14 4.u3 1.83 4.02 1.79 MEAN 3.01 S.D. 1.4PEF - 6.73 4.39 5.81 3.46 5.1I9 ?.53 4.95 2.56 MEAN 4.46 5.). 2.3)DAF 1 .67 2.04 1.43 1.o? 1.29 1.39 1.23 1.43 MEAN 1.51 S ; . ).2(,

tLEMENT I'(PE CXoTRACTOR MAACH At LTDE FI FLD2 R ACK 2.? 45,00C NEAR

PMAX 3.12 1,24 3.08 i.20 3,04 1.1 J,. 4 71 3 MEAN 2., , . 1.14

PEFF 3.75 1. &1 4.23 2.16 1.94 1.1q 3.£8 - F N . ,; 5.f. 1..-D 1F 1.20 1.5' 1. 1,4 1.1 4 1 .2 . 3? 1o'1 1 0 ', FAN I. S '

. .

ELEMENT T'Pr i'-41 RA(C T8 I APH A. T 1UD) F I

A' ~AK 2 2 0 c21PMAX 3.,)7 1 . (' 0 1 1. 04 . I 1.?q 2. 1. 1 4 MEAN '.1 * ' IPE-FF 4.71 2.3 ? ,.8 1. ,2 3. ,,, .48 A . ,. 12 .2. !.-,'

3 f 1.h1 I , 1. . 1. 70 i 7 1.2 1. ) AN 1.." 1 1 1) 1,

'T y A * &,NT 4A' T.. , T I (I!1t

k ~ ~ ~ , 7 q~,Ij \-A,- P U,**& . ,-- , ',4- . A , ' . +1. ~ '.3 2 k. )h ,2 2h 1,.7 4 , N i .,, . q .. ,' ..

1k : NI I YP't 1)-. ~ I.T Ll) ' ; A, T I TI F *II q

,2 :AL\ 2 ' ,.{ ~

2A> 1 . 27 1. I l. 1 1. 17 I - 1. * ,4 1.41 1 . 1 1 . ' jA . 1I 8 . .!.'

Page 150: to hear-field and far-field sonic booms - DTIC

fiEL ,T N I T - CCHTR 8CT C ALII TUCE FIEL)

RAu A 1.25 40,899 NEARPM X 3.42 2, 7 4 ?.4 .7 3.43 2.61 3. 42 ?.6L MEAN 3.0" S.D. 1.04

PEFF 5.45 4.13 5. 10 3. 3 4.6 3.30 4.36 3.07 MFAN 4.2I S.D. 1.,

'AF 1.5 1.51 k.4,) I 4o 1.34 1.?3 1.27 1.16 MEAN 1.37 S. C. 0.15

ELE'I Ni TY3 E CCNTRA TC ACH ALT ITUiCE FIELD3 R1,CK A 1.25 40,899 FAR

PIX 4.1' 3.29 4.17 3.23 4.16 3.17 4.15 3.11 MEAN 3.68 S.D. 1.27PEFF ).6' 4.11 5.16 3.62 5.1i 3.51 5.89 4.20 MEAt, 4.89 S.D. 1.87

DAF I.5. 1.4- 1.24 1.i2 1.24 1.Ii 1.42 1. 35 MEAN 1.32 S.D. 0.17

tLEENT TYPE ECN TRACTCR "ACH ALTITUDE FIELD3 ACK A 1 .-0 44, 599 NEAR

PMAX 3.36 2.53 3.30 2.33 3.29 2.26 3. 2 2.04 MEAN 2.80 S.D. 1.04

PEFF 4.41 3. 16 5.47 4.02 5.77 4.13 4.91 3.26 mEAN 4.42 S.D. 1.66

0O F 1.31 1. 12 1.66 1.72 1.-5 1.83 1.50 1.60 YEAN 1.59 S.D. 0.19

FLE N T TY0 U CE NTRCTOR MACH ALT ITUDJE FIELCRACK A I .50 44, 59Q FAR

P'AX 4.0? 3.32 3.#3 2.30 3.97 2.71 3.)9 2.13 MEAN 3.36 S.D. 1.26

tcEFF 7.CS 5.19 5.55 3.q 4.82 3.22 4.73 2.99 MEAN 4.68 S.O. 1.98[AF 1.76 1.1 1.3- 1.4C 1.22 1.19 1.19 1.23 MEAN 1.39 S.D. 0.23

LE K NT TYPE CCNTRACTCR ACH At TI TUCE FIELD3 ACK A .00 49, -99 NEAR

PmA X 1.3 2 . .2o: 1.83 3.20 1. 7 3 . 3 1.94 MEA " 2.59 S.D. 1.12P FF ,t.3C C . 12 4.7) i.32 .3b 2- O 4.12 2.57 MEAN 3.67 S.D. 1.41

IF I.> 4.'tD 1.81 1.3 I l 8 1 20 1. 33 MEAN 1.46 S.D. 0.21

•iE " TYP: CENTRACTOR ACH ALT ITO[5 FIELC

puMi 1 37 3,74 1.0- 3.23 .7 3 .43 2.0 E N 2.b5 S.D. 1.10PEF 5.9L q. - .13 3.'.5 4' 6 .43 4. 12 2.59 MEAN 3.96 S.D. 1.71OAF 1. 7, 1. 41 1 b 1.7 1 1 .40 1.20 1.25 EIN 1.51 S.D. C.29

'LC NI TYP F N TRACT R ' ACH ALT ITU I L4ACK A 2.70 65,320 NEAR

PZ, 2 2. 3 1 2 34 1.22 2.24 1.0- ME AN 1.80 S.[U. 0. 1

PEF F 2 . 3. 2. 1 .8 1.73 ? .5 1 . MEAN 2.48 S.D. 1.01AF 1.37 1 . I . I . 7 1. 2 1 . 4, 1.1 1 . I9 MEAN 1.41 S.D. L 0. PR

F N Y CC N! R AC T R -ACH AL TI TLJCE F I EL C. RC A ,. .7 5O 5,323 FAR

PM 2.'A 1.," 1.34 2.,3 12 ?.24 1,11 MEAN 1.84 S.D. 0.81

P ElF ,51 . ?.? 1.71 2.8 t 2.g5 1.70 MEAN 2.46 S.O. 1. 012,F 1.41 1.17 j.33 1.18 I. 1 1 .27 1.53 MEAN 1.36 S.(. 0.15

Page 151: to hear-field and far-field sonic booms - DTIC

ELEPENI TYPE CCNTRACT R MACH ALTITUDE FIELD

RA K B 1.3 38,00u NEAR

PMLX 3.09 2.53 3.07 2.48 3.06 2.43 3.09 2.38 MEAN 2.77 S.D. 0.93

PEFF 3. 7 2.92 4.77 3 6 5.27 3.97 4.95 3.55 'EAN 4 .10 S. D 1.52

DAF 1.23 1i 5 1.55 1.46 1.72 1.63 1.60 1.49 MEAN 1.48 S.D. 0.20

ELEMENI TYPE CENTRACTOR ?ACH ALTITUDE FIELD

3 RACK e 1 .3 3B,000 FAR

PM4X 4.16 3,28 4.15 3.22 4.14 3.16 4.14 3.08 MEAN 3.67 S.D. 1.26

PEFF 5,OC 3,53 5.69 4 34 7.27 5.39 7.44 5.29 MEAN 9. ,9 S.D. 2.17

DAF 1,2C 1.08 1.37 1.35 1,76 1.71 1.30 1.72 MEAN 1.50 S.D. 0.28

ELEMEN1 TYPE CCNTRACTOR MACH ALTITUDE FIELC

3 RACK F 1 o5 40,500 NEAR

PHAX 3.06 2.33 3.01 2.16 2.99 2.09 3.03 1.86 MEAN 2.57 S.D. 0.95

PEFF 3.803 3.03 3.71 2.76 4.41 3.21 5.07 3,58 MEAN 3.71 S.D. 1.39

DA., 1.21 1.30 1.23 1.28 1.47 1.53 1.68 1.92 MEAN 1.46 S.D. 0.24

ELE L .T TYPE CCNTRACTOR MACH ALTITUBE FIELO

3 RACK p 1.5 40, 500 FAR

PMAX 3.94 2.97 3.93 2.67 3.91 2.59 3.90 2.30 MEAN 3.26 S.D. 1.25

PEFF 4. 8C 3 .6 4.71 3.19 5.18 1.71 c.33 .26 MEAN 4.44 S.D. .74

IAF 1.22 I17 1.20 1.20 1.32 1.43 1.62 1.85 MEAN 1.38 S.C. 0.25

ELEOENT TYPE C!NTRACTOR MALH ALTITUDE FIELD

3 Rj ( p 2.2 45,000 NEAR

PM AX 3.13 1,9 3.09 1.B0 3.06 1.58 3.02 1.55 MEAN 2.41 .D . 1.04

PEFF 3,75 2.56 3.76 2z49 3.67 2.37 '67 2.25 MEAN 3.07 S.D. 1.19

DAF 1.2 C 1.32 1 ,2? 1.38 1,20 l.41 1.21 1.45 MEAN 1,30 S.D. 0.10

E LE T -, N TYPE CCNTRACTCR ACH ALTITUCE FIELD

3 R 8 2.2 45,000 FAR

PMAX 3.25 2.05 3,22 1,88 3.18 1.69 3.14 1.62 MEAN 2.50 S.D. 1.08

PEFF 3,84 2.55 3.t15 2,45 3.77 2.35 4.3i 2.72 ,"EAN 3.23 S.D. 1.28

OAF I 1,9 1.24 1, ?0 1.31 1.19 1.43 1.17 1.68 MEAN 1.32 S.D. 0.17

E L 00E , INT TYPE CNI RACTOR YACH ALT ITUCE FIELD3 RACK P 2.7 59,000 NEAR

PMAX 2.46 1,49 2,,44 1.31 2.41 1.25 2.29 1.12 ME-! 1.85 S .. 0.83

PEFF 3.33 2.35 3.37 2,22 2,88 1.83 2.72 1.57 MEAN 2.53 S.D. 1.03

DAE 1.35 1.5P 1,31 1.70 1.. 1 1.47 1,19 1.39 MEAN 1.41 S.D. 0.18

SLE?"7 T TYPE CCNTRACfCR ' FC ALTITUCE FIELD

PALK B 2.7 59,000 FAR

PMAX .40 1,55 .4' 1.34 2.38 1.,8 2.24 1.11 MEAN 1.84 S.D. 0.81

P!F 1 3. 5 ," 44 2. ' 1 I 2.80 1.77 2.86 1.70 MEAN 2.46 S.D. 1.01

OAF 1,46 1.57 1.17 1 ' 1.18 1.38 1.38 1.53 MEAN 1.36 S.D. 0.15

B -8

Page 152: to hear-field and far-field sonic booms - DTIC

-

T!. , I TY s CCNfR CTr4 MACH AL T I U C E F I EL

4 .CK A 1.25 40, 89 NE AR

2 X .34 ?.! 3.Q 23 3,2 2.75 3.4- 2.70 MEAN 3.10 S.c. 1.02

PEFF 3.0 . 4, ;1 .12 5.13 5.49 4.15 MEAN 4.5-l S.c. 1.57

2AF 1.55 1.39 1.47 1.34 1,4 1.42 1.61 1.54 MFAN 1,47 SF;. 0.09

E T Y0 , NTq AC TR YACH AL3IrUCE FIEL

4 A K A 1.25 40,89'9 FAR

Pm 4. 3 ,7 4. I d .45 4.17 3.25 4.17 3.20 MEAN 3.76 S.D. 1.27

P",f-F 5.74, .3 7.22 5.57 7.2' 5.34 5.>0 4.20 MEI N 5.70 S.D. 2.12LAF 1.3? I . b 1.73 1.64 1.75 1. 4 1.39 1 , I utAN 1.51 S.U. 0.20

LE"-T TY"E CCNT2ACTiOD ACH ALTT [ E FIELCLACK 1.50 44,599 NtAR

PIAX .33 2.60 3.32 ?. 54 3.35 2.5J 3.2" 2. .0 MEAN 2.90 -.D. 1.02

PEFF 6.17 4.77 4.q6 3.65 4.30 3.27 4.16 3.10 MEAN 4.30 S.D. 1.68

OA 1.8 1., 4 1.50 1.4t 1.28 1.31 1.26 1.35 MEAN 1.48 S.D. 0,24

ELEv , T TYP- CCNT qACT CR MACH ALTITUrE FIEL0

R A K A 1.50 44, 599 FARPA X 4.02 3.12 4.C0 3.C5 4.02 2.97 3.97 2.76 MEAN 3.49 S.D. 1.23

- FF 5.33 3,,34 5.58 4,.33 6.98 5.11 6.54 4.57 MEAN 5.30 S.O. 1.97

)AF 1.33 1.26 1.39 1.42 1.74 1.72 1.6c 1,66 MEAN 1.52 S.D. 0. 9

ELEPENT TYPE CENTRACTOR IACH ALTITUCE FIELC

4 RACK A 2.00 49,599 NEAR

PMAX 3.3H 2,28 3.36 2.12 3.33 1,95 3.22 1.80 MEAN 2.68 S.D. 1.09

PE FF 4.72 3.56 4.40 3.12 4.39 3.00 4.20 2.82 MEAN 3.78 S.D. 1.40

OAF 1.3q 1.56 1.31 1.47 1.32 1.54 1.30 1.57 MEAN 1.43 S.D. 0.12

ELE PINT TYPE CCNhRACTCR "m ,C H ALT ITUCE FIELD4 PACK A 2.00 49, 599 FAR

PMAX 3.39 2.47 3.38 2,26 3.36 2.09 3.22 1.90 MEAN 2.76 5.D. 1.07

PEFF 4.4t 1.22 4.41 3.13 5.19 3.74 5.46 3.80 MEAN 4.18 S.D. 1.5f

OAF .32 1.31 1.30 1.38 1.55 1.79 1.70 1.99 MEAN 1.54 S.D. 0.26

EtE;c-NT TYPE CCNTRACTOR MACH ALTITUCE FIELC

4 RACK A 2.70 65,000 NEAR

PMAX 2.24 1.28 2.40 1.47 2.38 1.30 2.36 1.25 MEAN 1.84 S.D. 0.79PrEF:F 2.8 5 1.96 3.14 2.16 3.07 2.02 3.18 2.17 MEAN 2.51 S.D. 0.97

OAF 1.2e 1.53 1.30 1.47 1.29 1.55 1.35 1.73 MEAN 1.44 S.D. 0,16

FLE £T IYPE CCK.TRACTOR MACH ALTITUCE FIELC4 RACK A 2.70 65,000 FAR

PMAX 2 31 1.36 2.41 1,58 2.42 1.37 2.39 1.32 MEAN 1.89 S.D. 0.79

PEFF 2.9C 2.10 3.90 2.78 2.86 2.63 3.02 1.98 MEAN '.88 S.D. 1.16

DAF 1,26 .,7 1,62 1.76 1.60 1.92 1.26 1.>O MEAN 1.55 S.D. 0.23

-p-

Page 153: to hear-field and far-field sonic booms - DTIC

ELEWEN1 TYPF CCTR.ACTOR 'ACH ALTITUDE FIELD

4 RACK e 1 .3 38,000 NEAR

PMAX 3.OC 2.50 3.00 2.60 3.07 2.50 3.07 2.46 MEAN 2.77 S.D. 0.92

PEFF 5.5C 4.40 5.09 4.16 4.19 3.16 4.20 3.18 MEAN 4.23 5.0. 1.56

DAF 1.83 1.76 1.70 1.60 1.36 1.26 1.37 1.29 MEAN 1.52 S .D. 0.23

ELEY NI TYPE CCNTRACTOR MACH ALTITUCE FIELD

4 RACK 8 1.3 38,000 FAR

PMAX 3.99 3.24 4.16 3.38 4-5 3,24 4.15 3.19 MEAN 3.69 S.D. 1.25

PEFF 7.78 t.22 7.75 6.28 5.99 4.52 5.6 3,90 MEAN 6,01 S.D. 2.32

DAF 1.95 1.92 1.86 1.86 1.44 1.39 l..6 1.22 MEAN 1.63 S.D. 0.30

ELEPENT TYPE CCNTRACTOR MACH ALTITUDE FIELD

4 RACK E 1.5 40,500 NEAR

PMAX 3.03 2.40 3.02 2.35 3.06 2.29 3.00 2.13 MEAN 2.66 S.D. 0.93

PEFF 5.32 4.24 5.79 4.62 5.27 3.93 3.94 2.90 MEAN 4.50 S.D. 1.70

i AF 1.76 1.77 1.91 1.97 1.72 1.71 1.31 1.36 MEAN 1.69 S.D. 0.24

ELEMENT TYPE CENTRACTOR MOACH ALT IljCE FIELD

4 RACK 8 1.5 40,500 FAR

PMAX 3.96 2.97 3.95 2.91 3.94 2.83 3.92 2.63 MEAN 3.39 S.D. 1.2

PEFF 6.41 5.01 7.44 5.80 7.06 5.19 5.40 3.79 MEAN 5.76 S.D. 2.16

OAF 1.62 1.68 1.88 2.0C 1.79 1.84 1.38 1.44 MEAN 1,70 S.D. 0.22

ELEMENT TYPE CCNTRACTOR MACH ALTITUDE FIELD

4 RACK 8 2.2 45,000 NEAR

PMAX 3,32 2.17 3.14 1.98 3.11 1.83 3.08 1.72 MEAN 2.54 S.D. 1.04

PEFF 4.26 3.C3 4.33 3.17 4.99 3.54 4.74 3.12 MEAN 3.90 S.D. 1.45

D4F 1.2e 1.40 1.38 1.60 1.60 1.93 1.54 1.81 MEAN 1.57 S.D. 0.22

ELENENT TYPE 'CNTRACTOR PACH ALTITUDE FIELC

4 RACK 8 2.2 45,000 FAR

PMAX 3.33 2.30 3.27 2.09 3.23 1.91 3.20 1.73 MEAN 2.63 S.D. 1.07

PEFF 4.33 3.20 5.39 3.87 5.79 3.99 5.14 3.37 MEAN 4.38 S.D. 1.67

DAF 1.3C 1.39 1.65 1.85 1.79 2.09 1.61 1.95 MEAN 1.70 S.D. 0.27

ELEVENT TYPE CCETRACTCR PACH ALTITUDE FIELD4 RACK 0 2 .7 59,000 NEAR

PMAX 2.33 1.32 2.47 1.52 2.45 1.33 2.42 1.28 MFAN I.89 S.D. 0.82

PEFF 2.95 2.C2 3.22 2.23 3.16 2.07 3.23 '.14 MEAN 2.63 S.D. 0.99

DAF 1.27 1.53 1.)0 1.47 1.29 1.55 1.34 1.68 MEAN 1.43 S.D. 0.15

ELEM7T T YP E CCNTRACTGR MACH ALTITUCE FIELC

4 RACK p 2.7 59,000 FAR

PMAX 2.31 1,36 2.41 1.58 2.42 1.37 2.9 1.32 MFAN 1.89 S.D. ".79

PEFF 2.9C 2.00 3.90 2.78 3.86 2.63 3.02 1.18 MEAN 2.88 S.D. 1.16

DAF- 1.26 1.47 1.6? 1.76 1.60 1.92 1.26 1.50 MFAN 1.55 S.D. 0.22

i i1

Page 154: to hear-field and far-field sonic booms - DTIC

FL L IE r4YP CC TRACTOR W ,CH , TI TUCE FI EL C

RACK A 1.25 40,899 1E ARP4 1AX . IC 2.75 3,0:3 2.67 3.14 2.75 3,10 2.63 MFA 1 2.930 . .4

PEFFF 1.2 1.13 1 .43 1 .4 1,4 ,lj I.'l 1.16 MEAN I. 30 S.D. 0.44

!,AF C.4 C,41 0.4?, 0.42 0.47 0.42 0.4!, 9.44 MCA% 0 45 S.FD. 0.03

F LE 1K T TYPE CCNTR ACT CR 1'ACH ALtITU, t ! E L FL

PA ' K A 1 .25 40,899 FARPMAX 3,71 .3? .L; 3.13 3.73 3.23 3.70 3.12 MEA4 3.,45 S.D. 1.12

PEFF 1.2 1.03 1. 31 .0 03 1.35 1.05 1 .37 1. .r6 FA\, 1.19 S.D. 0.40DAF 0.35 C. 31 0.36 0.32 0.36 0.33 0. 3 7 4 M [AN 0.34 S . . 0,0C2

ELE NT TYDF CCNTRACTOR MACH ALTTU fi FIEL[

5 9ACK 1.5C 44,599 N ARPMAx 2.51 2.10 2.5 2.17 2.46 2.13 52 2.13 MFA4 2.32 S.D. 0.76PEFF l 1q C.,4 1.24 0.91 1.25 0.97 1.26 0.97 MEAN 1.10 S.D. 0.3B

DAF 0.',7 C.45 0.48 0 .4 5 0.51 0.46 0.5, 0.46 MEAN 0.47 S.D. 0.02

EE L, N iYPE CCNTRACTCR M ACH AL r ITULCF FIELD

S RACK A 1 .50 44, 'i9 F,)M X 2. 9 236 3 .r7 2.6C 2.96 2.52 3.06 2.56 MEAN 2.79 S.D. 0.91PEcF i.0] '.,)7 1.27 0.99 1.28 0.99 1.31 1.00 MEAN 1.13 S.D. 0.3906-F 3. ,l C.3R 0.41 0.38 0.43 3.19 0.43 0.39 MEAN 0.40 S.D. 0.02

ELE VNT TY PE CUNTRACTOR MACH AL T I TIJ CE I E LOS AC K A 2.00 49, 599 NEAR

PMAX 2.29 1.2 2.25 1.76 2.22 1.73 ?.26 1,12 MEAN 2.01 S.0. 0.69PEFF 1.11 C.86 1.11 0.85 1.11 0.85 1.13 0.35 MEAN C-99 S.D. 0.34

OAF 0.40 C.47 0.49 0.49 0.50 0.49 0.50 o.50 MEAN 0.49 S.D. 0.Oi

FLE~tlK TYPe: CCKTRACTCR MACH ALTITUCE FIELC5 RACK A 2.00 49,599 kAR

PMAX 2.3C I.o? 2.ze 2.01 2.31 2.02 2.28 1.07 MEAN 2.15 S.D. 0.69

PFF; I.C C. 15 1.0- 0. 64 1. 11 0.85 1.12 0,85 MEAN 0.97 S.D. 0.331)4F 0.47 C.41 0.4h 0.42 0.48 0.42 0.49 0.43 MEAN 0.45 S.D. 0.03

rtENK'Nfl TIP[ CCNTRACTOR MACH ALTITUCt FIELD5 RACK A 2.70 65,000 NEAR

PMAX l. . 1.29 1.52 1.25 1.55 1.24 1.59 1.23 MEAN 1.40 S.D. 0.47PEFF 0.79 5.6,1 0.79 O.t,2 0.81 0.62 0.82 0.62 MEAN 0.71 S.D. 0.24

DAF 0.51 C 48 O.-2 0.4q 0.5? 0.,0 0.51 0.5) MEAN 0.50 S.D. 0.02

ELE0[NK TYPE CCNTRACTCR MACH ALIIUDE FIELD5 RACK A 2.70 65t000 FAR

PMAX 1.61 1.40 1.60 1.35 1.59 L.3 5 1.5q 1.35 MEAN 1.48 S.D. 0.48PHFF 0.79 C.61 C-40 0.62 0.82 0.62 0.8? 3.63 MEAN 0.71 S.D. 0.25

DAF 0.4q C.4L. 0.50 0.4' 0.51 0.46 0.52 0.46 MEAN 0.48 S.D. 0.03

B -. 1I

Page 155: to hear-field and far-field sonic booms - DTIC

ELENENT TYPE C[NTPACTOR MACH ALTITUDE FIELDS RACK 8 1 .3 38,000 NEAR

PMAX 2.87 2.29 2.9P 2.38 2.96 2.33 2.80 2.24 MEAN 2.61 S.D. 0.18PEFF 1.29 1.03 IL34 1.05 1.36 1.06 1.38 1.08 MEAN 1.20 S.D. 0.41DAF 0.45 C,45 0.45 0,44 0.46 0.45 0.49 0.48 MEAN 0.46 S.D. 0.02

CLEMrNT TYPE CCNTRACTOR MACH ALTTUDE FIELL.5 RACK B 1.3 38,000 FAR

PMAX 3.37 2,92 3.44 2.96 3.36 2.87 3.44 2.90 MEAN 3.16 S.D. 1.03PEFF 1.20 C.' 1.22 0.94 1.24 0.9b 1.28 0.98 MEAN 1.09 S.D. 0.38OAF 0.3 C.32 0.36 0.32 0.37 0.33 0.37 0.34 MEAN 0.34 S.D. 0.02

ELE?\JI TYPE C-NTRACTOR MACH ALTITUDE fIELD5 RACK p 1 .5 40,500 NEAR

PMAX 2.37 .93 2.44 1.99 2.36 1.94 2.47 i.q6 MEAN 2.18 S.,. 0.73PEFF 1.17 C.q2 1.18 0.9? 1.19 0,93 1.22 o.q5 MEWj 1.06 S.D. 0,36OAF 0.4q C.48 0.48 0,46 0.51 0.46 0.50 0.48 MEAN 0.48 S.U. 0.01

ELEPOENT TYPE CCNTRACTOR MACH ALTITUCE FIELC5 RACK a 1.5 40,50 FAR

PMAX 2.84 2.39 2.93 2.45 2.82 2.39 2.94 2.41 MEAN 2.65 S.D. 0.87PEFF 1.16 C.90 1.18 0.91 1.20 0.91 1.23 0.93 MEAN 1.05 S.D. 0.3tDAF 0.41 C.39 0.40 0.37 0.43 0.)8 0.42 0.38 MEAN 0.40 S.{. 0.02

ELEPENT TYPE CCNTRACTOR MACH ALTITUDE FIEL;RACK 8 2.2 45,000 NEAR

PMAX 2.05 1.72 2.06 1.71 2.07 1.70 2.04 1.69 MEAN 1.88 S.D. 0.62PEFF 1.04 C.79 0.99 0.7& 1.02 C.77 1.02 0.76 ' AN 0.89 S.D. 0.310o F 0.51 C.46 0.48' 0.44 0.49 0.45 0.50 9.45 MEAN 0,47 S.[0. 0.01

ELEW CNT TYPE CCNTRACTOR Y.'CH ALTITULE FIF&.75 RACK P 2.2 45,000 FAR

PMAX 2.2C 1. )7 2.20 1.91 2.22 1.1i1 2 H8 1.86 MEAN 2. 06 S.c. C. f '7 7PEFF I .Ii C.89 1.08 0.8 1.8C I.06 ) 1.06 0.79 MFAN 0.96 S.0, 0. 4OAF 0.53 C.45 0.4,4 0.42 0.48 0,41 0.49 0.42 M" AN 0.46 S.U. 0.04

ELElv NT TYPE CCNTRACTCR MACH ALT 1UdED FI L,A(K P 2.7 59,000 NFAR

PMAX .6 I. 0 1.5') 1.27 1.60 1.? 1.61 1.25 41AN 1. 44 S. P C.4PFFF 0.P 8 1 3 0. , 0.64 0.b3 G.64 0. "Is J.64 M fAN J3. 73 4.1l, 0.25DAF 0. 5 C.J 0.5? 0.5C 0.5 , 0.51 0.' 0.51 MrAN 0.51 S.}. 0.(Ol

SL E N T TY OF N IRACT L]R "iL i LT IT 1 iELC

R 'AK f .7 59, 0 0 EARPMAX . 5; 1. 10 1.5, j. 35 1.57 1.31 1.59 1.35 MEAN 1.47 .D. 0.4,PEFF 0. 1 C.61 O.00 0.52 0.8 0.6? 0.32 0.2 4F AN 0.71 S.'. (- i5

DAF n.4 C.S4 0.51 0.41 0.52 0.46 0.52 0.4. M[A'4 0.48 SD. 0 3

Page 156: to hear-field and far-field sonic booms - DTIC

L EM"4E I I YPE C I %rTRAC T 9R u - ALT iT UDE F I FL D6 RACK A l_?L 40,899 NEAR

P FF 3.)8 2,75 3.14 2.7 3.22 ?. i( 3.34 3.IP MEAN 3.04 S.D. n .9

1) 0. H8 0.87 0.91 0.19 0.92 O.-O 0A95 1.01 4EAN 0.9? S.D. 0.04

ELFENT TYPE CfJ IRAC MAC- 4LTITUnE FIELD•. O AFCI A l.d 0~ ° FAR.4-.2 40, H90 FAR

PMAX 3. R 3.43 .79 b.41 3,87 1.44 3,, 3.47 MFAJ 3.63 S.P. 116P'-IF-F 2.83 2.6P 3 22 3.' 3 3.74 3.S9 4 .?1 4t.00 E.EAN 3.42 ,. ! .?1) AF 0.74 0.78 0.85 0. 92 0.97 1.04 1.011 1.15 MEAN 0.94 ).D.0.15

FL MEN TYPE TA J4TQAC T OR VCH ALTITUDF FIELn6 PACIK A 1.5 44,5119 NF 40

PM4AX 3.18 2.16 3.23 2.71 3.19 2.77 3,, 1 ?. 7 MFAN 2.98 S.,. 0A, 7

PE'F 2.62 2. 32 2.74 2.41 2.79 2 45 ?.0,4 2.49 MEAN 2.58 .D. ).A

'4F O.A2 0.84 0.55 0.86 0.87 0.8,1' 0,il9 0.90 MEAN 0. ,7 S.). 0.03

EL F 4E NT TYPE. CIN TRAC TO)P MAC H ALTI TUDF F!ELD

6 RACK A 1.5 44,59, c 0R

PMAX 3.53 3.41 3.57 3.44 3.61 .40 -,63 3.40 MFA,,A 3.50 s.D. 1.11PEfiF ,73 2.4? 2.8Z ;.'. 2.87 2.74 3.35 3.1k MEAN 2.93 .D. 0,, 04

O)AF 0.77 0.71 0 . 1 7. 0. .79 o.81 0.92 0.94 M t-AN 0.8! s. n. o,(r

ELEM F N T Y P COJNTRAC TOP A C i 4!11 TUDE F I FL P6 R A CK A 2.0 9,', 9 NEAR

P M4,x 3.00 2.58 2.97 ,.s4 2.q 2. 4 1 . 'I 2.57 M FAN 2.77 S9,. 9*. f'PI:FF 2 .',* .8 2.0 2. 0 .51 2.20 2.,, 2.24 MF--AN 2.36 *9, 9,76OAt 0 9 ,4 o .84 10.87 0.... .. 7 9,.').H7 RAF 0.,0.5

mT EM TYPF 1 P14RAL Ti2 MAC" H AL I T OL F! ' E t :j2Pi Al [ A 2 .90 6 +1 1 F4

P A 2.46 2.Ho 2. 4 2.79 ,2.9 2.1 0 ,4 1 M F Al ', 2 .P,) .9. ' .

P , ! 2.4 2. 16 ,. 6 ,, . 1 7 2.4'; 1' , 4 2. 2 M,.,N f, S.D. I). AN

OAf O..2 .t) 0.84 9.78 ,. ,, 18 0 81 .19 MEN E .A1 N..r, o

fLF Mf N TYPE C INTRA(. )q MACH A l I T 00 FIEI 0(I R AL, A1 2. 7 65, 0 )c, Nf A,

P,4 AX 2.01 1 . 4 , 2, 0 1 . 4 2.1 1 . t.. m,- M AN 1. Q .. t,-4

FT F- 1. Is l.5a 1.81 1. 9 1.84 1 .2 1. 1 1 4 MtAN 1.7? 5.. 7?.OA) 0. h 8~ 60.8H1 0.91 S. 6~ O. 0 (U') 0-.P8F AN I . H 0 S.. 0.91

fL ME NT TY F )NTRAC i R wA'IH At I T u!)Df, F IDL0e RACK ;t 2. 1' O5. 990( FAR

9MAX 2.1.' 2.() 2.12 2,) . ... .2.9 '.15 2.3 i , AN 2.9} S.' . , t

P!(I- 1.I; i.o(i 1.:2 1.1 1.97 i74. A' 1. 4f MAN 1.7- 5.9. 7.4o3 a-f oi. Is A. ?A .- , 9. 986 4. 9.99 9.9t MEA o g .

Page 157: to hear-field and far-field sonic booms - DTIC

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD

6 RACK B 1.3 38,000 NEAR

PMAX 3.06 2.63 3.16 2.72 3.15 2.70 3.02 2.57 MEAN 2.88 S.D. 0.94

PEFf- 2.77 2.45 2.89 2.54 2.95 2.58 2.97 2.61 MEAN 2.72 S.D. 0.8A

DAF 0.91 0.93 0.',, 0.94 0.93 0.96 0.98 1.02 MEAN 0.95 S.D. 0.04

ELEMENT TYPE CnNTRACTOR MACH ALTITUDE FIElD

6 RACK B 1.3 38,000 FAR

PMAX 3.63 3.30 3.64 3.32 3.63 3.36 3.67 3.36 MFAN 3.4 S.D. 1.11

PEFF 2.59 2.26 2.66 2.31 2.73 2.37 2.79 2.42 MEAN 2.rl S.D. 0.8?

OAF 0.71 0.68 0.73 0.70 0.75 0.71 0.76 0.72 MEAN 0.72 S. D. 0. O

ELEMENT TYPE CONTRACTOR MACH ALT[TUOE FIELD

RACK B 1.5 40,500 NEAR

PMAX 3.08 2.63 2.89 2.57 2.35 2.54 2.91 2.56 MEAN 2.75 S.D. n.R'

PEFF 2.64 2.31 2.61 2.29 2.b6 2.33 2.73 '.38 MEAN ?.49 S.D. 0.31

OAF 0.86 0.88 0.QO O.Ac; 0.93 0.9? 0.94 O.9! MEAN 0.91 S.D. 0.0

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD

6 R!ACK B 1.5 40,500 F A

PMAX 3.35 3.09 3.41 3.14 3.39 3.13 1.'4- 3.13 MEAN 3.?7 S.D. 1.04

PEFF 2.50 2.18 2.58 2.25 2.6 2.2Q 2.7' 2.3S MEAN 2.44 S. D. ,).70

OAF 0.75 0.70 0.7h 0.71 0.7,1 0.73 0.78 0.75 MEAN '.7i S.. 0.II

ELEMENT TYPE ,CONTRAC tR MACH ALT ITUDE rl Lr

6 RACK B 2.2 4 000 ,NEAP

PMAX 2.67 2.3' 2.71 2.42 2.71 ?.41 2.71 Y.3q MEN ?.'h S.!. 2.92

PEFF ".16 1.9 2.22 l1.9 2.26 1. A7 2.2 1.,8 M'AN '. ' ) .D. *,

i LE 4f ! NT TYP F C ONTIR A C T rIR MAC H At T IT '9E fi I

PMA .i . 2. 7 Z S L ?.6') .43 ?6' 2.q4 "."o? MEAN 2.80 '..2. . :

Pt FF . ,9 .0 2) 2j j 0tc .3,4 )t, M[-A N 2.i7

a:A 0. 7 i o. 79 C. 74 1~.4 1 0 .76 .4 ' 0.70 14F A N, 7 7 ..

I .LE4E NT TYPE q0NI.ACTI)P MACH ALt I TUF) l UI r,

6 RA(K 2 2.7 '0,f AQ

P A .k 1 1. . QC 1. , ) 1. '101. 1 .+0. -A7.t .4P -) F

E L EM N T I yt c0Ni4 A( %,A 'Cn A L I I TO f I ft

P'4 A .2 1 ~ .2. 1. . 1~ 2.01 AN .i~

')A 0 0. I. 7'v I .. 1. 8 7 1 w- .~ 0 A, s - . .2-

Page 158: to hear-field and far-field sonic booms - DTIC

fLEMENT TYPF C'NTPACT tR MACH Ai- IT(T'pF FIELD7 PLATE A 1.?g 0, 89 F A Q

PVAX 3.18 ). 15 3. 16 2.0 1 3. 14 2 .,0 , 3 . 1 1 .g 1 kF AN .6! .' . (

P EFF 3.31 2,20 i.b. ?.4H 4o09 2.5,7 4.13 /' M : M.1 S.0. 1.27

)A F 1.04 1.07 1. 14 1. 18 1. 30 1.26 1.40 1. 31 V FA' ' , . . 0. I

ELEMENT TYPF C 6N TAC Tr0P MACH ALT ITUDF - EF.I PLA TE A 1.2, 4),'9 FAQ

P 4AX 4.32 Q. 7 4.32 4.0 4 . 3 2. 4 4. 31 2. 7 - McAN 3.5Q S.D. 0 !. 7

PEFF 5.77 4.0? . R. . 8 9 5. 1 7 3.15 FA"'.99 5.0. 4.S4

DAF 1.34 1.35 1.35 1. 34 1. 36 1. 3 1. 3h 1.40 mFAN 1.36 5.0, 0.(?

ELEMENT TYPV CONTA(-Top MAC 4 ALIT TTDF FI F P

7 P L AIt 1.5 44,-94 NIARPmAX 2.A 2. 06 2.83 2.,1 2.81 I . 90 2. 79 1 . FAN ? .4, S.. 4.1

PtFF 3.96 3.11 -1. 7 1 ?. Y9 "3 2.8q 3°73 271 wr-N 3.35 S..o T

)A 1.35 1.1 1. 2 1.4 1. 130 1.47 1. 14 1.4 ME AN 1.40 0.0. 1). P

EL EMF NT T YI) LONTA( T4 4.ACH AL T I Epf I F t 9)

7 PIATE A I. ; (4 '; q FAP04A.X 4.07 2.63 4.oJ 2.,.4 4.94 ,3813 4.3)2 .2 "7 AN 1.. .,". I. 3,

P3-. 5.' 3.r4 1*) 5 1 1. 57 62 5. o A . 371 M FAN .. 7) 5.0. .

OAF I. 4 1.5. .47 1.5 I . 1 1.57 1.42 1.6 0 MFAN 1.47 0. . 0. 0

ELL'ENT i Y E T2S,.T ACIT. . MACH A t I I l)E F IFt 07 PL-A TE A 2. 0 4, li 9Q NE AL

,mAX 3. I ?. . S2 .. 1 31 5 2.0 .,. o '" ,.0C( 0 -AN 2. 5 .. .P? FF 4.9h 3 .4 . , 1. 4 4Q .2 .. , 37: MFAN 4. 11 5.'. 1.'-2"F i. 7 1.h1 . I. 1.• 1., 1.4 1 .1 MEAN 1.47 S.). 0. 1

IL "E ' TYP T I -ZA' T N AA ri IU0) ELAT A 2.) ',,

AF I. - 1.'~l 1 .. O 1 ,3 1. I 1.42 1. - M AN .' S. . 0. 1i

LEE NT T yP T AT : A A Al TITI)h3 FT r

7 (! A I A . 7 ' T, ( A

0MAX 2.'0 1.11 ',. 11 2.6 i.E.! MEAN 2.!! S.fl. jA . - A .,.

3LEM~ Jy0 IjTAC2. TM~ A T I TU FI~

71 y .' 4<

~MA4 8 7 .12 ~.15 .31 32 . ~AN21 .. 0

Page 159: to hear-field and far-field sonic booms - DTIC

FLEMENT TYPE CINTRACTA'W I Ft- o7 PLATE 3 1.3 3,00O NEAR

PMAX 2.75 1.81 2.18 1.75 ?.78 1.72 2.78 1.71 4EAN ?.?6 S.I'. 0 g(0EFF 3.53 2.2P 3.55 2.?5 3.58 2.21 3.56 2.03 MFAN 2.Sq r)P. I. IDAF 1.27 1.26 1.21 1.?8 t.?9 1.33 i.2R 1.19 MEAN 1.?7 S.D. 0.04

[LEMFNT TYPE CFONTRACTnR MACH ALT ITUDE FI EL

7 PLATE B 1.3 3R,)00 FAQ

PMAX 4.31 2.82 4. 31 2 ') 4.30 ').A7 4.1) ?,60 MfAAN 1.51 .Dr . i .

PEFF 5.62 3.75 5.66 3.62 5.71 3.61 5.6 3.56 MEAN 4.05 Fl. 1.

DAF 1.30 33 1.32 1.32 1.33 1.35 1.3 1.37 MEAN 1. 3 . (.( .

Ei.EME NT TYPE CONTRACTtOR MACH ALT ITTIFE T E7 PL ATE B 1.5 40, g00 NFA

PMAX 2.)7 l.tll 2.36 1.Y5 2.59 1.71 ?. 3 1. tq FA , .1-, A.r N. )PEFF 3.62 2. 6 3 3.52 2.54 3.48 .49 3.92 2. A& Uf AN 3.05 %.r. 1.1CAF 1.41 1.57 1.38 1.4 .7 1.45 1.3 1.41 r' .43 A.N.

[-LEM[ NT TYPE (lNTR AC, TFnR MACH AL T ITUn- FI FL7 Pt ATE B 1,9 4,'0 AR

PMAX 4.04 2.53 4.0? 2. 13 4.2 2 .27 '.': 2.22 MrN ,.1 ,.F. 1. ,

PEFF 5.2 3. ' 7 .4 3,.53 J 11 3.54 5.- .i i., AN 4.(,4 ,.2. 4

OAF I. 37 1' . 1.34 1.51 1.37 1. 5( 1.' 4,) 1.S o 'i -AN .4 5.. '4

i L EMENI TYPE CONTRALT{CP mACH ALT _ITDF fIEt D

7 pt AT t B ? 45,0( 0 N-ARPMAI 3. , 1 2. 42 3- . , 17 3. 38 2. ? !.37 *. 7 4F AN -1. 7,.1"

Pt FF 4. 97 A.'s 4 7,- 1. 9 4.,11 3i_' el A? N 4 .> k)1

2A F 1. .3 1.4 L 4 1., . AN I.4a .* "

t EAL NT Ty F C N T A ' vAc . t T 11. T K

7 PP ATA , 2 ' x , e

.F 1..,, 1 , . , ., 1. . i - '.' * 3) "'1 AN , .. 4 t 4 • "

L ! IYK. 4t. , T- I I I-) A " . , .

A i-' 7l 1 1, 1 ~ .41 .v1

r~~~~ T it A * 3 72 2. 1~ . ' 2. A T T

If ~:NT Ij A~) T U TA T'. " \ tII ~ 1V

1.~l U!)4

Page 160: to hear-field and far-field sonic booms - DTIC

L ' F C IT 'CT L r I IT F I-L~

(LATI TS 40, , ) N ARIm1,X .7 1. 1 2. .34 1 H )I 1. 9 A 1 A '4 2.35 S. . .C 90i F C' 2 3 34 3,-i 2. 4 .39 2.73 M -A% 3 . S.L. 1.21

1F .I1 1.17 1.22 1. 7 1. 3 1.4. 1. 7 1.49 FA\, .. 31 S.,,. 0.14

Lt F , TY;F (Y c N [ TR, 7 TH ALf I TUOF f IV:LP QL AT2 1, .25 40, 9 FAR

PU, t .7 .42 3.40' 2. 4.'') 2. 4b ) ,. ) 2. 1q v A ' 3.16 So1). 1. 28

P2F F 3 5. 3 2 5.75 3.92 v [A', . S.P . 1.730 AF 1,3. 1 1 40 1.55 1.41 1.5d 1.4 4 1. 0 Ar A. 1.4 S D. . 0.09

L TY -: C(NTRn T 2 C j(H ALT I TUf C- i - I -LF

P L T T 1.50 , 9 R

P'AX k4 5X 1 . 2 45 1.4 n 2 42 1 , 2 4" 1.72 -FA'4 N 12 S~u. 0.16PFFF 3.z , 27 C . 2.2 7 ,1- 2.2J 31,04 2.51 AN 2.95 SJ . 0.99,F !.35 !.t 1. 14 1.51 31 1.45 A.27 1.45 ' . S C. C.09

rLkE N , I " , \TQ ACr"R. ACH ALT ITUp- F IEL:AT. 1 , 44, t99 FAR

0 NA 44 2 3 41 2 17 FA 4 2.85 S. . 1.11?>F~2 *~ . -~c7 3. 4. 3,? 'UAN .~SD 1.45

7 1. 14 .5 1 Ai1 1.4 . 1.48 A' 11. S .2. 0 7

-Lr' f- %, T T-, f T.° , ",-, ,iC A l * f, j-I 1 [

Ch ALAi-:a' t .7 al i " ' " 7 . -, < , 1 .. - , \FN ) ! ,, nR

-c~. , 1 . " 1,: ?.;; ;a 1,"% '-..01, 17 i {-AN 231 S.D. 2. [0S ,. .- 3 , ' aC, At 3T1O S D C 1 014

.I ;l i, I . ) 4 ' . ".,Oq .. * *

F A. N 31 1 1

*, a , , . 4 'A , *.. , S t 0. !5

i 2 S 1

.!u ' .2 ! , " . ' : i . " - ', ,, .A ', , ; S . , . C . "2T 3 I 4~ T

" I , " '~ o .J" a- "i 1." - "4A\F I 2t *

'A A .i5 0 I I

1 ' A-"~'A 7 7 .. 1

Page 161: to hear-field and far-field sonic booms - DTIC

N - TY;I t (CNT IcTcl OCH 44KW_&M

PLATT P 1 .3 3 3, 3nO NTAR

PM.AX ? i 3 4 1. 3 2.3- 1 55 2.30 1.63 MFAN 2.00 S.P. 0.72

PtFF I 1 3. 17 . C C 3.i5 2. 3 ,.1? 1.2 3 MEAN 2.59 S.D. 1.01

D F I.3 1. 1 . , .1 I q 1.3t l.?- 1.36 1.18 MEAN 1.20 S.i). 0.08

L,- NI Tl TYPE CC\TR ACT R 4ACH ALTITU[F FI L r

I[AI 1.3 3H i,0Q0 f

PMAx 3. -' 7 ,43- *.Q- 23 C 3.65 2.l 3. 6 2.11 4 -AN ?.93 S.D. 1.22

P7FF I -- .1 3. 3.10 133 5.01 .31 MFAN 4 . ,? 6 .D. 1.613. -.) I. O i I .1 1 3 1q I. 31 1.55 k t-AN '4 1.48 S.D 0 10

: .-NT Ty F CCNTRAC TO-! iAC - ALT I TUL, , t I LC

4LI 0 1. 40 0 N7 AR, ' .2 i. 1. 2.2'4 1.5- 2.2! 1 . 2. 1 . 62 MEAN : .12). I . S8

PEFF . ,. . .A17 2.2 O.S 2.24 2. 2s l.lb MFA" 2. 7' S.F. X . *

JAF 1 1.> 1 .. 2 1.37 1.3) 1.:7 1.35 !. f M ',N 1.4 2.,. 3.39

L ,I T C T' AT,,F

PA 2.1 ~ .2 53 4 2.21 3 . .23 m EA V. 3 s 1.

-t.~:. .~ .1- I ..? ' I. j 4 -4432 lA . S) l41)AF 1 37 ..', I . 1.4 7 1. 34 1 1 1 .50 A>.'J .. . ) }

' T -. .5, ff3 ':'P

, fa ,[ U l.K; ,2.t,2 1 7 2".> 3 . , . . 7 . .. .

I*F 1. ! i. .2 1.-.? 1.2' 1. I ..,-3 1. u, A 1. 3 S,> . ,2.,"

LL ,-" T T'P t , ' T , A #L I ITL ' t i L:

II 1

, ', . .N I •,

• , • , • . •

Page 162: to hear-field and far-field sonic booms - DTIC

I f 1 i T F I F I I t I'

., ~ ~ ~ ~ ~ 1 N ,- t1., z " , ¢/

""i I • ' .I I J ' ; ' :7 . 2 ,"F * -

[Al 1 .1 l ' 1. 7 1 .c I 1." " 1 l " ., fr t 1 7 "1 ",. ". .24

.'l : ., " , -. t * i.2 }I j .. .. ~ . " : 7( v , *1 ' %. 1 .17'

A . I. " . 4 , 2 \' F' I. - , _'

v-< IA

-141

. * . . '.-1" . , 1 " '

3. 71 341 1

/ , • ; .. . • .•

.1. , .. .. . . . . . ,* . ,. ..1, ..

tC 31 1 7 1j.

I. I

Page 163: to hear-field and far-field sonic booms - DTIC

Ix I T I 1 1-

PfF .c 2 -; , ,

L f LT T TU L~T~ CA~ iITFc~ A

['A 2} i.;42.4i 1o.%2K1l 1K4 2q}.4 °77 [iA, ,:°24sr. .pFUF S, I ,l .€ , -'.c. 2 .S& 3.4 ,4, 5.i 3o <' y{A 3,K7 ft ,3 KLAfF i.2 1.44 1.c,] lot4 1,45 I~ c Il V-.t'3 FAN 1. ,S .' 3. U

[lEIFN1 .. ... Ct hK ACT, " A L t Tb t s

F Nq Iyr A , LTI I

<'/rax 1.£r- l*. ¢ t c 1.44 1.47 1:. - i. i AN 14 - S. C 4

' FF- ? ;C(r 2K 2.44 2.7 76 2.c0 'fMh 2.35 7

CAM" 7 1 2 1 17 1.t'l 1. i I 1 1 S

IH NT f f1P CCNB ACT( tr 11TI .I"L

L T I T T F L

t I: c-r" I-' 1 2 2 ", 1, e A r I ,c

A\' (;. c 1.>& ,.21 l.: 2.23 1.K% 2.7> IKg WfrAN 2.)? S.C. 4.?7

LFF-F 2.2 -N T 1,S 2.4 2.7 1 Q? 4CTt, 2IL8 S.C. E If4FAF 1.27 i. I1 1.7( 1.45 1.3 1.71 1.21, j.41 PEA 1.-+b S.C. 2.24

[LbI[,NY I' PE C[lfIPF ' , tllltL[E r ULU.

2.2 45 C' F .,'AX .17 1.44 ,14 !.4C 2.12 1.U, 2.?7 1.50 E lKP S.C. 3.h'

PU-FF 2. -? ; ,.9 29 4! 245c 2.2 2431 2 .,,4 FAN ? .& .C. ', .

v~. 1 i4StLL't-N 1 1'&F: (CC19AC1LR P , H ?TITlLrE F I Fl,S i.F: 2,? 45,2,0C FAP

Ax 2. C I t. 1 2 . C 1 7 1.47 2. 2 C 1.4 V F A , 1. 4 S 0rC. '. F2W~b 2.7> 2.e-C 2435 2.3b 2.55 2., 2.71 2.53 FA , 2,54 S.0. -3.3?

AV . 7 1. r 1.2 45 1 ; 2 1 1.4 C P 1 l A N 1 .42 S. C . 2

Lr f N I IPL C t PAcIcp P, 'AC F tL ITUEF FI L

'A 1 ; ! 1.X-( 1.1 5 .SF .I I. ,37 1. IC F N 1.41 S. f. C.5 7

2V .U14C I.4! 1.-I 1..1 1.73 1.22 14 F , A IN2 . %SC. (0,. 0

Clit .F 1v2!7 1.! 1 C IT' 4AC- - ALT I, I.-C i t

P;KF 2 2.7 59, F rAP' A X 1,. I 1 * 4 :

- 1 o + I C S . 7 P 1 1 5 P F A N , 1 . 6 S {J*

'", A ' 1.'4,2.C 2.31 2.24 145 2,14 1. 5 AFA, 2, .P S.r,. . 71I M 1. 14 .' 4 2 1 0 F .NS.C.(.24

R. -20

Page 164: to hear-field and far-field sonic booms - DTIC

7- 1 4 - r

.. . .1,-, 1 3 a S?I S

Ii"' NTT,; *\[ TP JT -. eLj u E : E . '

1. 3 1 19S9'

5 1 S ) . 7' Cr .1 1. 1~~5 4 FO f I i Y S C 1i 1; A,4? i.-1'. 1. i. , I. /", C.33 FAN 1.49 S > 9 . .r

, . 1. 1.9 1 7 1. 7 .7 .55 N 1 A N - SC. 1,-.54

f i j. 7 - 71 12 ! "1.4H 8 2. 24 2. 09 E A f 2.51 S C 0 P 4, ., i A. .:.42 r.2, F. A F& 1.4., S.C. C .2'

C , A TU P ?vAC- t IITLUE F I I- l' F A . C 4' ,5 F A7F ,

X . C 4

J I¢ I.: ] 1. .1 7', 7 1 .,5 I .~ ; qC !v A 1 .74 s .r 5' 7Ir ..- , 1 1 l ! . C 1.1 0C 1. YEAN 1.23 S.r .-) 15

f 1 -"I ([ RA(- T P N A[(H L TL E i F I L-t r

IC A 2.CC 4,5 F A,"%, , . I 1 ,.44 1. 7 .,q 1.57 1.7 AE , 1,51 S.F. C . 5

I . - t.2? 2.l 2. I l.-C 1.P. I1.77 PoEA 2 11 S P. A.70A,: 1•c, I 1 l i C I . 1 - 1 . A, 1 . 21 1 . F A N t, .40 0. . I1

I f- . 4 T 1 3 t T 2 1 U ) I 40 I .F L t2

t [ F NT;, 1TNI CC ACT(k kF fi IU[ F FI'LRI . 4 ; A N.70 ,.?6S000 C. 4

V K-F 2.4; .4C .F -,34 2.24 ,1 c, ?.37 2.28 PFAN 2,33 S.r. 0.74

r, 1.7 1. 11.Th 1.0? 2.0L 7.00 0A . 5 S.C. 0.11

-t kf N 1 LCiNT9 ACTP PCP A b L I MIITUCF FIIL rI P CF A 2.7C 65,000 FA

I s X I14 - 1.4 2o' i. . 7 ! 2 7 l l , , ' I(; . I, 1 3 S .C. 0 .44DU:F 7.U ;. 2.(? 2.e 2.42 2.35 2 25 2.1 F A N 2.48 S.,. 0.81

TA f 1. I I I F.t ..F 1) C. C I. I . 1.2 1 84 v ,AN 1.86 S.C. 0.04

B1-21

Page 165: to hear-field and far-field sonic booms - DTIC

17P r LTUT E FL L9i£ 3 AAI 0 NF AP

'EfF 1,7L 1 1 . c E.5 1.'3 t . 1-27 h, F4,A 1.43 S.D. l.4

-0F 0-FA .491. ()9

F -'- V k' C 1 U QC IC- A CH bL [ LU E F I F1U1

1, Ri 1F p£ R . 3 AR0 00 kAR

PIX 1.7& I.qP 1.7 1.65 1.71 .'.1 1.72 1.55 'IA5 1.6q S.C. n.54

) .. I I o1 2. 1 C ., 2.??1.3S0 N 2.2? S.C. 0.71

AF F .4 ; 1.4c 1 a l L I 1 -4 11 1,23 mEAN 1.11 S.C. u.0S

F L c75N T IYPT C CI K, AG C, AC- ALT I TUEF F i- &LF

10 421 1, 4)0 5,9)0 NEAR

P'AX 1.7 1/1 1.741 1. 1.73 l.48 1.73 1.45 E , , 1.64 S.C. . 3

SEFF 2.15 2.2 ?.i1 2.0l 1.97 1.43 1.8? 1.76 YFAk 1.54 S.D 9.65 o

FrA 1.2 1.1c 1.21 1.14 1.13 1.3C 1.11 1.21 MEAt 1.2 S.C. 9.10

tHI FNCNI I PH CICC, IC . .L!ITU E FIFLr

Ic R!'M0 f 1.5 45,00 A RA

P iAX 1.70 i .7 I . 12C 1.4 1.2 1.41 1.17 NFAK 1.67 S . -, .4

OEFF 1. I" ? ? 1. 157 1.5? 1.SC 1.44 1,71 6 AN 1.54 S,. :).0 6

F 'F 1.!1 1. 4 105 1.1. 1. 1.?5 C.97 1.2, 1EAN 1.14 S. C .12

E 1 Fly T T0PE CNII ACIC. C tH t1T1TUI E IUO I

1 iBF 2 45,000 A R

0 'X 1. 1j6 . 1 1.1 1.44 1 1. '7 1.56 1.3? FAP\ S.4 .. '.0

PLFF ?.C 2.1 1 1.4 1 .85 1.3 C .7? 1.2L EA N 1.4 S .f. 0,61

[~As 1.30 1. 1.22 l. 4 1.1k !.: 4 1.10 1.2> FaN 1.26 5.0'. .C

fl F v N I PJV F CCNV <AC Tr P 'A C H 1 T I TlL F fI f I1~10 P 1/~)*000 !E 4

A' .x I.2 F . I.2 C .c2 1.22 C. 1? 1.1 0 . 3 A' I.,( 'l 1' F4 7

CF-F 1 2 . C R 1 * 7 .1 42 1 825 1. 3 C 1.2 1 . 1 3 b v AN 1N I 2 R ' . 0 1

[ I I C. I 1 1 14 1.44 1.C1 1. 4 11C 1.2 v FIAN A .N.fl. I .1I E kVu N1 I I y C N I P.CT k K !-A(CH P l I I TOL,[ I IL t

Ic I00 £3"O NF <J 02 AR

b X 1.1/ l . 1.17 . ? 1.11 1.00 1.16 .0 A 1.11 .q. o. .

A rf l.B l ( lf7I 1 .,7 1.S q 1.4 1 .4 1 ) 5 rfA) 1 4 12 I . P. Y iI I

Al - 1 ! 1 F.C 1.67 1 .1-- 1.4" 1 1.46 1.36 Af r,. ' S.C. 0 . 12

0-22 '

i I I 1. Y I 7 1 1 f .( " s r. 1

Gn

Page 166: to hear-field and far-field sonic booms - DTIC

ELEFK T TYPE CCNTRACT'R MACH ALTITUOE FIELD

11 P L AT c 1.25 40,099 NEARP41X 3.1 q 2. 3.16 1.)3 3.14 1.O 3.13 1.86 ME' . 2.54 S.1. 1.0P EFF 4.56 2,97 6.46 2.07 5.77 2.11 7. ,) 2.02 MEk,, 4.06 S. . 2.5-

DAF 1.4 3 1 94 2.04 1.01 1.83 1.12 2.36 1.08 MEAN 1,50 S.D. 0.5e

EL=N N TYPE C NTRACIT1R MACH ALTITUDE F IEL)11 PLATE A 1 ?5 40,899 FAR

PMX 4.32 2.23 4.32 2.22 4.32 2.21 4.31 2.20 MEAN 3.27 S.D. 1.5]PEFF 7.37 3.' 1 7.46 3.38 7.42 3.23 7.91 2.68 MEAN 5.37 S.D. 2.8eANF 1.71 1.bl 1.73 1052 1.72 1.4f 1.33 1.22 MEAN 1.59 S.D. I.2(

5LEP:NT TYPE CCNr TRACTO} WACH ALTITUDE FIELD11 PLATE A 1 .50 44,599 NEAR

P4AX 2,3'0 1.47 2.78 1.i1 2.76 1.78 2.74 1.77 MEAN 2.29 S.D. 0,8.PE FF 4.30 1.99 5. ' 1 78 4,98 1.'1 5.23 1.70 MEAN 3.39 S.D. 2,0(DA)F 1.54 1.06 l7,2 0.98 1.80 1.03 1.91 3.96 -EAN 1.40 S.O. 0.4'

ELEMLKT T),' d .TRACTOR 4ACH ALTITUDE 1LC11 PLATE A 1.50 44 599 AR

P MAX 3.99 2.1 3.97 2.12 3.95 2.08 3.C3 .07 MEA% 3.04 S.D. 1.3f9 EFF 6.33 3.95 6.37 2.9 3 t.19 2.75 6.29 2.01 MEAN 4.49 S.u. 2.3c,AF 1.5) 1.39 1.60 1.3,1 1.57 1.32 1.60 0.97 MEAN 1.43 S.D. 0.2;

ELEr £NT TYPE C[NTRACTO' MACH ALTITUDE FIELD11 PLAT A 2 .00 49 5-99 NEAR

PMA X 3.53 1.79 3.51 1.79 3,49 1.76 3.48 \.75 MEAN 2.64 S.L. 1.21P EFF 5.55 2.60 5.38 2.49 5.52 2.33 5.60 1,67 MEAN 3.89 S.O. 2.1fDAF 1.5? 1.46 1.53 1.40 1.58 1. 2 1.61 0,95 MEAN 1.43 S.D. 0.2'

ELEV',-T TYPE CCNIRACTI)R MA H All JIUDE FIELD11 PLATE A 2.00 49,599 FAR

PMAX 3.54 1.'7 3.52 1.91 3. 5 !.818 3.48 1,85 MEAN 2.71 S.D. 1.2CPEFF 5.68 2.'.,4 5.37 2.58 .5? 2.42 5.60 1.16 MEAN 3.95 S.D. 2.11DAF 1.61 1. 16 1,53 I..15 1.5,3 1.24 1.51 0.95 MEAN 1.41 S.D. 0.21

ELM-NT TYPE CCNTRACTL,'l 4ACH ALTITUCE -IELDII PLATE A 2. 70 65,rn00 NEAR

P4AX 2.65 1.50 2.64 1.44 2.62 1.39 2.61 1.38 MEAN 2.03 S.D. 0.9(PEFF 4.22 2.07 4.01 1.9'l 4.12 1.9Th 4.18 1.38 MEAN 2.98 S.D. 1.51O)AF 1.59 1. 7 1.52 118 1.57 1.15 1.60 1.00 MEAN 1.42 S.D. 0.2(

ELEM lNT TYPr CCNYRACIOR H ACH ALTITUDE FIELD

11 PLATE A 2.70 65,00 FAR

PMAX 2.60 1.65 2.58 1.58 2.57 1.5? 2.5L 1.47 MEAN 2.07 S.D. 0.8'FEFF 4.0 1. 3 .3.95 1.35 4.06 1.14 4.12 1.36 MEAN 2.H9 S.D. 1.5(DAF 1.57 1.17 1.53 1.11 1.58 1.14 1.61 0.93 MEAN 1.34 S.D. 0.2f

B - 2

Page 167: to hear-field and far-field sonic booms - DTIC

FLEMLH TYPE CONTRACTOR Mw"

11 PLATE B . 38,0) NEAR

PMAX 2 79, 1 81 2.78 1.75 2,78 1.72 2.78 1.71 MEANi 2,26 S.D. ,(

P FF 4 7C 2.01 4.75 1.86 4.93 1.77 5.05 1.62 M'1 N 1. ,4 S.). 1.9,

AF . 1.11 1.70 1.06 1.77 1.03 1.82 0.95 MEAN 1.39 S.D. 0.!

ELE cNT TYPE CCNTRACTr)R MACH ALTITUDE FIEL 0

11 PLATE B 1 3 38,000 FAR

PMAX 4.3! 2.20 4.31 2.14 4.30 2.10 4.30 2,08 MEAN 3.22 S.D. 1-5

PEFF 7.32 3. ")4 7,40 3. 12 7.36 2.97 8.22 2.'3 MEAN 5.26 S.D. 2.9'

uAF 1.70 1.47 1.72 1.46 1.71 1.42 1.91 1.17 MEAN 1.51 S.D. 0.2'

ELEmEc-NT TYPE CONTRACTOR MACH ALTITUDE FIrLD

11 PLATE B 1.5 40,500 NEAR

PMAX 2.5i 1.81 2.50 1.75 2.49 1.7L1 2.47 1.69 MEAN 2.12 S.D. 0.71

PEFF 5.62 2.34 5.44 2.23 4.96 2.10 5.50 1.52 M, A 3.71 S.D. 2.1

3 F 2.23 1.29 2.17 1.?7 2.00 1.23 ?2 3 0.90 MEAN 1.67 S.D. 0.5'

£LEMENT TYPE Cf]NTRACTIR MACH 'LTI rUDF FIELD

11 PLATE B 1.5 40,500 AR

PMAX 3.96 ' 06 3.94 !.93 3.91 1.95 3.89 1.93 MEAN 2.96 S.o . I,

PEFF 6.25 2.91 5.99 2.78 6.15 2.50 6.24 1.85 MEAN 4.35 S.D. 2. i:

DAF 1.58 1.41 1.5? 1.39 1.57 1.13 1.6' 0.96 4 f AN 1,42 S.D. 0.21

ELE4,J NT TYPE CENTRACTOR MACH ALTITUDE FIELD

11 PLATE 2? 45,000 14LAR

PmAX 3.34 1.85 3.32 1.84 .33 1,83 3.29 1.82 MEAN ).57 S.(). I.I'

PEFF 5.34 2.71 5.08 2.62 5.22 2.4, 5.29 1.85 MEAN 3.82 S..). 1.9<

"AF 1.60 1.47 1.53 1.42 1.58 I.3 1.61 1.02 MEA!A 1.45 SoD. 1,2(

ELE OIKT TYP CONTnNACTOR MACH ALT ITUt- I IEL P

11 PLAI B . L 5 000 A IARPMAX 3.58 1 . 15 1.56 1 .8 3. 94 1.83 5.?52 1.i1 YFAN 2.71 S.;. 1.2

P F F .65 2.51 6,,4 2. 4 4 5,55 2,33 5.2? l.b5 4EAN , S.). .

DAF 1.5 1.34 . 10 1 . 3 1.57 1.; 1 5 I 81- AN l.4 S.ii. 0.2

rL E ,I N y T Y CNi IT) MACf) t 1 A TC A F I L (1 l -_;'T !,7 4 , .. )i' N" AR

P M AX .6 !.4o 2.6 1 1.. 3,- 2. t)) I. I,, I2:' 1. 37 14 ,q ?. 0<' S ... .

pI FF 4.24 4'., -. "7 1. )L- -1 l,'I .. 4 1. 33 Mf AN . . ) S. . .<

A .1.59 .4 1.5 2 1.4 1.57 1 . I . Mt AN 1.43 ,.,. .. 21

f L f NT yPi C N fIV 9ACTD C'H. ALT I 1I 4DF I rlFLI'II . L A ! t- fi,;> 7 i I , t) l) (I f A 4

PMA ?.5'4 1.46 4. 1 2.56 1 3 82 55 1 . 3 t m AN, 1.9 S.,. 0 .

FF 4.00 1.1I 3 4 X.05 1 .7 4. 10 1.23 MEAN 2.86 S.). 1.5'

DAF 1.57 1. 'I 1.5 I1.30 1.5 > .24 o l 10 1AN 1.8 S.. 0.2

--

{$ - 2

Page 168: to hear-field and far-field sonic booms - DTIC

ELE l NI TYPE C N TP cr 4 M' A 1 LI If 1 J [)f IF IL12 p LA TF 811 -.sNI %R

PM X 2.t) 3 1. 11 2. 1.0 1..3 2[ T. 2.,5 7 4 ' .12 .

P F F 4OH 3.7? 4.2 3. 38 4.0') /4 A',A 3.1 s. I *1 1. 21)aF 1.5H . 1.,4 k. A !53 J ., 1. 7 . .

FLE M NT TYPF CfNT ACT )k i, T T ULf F 1 L,

12?P1 'L r E A 4 H 4 ) T f ,PMAX 3.',' 2.12 3.7 2.11 3.77 2. 3.17 .8 Alt 2. )4 S.D. 1.2{P F ).93 5.45 5.94 S.35 5. 11 4. 1 4. 1C 3. 5 .N 5. 1 . 1.7OAF 1.57 2.57 1.57 2.54 1.41 ,2.,29 i.o(' 1.1 ME> (A' l. SD. 0.5

{ LF. NT TY'? C Nr ACfT , uA(m A lI |rujo C [rF I

12 PLAT 3 44, 59 N ARP4A 2.43 1.o5 2.41 1.55 2.3 1 .4) 2. 15 1.48 MFAN 1. 7 S.). 0.71P'YFF 3.4? 3. 1 3.41 '.3 ',.2i 4. 2 . ',) 4.25 MEAN 1.79 S. D. 1.31)NF 1.42 C . 2 1.4, 2.18 1.I 2.wi 1. )4 2.9A 4MAN 2.31 S.I. 0.54

FLE I\T TYP r ¢TQA CT )R MACH ALTITU F FIELD

12 PL[L[ A 1 .50 44, 599 VARP4 AX 3.41 1.Th 3.46 1.)2 3.41) 1. )0 3.44 1.8 8 MEAN 2.69 S.). 1,1PzFF 5.41 4.09 5.79 5.23 5.65 4.,-1 4. 3 5 4.25 MEAN 5.15 S. D. 1.61DA 155 .m 1.67 2o73 1.63 2.6 11.'42 2.27 1E AN 2.06 S.D. 0. 5,

LLE ' T T YP L C ;NT AC T:R mLCH ALT ITUDE FIFLD12 PL&[ AT 2.00 4 ,5 9 NrAR

P!AX 3.0 1.U H 3.28 1.&4 3.35 1.62 3.04 1.60 MEAN .15 S.D. 1. ,PE F F 3.44 3.2 3.85 .6 4.21 3.)4 4.29 4.04 E N 3.8' S.;. I. ,Da t 1.11 1.L3 1.25 ?.[ 1.49 2.43 1.41 2.53 MEAN 1.77 S.>. 0.5k

E NT IYPE C NTRACTOI ' A Ci ALT ITUIf f I ELP1 PA A.IA 44, 599 FAR

PMA 3. 1<" 1. '5 3.8 1 1. 13 . o . 7 C .5 1 .68 MI AN 2. 09 , :. 1.0*rF 4.44 4. 1 1 4 .q 4.55 5.0) 4.,, 4.s .4 m-AN 4. )7 S.. 1 4

AF: 1.432. 1.5, 2.6s 1.55 2.si; 1.', 2.47 MA 2.> S.t . .5

L F'o IN T I y r;NTR A TqR A H At TIf T LP E LO

12 PIAT A ,.7 0 5,'A0 N ARP Ix . I 15 2. , 1..- 2.31 1. 3 2.29 1.2) mEN S. S. . 7, TPEFF 2.87 2.4 39.8 1.23 3.,4 3.43 3.Ss 7.3 MFAN .27 S.,.OAF 1.2 1.79 1.46 2.2b 1.58 2.?) 1.e5 2.M EAN 1."9 S. 0.

L N T T y2. 1 N R AcIA l] A . L T I TUtt f I E L C1 AT, A . J ,230 FAR

PMtAX 2.29; 1.',3 ,2.:' 1.52 2.26 1.42 2.25 1.3 % M AN 1.7 S. . 0 7

P FF i. 73 3.2 3. 1 3.' ,.51 .. ?) 2.82 2.58 FAN EA . 4 S.D. . Ii>'A F ,,o3 2 . I ,

. 51 3 1.55 2 .2 } . 1 . 4 AN I 5 . 0. 0. If

Page 169: to hear-field and far-field sonic booms - DTIC

ELE 'ENT TYPE CCNTRACT(iR M A4l-' ALT,12 PLATE p 1 .3 38,000 NEAk

PAX 2.43 1.61 2.42 1.52 2.42 1.4, 2.42 1.44 MEAN 1.'17 S.b. 0.7_PEFF 2.45 2, 3 2.52 2.47 3.22 3.02 3 .62 3.32 M EAN 2.83 S.D. 1.0,D AF 1.01 1.26 1.04 1.63 1.33 2.0,', 1.50 2.30 M -A 1.52 S-D. 0.4?

ELE NT TYPE- ACNTRACT() R MA,' ALT IJ ) F 1 EL 012 PLAT L 1 .3 38,000 fAR

P MA X 3.76 1. 9H 3.76 1.9 3 5.75 1, ?1 3.75 1.39 MEAN 2.8 4 S.D. 1.3,PEFF 4.1 3.59 4.0? .37 4.42 4,20 5.16 4,-?7 MEAN 4.22 S.D0. 1. 4

D) F 1.11 1.i3 1.J7 1.75 1.I3 1.-J 1.39 2.53 MEAN 1.63 S.D. J.5'

-LEM'NT TYP7 CC NTRACT'Y; vACH ALTITUoF FIELD

12 PLATE P 1.5 40, 500 NEARPA X 2.19 1.s2 2.17 1.5 ? 2.15 1.4 2. 14 1.43 MEAN 1.i3 5. . 0.6PLFF 3.07 2.13 2.92 2.45 2.6B 2.5 3.34 3.12 MEAN 2. 5 S.Dt. .9 .9.

OAF 1.41 1.3R 1.30 1.61 1.25 1.77 1.56 2.19 MEA" 1.50 S.D. 0.3.

-LE , N T FrypE C'NTPAT'R MACH ALTiTU F [EUL

12 PLATE 3 1.5 49,500 FARP ,X M 3./t5 1.93 3.43 1. N3 3.41 1.75 3.30 1.73 vFAN 2.60 S.1. 1.1

P FF 4.1 ? 3.t0 3.93 3.37 3.80 3. 3t 4.35 4,)9 F A N 3.4 S. 1.2(

) F 1 1.21 1. 7 1.6 ' .16 1.11 1.) 1 .29 2. 3o AN 1.5,1 S . 3.4'

LE :,T TYPE C TACT Q AA A" ALT ITUSE FTFLD

1 L A T E .2.? 45, 0 00 t-A,P4A 2.91 1 . 79 2. )0 1 .5 2.,11 1 .55 2 . s I6 4 A N 2 .? S -D

rF 3.67 3. 1 3.49 2 1 a 3.31 2.7") 3. 10 2.s9 EAN A . .t. 1. ' . I., 1.2 1. 2 1.2- 1 71 i.1 1 ., 3 i, 1.', M AN .45 N.I . .,3.

L T-f \"v CVNI ACr '4 A CH AL Tr IT '1 P1 ' J- ? .2 45 ,A

1 3 . 7 . i' 1.5 2. 1.5 3. 7 1 3, .. A 2 S. v. 3,.

2.F..\f ' 3, 2 . 1 2. " "- , - ' I .

V T at A; A T I ' ', ") "

9.2 .I .. ... . 1g '9 2. ' 1. K. A .- 1. 7 : 1.

1A1

i_ A

Page 170: to hear-field and far-field sonic booms - DTIC

PY . [ A AL rfrj

2T M 74.3 1 .

1 '4 2

I L . .2. 497, 4

P F " . 9 . . , 9 . 5 . 'W) *. 3' .4) 2.91 FAN J.J S.2 . 1 16

TK! N' AL T u 'i IFL

4 77]

kA F AL~ 6 . 0 g' q I

.A 2 .,7 A. 2. .3.1: 2 >3 3. *1 4A4

3 3 .2. ' ." 7]

.2... 24 3 14 F A 1.05W:FF "- t "" {. • *" > 7'" *: !' b ..:: . 7 ' ' 4 1'4FA 5. 5i S,* 1.'q3

1,t t NT

T.22 .\'rxAJ C xY AL TIL.-I r4I,

4~R,- .-- 4 4 2 . 7 f 4 2 . 0 S . 0 9

1 2 LAT ",."... .... '-

.7"5 S,. 2.96, A: ,, :.: , '.h , . 7 ,.17 <,. - . . 1 ' f AX, 14 S. ). 1 73

.14 S2.t ; l >. < ' f: (; !k ', 1+ l '-A:'{ k l~1 2 -i .'( 4%S 1)4

'I -y r T[ I LA TQ':1-, . 1 t .. 2.! 1. " 2.14 1 .25 'fl 1 1 ... ).66,4. i , .j 9 . . .Q ".'#- i. 2.7 'P A N 2.42 S.t., 0.46

ST A[ ) t L., iQ 1. - 9 1 , 2.1. 1.2 1 .2 S.v. 9.64

.1 7 S.'' 3.

Page 171: to hear-field and far-field sonic booms - DTIC

t' - . ... E l I T YL T I II I --! LE "; N I T Y O'( rr'- T-cT,( ,4'n A C A T IT~J I I:-L

L P )TE , RP AX ?.O 1o-,7 2 3 3 . 3 2.231. ,MFN\.7 5 S.

1 "' . . . .A AN 4. ('4.3 3 'A, F At 4 . I.

4 k 'I* I.

AX 3.1 1.' 1.' 17 3 34~ 1.3 3 1-7 13 FA'. 2.5 S...1

4. PF . 5 4 9 S . Z 76 4. 1 4. 12 . 7- 'AE," 4. to S. . .43D, 4 F 2 .4. 2. .4 22 3 2. 3.1., 1. 2 2. 89 FA,, . 5 S.:. , 7

L E? NT TPj C i NT AC T JS 'ACh ALT I t ,I I F L13 PtA E B . 40, 500 A;.

P X 3.2. C 1.72 3.18 1.4 1.95 1.6 3 14 i .2) 3 _A s. , . . 1?P ; F F 5 3 4 ) 4 5 7 9% 1 . 1 5 . 7 6 - -) C , 5 S .4 .-i ME A N . 2 S.1 . 3OAF .' 3. 11 1 2 3. 2 .82 3.17 2.19 2,72 'AN 2.55 S.). 2.37

LE - NT TYP( CCt'%T MAIR AC H A L TI T j FI L13 K L A3 5 4 , 5,00 5 J AR

P AX 32 > 1".7? 3.18 1.')3 3.15 1,',- .1,4 1.55 fa 2. 3 r 1.. 1)a,

P - 4. !i 4 .5 3. 5.73 9.3 5. 4.4 . MF&, ,. F2 4•, 4 . 44

,F 1.7 .1! 1 ?73 2 5 1 . . 1.59 2.22 . S . 1.75

:LE T TYP: C 2 T A T 1 ACH 'AL IT r I L". .. •.4 " )I :

PbFF -> } 4.11 5 q z > .. 1 9 • .' 4.31 i -. .L U -,.?, FA . 11 .,, N. 1. i4, AF , 1. , 27.53 I 1 2 7 . 61 1.5-4 2.-.3 1.5 2.15 o ) 'w- N 2. 3 5.21, . .,;

1 3 7" , 2 . 45,, ;3 AtS 2. )) 1.~ i I, 1. , 2.14 1 .44 2 4 1.. f-, 2.: s. V. .,7

,- F F ;. 37, . ?b , * ' ,5 3 -7:, '. . ' . , 2' A i ! ' ,. >, 3'..,'. 1. t,

3~ ;i% T r 3.: : '[;I T ; ,t :, ) * :{[ [:

I L7 3[ 73: 3 -t •i,' 3.3' ( U: '4 ! / 5A. ' "" • 1 ., '.. /s X l ! ,)4 i" . i 1 2.' .... I 9 :' [ - . : * ., 7A

-4 AL1IT

3 A1IA I S

Page 172: to hear-field and far-field sonic booms - DTIC

5 NT y r NkA A A T' I T 77 1

P >,x 2.54i 1 .[ , A I .3 N. A R

,A FF ,',* 1 . )i1 i.'i'5 D.2) "2 , 5- ' .7 F;qAN, ?.K 5 .1. 1.74A, - *.9' 3 .1 ' 1.I I.q * 1 1. [ :.85 9.34 M - '.: [1 3 %,. )1 7

L N T T w' C.:T ,ACT ! A AL I , FIL

FF 4X ., 7 2. 3 4 . , 57 .1i 2 3.29 2.12 2. ' S.o. 1.28. . ... 4 . : 1 . 2 4°X, 0) S , 2.

F 1.3 1.9 i..,2 3 1,:.23 1.57 1.35 1.&,3 IU . AN 1.32 S.1. A..19

L TI Ty~ Y NI 2 ;~ CA A A, I) i t JPt T A i 4g_) 44, )9 N PIA,

S . ) . 4 7 1 7 1 A'4 2. C .70

P FF 2.75 1. 17 3 > I . 33 1 . 4 3 .,1 1.52 1EAN 2.40. S. . 1.10

C . 7 1. .5 5 * 2 2 . U AN I . 16 S.? 2 2.

T , ... ...- ' ,H At y ITUI FV L?

3. l 1 1. " 2.. ... .E , .59 3

74 4 1. .3 31 3 1 2. 3 3 .7 F % § j .S, 26

I 1 . 13 1.2" 1. *' 1.2 1 , 1 1 93 AE A 1 2 11 S3 'r 0 .l

L vE NT Ty - .WNT A,- U rACH AL - 163E FI L?V. PL 'T- A 4") , 'i N ,aR

- ' 2.7" , 1w? 2.7 . . } , 7) .A. 2. 17 S.t. P . --0

F 1.D " !.'7 1 '' , 1.1) 1. V , 2 2 4,Av 1.35 1.'. 4 '.

- 1 T, Ty v :' r' : A C T 1, TU '. ,L I; L [

:t2~~'T TY ~ AC4 -LI&J -~I,, , ,7. [ .-,". :' 7VS .-: , " [ g 2 ' }. 4 A 2].? . ) . . J. 7

7 1 7 2 74 4 A 73.. i 'F . - , , 1 . 7 4 . , 5 '- ,! . ,. "2 sw . 2.33

7~ 3 33 1V 1.5 ., , J I. ; 7 3)1. .4 * I F'AN ?. &0 S.. ,443

. , ," 4N 71 -s. " .. 4 , 4 EA\1, -S9.

L N T T y A T A . A T I G! , L I,

T rP ~~~~~~~~ ~ ~~~ ,, ., .,. " ,7 ";- , 2 : .:' r N 5 ' S 6 3

:,'-ri. .X ; I. "," . }, . , }. f l. * ".. }. 2 [A'i .*.65 S ! . i 46

;.*,F~ ~~~~~~~ ~ ~~~~ 4... .1 .: ',: ,,O . .1 . 2 . S i. t.5I

Page 173: to hear-field and far-field sonic booms - DTIC

L ' N T T" N L L T F L

S L T F 1.3 3 1 I)0 0t

p'4AA .? .7 . 5 2 1.6 1. )7 1.6,3 63 4EA .. AJ 66

P % ,. 4 I 7 . . 2.'7 , 1. 02 f AN 2.1 . .1 .P6

S 1 3 1 1 4 1 3 ? .l~7' 4. E 01

A N T [ R F UH ALT TL F FI

14 PL A T 1 .3 . 20 fAR

PUA" '..5, 2.13 3.' 2 2 n7 3. . ) ,3 5,14 2 1 I V4 74 S 1 .3

PEFF 4.6', 2.s? 4 34 Z. 7 3.9k 4 .43 3.6' 2.63 L A 3.34 5.1). ,38

I . 3 . 1, 1 C 1.13 1. 1 :15 1 3 1 .12 SI .

F LE rT Ty'L C C T ,AT, '-A ALT ITt1[) FI L C14 PL AT E 2'I. O :. E R

P A% X .l 1. 73 ?1.4 1 , 2.1 1. i I1. ' b,2 1izA, H.87 S.D. Q.'3

P -FF 2. 1 1.71 2.6 I ', 2.4 1,8 3.15 1 155 [AN 2,A H I .i;. .42

1.15 C.> 1.24 ( 40 1..3) 1 5q AEA . S. P. 0.23

L- 5 T T r T~ I T AcH AI L ICL14 PL,",T .l g 4$', bO. !A

P~~AP L A. T. 4.T D.0 A.' 44. .

~F 3.1 7 . i 3.- .19 3 72 2.' 5'~ i'0 . .

' 1F 2 1 1 9 1 3 1 1 3 1 . , 9' -5 S. * *

L ", " ' CL T4 ACT>, N, [Tf LI

S2. ,2 l. 1 2. 5. 2.5 1. 5 1 7 ',4 AN 1

-. 0 ~~431 1 ~ 44 C A.~ N 1 P '1

5 --, 1 1 2, -, ,, 1 18 , , 1

T y y'! 0~ .,N T A T v-' 't; Ll T i i ;!:

AF X 7 2

i' " T ' ' ' AR

1~ 7

A

" "-. . . .7

- .* S. . .

, , . ;', ' , i " : , , - , • : , ' • '* • -

Page 174: to hear-field and far-field sonic booms - DTIC

, T F C T : Ar :F M A' A[ F i f ;F F [

? I . *1 4 1 5 t. m~ AN 1 3 S E. 7 0)~ 3. ? 3,, 4. , . '3 ,$ -! :,',7 3. +¢ 3.'4 'Fr 3.11 S.! . 1.20I * .7,' ?,l)i Ji I ,, 170 , '. 1. ( , 1 .ii '.;A, K. U S.j . ,} 31

~~7 ? I S ~ (h 3 1 F: ,T fT ' y. "T C, T - : f T T t, r!

, A * .2- 4 ,, AS 2 i 2 .3. I 1 4). t. )- .,, 1. o 'FA\ -. ' 3 S.4, 1.117'-~~~~~~~ S -$I< '7~c~~

*tF i. ,. 1 _u?.79 1,,t" . 1.1-3 2. '2 'EAN 2.0 7 .). 5R

-'' -I [fY' (,-j',Tr- A(, I '+F~II ALV IT,'& I [ L'i

S P I F- A 44, A94. . ... i . . .... *- i s ; l ' - ..."* FF , 2. -3 . 3 .e 3.? 3 4.3 4.43 A7 3.C S 1 . 0

r i.2 l i I -. , .1 2 ?.c7 2 .' 2.A - AN 2. 13 S. .4

y ( - .* R ,4CH ALT TLH F F "

V 5," f_,: *. $4'.. L , ";4 Q1-. . . 2 i 7 7, 7 2, 1.7L AN 2.27 S. . j. 9

, --9 . , . b !" 1 )7 .C2 'AFA 4. 40 S.' .c 1, ) ' 32 1. > 2:+ " ' - I , 7 36 F-A, 2,24 5.3. A.,43

1 N 7 Tl At C t AK-H L r [T I E L'F-X) -4, ')~ QR

- '-,1 ,. 1l. 2.-,1 1,' A I'AN .)O S.L. C.78S . ?. 1 3 . 4 3.'5 1.>? 4.J' Q .3 !A\ '.49 S. . 1.19

L NT T y T AC lT :ACH ALT IT L:'E FI [FLYcP ,Tb A ' 22 4 , L'4' T A

P".:' ', . ,' ,- j. ; ri 2, 3,7 1, , - .' 1,N 3 !F-A-, I, " .7

1- ; 'i .. A ".' I- . ) S

'AL ).4- " . ,"" 1. 1:o 2.> i 1.-i< 7 ' .' .'' 2.58 , , i AN 2. :2 57r . .,

A V; ' r. I CA~

" 3 ;- , 4 ; 3*-) .', 3.*I" & .,'t ,. - A' ? ,::.: 2 4 f It A:N .$3)9S ., . i. S

S ' , .i' )- , l1 ' ' -- < 1 -2 f N --7" c I { . t

I -

,wrm

XA -- __

i A-,

Page 175: to hear-field and far-field sonic booms - DTIC

F.L' N , TYPE -CNTRACT A ACH T IiD FIEl PLi PL AfE p 1,3 33, 0 0 NP.

1 2 l .1 95 1.$ .: 2 1.zt5 1.99 0 1.7 1. 8 '"AN -. 66 . . 0 8

PEF 2. 2 i.95 e.46 2 4 2 3 2.45 3. -3.2t M' N 7 .?. . ,

DoF . . k .65 2.1J 2." 2 35 M1AN u, 4 S.,. - .44

E .E " ,T VYp 1.NT, AC 'uR MACH ALT iTUCE F 1tEL

F5 PLATE 9 1,3 3e 4

P 4AX 3..11 1, '2l, 3. 07 i.7 4 3.04 1.72 2.78 1.70 EAN 2.39 S.1). 1. 0 0;FF 3.96 3.43 3 17 3.2 ,.30 4.10 /.98 4..66 FAN 4.r-"-# S.D. 1,40

),F ; 1,i.81 1_,.2.k 1.0 1.,2 2.33 1.7- 2.74 MEAN 1.80 ISD,. 0A53

ELEMMNT TYPE C 0NTRAT ti ?A -: A' T U E F. . E.

Bi 4DT 5 . 4 00 N A RP AX , B, 1.5 1-83 1. 1 .80 1.40 1.65 17 AN 1.62 S D. 0.55

PF .F 2. 7 .59 260 2 30 2 .5 2,46 3.15 2.: 1-1 M N 26' S. , . 8

OAF 1.54 i.65 1.42 1.42 16 1 .91 2 M.8 MEAN !.z,6 S.D. ".26

EllENI TYPE CO R AC R. ACH ALT iTUEE FIE DIS PLATE I 1.5 40 50 FA

P 4X 2.68 1 .77 2 . 1.6 2 .64 1,60 2 .62 1.57 ME N 2.15 SD. 0D8"

P F- 3.8# 33°8 3 3,3 3.47 3 17 4.if0 3A82 MEN -,58 S.D. 1.18

0)F 1.L 5 1.90 1.36 1 .8 i.9 8 1.56 2.43 MEAN 1.71. S D. -0.36

EL. EKNT TYPE CCNTV'ACT - W CH AL T f U':E F IELDLI

PlAX 2. , i41 2.-4 '.3, 3 o . 22 1.34 2.20 1.31 MEAN , 9 S.D. .73PEFF 3..1 2.34 3.09 2.60 2.38 2.36 2.64 2.4) MEAN 2.T7 .U. 09)

D4 F 1,46 2,, 1 - 38 1L91 1.30 1.77 1.20 i . E AN 1 . S.D1 0.31

ELtE NT TYPE CCNTRACT0R CH ALTIT -UDE FIELD

15 PLATE 9 2.2 ,5,000 FARP mAX 2.27 1.67 2.25 1.56 2.24 1.48 2.22 1.44 MEAN 1.83 S.D. 71

P: 3.47 2.98 3.2 2.74 3.07 2.51 3.09 2.91 MEAN' 3.01 S.D. .99

D4F 1.53 1.79 1.45 1.75 1.37 1.69 1.40 2.02 MEAN ',62 Sol,. 0.23

iELEMENT TYPE CCNTRhC .O'R MACH ALTITUDE FItLD.

15 PLATL B 2.7 59,000 NEAR

PMAX 1.7> 1.05 1.3O 1.10 1.78 1.08 1.7? 1.06 MEAN 1.42 S.D. 0.55P:-FF 2.41 2.20 2.95 2.3,9 2.99 2.71 2.55 2.65 ,"UEA 66 S.D, 0.87

DAF 1.38 2,09 1.50 2.35 1.68 2.52 1.61 250 MEAN 1. 6 S.D. 0.k6

CLE, KI TYPE CONTPCTOR HAC( ALTITUDE FIELD

I PRA I' 2.7 59,000 FARf 1 ,,%X 1.71 1,2 1.77 1.16 1.76 o11 1.75 1.09 MEAN 1.45 S.D. 0.56

PEFF 3.3) 3.11 3. 0 1, 14 3.12 2.76 2.39 2.12 MEAN 2.94 S.D. 1.04)AF 1,98 2.c- 1.97 ?.69 1.77 2.48 1.37 1.95 MEAN 2.09 S.D. 0.45

B-3 2

Page 176: to hear-field and far-field sonic booms - DTIC

i. ' T. 1 T.- - f F L f I-

F AAr C)

1 ,T *, T

L, .4: i-L, L 1!- L -C TH 7'

P . - ,77 ,. l 4 ~ '1 r TR ,i3-' q .l , - >'g S C.-

T A

t--.i N I-t t, I -

41 A. i,7

1 1 T Uj C C

1~ 5 A

• 1%,_o : . I T Ic "t.., '.: Lq r. . . . ,'. f % . . . [

,1 . ... " 7 , ." t . 2.0K f. 4 LU ,N I I S . , 3-~ . ;' ,. ~ a(: , (I -. I U ' [ L

I Pt A c A ).C' A0 , 3Q

[T IF,. T J,' I F1, : ( F" t I'I TL [ f i (

'' 1. % J 1. " 1.t 1.27 lo~c I.i 1.5q i.n7 DEAN , 1 S.C. ;'q

/IF f:t *'. ., j ¢ K1. . ' *1, 2.17 EA 2.3 S.C. 0.30

3 r i ,'l l'r' ,' T l' (ClH P , , 1 tlThUfF F IfLI7Il IAV A , ,7(' ,i'f)Qo AP

t . . .' " .? I .6( 1 1 ., ' 1. 17 4i l 1 5 S.C. C .4,M, [ :, '.t ,.,1 .l 3 P A. N 1.9 -1A E . 5 S. C. 1. 14

K2 4

B 3 3

I, e.-: :' 2 .1I2.a l.LE :.,"IEEP',27,2SC.0

Page 177: to hear-field and far-field sonic booms - DTIC

kf IA t 1'fL

I - Pl. ()I F A

P, -2 1 ' }, .957 2.t 2.1<. v. ! ,4.54 r[2' 52 A.D. 1.72 c

C r,'T 2k C Ti-ACTrUf NCt- #ltI~ II f.F 1-lLF-- i2 . - , F.

1 I .7 2 1.. 1 4 tF 6 -" 1 . S 1 2C .. C 4. 14 -3 1 q4 .3 A FN 1.77 S I .2k

* 7.t <. <U, 2.2 .2U 276? ? "1 NE' N 2 S S.C. 3. 1

tFv'[\I ",_ C N " ACTL N c- t i -TL rE p1fLC c

f- LLATf ,l, 0(, o0 FA i.

S.~ . . ,U:- l. . ' , 4 2_I.4f . .4? ,A1 1U4 ,.F ) 77

5F- 5.2C 4.7! 4,54 4.2 5. 4 4. 1 4.74 E EA, 'I+, 5 S 0 I.47 2. 1 e 2 . 1 , 1 . 7 2 I . q 7 3 , - N 2 . 4 , S F , 5 4 2

f L - I ,-P 1 C N P A C C.I , P ,' t ,LTI tl J E .I F1,tt

1r LA t T IQ 45,( , C)Q A P

PMAX: 1 .£& !7 - 1.C < 1 17 1. 3 1 1 1 *gC 1. C E IM f 1P 5N S.C. Cf4

PEF 7.5? 7 7 2.C 7.5 3.1 ?. . 2.4(1 MFA, ,.-,7 S.C. .1 ,

F F 1 .5 7 ( * .Sc 2.,C 1 .9 2. /i 1.65 2- 0 F , .'6 S. , ? A N 6

LLIV 1 ,Pl' CCLIP4C 1C IC, IIULF A TF p"x 16 L5 13 2.2 41 A ,09.S r

CF 4.:( 4.F1 -4..q& 455 4o q 4 1't 5.31 VF A 4 .l1 S.r. 1 6

<M 2,2' .2.C 2.t 2.35 ,.el 2. 7-72.5. ,F* r\ 2.,7 C IC. Q .7

L N I P (- 1A_ C Tf-t ACF tI I ! , f ItFL

. PL, 9 2 7 5, H,)0() N Rii 9, C . o Nr -

PEfF 3,64 2.7? ' -- ;.5 3.,q 2.5- , c4 ,2.49 ,A, -. S.r. L- .5AFr >. 7.j ]'.I9 a., 1.56 .U6 I1.,$H 2.7{ VfAN, 2. 2 S,.F. 0.6,

, I.' I~ IVO C C F .' t T LL LF HILf; I16 OL[ 41? 2,7 1 V),OOO AC

vAYt~a 1 .'72 1.12? 1.5 1.54 lUS Y.55 F.s A, 9 N .I S.n. .oPHIF ,.; € 7",>,? " .' .16- 3.1, ?':.HC 2. sR 30 IAEMC, 3.1. S.D. 1.1)

Jail"B2. 3 4 i d. P-. t, ....... .

B -3

Page 178: to hear-field and far-field sonic booms - DTIC

ELFMENT rYPt CN I RAC TOR MACH ALTITUDt :IELDl PLATE 4 1.2 4 0,R'9 NEAR

PMAX 1A9 1.56 1.88 .54 1.37 1.51 1.92 I.)S MFAN 1.71 S.D. 0.57PEFF 2.92 1.50 2.48 1. 7 3.97 1.38 3.69 1.37 MEAN 2.2 S.D. 1.19OiAF i.53 0 iW 1.54 G.9 1.64 0,91 1.92 0.9 MEAN 1.29 S.D. 0.41

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD17 PLATE A 1.25 40,899 FAR

PMAX 2.46 1.79 2.48 1.78 2.46 1.75 2.49 1.75 MEAN 2.12 S.D. 0.77PEFF 3.75 1.79 3.78 1.76 3.76 1.59 3.67 1.52 MEAN 2.70 S.,. 1.39OAF 1.52 1.00 1.52 0. 9 1 .53 ,.Ql 1.47 0.87 MEAN 1.23 S.n. 0.31

ELEMENT TYPE CONTRACTOR MACH AI-TITUDE FI ED!7 DLATE A 1.50 44,599 NEAR

PMAX 1.54 1.14 1.52 1.15 1.54 1.17 1.56 1.19 MEAN 1.35 S.D. 0.47PEF F 3.56 1.70 5.32 1.47 4.32 1.50 4.72 1.46 MEAN 3.01 S.D. I_.8RDA F 2.31 1.49 3.50 i-28 2.80 1.204 3.03 1.23 MEAN 2.12 S.0. 0.91

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FI ELD1? PLATE A 1.50 44,599 FAR

PMAX 2.21 i -. ' 2.20 1.50 2.20 1.50 2.20 1.51 MEAN 1.5 S.D. 0.69PEFF 5.07 2.06 6.36 1.91 4.87 1.82 4,95 1.65 MEAN 3.59 S.D. 2.19DAF 2.29 1.38 2.89 1.27 2.21 1.21 2.25 1.09 MEAN 1.82 S.D. 0.66

ELEMENI TV'E CONTRACTOR MACH ALTITU F I L17 PLATE A 2.00 49,599 NEAR

PMAX 2.01 0.94 2.01 0.94 2.00 r.97 2.00 1.01 MEAN 1.48 S.D. 0.72PWJ 3.57 1.69 3.73 1.42 3.40 1.34 4.29 1.42 MEAN 2.61 S.D. 1.48PAF 1.78 1.79 1.86 1.51 1. 70 1.39 2.15 1.41 MEAN 1.70 S.D. 0,2

EL MENT TYPE CONIRACTOR MACH ALTITUDE FIELD17 DLATE A 2.00 49,599 FAR

PMAX 1.99 1.13 1.99 1.14 1.99 1.14 1.98 1.20 MEAN 1.q7 S.D. 0.66PEFP 3.53 1.52 3.75 1.49 3.71 1.6? 4.79 1.44 MEAN 2.74 S.). 1.60OAF 1.77 1.35 1.89 1.31 1.90 1.42 2.41 1.20 MFAV 1.66 SD. 0.41

ELEMENT TYPE CONTRACTOR MACH ALTI TULDE I EL 017 PLATE A 2.70 65,000 NEAR

PMAX 1.47 0.75 1.47 0.75 1.47 0.74 1.47 0.14 MEAN 1.11 S.0. 0.5?PEFF 2.72 1.20 3.46 1.25 3.40 1.16 3.09 0.90 4FAN 2.15 S.D. 1."(4DAF 1.85 1.bO 2.35 1.67 2.31 1.56 2.10 1.?? 4EAN 1.83 S.D o,40

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD17 PLATE A 2.70 65,000 FAR

PMAX 1.47 0.93 1.47 0.93 1.47 0.92 1.47 0,94 MFP-N 1.20 S.D. 0.47PEFF 2.76 1 3.43 1.?5 3.50 1.09 3.57 0.96 Mli 24N S. .D. 1. 37DAF I.R7 I. u 2.23 1.4 2.38 1.17 2.43 1.07 mFAN S7' S.D. G S9

B-35

01 lligil

Page 179: to hear-field and far-field sonic booms - DTIC

LEME NV TYPE CONT , . TOR MACH ALTITUDE FIELD

17 PLATF 3 1.3 38,000 NEaR

PMAX 1.59 1.21 1.63 1.20 1.67 1.21 1.71 1.24 MEAN 1.43 S.F. O.,)l

PF F 2.93 1.72 3.62 1.49 4,.35 1.?4 3.87 1.14 MEAN 2.55 S.U. 1.51

r',F 1.84 1.42 2.22 1.24 2.61 1.03 2.27 0.92 MEAN 1.70 S.D. 0. 3

ELEMENT TYPE CONTRACTOR MACH ALTITUDT FIELD

17 PLATE 9 1 .3 I ,000 FAO

PMA , 2.20 l.Sb 2.20 1.55 2.24 1.57 2.27 I.58 MEAN 1.90 ,.D. O.Ao

PEFF 6.13 2.27 5.98 2.01 6.01 1.97 7.42 1.49 MEAN 4.16 S.D. 2.71

DAF 2.7q 1.46 2.71 1.29 2.63 1.26 3.2- 0.94 MEAN 2.05 S.D. 0.9'-)

ELEMENT TYPE CONTRACT OR MACH ALTITUDE FI ELD

17 PLATE fl 1.5 40,500 NEAR

PMAX 1.44 0.97 1.49 1.00 1.54 1.00 1.57 1.03 MEAN 1.25 S.D. 0,48

PEFF 4.52 1.99 5.06 1.0 ' 4.58 1.74 4.45 1.24 MEAN 3.17 S.D. 1.97

OAF 3.13 2.05 3. ' 1.81 2.98 1.74 2.84 1.21 MEAN 2.39 S. 0. 0. 79

ELEMENT TYPE CONTRACTOR MACH ALT ITUDE FIELD

17 PLA T E 3 1.5 40,500 FAP

PMAX 2.21 1.21 ?.2v 1.2? 2.20 1.23 ?.20 1.25 MEAN I.T? SJn. O.7'

PEFF 4.19 1.75 5.36 1.14 5.59 1,76 4.83 1.54 MEAN 3. ; SoD. ?.

OAF 1.90 1.45 2.43 1.59 2.54 1.43 2.20 1.23 AEAN I.,94 0. .0

ELEMENT TYPE CONTRACTOR MACH ALTITUDE rIE F )

17 PLATE R 2.2 45,000 NEAR

PMAX 1.90 O.9q 1.90 3.01 1.90 1.05 1.89 1.10 MEAN 1.47 C.[. 0.'cl

PEFF 3.21 1.56 3.24 1.52 3.22 1.46 3.15 1.39 MFAN 2.34 S.0. 1.11

DAF 1.60 1.57 1.71 1.50 1.70 1.3R 1.6P 1.?6 MEAN t.56 S.D. 0.17

El EMENT T-PE CONTRACTOR MACH ALTITUDE FIFEL

17 PLAT F 3 2.2 45,000 FAR

PMAX 2.00 1.04 2.010 1.10 l. Iil 1.99 1.1F MEAN 1.55 ;.D, 0.68

PEFF 3.41 1.66 3.4) 1.57 1.43 1.55 3.36 1.39 MFAN ?.4R S.D. 1.76

OAF 1.71 1.59 1,73 1.44 1.72 1.37 1.' 9 1.18 MFAN 1.55 S.D. 0.2(

EL-'P ENT TYPE CONIr A ( T O R MACH ALT IIUDF FI tD

1i PL ,,: F, ? .7 59,000 NEAP

PMAX 1.51 0.74 1.50 0.74 1. 10 0.74 1.50 0.77 MFAN 1.1? S.). 0.5

PEFF 2.89 1.15 3.5F; 1.29 3 . 4 1.?0 i.?7 0.93 MFAN )."A . . !. i-

OAF 1. 2 1. 5 2.38 1.75 2.16 i. t, 2.18 1.t? MEAN I.R7 S.r). 0.41

ELEMENT TYPE CONTRACTOR MACH A" I ITUDL FIFLn

17 PLATE B 2.7 L9, 0(.)0 FAR

PMAX 1.47 0.82 1.4,7 0.8A 1.47 0.84 1.41 0.87 MFAN 1.15 0.D. f.4 ()

PEFF 2.77 1.18 3.43 1.20 3.43 1.08 1.41 1L b MFAN 1.?0 S.D. 1. 4

OAF l.38 1.44 2. 3 I. s5 2. 14 1.29 2.33 1.22 MEAN 1.79 '.D. C.).(

-mm

Page 180: to hear-field and far-field sonic booms - DTIC

ELEMENT TYPE 7 1, ItY A C T OR MAACH ALT IIUUf FIL F. D18 PLATF A I.2', 40 , P-99 NEAP

PMAX 1.43 1.40 1.4? 1 . 4 1 .41 1.?' 1.45 1,2 'FA1 1. 3R S.C. 0,4 4PEW I 1.59 1.41 1. O 1.61 1.51 ., I t5 1.83 AE AN I.61 S.D. .0 2DA- I. 10 1.01 1.20 1. 9 1.07 1.2 1.14 1.4'l MEAN 1.17 S.P 0.o

ELEMEINT TYPE C NTR ACT, HI AH U1 TI fU0E F I FL n1 q PLAT F A I. 5 46, P QP FAR

PMAx 1.'14 1.60 1.95 '.55 1 .03 1.4Q 1.96 1.4P MEAN 1.74 S.D. 0.59

P F 2.4.4 2.14 2.45 2,16 2.I6, 2. u)- 5 . 2.1' M'AN 2.20 . .o. 1

IAF 1.26 1.34 1.?5 1.40 i.12 1. 3- 1.03 I1.42 M[AN l.? . . 0.14

ELEMENT TYPE CONTQACT (R M ACH AL TiUF FIL

18 Pl AT L A I. )o 44,599 NEA r

PAX 1.3 1.01 1 .W 0.99 1.28 ).98 1, 7 1.04 -EAN 1.1 5 S .p .- APE F 1.94 C)4 2.01R 1.94 1.:2 1 .47 MEAN 1.945 5o0. n61

DAF 1.46 1.92 1.54 1 .q9 1.54 1.99 1. 1 1.P- FAN 1.7? S. . n 3

FL F 'WE NT TYP C 9l T, AC 1, M ACH ALT ITUOE FlFk P19 P[ Ar A I .SO 44, 9 q F AR

PMAX 1.92 1.33 1.92 1. 10 1.92 1.27 1.91 1.2? MEAN 1.6!1 S.D. .

PHFf ,2.5 2.44 2.17 2.1? 2.24 2.02 2.03 .7Q MEAN 2.17 S.D. P ,7?DAF 1.32 1.84 1.13 1.63 1.17 1.59 1.(16 1.40 MEAN 1. A9 S.D. n . 7

ELEMENT TYPE ,1NT AC UQ MACH AL T I TLDE FI LD

18 PLATE A 2,00 4q, 59) NEPPMAX 1.75 0.L9 1.75 0.q7 1.75 0.45 1.74 1.02 4EAN 1.2' S.I,. 0 ,J,0PEFE 2.32 2.17 2.67 2.60 1.29 3.14 3.31 1.18 MtAN 2.24 S.[). 1 .o

rAF I.32 2.45 1.52 2.97 1.88 . 10 1.91 3.13 MEAN 2. 1 S.D. 0.7'6

ELEMENT TYPE C 0N TRA(C TI R MALH ALTITUDF FFt F

I18 P 01 AT A . ()( 49,5U9cj FA RPMAX 1.14 1.00 1.73 0.99 1 .7 i.07 1.71 1.14 MEAN 1.I9 S.f). 0.57PEFF 2.98 2 . 84 3 .40 3. 21 . 14 3,',4 -1.4? 3.2 MEAN 3.29 ) D.D. 1

.AF 1.11 2.8 1.9t ,.,5 2.16 3.31 1.)q 2.83 MEAN 2.50) .0. 0.W-

L7ME NT TYPE CnNTRACTIiR MACH AL. T ITUDE FIEDt18 Pi ATE A 2.70 65,0., NEAR

PMAX 1.29 0.75 1.29 0.1? 1.?9 0.71 1..9 0.70 MEAN 1.(00 S.D. 0.44

PEFF 2.12 1.')5 2. ' 2.4f 2.H4 2 .69 2.77 ?.65 MEAN 2o51 .1). ,85

OAF 1.65 2.b1 2.00 .44 2.20 1,.89 2 .15 A. 0 ME AN 2,71 0.D. O.9 ,

ILEMENT rYPE CO N TP A. TJR MAC, H ALT I TL)E F I FL.pI1s PL AT- .A ?. 70 65,00 -Ar

pmAX 1.29 0.92 1.29 0. 90 1.29 0.86 12R 0 .95 MEAN I.04 S.r). n.40PEF f- '.94 2.73 1.19 2.8? 2'.18 2.56 2.18 2.03 MEAN 2.64 S. D. 0. QlDAF 2.?9 2. 97 2.40 3.15 21 7 2. 98 1 .70 2.38 MEAN '.50 '.D. (.40

B3 7

Page 181: to hear-field and far-field sonic booms - DTIC

fLE N T YPE C ON7 R 4( T R -A H ALT i T 110 FI Elf PtA 1 H . 18,00 N E A I

PMAX l.?I i.07 1 .? 4 4 1 1 o03 1.30 1.C14 mrAN I. I1§ n.D. f.PEfF 1.il I 2 1. 03 1. 1" 1. 03 1.12 1 .0( 9 MI. AN 1.IO S.0. 0 .- Th

L.) 6AF O0-,.85 1. .83 1.11 0 81 1. 10 0.91 1.04 MF-AN 1.97 D

El F NT f Y '.- Cl N TP AC I OR Af-(H AL TI TUDE F I EL

13 PLATE B 1 3,0(. FARPMAX 1.9i ) .' 9 14 1 1. 5 ,. 9( 1. 3) . 1.34 1EAN 1. A)3 .), P ;0PEFF 1,37 1.45 1.3 3 1. 43 1.39 1.43 1. 31 1.47 MEAN 1.41 ,0 . 7,4 ,

OAF 0 .72 1.04 0). 13 1. )6 0.71 1.01 0.73 1.09 ME AN 0.O , S. .'7.16

ELfMFNT T Y P F C,!NTRAC f .3R MACH ALTI TUDE FT ILID18 PL l7.T : 9 1.5 40,500 NE AR

P4AX 1.?5 0.86 1.25 0. 36 1,24 0.91 1.24 1.,00 MFAN 1.08 5.0. 0,.9PEFF 1.F31 F.20 , 1 .,+5 1.08 1.64 1.77 1.77 1.83 MEAN 1. ) S .F. .74DA i, t.04 , 1 l .83 1. 3 1.94 1.43 1.83 MF-AN 1.1 .0. ',.I r

F LVEENT TYPE i) TR A C T M) M A H A! TI TUDt I ELP8 PL AT E R I. 40,80, FA

'M AX 1,9? 1.08 1 . ),: 1.06 1.1l 1.08 1.91 1. t ! MEAN 1.'1 S.D. 0l.6.4

PE. FF 1.48 1. 50 1.74 1.88 2.11 2.I Q .9 2.3' MEAN 0 S.D. 0.7nOAF 0.77 1.310 .9i 1 .77 1 .11 2.02 1.20 1.98 ME-, 1 l 9 S.D.

ELEMENT TYCE 0-NIRAi OR MA At TI Tl001 FIL. P18 PLATf 3 2.2 4, ().)0 N fAR

PMAX I .,t 0.q4 1.e,6 1.C3 1 .65 .09 1. 5 1 . Ib M K.AN I. 18 1.[. D .8 *,

P L F I,.I3 1.51 2.08 1. S0 2. 19 1.72 . 3 "1 . 12 'MAN 1.9' '.. .,7D41- 1 . I 1 1 . h2 1, 2 1 S', 1 . 1 3 i 08 1 .4 1 1 . ,2 N 42

E L EMELN"iT t'PL .IiqV C M,", ACH At.. I T .OE F I F, f)18 P LA T i7 4,,)0

2MAX i. 7',t I. 100 1.14 .I. I . 7. 1 . I .7 1 . .F AN 1.4 .n. 'P4A l. i , i6 1. 4 1. 0, 1 1 . 86 2. . , M t, 1. ..

AF 1 17 1 %. I . 1.40 1.17 1 . I I .4 ) AN I .42 ,.'. .,

1 Lt- "' NI' .- i' A C MA H A I I fT D I-

7 P . A.I . 0A N

i" 'AX 1. '1 <'.7., 1 2 2.. O 1. :'o 15 1.2q 7.4 'A N .'PE t L.i f .7 3,l, N.' I. 2I8 T",2 'A , t A I'' <0 i

2 A 2 1 .1- A. T+ It 0 . 33 11 .0 A .1P'..Q

Page 182: to hear-field and far-field sonic booms - DTIC

ELE ME NT TY P[ '14 TR 4( T-R AC Ai T IT F

I~~~~ ~ A TiIIJ F.r;

SA 2.826 .4 2. 2 -6u ,4 2.1 ?15 M AN t, 1,6 .?

-L E 'A NT TYPE T'OAC T AAC t IuPL AT f A 1.2, , r -4 AQ

PMAX 1.77 1.5( i 7 1.43 t. 76 1.7 1. , I. 1 4 MEAN I t4 . .c, 4P EF F 4.5' 4.1 1s.1 1 .7 3.~ ).4 29 7 t,' .§(,' m EAN 3.55 1)J).

OA .332. 2 2. 1 2.( 2 1 1 1'W 1.75 TAN '4.2

F LFfNrT iY ),4T pA C T( k A(, f, At T ITj F 1 7L2PLATE A ] 4,, Q NfAp

P'Ax 1. X.9 1.1 2. 0 1.1 011.' 3 AN I t"6 S.F 3PEFF 1.71 1.45 1. 6 1.1V 1.14 1.0 1.2 1.26 M~AN 1. S.'. 0.47,AF .46 1.50 1. ;2 '.A[ .97 A.I P.) 1.2U A, 1.25 S.F. 0.17

-LEMENT TY P CD INT A( T 3 'A H t TIT DDF FIF '1" 4 PLATF A I .0 +4, QAR

PMAX 1. 78 1.?7 1. 19 1. 0 1. 17 1. 1 1.71 1. 19 4F4N 1.4,) 5.F. n 5P :F .74 .37 , i4 1, I. 4 ~ c4 1 .4 4 'A A.n '¢ N I . o " p. n.7

,AF i.,t n.oT 1.3, i.3 1 1.07 1.29 0.2 !1.0+ AN 1.3,. S.C. K.>?

E LF4 NT TyP[ (,NT94 C T (P MSCH AL T I T(,,nF F I r-A1 -A 2.00 +9,599 NFAR

P MAX 1.63 ).8o 1.6, 0. .6 1.62 0. I I .&1 I .02 MEAN I.? p . >,

P F. 0.9 0.c9 2, 7" 0.53 0.91 0.53 2.T40.'3 MEAN 0. 7, S.F. 0.27)A L 0.57 (.).4 .,.6 2.63 .;) 0 .) 01 MEAN 0.60 .Po 0. .

FL t E 4ENT IyP" I RAL. TOR f MCH At TI TlU r) F! I PI PL A F A 2.0F 4A,0 r R

PAX 1.ol 0. 44 t.61 0.9. . O 1 1 .60 1. 14 M4FAN I 5.0. I.51.4. 0 .94 0.95 .h 7 4.).?' .s 0. 72 MEAN oqo ,.). 0.30

OAF i . 1 . 9], 0.5) o. 97 0*.-1,.72 0.4 7 0. MV AN I. X, 5.0 0. 1

I Mi yLN NY IRNI A T iR 4AL H At T T UlDF F! UPiA' A A.70 65,O)C Ni-Ac

F'MA 1 0 O 1 2,. 0. I i.19 2. T I. 1 FAN 0.95 S.1. f. ' MPt F ) 5 ,.9 0 ,K,29 '1., 0.77 0.69 '.O M(AN 0.ql 5.,. .STOAF 0 -J I 1. . ; 151 16 3~1 1.1 (I(). 0.0 M A~ 0.1S() .

LI Mi NT T Y Pt J NT A I 7R kA H ,At T I TLiF F II L PPI AT A 2. 70 :)S,,00 FAR

PmAX 1.20 0. 19 1.10 .8 q. 0.81 4F AN 1. 0 . .1, 7p-l - 1.0) .04 0. 3. 4. 0.91 0.,0 ' .0 ,.,4 Mt -N.8q 5.P. .P.D;At 0.91 7.14 0.53 1.* 4 0.1 ,

).94. 0.57 019M FAN 7.7 7S9.F. FA. 18

23

Page 183: to hear-field and far-field sonic booms - DTIC

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD0 PLATE B 1.30 38,000 NEAR

"MAX 1.14 1.01 1.13 0.96 1.13 0.94 1.12 0.95 MEAN 1.05 S.D. 0.34PEFF 2.20 1.88 1.97 1.61.1.71 1.45 1.76 1.52 MEAN 1.76 S.D. 0.61O)AF 1.93 1.87 1.74 1.68 1.51 1.55 1.56 1.61 MEAN 1.68 S.D. 0.15

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD9 PLATE B 1.30 38,000 *FAR

PMAX 1.77 1.30 1.76 1.24 1.76 1.21 1.75 1.22 MEAN 1.50 S.D. 0.55PEFF 2.97 2.51 2.66 2.11 2.69 1.93 2.47 1.73 MEAN 2.38 S.D. 0.86DAF 1.68 1.93 1.51 1.70 1.53 1.59 1.41 1.42 MEAN 1.60 S.D. 0.17

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD19 PLATE B 1.50 40,500 FAR

"MAX 1.16 0.84 1.15 0.79 1.15 0.89 1.14 0.95 MEAN 1.01 S.D. 0.35?EFF 1.22 0.96 1.01 0.94 0.96 1.00 1.04 1.21 MEAN 1.04 S.D. 0.35OAF 1.05 1.15 0.87 1.18 0.84 1.12 0.91 1.28 MEAN 1.05 S.D. 0.16

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD19 PLATE B 1.50 40,500 FAR

PMAX 1.78 1.03 1.77 0.98 1.77 1.06 1.76 1.13 MEAN 1.41 S.D. 0.59PEFF 1.42 1.16 1.18 1.05 1.18 0.98 1.15 1.08 MEAN 1.15 S.D. 0.38OAF 0.80 1.12 0.66 1.08 0.67 0.92 0.65 0.96 MEAN 0.86 S.D. 0.19

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD19 PLATE B 2.20 45,000 NEAR

PMAX 1.53 0.93 1.53 1.01 1.53 1.09 1.53 1.18 MEAN 1.29 S.D. 0.48PEFF 1.07 1.08 0.96 0.99 0.84 0.94 0.94 1.12 MEAN 0.99 S.D. 0.33DAF 0.70 1.16 0.63 0.97 0.55 0.86 0.62 0.95 MEAN 0.81 S.D. A.21

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD19 PLATE B 2.20 45,000 FAR

PMAX 1.61 0.98 1.61 1.06 1.61 1.14 1.61 1.23 MEAN 1.36 S.D. 0.51PEFF 1.04 1.02 1.0/ 0.99 0.88 0.82 0.84 0.93 MEAN 0.95 S.D. 0.31DAF 0.64 1.04 0.67 0.93 0.54 0.72 0.52 0.76 MEAN 0.73 S.D. 0.18

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD19 PLATE B 2.70 59,000 NEAR

PMAX 1.22 0.68 1.22 0.67 1.21 0.73 1.21 0.81 MEAN 0.97 S.D. 0.40PEFF 0.64 0.55 0.61 0.57 0.62 0.66 0.76 0.86 MEAN 0.66 S.D. 0.23DAF 0.52 0.81 0.50 0.86 0.51 0.91 0.63 1.07 MEAN 0.73 S.D. 0.22

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD19 PLATE B 2.70 59,000 FAR

PMAX 1.19 0.69 1.19 0.68 1.19 0.75 1.18 0.83 MEAN 0.96 S.D. 0.39PEFF 0.68 0.61 0.57 0.46 0.57 0.36 0.56 0.58 MEAN 0.55 S.D. 0.20OAF 0.57 0.88 0.48 0.67 0.48 0.49 0.47 0.70 MEAN 0.59 S.D. 0.15

B-40

Page 184: to hear-field and far-field sonic booms - DTIC

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD1 RACK XB-70 1.22 27,000 DATA

P. AX 4.69PtFF 6.00D,' 1.28

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELDI RACK XB-70 1.22 27,000 FAR

PkAX 5.58 3.01 5.58 3.06 5.58 3.06 5.58 3.10 MEAN 4.32 S.D. 1.90PLFF 7.09 4.90 7.31 4.88 8.08 6.62 8.68 6.80 MEAN 6.80 S.D. 2.52DAF 1.27 1.63 1.31 1.59 1.45 2.16 1.55 2.20 MEAN 1.64 S.D. 0.35

EL,-MENT TYPE CONTRACTOR MACH ILTITUDE FIELD1 RACK B-58 1.22 27,000 DATA

PMAX 4.56PEFF 6.20DAF 1.36

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD1 RACK B-58 1.22 e7,000 FAR

PM.,'X 4.36 2.42 4.36 2.47 4.36 2.47 4.3( 2.51 MEAN 3.42 S.D. 1.47PFF 5.88 4.99 7.39 6.12 7.49 6.03 6.6' 5.09 MEAN 6.20 S.D. 2.16DAF 1.35 2.06 1.69 2.47 1.72 2.44 1.52 2.02 MEAN 1.91 S.D. 0.41

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD1 RACK XB-70 1.40 38,700 DATA

PMAX 3.50PEFF 4.91DAF 1.40

ELEMENT "IYPE CONTRACTOR MACH ALTITUDE FIELDI RACK XB-70 1.40 38,700 FAR

PM'X 3.65 2.30 3.64 2.30 3.62 2.25 3.6! 2.30 MEAN 2.96 S.D. 1.17PE F 5.16 3.80 5.05 3 48 r AQ 4.32 5.81- 4.07 MEAN 4.71 3.D. 1.74DA 1.41 1.65 1.39 1.51 1.63 1.92 1.63i 1.77 MEAN 1.61 S.D. 0.18

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD1 RACK XB-70 1.86 48,000 DATA

PMAX 2.68PEFF 3.67DAF 1.37

ELEMENT TYPE CONTRACTOR MACH ALTITUDE F"ELD1 RACK XB-70 1.86 48,000 FAR

PMAX 2.90 1.61 2.89 1.60 2.88 1.59 2.86 1.59 MEAN 2.24 S.D. 0.98PEFF 4.29 2.71 3.96 2.24 4.35 2.89 4.80 2.93 MEAN 3.52 S.D. 1.44DAF 1.48 1.68 1.37 1.40 1.51 1.82 1.67 1.84 MEAN 1.60 S.D. 0.18

ELEMENT TYPE CONTRACTOR MACH ALTITUD" FIELD1 RACK F-104 1.5 28,000 DATA

PMAX 1.85PEFF 3.10DAF 1.68

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD1 RACK F-104 1.5 28,000 FAR

PMAX 2.44 1.44 2.43 1.44 2.42 1.54 2.41 1.36 MEAN 1.94 S.D. 0.80PEFF 3.28 2.51 3.23 2.43 3.78 2.90 4.23 3.01 MEAN 3.17 S.D. 1.17DAF 1.34 1.74 1.33 1.68 1.56 1.88 1.75 2.22 MEAN 1.69 S.D. 0.29

B-41

Page 185: to hear-field and far-field sonic booms - DTIC

E; i.4ENT TYPE CONTRACTOR MACH ALTITUDE FIELD2 RACK XB-70 1.22 27,000 DATA

PMAX 4.69PEFF 8.18DAF 1.74

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD2 RACK XB-70 I .22 27,000 FAR

PMAX 5.58 3.18 5.58 3.18 5.58 3.18 5.58 3.18 MEAN 4.38 S.D. 1.87PEFF1O.O1 7.22 9.13 5.74 6.87 4.18 6.71 4.01 MEAN 6.73 S.D. 2.98DAF 1.79 2.27 1.64 1.80 1.23 1.31 1.20 1.26 MEAN 1.56 S.D. 0.38

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD2 RACK B-58 1.22 27,000 DATA

PMAX 4.56PEFF 6.74DAF 1.48

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD2 RACK B-58 1.22 27,000 FAR

PMAX 4.36 2.54 4.36 2.54 4.36 2.54 4.36 2.54 MEAN 3.45 S.D. 1.45PEFF 5.i6 3.79 5.17 3.30 5.70 3.84 7.15 4.64 MEAN 4.84 S.D. 1.96DAF 1.18 1.49 1.19 1.30 1.31 1.51 1.64 1.83 MEAN 1.43 S.D. 0.23

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD2 RACK XB-70 1.40 38,700 DATA

PMAX 3.50PEFF 5.18OAF 1.48

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD2 RACK XB-70 1.40 38,700 FAR

PMAX 3.64 2.04 3.64 2.04 3.62 2.02 3.61 1.71 MEAN 2.79 S.D. 1.25PEFF 5.42 3.68 6.38 3.97 5.47 3.28 4.43 2.05 MEAN 4..s,4 S.D. 1.94DAF 1.49 1.80 1.76 1.95 1.51 1.62 1.23 1.20 MEAN 1.57 S.D. 0.27

ELE4ENT TYPE CONTRACTOR MACH ALTITUDE FIELD2 RACK XB-70 1.86 48,000 DATA

PMAX 2.68PEFF 3.16DAF 1.18

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD2 RACK XB-70 1.86 48,000 FAR

PMAX 2.69 1.24 2.66 1.20 2.64 1.16 2.86 0.91 MEAN 1.92 S.D. 1.04PEFF 3.40 1.88 4.43 2.33 4.17 2.11 3.28 1.08 MEAN 2.84 S.D. 1.46DAF 1.27 1.52 1.66 1.94 1.5C 1.82 1.15 1.18 MEAN 1.51 S.D. 0.29

ELEMENT TYPE CONTRACTOR MAXCH ALTITUDE FIELD2 RACK F-104 1.5 28,000 DATA

PMAX 1 .85PEFF 3.91DAF 2.11

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD2 RACK F-104 1.5 28,000 FAR

PMAX 2.44 1.38 2.43 1.21 2.42 1.19 2.41 1.17 MEAN 1.83 S.D. 0.86PEFF 3.36 2.05 3.11 1.79 3.17 1.79 3.07 1.61 MEAN 2.49 S.D. 1.07DAF 1.37 1.48 1.28 1.48 1.31 1.51 1.27 1.38 MEAN 1.38 S.D. 0.10

B-42

Page 186: to hear-field and far-field sonic booms - DTIC

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD3 RACK XB-70 1.22 27,000 DATA

PMAX 4.47PEFF 5.89DAF 1 .32

ELEMEN'T TYPE CONTRACTOR MACH ALTITUDE FIELD3 RACK XB-70 1.22 27,000 FAR

PMAX 5.28 4.16 5.27 4.06 5.26 3.98 5.25 3.91 MEAN 4.65 S.D. 1.60PEFF 9.29 7.1910.28 7.4910.48 7.49 9.61 6.66 MEAN 8.56 S.D. 3.08DAF 1.76 1.73 1.95 1.85 1.99 1.88 1.83 1.70 MEAN 1.84 S.D. 0.10

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD3 RACK B-58 1.22 27,000 DATA

PMAX 4.56PEFF 6.56DAF 1.44

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD3 RACK B-58 1.22 27,000 FAR

PMAX 4.05 3.25 4.08 3.23 4.07 3.17 4.07 3.11 MEAN 3.63 S.D. 1.23PEFF 4.76 3.64 4.71 3.45 4.73 3.52 6.14 4.53 MEAN 4.44 S.D. 1.65DAF 1.18 1.12 1.15 1.07 1.16 1.11 1.51 1.46 MEAN 1.22 S.D. 0.17

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD3 RACK XB-70 1.40 33,700 DATA

PMAX 3.32PEFF 4.16DAF 1.25

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD. RACK XB-70 1.40 31,700 FAR

PMAX 3.62 2.73 3.61 2.67 3.57 2.46 3.5f. 2.19 MEAN 3.06 S.D. 1.13PEFF 4.76 S.45 4.39 3.06 4.33 2.87 4.61 3.12 MEAN 3.82 S.D. 1.43DAF 1.31 .26 1.22 1.15 1.21 1.17 1.21. 1.42 MEAN 1.25 S.D. 0.09

ELEMENT TYPE CONTRACTOR MACH V LTITUDE FIELD3 RACK XB-70 1.86 43,000 DATA

PMAX 2.78PEFF 3.19DAF 1.15

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD3 RACK XB-70 1.86 48,000 FAR

PM X 2.69 1.78 2.66 1.64 2.56 1.38 2.72' 1.65 MEAN 2.14 S.D. 0.88PE, F 3.81 2.67 3.19 2.12 3.01 1 .89 3.2U 2.01 MEAN 2.74 S.D. 1.10DA 1.42 1.50 1.20 1.29 1.18 1.37 1.1( 1.22 MEAN 1.30 S.D. 0.12

ELEMENT TYPE CONTRACTOR MACH ILTITUDE FIELD3 RACK F-104 1.5 ;3,000 DATA

PM X 1.79PE F 3.08DA 1.72

ELEMENT TYPE CONTRACTOR MACH -LTITUDE FIELD3 RACK F-104 1.5 -3,0(0 FAR

PMAX 2.34 1.79 2.33 1.74 2.32 1.68 2.3 1., 7 MEAN 2.00 S.D. 0.73PE F 4.71 3.49 5.04 3.65 5.26 3.78 5.2o 3.53 MEAN 4.34 S.D. 1.58DA 2.01 1.95 2.16 2.10 2.27 2.25 2.24 2.40 MEAN 2.17 S.D. 0.15

B-43Sm*m1

Page 187: to hear-field and far-field sonic booms - DTIC

L EAN TY CO!TR rTOR E- ALTITUDE'R \¢K X B- 7 .C, 2 _7,000 DA&TA; l

OAFLET TYLE T T ALTITUDE F-FL 3

PRA K XB-,0 0 2,00p X.39 r 28 4 33 5 .2 4 .1 5.27 0? M A 7 5 1

i< ?, 67 9 69 7 .4 72 3 .2 . 1N 6-- S.D 3.19OAF 2 08 .98 1.83 1.74 1.37 1.29 1 .33 1.17 ,EA N S.D. .

PE COTRACT0R MAC, FL- TTI

RA C B 1 2? 27,00 FA

"' ~ ~ ~ ~ r 7 C,) MA' f &

51 R#C . B 58 2, 7 ,00 ,.

M AX 46 50 5 3 4' 4 05 3 21 4 08 3 20 ,EAN .7u S. i..F . 5..9.8 8..34 6. 8 9q 5G 57 MEAN 6.77 S.D. D ...

.43 .35 1 .82 .3 2.06 .98 2. , 05 'rAN 183 S. 0.

-, EE N' T fPE CONTRACTOR MACH ALT ITUD I LCA C'rK X6 70 .0 3,7 ATA

[-MAX 3.34PEFF 4.67DAF 1 .40

ELEMENT TYPE CONRACT R MACH ALT 'TIjDE FIELD4 RA'K X E-70 ,40 38,700 FAR

PMAX "1<62 L.83 3.60 2.77 3.62 2.69 3.60 2.63 MEALN 3.17 S.D. 1.1I2<6 .77 3,51 5.97 4.73 6.94 5.16 6.77 4.92 MEAN 5.35 SD. 2.03

DAF 1.32 1.24 1 .66 1.71 01.92 .92 1.88 1.87 MEAN 1 .69 S.D. G,27

['EMENT TYPE CONTRAC -1 MAr ALTITUDE FIELD4 RnC K YB-70 1 .86 48, 00 OATA

FMAX 2.82PEFF 4.04OAF 1 .43

ELMENT TYPF CONTRACTOR MACH ALT ITUDE FIELD4 RACK XB-70 1 .86 48,k00 FAR

P[ AX 2 .68 1.97 2.69 1.81 2.67 1 .67 2.82 1.98 MEAN 2.29 S.D. 0.86PEF7 3.50 2.50 3.91 2,90 4.77 3.47 5.34 3.82 MEAN 3.78 S.D, 1.5004'. .31 1.27 1.45 1.60 1.78 2,08 1.89 1.93 MEAN 1.67 S.D. 0.30

L" MENI TYP[ CONTRACTOR MACH ALTITUDE FIELD4 RA(,K F-1014 !-t- 28,000 DATA

OMAX .81PLC F 4.2?

DA F 1. 3IL[M[N IYP[. CONTRACTOR MACH ALTITUDE FI FLD

4 RACK [- 104 1 .5 28,000 FARPMAX 2.3) 1.3 .18 1 .87 2.37 1.?.i3 2.32 1.71 MEAN 2(09 S.D. 0,172P LF ' <, 6 4.55 5.89 4.46 5.84 4.29 5.54 3.92 MEAN 5 04 S.D., 178<A 2.47 ?.07 ' 4' 8 2 3 8 .4 2.34 2,3 8 2 29 MFAN 2.40 S.D. 0.0'

1--44

Page 188: to hear-field and far-field sonic booms - DTIC

~ ~ ~ ~ ~ ~ ~ 7 L T! ... .' .. ..

pE F

L L I EV. ,, .... . " . . .. * , C 2'"A ! 33 S 1n 20

2. r: L.C.

20 7' 0 -

I. I L.4

.L, T 'PE ' ,,T LC iO.,, , L 4.. . :.L i i uE F L ...L,. 0 6

!:1 AX "A. .4 3 143 7 3 5' 1 3 E N.3 ,r A 3, S : . , i 7PEF . 0. .4 i. 85, ..4 2 1 .'0 . 6 8 M,3 E 2° :.AN I 60 S.,. OD .56,- -r C, C' , . , S, M u 4 F ..1-F 3,. 4. 0A0 IN 0 48 S D 0 O5

ELE ~tT Ty P E C N TR AC iO R YMA CH A LT IT U DE F IEL DS, RA ,CK ,X -7n 0 4 0 -1 7 00c DATA

PLF F I. 1 7OAF 0.4

EL E T Y P 0 TRPAC MACH AL TTUL'DE FIELDP A CK B-70 1 .40 38,70 FAR

-1 T T Y PF C0NTRAC0R ,MACH ALT ITUDE FELD

5 RA1 C K Bg-, 71 .8 6 48,000 DATA.TRA; m A x 1 80

P EF F "!, 8 v5DAtkF 0- 47

EL E ME NT T YP E CO0N TRACO MAC H ALTITUDE F IE LDr5RACK ,B- 7C 1.86 48, 000 FARPMAX 1.83 1.68 ,81 1.64 1.83 1.64 .85 1.63 MEAN 1.74 S.D. 0.56

PEF F 0.97 0O.'!4.. 0.90 0.61 0 83 0.63 0 8.1 C.62 MEAN 0. 78 S.D. 0.28DAF 0.53 0,44 0.50 0.41 0.46 0.38 0.45 0.38 MEAN 0.44 S.D. 0.05

E1. EMENT TYPE CONTRACTR MACHt AL' TI TU DE FIELDRACK F-104 1.5 48,000 DATA

PMAX 1 o66PEFF 117DAF C ,, 71

E LMENT T YPE CONTRACTOR MACH ALTITUDE FIELD5 RACK F -104 1 .5 28,000 FAR

PMAX 1.78 1.68 1.81 1 .5 1.74 1.64 1.85 16,52 MEAN 1.66 S.D. 0.53PEFF 1.37 1.09 0.37 1.06 1.3? .05 0 36 1.062 MEAN 1.2 S.D. 0.42AF 0.5/, 68 0. 78 0 6 0.7 0.68 0 77 0. 67 MEAN 0.73 S.D. 0.05

P -4 5

Page 189: to hear-field and far-field sonic booms - DTIC

ELEEN7 TYPE CONTRACOR MAC ALTITUDE IELD6 RAC K XB -70 .2 2 ,0 t\

PA X 4.96PEFF 4.41

AF 0.89ELEMF 'T TYPE CTTACTOR TAt, AITUDE FTLD

6 RACK XB-O 270 0 FA RPMAX 4.78 4.27 476 4.27 4.9 0 .5 -. 89 4.15 MEA N '2 S.D. 1.46PEFF 3.43 3.22 3.13 2.94 2.9 1 ,.01 249 MEAN 2 97 S.D. 0. 98DAF 0.74 0 .75 0 .66 0 .69 0 . 5q 0 0 62 0. 6 EAN 0 .66 S .D. 0 .0 6

ELEME NT TYPE CONTRA CTOR MACH ALTITUDE F' E,6 RACK: -58 1 ,2 27 000 DATA

P IMAX 4 .28PEFF 3 00DAF 0.70

EL EMENT TYPE C0NT ACTOR MACH ALTITU DE F ELD

6 RACK S, 8 1 22 27 00C FARPMAX 3.77 3.77 3.73 3.73 3.71 3.61 3.70 3.52 MEA,, 3.69 S. .17PEFF 3 56 3.32 3 3 16 3 16 2.94 .95 2.74 M.1E N 3. 15 S D C'> 3DAF 0.94 0.88 0.91 0.85 0.85 0.81 0.80 0.78 MEAN 0.85 S.D. 0.06

ELE MENT TYPE CONTR ACTOR M,,H ALTITUDE F IEL D

6 RACK XB-70 1 .40 38,700 DATAPMAX 3.30PEFF 2.57DAF 0.78

ELEMENT TYPE CONTRACTOR MACH A ITTDE FIELD6 RACK XB-70 .40 38,700 FAR

PM AX 3 14 2 99 3 20 3 03 3 29 3 04 3 27 3.01 EA N 3 - 0. 0.99

PEFF 2.22 1.92 2.30 1 .98 2.39 2.06 2.45 2 .10 2.18 S iDAF 0.71 0.64 0.72 0.66 0.73 '2.68 0.7' -, , AN 0.70 S.- 0 ;4

ELEMENT TYPE CON T O', ,T OR ',A CH AL -<DC U ILD6 RACK X B - 1 1 .36 000 D A TA

PMAX 2.25PEFF 1 .88DAF 0.83 Ti

ELEM 1 IfE L ,N RACTR MACH ALT ITUD E F [LU6 Rp,,'K XE-70 1.86 48,000 FAR

PMAX 2.30 2,21 2.34 2 - 4 2.23 2.36 2.23 MEAN 2.28 S.D. 0.72PEFF 1 .U i.49. .7 5 84 1.59 i .86 1.60 MEAN 1.68 S.D. 0.55

DAF 0./ 0.67 0 ,7... 69 0 7, 0.71 0.79 0.72 MLAN 0.74 S.0. 0.04

El -N T, F TYPE 0 NTRACTAR MAC H ALTITUDE FIELD6 RACK F-104 1 .5 28,000 DATA

'MAX 2.13PEFF 2.52DAF 1.19

ELEMEN1 TYPE CONTRACTFOR MACH ALTITUDE FIELD6 RACK F-104 1.5 28,000 FAR

PMAX 2.66 2.53 2.63 2.48 2.53 2.42 2.68 2.4' MEAN 2.55 S.D. 0.81

P E FF 2 .98 2.74 2 .94 2 .68 2 .90 2 .65 2. 88 2 .61 ME.AN 2 .80 S .0. 0 .89OAF 1.12 1.08 1.12 1.08 1.15 1.09 1.07 1,04 MFAN 1.10 S.D. 0.03

13-46

Page 190: to hear-field and far-field sonic booms - DTIC

ELEMENT TYPF CONTRACTOR MACH IL I,,.. A" LD

7 T E-70 v .22 27,RfT0OP IMA

PMA F', -v. N-!:'E FF 6.15

L, : i I -4ELEFME 'N1 TYpE , C0NTR~iTO .... AL> rH ALT T-, Ju F.. rI ELD

7 AL T A 0 1.2 27,C0(AP MAA 5.49 3 43 5 9 3.33 .8 3 5 8 3.i EAN 4.38 .D. 18PEFF 7 .06 F 7 2 7.5 - 7 04 4 0 6 MEAN 5+78 S. D 2 32D. F 1 .32 1 48 1 29 1 .2 F 12 1 1 .EAN 1 )33 S . 0. 7

ELEMENT TYPE C'ONRAC ... r"o ' A' MLT ,- IT,,E Fl , L

E L F, C' H. A

* OAF 1

. - ... TYPE, CONTRACTOR MACH .ALTITUDE FlUPLATE C-18 122 27 ,OU FAR

P'I X 2 7 2 S 4 6 2.37 4 26 2 2Q 5 1 EA, 3.30 S.D 1 4 6PEF -, '0 2. 85 5 20 2 ; , 26 A NM AN 4 1

....F _3 .'2 .) 2" 2 . 4+ 1. I LAN > 24 S D 0 .04

Fr T YP C NTRACT R A CH ALT TT . . LLx1 7 7C DA0

r- CONTRACTO-R MACH 1 TUD E F IELDPLATE X F,- 7 1 .40 38,700 FAR

PMAK 6 2 2 .25 3.60 2.0 3 238 239 ) 2 31 MEAN 3.01 S.D 1.24PCFF L 93 32 4.8? 3.12 1,7 08 3 12 MEAN 4.08 S.D. 1.60DAF .6 148 1.34 1.49 1 1 .33 1. 20 1.35 MEAN 1.37 S. . 0. 7

E E MENT T,-YPE CONTAC TOR MA CH ALTITUDE FIELD7 PLA; --70 1 .86 48,000 DA<

PMAX 2.65PEFF 3 '7OAF I . 42

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD7 PLATE Xb--70 1 .86 48,000 FAR

PMAX 2.88 1.79 2.87 1.67 2.85 1.63 2.84 1.59 MEAN 2.27 S.D 0.95PEFF 3.93 2.63 3.84 2.49 3.92 2.50 3.97 2.48 MEAN 3.22 S.D. 1.25DAF 1.3( 1.47 1.34 1.49 1 37 1,53 1.40 1.56 MEAN 1.44 S.D. 0.08

ELEMENT I YP[ CON T.RACTOR MACH ALT L U DE FI ELD7 PLATE F-10 1.5 2 8,000 DtTA

PMAX 1 .69PEF F . 31D AF I1.96

EL EMENT TYPE CON--RACTOR MACH ALT ITULE FI ELD7 PLATE. F--'04 1.5 28,000 FAR

PMAX 2.30 1.30 2.29 1 27 2.27 1.25 2,25 1.26 MEAN 1.71 S.O. 0.77PEFF 2.90 1.99 2.72 1.74 2.76 1.55 2.75 1.39 MEAN 2.23 S.D. 0.93DAF 1.26 1.54 1,19 1.37 '1 21 1.24 1,22 1.11 MEAN 1.27 S.D 0.13

B-4

Page 191: to hear-field and far-field sonic booms - DTIC

EL El E[J TP. Y _ CONTRACTOR M.AC AL TTUDE FI LD8 PL. E XB-70 I 22 27,000 DATA"MAX 4.22

P EFF 5.93

E LEMEN'T TYPE C G N TA "TR CH LI TU D E ,LD8 PLATE XE-70 .22 27,000 F'R

PMiAX .04 3 . 0 5.0? 2 89 4.9 2.81 2 4 97 2 73 [EN'" .93 S D 1 69PEFF . 97 4.97 6.63 4.47 6.31 4 15 6 82. 4 10 "EAN 5.63 S D. 2.20DAF F 38 1 65 3. 1 1 85 U 1 AN 1 A 1,6 .D. 0.

E [MEM_ TYPE CONTRACTOR MA CH ALT TUD E F ELUE8 PLAt,- D 1 . 2 2 27 , 00 DATA

PM'AX 4.09o

PEFF 5.83AF 1 .43

E MLEE NT TYPE CONTRACTO MACH ALT1TUDE FIELD8 PL!TE B-58 1 .22 27,000 FAR

PMAX 3.327 2.14 380 2.09 3.78 2.06 3.76 2.07 MEA! ?.94 S.D. 1.29PEFF 4.93 3.!6 4.0a 2.34 5.C0 2.81 5 03 2.81 MEAN 3.94 S.0. 1.65OAF 1.29 1.48 1.29 1.36 1 32 1.36 1.34 1.36 MEAN 3 - >-. 0.06

ELEMENT TYPE CN;RACT0R MAH ALT I T U E ELD8 P L AT E XB-70 1 .42 38,700 DATA

PMAX 3. 08PEFF 4,35DAF 1 .42

ELEMENT TYPE C. RACTOR MACH ALTITUDLE iE tO8 PLATE XB-70 1 .40 383700 AR

PMAX 3.11 1.9? 3.07 1.87 3.30 1 .90 3.27 1.86 MD N .5 4 S.0. 1.06PEFF 4.19 2.93 4.02 2.74 4.55 2.9 / 4.48 ,.91 MEAN 3.60 S.). 1.)7DAF 1.30 1.53 1.31 1.46 1.38 1.56 1,37 1.56 MEAN 1.44 S.D. 0.10

ELEME NT TYPE CONITRACTOR MACH ALT ITDE 1 FIELD8 PLATE XF-70 i .86 4S ,UtY DATA

PMAX 2.29PEFF 3.02DAF 1 .32

ELEMENT TYPE CONTRACTOR MACH ALTITUDE E L8 PLAiE XB-70 1 .86 42,0O( FAR

PMAX 2.26 1 .t)2 2.11 1 .46 2.40 1 .46 2.37 1 .13 MLiAN 1 .88 3.0. 0./4P FF 2.68 2.07 2.74 2.03 3.20 2.1 3.16 .!1 MiAN .54 S.". 0.94DAF 1 27 1.36 1.30 1.38 1.33 1.49 1.33 1.49 M iAN I. (7 S.D. 0.08

OLEMENT TYPE C ONTRAL TOR MACH A I -',- U DE f 1L 1.D8 PLA I F F--104 1 .5 2 om)(0 DATA

PMi; 1 30PI FF 4(L AF 1 '4

FL1Ml NT TYPE ONTRACTOR M CH ALT I i ' )i F [ILI P DLA [ F -104 1 .5 29,000 AR

NA , 1.iC 1.14 1 .73 1 .11 1 70 1 .10, 1 .67 1 .11 L AN 1 .4,: .. :.0)PI f .30 1.73 2.13 1.47 2.09 1.31 2.Ob 1.13 iA ' 1 8 . . 0 ,DAI 90 .02 1.23 , . ? 1 .23 1.18 1.23 1 0 . M(AN 1B I, S.D 0 14

0-48

Page 192: to hear-field and far-field sonic booms - DTIC

LLMN Y ..N.RI\( TOP MACHr AL.1 JLUL J-F!;FL ROOF XBN T 22 27T (OR F A A

MX 3.3 2 X 3 . 2

PEFF 5.850 ,152 4 FO 'ADAF 0.

~L EMENT TYPE CONTRA I .LI -AC"AL)9 ROOF XB-l /0 1 2 27 ,00 F AR

PMAX 3 03 2 Al 2 1 4 2 0 A N.,- EFF058 5 6 5.2 3 5,5 4 4 9: 0.u9 4 44 Y EA N .D!.

DAF 1 783 3 4 -. 77 - 36 1 19 2 6 LEAN 8 9 3

E LM E NT TY PE CON TRACTOP MACH ALT TL IP 0 0 F B - 1.2 1 2 2 2 n.....

PMAX 2818P EFFF 3 -')

DAF 1. 118L EMENT TYP CONTRACTOR MACH ALT TOLL F E,

PMAX 2 26 1 . 79 2.30 .6, 7 2.33 .60 3, 1,62 M E AN 2 !G S.D. 0.q6

PFFF 3 . 0 3 10 3 48 84 3 .. 409 2 3 , 3 3ATADAF 1.64 1 73 1 1.70 1.41 1,7 1.03 1, 3 MEAN ,,5 S.D 0

El EMENT TYPE CONTRACTOR MACH ALT TU.H FIELDROOF XB-70 1,40 38 0 F-A;T

r)M AX V, 1 , 91

P[_ F 2.60 .320 1,219 1.!2.016MEN1.2 0 .6D AF I!. 36

ELEMENT TYPE CO0,,'TR "IC TOR MA CH AL, T pTLD I L9 ROOF XB-70 ! ,40 3S, O A' ,,0

P" ., X 2. 04 .63 .01 1 , 52( 1.q8 1.4 7 2 4 1. 6 MEAN D.S , . 0 . 66

PEF . 06 2 .3 2 .50 225 2. 51 21 2 2 . 1 1 MLAN 2 52 S . . 87DAF 1.50 1.80 1.24 1.48 1.27 1.44 1.1 1.44 MEAN 1.41 S.D. !.21

LI NT TYPE 'NTRACTOR MACH ALI ITUDE FIELD9 ROOF 5,S-70 1 .86 48,000 DATA

P M A X 1 7 1PEFF 2.u6OAF I. 21

ELEMENT TYPE CONTRACTOR MACIH ALl iTIO?'. FI L9 ROOF XB- 7.0 1 6 43 000 FAR

PMAX 1 .63 1 .44 1 .61 1 .32 1 .5, 1.23 1 .94 1 . 17 MEAN ' S . 0 . 3PEFF 2.61 ),5'? 2,12 1.98 2.02 1.8U 2.15 1.79 MEAN 2.12 SD. 0 (73DAF 1.60 1.75 1.32 1.50 1,27 1.46 1.11 1.53 MEAN 1.44 S.f. 0.20

ELEMENT IYPE CONTRACTOR MACH ALTITUDE FIELD9 ROOF - 104 1.5 28 000 DATA

PMAX 0.99P F I, 79DAF 1. 80

- -,9

Page 193: to hear-field and far-field sonic booms - DTIC

LEMEN T YPE CONT RACTO F T T 1) ILI RO F X - 7 1 .2 2 7 9 D A

PMA4:, i°8

DAF 0. 97M N TYP CONTRACIOR M A L T U L L

o RoOF XB- 70 0 , 0 F,,,PMAX 2.34 2.34 2.17 2.16 2.16 2.04 1 .99 MEAN 2.17 S.D, 0.69PEFF 2.49 2.67 2.36 2.52 2.23 2 3'7 2.11 2.23 MEAN 2.37 S.D. 0.77DAF 1 .06 1 , 14 1 .09 1 .16 1 .03 1 16 0 . P 1 .12 MEAN 1 .0 S.D, 0.06

LLEM':NT TYPE CONTYAC"P,, MA H A TIT-'E .F ELDlo ROOF B-58 1.122 27,000 DATA

PMAX 1 74PEFF 1.40PAF 0.80

ELEMENT Y PEF CONTRACTOR MACh ALTIT DE FIELD10 ROOF B-58 >22 27,000 F'FAR

PMAX 1 .73 1 .73 .65 1 .63 1.64 1.59 1 .62 1 .50 tAN 1 66 So . 0.52PEFF 1,64 1.85 1 5 1.78 1.56 1.73 1.57 1.70 MEAN 1.68 S.D. 0.54

DA 0.9 5 1.07 0C,9 1,09 0.95 i1.09 0.97 1.06 MEAN 1l 02 SU. 0 ,,

ELEMENT TYPE CONTRACTOR MACH ALTITLIDE FIELD10 ROOF XB-70 1.40 38.,700 DATA

P,,iA X ! . 44

PEFF 1.52DAF 1 . 06

ELEMENT TYPE CONIRACTOR MACHi ALTITUDE FIELD10 ROOF XB-70 1.40 38,700 FAR

PMAX 1 . 8 1.5j 1.57 1.44 1.56 1 41 1.56 1.41 MEAN 1.51 S.D. 0.48PEFF 1.91 1,9, 1.78 1.80 1.71 1.70 1.59 1.56 MEAN 1.75 S.D. 0.57DAF .21 1 .,7 1 . 1 1 25 1 .09 1 . 1 1 .0, 1.11 MEAN 1 16 S ' P,

ELEMENT TYPE CONTRACTOR ,,C ALTITUDE FIEL10 ROOF XE ,70 1 .86 48, 0 , DATA

PMAX 1.-23PEFF 0. 92OA F 0. 75

ELEMENT T-YPE CONTRACTOR MACH ALTIT UDE F [ LU10 K uOF XtB - 70 1, 8C 48 , 000 FAR

PMA-X 1 .31 1.31 1.25 1.22 1.,4 1.14 1.24 1.0') MEAN 1.22 S.D. .3 9PLE EF 1.66 1.69 1.61 1. 0,3 1. 51 1.5 1 1.4 1.40 MEAN 1.5, S.. 0.50'DAF .27 1 .30 1 .29 1.33 1.;2 1.33 1 .14 1.29 MEAN I .'7 S.C. 0.0t

L IME NT TYPE CONTRACTOR MACH AL T I Tt I FILL f1( ROOF F -I1 1 .5 '8,900 DATA

PMAX 0.97REE[lIF 0.7L DA F 0.80

I L IEML NT TYPE CONTR1,TOV MA'H ALT 1TUDE El E110 ROOF F - 0' 1 .5 28 0,0 FAR

PMAX 1.09 1.09 1.06 1.06 1.G03 1 03 .1 l 1.05 M, AN i.06 S. .S, "PEF F1.81 1.1 1. 1.001 1.2(1 01 1.21 1.01 1,20 MEAN i.18 5,0. 1. 36OAF 0. 0 3 1.0,8 0.9(5 1.13 0.98 1.17 0.6 1.15 MEAN 1.04 S.D ) 0

I' - 5

Page 194: to hear-field and far-field sonic booms - DTIC

. . .. . ... Iu F M C A , b I N{ i ;

I ME N, TYPE CN!R ACT A L ;'

) 1. AT Xf- 7 1 2/ , P A T AOMA kX 4 5)[ F F 9 3'D A F 2.'4

ELL. MLNT TYPL CONTRACT R MACi A T T '1 PLATE XB-70 1.22 2 7

IMAX V.49 2.,2 5.49 2./6 5.48 2 .7 c 4 8 6 "A% 14 D 1 94PEFF p.25 3.91 9.35 3.7611.07 3 57 9.(, . A , .6.1 ADAF 1.69 1.37 1.70 1.36 2.02 1.3? 165 , . S.D. ) L8

CLEMENT TYPE CONTIRACTOR MACH ALT ITUDE " LLI I PLATE B-S0 1. 2 27,00 DATA

PMAX 4.34PEFF 9,20DAF 2.12

ELEMENT TYPE CON TF, CTLUM, MACH ALT I T!DE FIELD11 PLATE B-58 1.22 27,0'- FAR

PMAX 4.27 2.16 4.26 2,11 I 6 ?,u8 4. '5 ?. MEAN 3.18 S.D. .51P EFF 7.51 2. 3 8. 1 2.77 .h .66 8.77 2.43 MEAN 5.26 S.D. 3.24DAF 1.76 1. .7 .91 1. 8 ,66 1.2 2.0,, 1.16 MEAN 1,56 S.D. 0.33

ELEMENT TYPE -JNT :\ACT()R 'ACH A TI TUDE FIELD11 PLATE ,B-7 1 .40 38 700 DATA

PMAA 3.39PEFF 5.20DAF 1. :,I,

El .1ENT TYPE ONT' CTO MA,",h ALT IT) I E FI' LD11 PLAT XLi ;-7C ,40 ,700 ,R

'MAX .' ;]1.95 3 0 10 3.> 1.9. 3.93 1.90 MELN 2.0? S 0. 1.3

.FF ,.u2 .60 .39 ' 48 6.66 2 . 1 6 - .14 M AN 4.33 o3. 2j.41:)AF 1.64 1.33 .53 .3, 1.70 P 1 . 2 i.? "EAN 1. ., .I' .

I PM{NL TYpr 1ONT, <R ACH AL T I T Ui FIFI 1S FLA'IL XB 70 4. 8,0 C, ATA

HMAV " .17

6?LEME TYPE C N IRAC70P I A C H ALT I TUiE FI"

1 PLA.E XB-7-' 1 t 4 , 0 FA'"M1 " 2 1 f 2 1 8 1 i 5 6 2 . I 2 ... MF N jL ... 2. . 56 .C 1. 9 1 49 MA 17 .[. 09 'Fr r F7 5 700? O 4a7. 1 .98 4. Wt, I '., 4 4 ; .38 MEAIN 8 , S.D. 1] ... ,

I,F 1 1. 8 1.53 1.27 . 6 1 tl i.93 MfI % . 3 S.D. 31

1 i [MINI fY L CON -ACTOR MACH ALTITUDE ULIi P71 AT 04 1.5 2, I A

P MAX 1 66P A I I

0 A 1 . 4I-{ E~ M: TvY' tCON? RACJTORN Mi~tCH , TITUDE 3: i {70

i , F' " <TV, - 04 , 1 . t' 2? ,. 3 0? AR t tH) tAX 2?.2 " :7 77.;, 1.2/ ,3.21 ..' 2.10- 1.2t) MEA1N 1 ./4 0-0 . 0] 75H~f C 4 , i .0.' [. 1. . . ' 4 1. .1, 3.61 i.27 MEAN ;.'.t bE S . 1.13,.AF~ 3 , . , ..... . . 24 1 .i , 1 .05 1.i55 1 .(31 MI AN 1 .44 :-. 0. u;

t .-- I

Page 195: to hear-field and far-field sonic booms - DTIC

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD12 PLATE XB-70 1.22 27,000 DATA

PMAX 3.98PEFF 3.64DAF 0.91

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD12 PLATE XB-70 1.22 27,000 FAR

PMAX 4.77 2.56 4.77 2.41 4.76 2.30 4.75 2.26 MEAN 3.57 S.D. 1.69PEFF 7.04 6.01 6.05 5.16 5.33 4.15 4.95 3.73 MEAN 5.30 S.D. 1.98DAF 1.47 2.35 1.27 2.14 1.12 1.80 1.04 1.65 MEAN 1.61 S.D. 0.47

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD12 PLATE B-58 1.22 27,000 DATA

PMAX 3.72PEFF 5.72DAF 1.54

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD12 PLATE B-58 1.22 27,000 FAR

PMAX 3.69 1.89 3.68 1.80 3.67 1.76 3.67 1.77 MEAN 2.74 S.D. 1.31PEFF 6.79 5.76 6.49 5.26 6.06 4.72 5.39 4.05 MEAN 5.56 S.D. 1.97DAF 1.84 3.04 1.76 2.92 1.65 2.68 1.47 2.28 MEAN 2.21 S.D. 0.61

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD12 PLATE XB-70 1.40 38,700 DATA

PMAX 2.94PEFF 3.23DAF 1.10

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD12 PLATE XB-70 1.40 38,700 FAR

PMAX 3.09 1.72 3.07 1.63 3.41 1.66 3.41 1.64 MEAN 2.45 S.D. 1.14PEFF 3.79 3.26 3.58 3.02 3.52 2.86 3.29 2.93 MEAN 3.28 S.D. 1.08DAF 1.23 1.90 1.17 1.85 1.03 1.72 0.97 1.79 MEAN 1.46 S.D. 0.39

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELDi^ PLATE XB-70 1.86 48,000 DATA

PMAX 2.25PEFF 2.42DAF 1.07

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD12 PLATE XB-70 1.86 48,000 FAR

PMAX 2.46 1.49 2.44 1.39 2.43 1.32 2.41 1.27 MEAN 1.90 S.D. 0.83PEFI 3.20 2.79 3.04 2.60 2.89 2.43 2.72 2.25 MEAN 2.74 S.D. 0.92OAF 1.30 1.87 1.25 1.87 1.19 1.85 1.13 1.77 MEAN 1.53 S.D. 0.34

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD12 PLATE F-104 1.5 28,000 DATA

PMA 1.33PEFF 0.65DAF n.49

EMENT TYPE CONTRACTOR MACH ALTITUDE FIELD12 PLATE F-104 1.5 28,000 FAR

?MAX .86 1.13 1.84 1.08 1.82 1.06 1.79 1.07 MEAN 1.46 S.D. 0.60PEFF ,.17 1.37 1.22 1.34 1.29 1.34 1.36 1.42 MEAN 1.31 S.D. 0.42DAF (..63 1.21 0.66 1.24 0.71 1.26 0.76 1.33 MEAN 0.98 S.D. 0.31

B-52

Page 196: to hear-field and far-field sonic booms - DTIC

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD13 PLATE XB-70 1.22 27,000 DATA

PMAX 3.67PEFF 2.36DAF 0.64

ELEMENT TYPE CONTRACTOR MACH A'.TITUDE FIELD13 PLATE XB-70 1.22 27,000 FAR

PMAX 4.42 2.42 4.40 2.23 4.39 2.11 4.38 2.05 MEAN 3.30 S.D. 1.56PEFF 3.68 3.62 3.65 3.48 3.61 3.32 3.52 3.13 MEAN 3.50 S.D. 1.12DAF 0.83 1.50 0.83 1.56 0.82 1.58 0.80 1.52 MEAN 1.18 S.D. 0.38

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD13 PLATE B-58 1.22 27,000 DATA

PMAX 3.41PEFF 1.45DAF 0.43

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD13 PLATE B-58 1.22 27,000 FAR

PMAX 3.41 1.77 3.39 1.65 3.38 1.60 3.37 1.62 MEAN 2.52 S.D. 1.21PEFF 1.83 2.08 1.83 2.01 1.83 1.93 1.85 1.87 MEAN 1.90 S.D. 0.61DAF 0.54 1.17 0.54 1.22 0.54 1.21 0.55 1.16 MEAN 0.87 S.D. 0.35

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD13 PLATE XB-70 1.40 38,700 DATA

PMAX 2.72PEFF 3.97DAF 1.46

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD13 PLATE XB-70 1.40 38,700 FAR

PMAX 2.86 1.60 2.84 1.50 2.82 1.44 2.80 1.44 MEAN 2.16 S.D. 0.98PEFF 4.40 4.02 4.55 4.03 4.13 3.49 3.63 2.88 MEAN 3.89 S.D. 1.34DAF 1.54 2.51 1.60 2.69 1.47 2.42 1.30 2.00 MEAN 1.94 S.D. 0.54

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD13 PLATE XB-70 1.86 48,000 DATA

'MAX 2.08PEFF 2.80DAF 1.35

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD13 PLATE XB-70 1.86 48,000 FAR

PMAX 2.28 1.42 2.26 1.30 2.25 1.21 2.23 1.16 MEAN 1.76 S.D. 0.76PEFF 4.23 3.97 4.46 4.09 4.28 3.85 3.98 3.46 MEAN 4.04 S.D. 1.31DAF 1.85 2.79 1.97 3.13 1.90 3.17 1.78 2.98 MEAN 2.45 S.D. 0.62

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD13 PLATE F-104 1.5 28,000 DATA

PMAX 1. 1 6PEFF 0.19OAF 0.17

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD13 PLATE F-104 1.5 28,000 FAR

PMAX 1.67 1.05 1.64 0.99 1.62 0.96 1.59 0.97 MEAN 1.31 S.D. 0.53PEFF 0.36 0.67 0.41 0.69 0.47 0.73 0.52 0.79 MEAN 0.58 S.D. 0.24DAF 0.22 0.64 0.25 0.70 0.29 0.76 0.34 0.81 MEAN 0.50 S.D. 0.25

B -5~ __

Page 197: to hear-field and far-field sonic booms - DTIC

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD14 PLATE XB-70 1.22 27,000 DATA

PMAX 4.12PEFF 8.32DAF 2.02

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD14 PLATE XB-70 1.22 27,000 FAR

PMAX 4.94 2.76 4.91 2.67 4.88 2.61 4.85 2.58 MEAN 3.77 S.D. 1.68PEFF 7.95 3.59 7.50 3.41 9.09 3.18 7.80 2.51 MEAN 5.63 S.D. 3.19DAF 1.61 1.30 1.53 1.28 1.86 1.22 1.61 0.97 MEAN 1.42 S.D. 0.28

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD14 PLATE B-58 1.22 27,000 DATA

PMAX 3.68PEFF 7.29DAF 1 .98

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD14 PLATE B-58 1.22 27,000 FAR

PMAX 3.74 2.14 3.71 2.09 3.69 2.06 3.66 2.07 MEAN 2.89 S.D. 1.25PEFF 6.90 2.63 7.17 2.45 5.85 2.36 6.14 1.81 MEAN 4.42 S.D. 2.66DAF 1.85 1.23 1.93 1.18 1.59 1.14 1.68 0.87 MEAN 1.43 S.D. 0.38

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD14 PLATE XB-70 1.40 38,700 DATA

PMAX 2.93PEFF 3.52DAF 1.20

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD14 PLATE XB-70 1.40 38,700 FAR

PMAX 2.76 1.87 2.75 1.82 3.13 1.83 2.82 1.83 MEAN 2.35 S.D. 0.92PEFF 3.34 2.09 3.37 1.93 3.53 2.16 3.25 2.34 MEAN 2.Y5 S.D. 1.09DAF 1.21 1.11 1.23 1.06 1.13 1.18 1.15 1.28 MEAN 1.17 S.D. 0.07

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD14 PLAL XB-70 1.86 48O000 DATA

PMAX 2.09PEFF 2.43DAF 1.16

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD14 PLATE XB-70 1.86 48,000 FAR

PMAX 2.11 1.52 2.11 1.46 2.17 1.46 2.17 1.43 MEAN 1.80 S.D. 0.67PEFF 3.80 l./O 3.60 1.64 2.65 1.41 2.59 1.33 MEAN 2.34 S.D. 1.21DAF 1.80 1.12 1.71 1.12 1.22 0.97 1.19 0.93 MEAN 1.26 S.D. 0.32

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD14 PLATE F-104 1.5 28,000 DATA

PMAX 1.18PEFF 1.64DA 1.39

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIEL"14 PLATE F-104 1.5 28,000 FAR

PMAX 1.52 1.14 1.51 1.11 1.50 1.10 1.49 1.11 MEAN 1..1 S.D. 0.46PEFF 2.13 '.56 2.13 1.47 ?.09 1.38 2.32 1.11 MEAN 1.77 S.D. 0.71DAF 1.40 1.:? 1.41 1.32 1.39 1.25 1.56 1.01 MEAN 1.34 S.D. 0.16

B-54

Page 198: to hear-field and far-field sonic booms - DTIC

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD15 PLATE XB-70 1.22 27,000 D,,'A

PMAX 3.23?EF F 0.OAF 0.

ELEMENT TYPE CONTRACTOR TMACH ALTITUDE FTE.D

15 PLATE XB-70 .22 27,00C FARPMAX 4.27 2.48 4.24 2.33 4.21 2.'3 4.18 2.18 MEAN 3.27 S.D. 1.45PEFF 6.81 5.90 5.86 5.05 5.10 4.07 4.74 3.65 MEAN 5.15 S.D. 1.91OAF 1.59 2.38 1.38 2.17 1.21 1.83 1.13 1.68 MEAN 1.67 S.D. 0.44

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD15 PLATE B-E8 1 22 0,O u DATA

F'1AX 3. 11PEFF 5.46OAF ! .76

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD15 PLATE B-58 1 .22 27 ,000 FAR

PMAX 3.20 1.86 3.17 1.78 3.14 1.75 ). 12 1.76 MEAN 2.47 S.D. 1.06PEFF 6.57 5.65 6.25 5.15 5.80 4.62 5.13 3.94 MEAN 5.39 S.D. 1.90OAF 2.05 3.03 1.97 2.89 1.84 2.64 I.05 2.25 MEAN 2.29 S.D. 0.51

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD15 PLATE XB-70 1 ,40 38,700 DATA

PMAX 2.54PEFF 3.07DAF 1. 2 1

ELEMENT TYPL CONTRACTOR MACH ALTITUDE FVLLD15 PLAIE XB-70 1.40 38,,700 FAR

PMAX 2.41 1.b65 Z .39 1.57 2.72 1.65 2.48 1.55 MEAN 2.04 S. 0.81PEFF 3. 53 . )4 3 .30 79 3. 2.67 01 2 .2 MEAN 3. 0 S .D 00DAF 1 .46 l S4 1 38 1 .78 1,,0 1 72 1 1 1 2 MEAN 1 S5 S. C. . 27

ELEMENT TYPE CONTRACTOR MAC h ALTITUDE FIELD15 PL AT E XB-70 1. h 1 4 S, 20, DATA

PMAX 1.81PEFF 2.20DAF 1.2Li

ELEMENT TYPE CON TRACTOR MAC,' AL I U'DE FIELD15 PLATE - I .6 48,008 FAR

PMAX 1.83 .,9 1.81 1. 30 99 i.6 1 . 8 2 2" MEAN I > 57 S.n. 0 .58PEFF 2 .9 .49 2. 70 ? 66 L MEAN 2 .47 S. . . 8 3OAF 1.5" 1.79 1.49 1. 5 41 1 13 1.67 m EAN 1,62 S.D. 0.18

ELEMENT TYPE C'ONTRACTOR MACi ALTITUD E FIELD15 LATE F- 104 1. 25 ,O0. DTA

PMA 0.89

PEFF .71OAF 0.80

ELEMENT TYPE CONTRACTOR MACH ' L T IT UL:E FI E!L15 PLATE F-104 1.5 FAR

PMAX I19 100 1.17 9 15 0.93 1. 1 0 . MEAN I.6 S . D. 0.35PEFF >. l 1.17 1.07 1.17 1.23 1.31 , MEAN .23 S. , 0.42DAF 0.85 1.18 0.92 1.23 1.07 1. 1 3 . . 6 AE.AN .I8 S.D. . ,24

B-55

Page 199: to hear-field and far-field sonic booms - DTIC

p M

PEFF 2,L"U A F O. - 1

E EMEN' TYPE CO TRACTOR MACH ALTITUDE FIELDT EATL XB- 70 1 .22 27,000 FAR

PMAX 3.735 2.28 3.50 2.10 3.15 1.98 3.85 1.98 MEPN 2.84 S.D, 1.20PEFF 3.41 3.37 3.37 3.24 3.3 3.08 3.38 3.05 MEAN 3.28 S.D. 1,04DAF 0,96 1.48 0.96 1.54 0.96 1.56 0.88 1.54 MEAN 1.24 S.D. 0.32

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD16 PLATE B-58 1.22 27,000 DATA

PMAX 2.84

PEFF 1.36DAF 0.48

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD16 FLATE B- 58 1. 2. 27 000 FAR

PMAX 2.56 1.68 2.52 1.58 2.47 1.54 2,U4 1.60 MEAN 2.10 S.D. 0.85P E FF 1.,65 1 .89 1 .64 1 .8- 1 .65 1 .76 1 .76 1 .85 MEL-AN 1 .75 S.D. 0.56AF 0,65 1.13 0.65 1.15 0.67 1.11 0.62 1.16 MEAN 0.90 S.D. 0.27

ELEMENT TYPE CON LTRACTOR MACH ALTITUDE FIELD16 PLATE XB-70 1.40 38,700 DATA

PMAX 2. 13PEFF 3.52DAF 1.65

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD16 PLATE XB-70 1.40 38,700 FAR

PMAX 2.24 1.54 2.21 1.44 2.19 1.39 2.17 1.38 MEAN 1.32 S.D. 0.70PEFF 4.03 3.65 4.12 3.59 3.68 3.04 3,15 2.36 MEAN 3.45 S.D. 1.23DAF 1o80 2.38 1.86 2,50 1.68 2.19 1.45 1.71 MEAN 1.95 S.D. 0.37

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD16 PLATE XB-70 1.86 48,000 DAIA

PMAX 1 . 54PEFF 2.31DAF 1.50

ELFMENT TYPE CONTRACIOR MACH ALTITUDE FIELD16 PLATE XB-70 1.86 48,600 FAR

PMAX 1.60 1.31 1.58 1.20 1.64 1.14 1,.63 1.09 MEAN 1.40 S.D. 0.50PEFF 3.r' 3.38 3.72 3.30 3.76 3.30 3.42 2.88 MEAN 3.43 S.D. 1.12LD F 2.28 2.59 2.36 2.76 2.29 2.91 2.11 2.65 MEAN 2.49 S.D. 0.27

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD16 PLATE F-104 1.5 28,000 DATA

PMAX 0.74PEFF 0.19DAF 0.25

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD16 PLATE F-104 1.5 28,000 FAR

PMAX 1.01 0.86 1.00 0,81 0.99 0.79 0.97 0.86 MEAN 0.91 S.D. 0.30PEFF 0.36 0.64 0.41 0.68 0.46 0.72 0.53 0.79 MEAN 0.57 S.D. 0.24DAF 0.35 0.74 0.41 0.83 0.46 0.91 0.55 0.92 MEAN 0.65 S.D. 0.23

B-56

Page 200: to hear-field and far-field sonic booms - DTIC

P LF 8.80DAF ? 43

MENT TYPE CONTRACTOR MACH ALTITUDE FIELD17 PLATE XB-70 1.22 27,000] FAR

PMAX 2.80 2.02 2.82 2.01 2.81 1.97 2.88 2.02 MEAN 2.41 S.D. 0.88PEFF 7.47 3.03 7.63 2.76 8.30 2.61 6.72 2.52 MEAN 5.13 S.D. 3.03DAF 2,67 1.50 2.71 1.37 2.96 1.33 2.33 1.25 MEAN 2.01 S.D. 0,72

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELO]17 PLATE B-58 1.22 27,000 DATA

PMAX 2. 18PEFF 7.90DAF 3.62

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD17 PLATE B-58 1.22 27,000 FAR

PMAX 2.18 1.40 2.17 1.43 2.17 1.41 2.16 1,49 MEAN 1.80 S.D. 0.69PEFF 6.42 2.18 6,82 2.34 4.70 1.90 7.30 1.77 MEAN 4.18 S.D. 2.71DAF 2.95 1.55 3.14 1.63 2.17 1.34 3.38 1.19 MEAN 2.17 S.D. 0.87

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD17 PLATE XB-70 1.40 38,700 DATA

PMAX 1. 91PEFF 3.23OAF 1 .69

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD17 PLATE XB-70 1.40 38,700 FAR

PMAX 2.01 1.18 2.01 1.19 2.00 1.20 2.00 1.23 MEAN 1.60 S.D. 0.66PEFF 3.39 1.61 4.18 1.68 3.42 1.49 4.63 1.49 MEAN 2.74 S.D. 1.56DAF 1.69 1.36 2.09 1.41 1,71 1.24 2.32 1.21 NEAN 1.63 S.D. 0.40

ELEMENT TVDE CONTRACTOR MACH ALTITUDE FIELD17 PLATE XB-70 1.86 48,000 DATA

PMAX 1. 54PEFF 3.-4OAF 2.43

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD17 PLATE XB-70 1.86 48,000 'AR

PMAX 1.59 0.83 1.59 0.86 1.59 0.90 1.59 0.92 MEAN 1.23 SD, 0.54PEFF 5.02 1.72 3.77 1.37 4.57 1.52 3.88 1.09 OE"' 2.87 S.D. 1.82DAF 3.16 2.08 2.37 1.60 2.88 1.70 2,45 1.19 MEAN 2.18 S.D. 0.67

El EMENT TYPE CONTRACTOR MACH ALTITUDE FIELD17 PLATE F-104 1.5 28,000 DATA

PMAX 1. 15PEFF 1. 71DAF 1.49

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD17 PLATE F-104 1.5 28,000 FAR

PMAX 1.44 0.79 1.46 0.70 1.45 0.76 1.45 0.74 MEAN 1.!1 S.D. 0.50PEFF 4.42 1.77 3.15 1,42 2.20 0.84 3.76 0.99 MEAN 2.32 S.D. 1.50DAF 3.06 2.23 2.16 1.81 1.51 1.10 2.59 1.34 MEAN 1.98 S.D. 0.66

B -57

Page 201: to hear-field and far-field sonic booms - DTIC

L C M C L ILI18 PLA X - 70 2 2 27 ,0 DATA

PMAX 2.75PEFF 1. 98DAF 0 72

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD18 PLATE XB-7n 1.22 27,000 FAR

PMAX 2.42 1.81 2.41 1.76 2.40 1.68 2.39 1.71 MEAN 2.07 S.D. 0.74PEFF 3.35 3.02 3.04 2.76 2.28 2.17 2.00 2.11 MEAN 2.59 S.D. 0.96DAF 1.39 1.67 1.26 1.57 0.95 1.29 0.84 1.23 MEAN 1.27 S.D. 0.28

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD18 PLATE B-58 1.22 27,000 DATA

PMAX 1 .84PEFF 2.26DAF 1.23

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD18 PLATE B-58 1.22 27,000 FAR

PMAX 1.87 1.22 1.86 1.22 1.86 1.20 1.84 1 26 MEAN 1.54 S.D. 0.59PEFF 2.67 2.07 2.61 1.96 2.08 1,60 1.91 1.,1 MEAN 2.09 S.D. 0.75DAF 1.42 1.69 1.40 1.61 1.12 1,34 1.04 1.46 MEAN 1.38 S.D. 0.22

ElEMENT TYPE CONTRACTOR MACH ALTITUDE FIEL18 PLATE XB-70 1,40 38,700 DATA

PMAX 1. 9r FF 1.33DAF 0.83

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD18 PLATE XB-70 1.40 38,700 FAR

PMAX 1.75 1.04 1.74 1.02 1.74 1.07 1.73 1.16 MEAN 1.41 S.D. 0.57PEFF 1.27 1.12 1.28 1.46 1.50 1.76 1.74 1.96 MEAN 1.51 S.D. 0.55OAF 0.73 1.08 0.73 1.43 0.86 1.64 1.01 1.69 MEAN 1.15 S.D. 0.39

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD18 PLATE XB-70 1.86 48,000 DATA

PMAX I . 34PEFF 1 .64DAF 1.22

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD18 PLATE XB-70 1.86 48,000 FAR

PMAX 1.39 0.78 1.38 0.83 1.38 0.89 1.38 0.93 MEAN 1.12 S.D. 0.45PEFF 1.38 1.21 1.27 1.09 1.34 1.30 1.70 1.67 MEAN 1.37 S.D. 0.48DAF 1.00 1.56 0.92 1.33 0.97 1.46 1.23 1.79 MEAN 1.28 S.D. 0.31

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD18 PLATE F--104 1.5 28,000 DATA

PMAX . 99PEFF 0.55DAF 0.56

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD18 PLATE F-104 1.5 28,000 FAR

PMAX 1,34 0.79 1.37 0.78 1.36 0.73 1.35 0.70 MEAN 1,05 S.D. 0.46PEFF 0.92 0.92 0.85 0.84 0.83 0.86 0.82 0.86 MEAN 0.86 SD. 1.27DAF 0.68 1.17 0.62 1.08 0.61 1,18 0o61 1.22 MEAN 0.90 S.D. 0.29

B-58

Page 202: to hear-field and far-field sonic booms - DTIC

PEFr 2. UD A F r , 1,

ELEMENT TYP E CONTRACTOR MACh ALTITUDE FIELD

19 PLATE XB-70 1.22 27,000 FAR

PMAX 2.23 1.71 2.22 1.63 2.20 1.59 2.20 1.55 MEAN 1.92 S.D. 0.68

PEFF '.06 2.02 2.13 2.02 2.20 2.03 2.16 2.00 MEAN 2.08 S.D. 0.66

DAF 0.93 1.18 0.96 1.24 1.00 1.27 0.98 1.29 MEAN 1.11 S.D. 0.15

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD19 PLATE B-58 1.22 27,000 DATA

PMAX 1.67PEFF 1. 97

DAF I . 18ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD

19 PLATE B-b8 1.22 27,000 FARPMAX 1.72 1.13 1.71 1.12 1.69 1.14 1.69 1.23 MEAN 1.43 S.D. 0.54

PEFF 1.26 1.31 1.46 1.50 1.67 1.71 1.89 1.91 MEAN 1.59 S.D. 0.56DAF 0.73 1.15 0.86 1.34 0.99 1.50 1.12 1.56 MEAN 1.16 S 9. 0.30

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD19 PLATE XB-70 1.40 38,700 DATA

PMAX 1. 47PEFF 1.01DAF 0.69

FLLMENT TYPE CONTRACTOR M,'CH ALTITUDE FIELD19 PLATE XB- 70 1.40 38,700 FAR

PMAX l.bi 1,O0 1.61 0.96 1.60 1.01 1.60 1.13 MEAN 1.32 S.D. 0.52PEFF 1.22 1.12 1.19 1.08 1.18 1.14 1.18 1.31 MEAN 1.18 S.D. 0.38DAF 0.75 1.12 0.74 1.12 0.74 1.12 J.74 1.16 MEAN 0.94 S.D. 0.21

ELEMENT TYPE CONTRACTOR MAtH ALTITUDE FIELD

19 PLATE XB-70 1.86 is,000 DATAPMAX I. 24PEFF 0. 78DAF 0.63

ELEMENT TYPE CONTRACTOR MACH ALTITUDE FIELD19 PLA TE XB-70 1.86 48,000 FAR

PMAX 1.29 0.73 1.28 0.81 1.28 0. v 1 .2F 0.94 MFAN 1.06 S.D. 0.41PEFF 0.67 0.71 0.78 0.65 0.59 0.56 0.,54 0.52 MEAN 0.63 S.D. 0.22OAF 9.52 0.97 0.61 0.80 0.46 0.65 0.42 0.55 MEAN 0.62 S.D. 0.18

B-59

/

Page 203: to hear-field and far-field sonic booms - DTIC

DOCUMFNT CONTROL DATA R&D

I 1 0 R ;,-,., I , N A

Da t acr aftI, n c it clIa ssifije d

Gardena. California 902473 FtEPORT TITLE

THEORETICAL STUDY OF STRUCTURAL RESPONSE TO NEAR-FIELD ANDFAR-FIELD SO)NIC BOOMS

4 DESCRIPTIVE NO'ES (Tvpe ,t r-p-t m.-dr dares)

_ _ Final Report, 1 July 1966 -30 September 1 l96r,_ _ __ _ _ _

5 AU HOR(S) 'La-t namte 1-i -,

Wiggins , John H. , rKennedy , Bruce

6 REPORT DATE 7n TCTrL NO OF PAGc 1 7h NO OF REFS

October 1966 _____207 35 ____

as CONTRACT OR GANT No 9. ORIGINATOR'S R'PORT N~jPFR 5

1AF 49 (638) - 1777 30-b. PROJECT NO 7908 30-

9b OTHER REPOR7 NOIS) (ryb ,r~~t I~1 ~ h rrerh i repor')

10 AV AIL ABILITY L-IMITATION NOTICES

11 SUPPLEMENTARY NOTES 12 SPONSORINGr MILITARY AC_ TvITY

Air orce Oi o loe-t1 I ' c esearchTn t joral 7ovi c -OC -v~i L "on Cl'ice

~Yp~t OCI o~the iL '.orefr

13 ABSTRACT

This study -investigates the difference between near-field aridfar-field sonic booml intensities. To do so it defines a newintensity standard, effective static load which depends on loadwaveform as well as magni tude. Many sonic boom loading wave-forms are colnpu ted for 19 structural elements, of various types ,produced by two ISST designs as well as F-104, B-58 and Xb-70airc,-r a ft. it is concluded that rear-t eld booms are less ntensethain far- fi l 'boomis , the nag ni tude of the di ffe ren ce dependingon 'he character of the waveform. The more the waveform isdis torted f rom a symetri c dl far-f ielId ( N-wadve) waveshape ,the1c~ver thie near-field intensi ty. It is recoimmended that furtherthor~etic~il S tudy be m-Iade in order to quanti fy res.ul ts andisolote the inf lueiice ot speci fic zParameters on beomi intenlsi ty.

D D -A .1473 Unclassified

Page 204: to hear-field and far-field sonic booms - DTIC

ra ti 4

Sonic Boom

Inensield

INensr FiteI

F ar -F ielId

Struc iral Response

Supersonic Trdnsport

Structural Dyndmics

INST f4CT ION S

1. ORIGINATING ACTIVITY: Enter the name and address 10 AVAILABILITY LIMITATION NOTICES: Enter any lrn-of the contractor, subcontractor, grantee Department of De- iiii ion-, on further dissemination of the repoi other than thosefense activity or other organization (corporate authorl issuing imposed by security classification, using stanael. . iatenentsthe report.I has2a. REPORT SECUITY CLASSIFICATION: Enter the such- as

allsecrit cassuictio o th reortInicae wethr (1) "'Qualified requesters may obtain copies of this

"Restricted Data" is included. Marking is to tbe in accord- rpr rmDG'ance with appropriate security regulations. ()"Foreign announcement and dissemirnat ion of this

2h. GROUP: Automatic downgrading is specified in Do) Di- report by DDC is not authorized."rective 5200. 10 and Armed Forces mndj nfjLj ual. E~nter (3) "1U. S. Government agencies may obtain copies of

ized.T

3. RU'ORT TITLE: Enter the complete report title in all 4)"U. S. military agencies may obtain copies of thincapital letters. Titles in all cases should be unclassified. repOrt directly from DDC. Other qualified usersIf a meoningf~il title cannot be selected without classifica- shall request thtcughtion, show tite classification in all capitals in parenthesisimmediately following the title.

4. DF-SCRIPTIVE NOTES. If appropriate, enter the type of (S) ' All distribution of this report is controlled. Qua)-report. e.g., interim, progress. summary, annual, or final, lied DDC users shall request throughGtie the inclusive dates when a specific reporting period is

covered.If t,. report has beer~ furnished to the Office of Technical5. AUTHlOR(S): Enter the name(s) of auth;or(s) as 'hown on 'Services, Department of Commerce, for sale to the public. indi-or in the report, Enter last n mne, first nanie, niiddle initial. Ca te this fact and enter the price, if known.If military, show rank and bra h of service. The name ofthe principal author is an alsc rite minimum requirement. II. SUPPL.EMFNTARY NOTE.S: Use for additional explana-

6. REPORT DATE. Enter the date of the report as cLay tr ntsmonth, year, or month, year. If more than one date appears 12. SPONq3RING MIITARY ACTIVITY: Enter the rname ofon the report, use date Of publication, the depattmental protect office or laboratory sponsoring (p..

7s. OTA NUMER F PGES:Thetotl paecunt i ng for) the researc h and developmenrt, Include address.

should follow normal pagination procedures. i.e., enter the I I At S I R ACt* I wtis ani 0-lrct r izlng a brirt au,1 tS, ii-A

number of pages co, itning information. 5iiO5Vii ih, 1-. wi-en indlicat ivi of the retport , eveni thoughit m,,v al(, a 1 i~icar elsiwhe're in the bodyv of the technIcal re

7Yb. NUMBER OF" REFERENCES. Enter the total number of t ort if atditouat ':)ice is required, a continuation sheetreferences cited in the report. shill1 he attached

Pa. CONTRACT (-R GRANT NUM13ER: If appropriate, ent eT It is higll dviritili that the' abstract of ,lassificil re-the applicable nuuolker of the contract or grant under which pitsti, 1 ini !itiifri~ Fach tiaratjraph (if the abstract shallthe report was written, vnd wib anindm.it min of the niilarN seciurity,' ctiissiftation

8h,. '-, 8t, 8d. PROJ ECT NUMI3 ER: Enter the appropriatti .tj it ii iffrion i in t he '.mi grafth. r.'tre senti-il as I nT') t-S),military department identificat ion, so, hi as protect number, 10, or (1

subprotect number. system numbeiirs, task number, etc. Thiew i ii , liii ii -n t, ingih Ii4 the Atistract How-

9a. ORIGINATOR'S REPORT NUMHER(S): Enter the offi- i'~ ir. the sygv -t-1 lenjt h is fr-1i 150 to 22S woridscial report number by which the document will be identified 1.4 KEY %ORl)S Key Airils are ite, hnially mearnngul termsand controlled by the originating acitivity. This number mnust or short phrasesi that ch.irat teirie a report and may he osed asbe ur'.iqiii to this IePort. index eritrit i for cat..lov1 ing the itport Key wordq mosnt be

Qh. OTlIIR REPORT NUMIIER SI: It the report has been sit .0te'4 si that rio - 'curt'tN , ss ific at uon is require(]. Iden-

assigned any other report iiumbers (ieither by~ the irtainator tiers. soil ais' etirmefit modeil de ga otrade name. 'nil-

or by the spo~nsor), also enter this numbrs). iii, pro)- .tIi n.ame. gortbi:locatiion, may 1w used an1i'c. Aords, buit wilt hie toltiwit ti'. an indi( ation (it techn'c al

-in? is T'he as;ign-e It inks, r th-s. and weights is

L p.inal

Unlssfe

It(ut lsiiahn