Top Banner
Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg
49

Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

Dec 19, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

Tighter Cut-BasedBounds for k-pairs

Communication Problems

Nick HarveyRobert Kleinberg

Page 2: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

Overview Definitions

Sparsity and Meagerness Bounds Show these bounds very loose Define Informational Meagerness

Based on Informational Dominance Show that it can be slightly loose

Page 3: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

M1M2

M1⊕M2

S(1) S(2)

T(2) T(1)

k-pairs Communication Problem

Page 4: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

Concurrent Rate

Source i desires communication rate di. Rate r is achievable if rate vector

[ rd1, rd2, …, rdk ] is achievable Rate region interval of R+

Def: “Network coding rate” (or NCR) := sup { r : r is achievable }

Page 5: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

M1M2

M1⊕M2

S(1) S(2)

T(2) T(1)

k-pairs Communication Problem

d1 = d2 = 1ce = 1 eERate 1 achievable

Page 6: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

Upper bounds on rate

[Classical]: Sparsity bound for multicommodity flows

[CT91]: General bound for multi-commodity information networks

[B02]: Application of CT91 to directed network coding instances; equivalent to sparsity.

[KS03]: Bound for undirected networks with arbitrarytwo-way channels

[HKL04]: Meagerness

[SYC03], [HKL05]: LP bound

[KS05]: Bound based on iterative d-separation

Page 7: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

Vertex-Sparsity

Def: For U V,

VS (G) := minUV VS (U)

Claim: NCR VS (G)

Capacity of edges crossing between U and U

Demand of commodities separated by UVS

(U) :=

Page 8: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

Edge-Sparsity Def: For A E,

ES (G) = minAE ES (A)

Claim: Max-Flow ES (G)

But: Sometimes NCR > ES (G)

Capacity of edges in A

Demand of commodities separated in G\AES (A) :=

Page 9: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

NCR > Edge-Sparsity

S(1) S(2)

T(2) T(1)

Cut {e} separates S(1) and S(2)

ES ({e}) = 1/2 But rate 1 achievable!

e

Page 10: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

Meagerness Def: For A E and P [k],

A isolates P if for all i,j P,S(i) and T(j) disconnected in G\A.

M (G) := minAE M (A)

Claim: NCR M (G)

Capacity of edges in A

Demand of commodities in PM (A) := minP isolated by A

Page 11: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

Meagerness & Vtx-Sparsity are weak

Thm: M (Gn) = VS (Gn) = (1),but NCR 1/n.

S(3) S(2)S(n) S(n-1) f2fn-1 f3 S(1)f1

T(1)T(n-1)T(n) T(3)hn-1 h1h3 T(2)h2

g2g3 g1gn-1gn

Gn :=

Page 12: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

A Proof Tool

Def: Let A,B E. B is downstream of Aif B disconnected from sources in G\A.Notation: A B.

Claim: If A B then H(A) H(A,B).

Pf: Because S A B form Markov chain.

Page 13: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

Proof:

{gn} {gn,T(1),h1}

S(3) S(2)S(n) S(n-1) f2fn-1 f3 S(1)f1

T(1)T(n-1)T(n) T(3)hn-1 h1h3 T(2)h2

g2g3 g1gn-1gn

Gn :=

Lemma: NCR 1/n

Page 14: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

Proof:

{gn} {gn,T(1),h1} {S(1),f1,g1,h1}

S(3) S(2)S(n) S(n-1) f2fn-1 f3 S(1)f1

T(1)T(n-1)T(n) T(3)hn-1 h1h3 T(2)h2

g2g3 g1gn-1gn

Gn :=

Lemma: NCR 1/n

Page 15: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

Proof:

{gn} {gn,T(1),h1} {S(1),f1,g1,h1}

{S(1),f1,T(2),h2}

S(3) S(2)S(n) S(n-1) f2fn-1 f3 S(1)f1

T(1)T(n-1)T(n) T(3)hn-1 h1h3 T(2)h2

g2g3 g1gn-1gn

Gn :=

Lemma: NCR 1/n

Page 16: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

Proof:

{gn} {gn,T(1),h1} {S(1),f1,g1,h1}

{S(1),f1,T(2),h2} {S(1),S(2),f2,g2,h2}

S(3) S(2)S(n) S(n-1) f2fn-1 f3 S(1)f1

T(1)T(n-1)T(n) T(3)hn-1 h1h3 T(2)h2

g2g3 g1gn-1gn

Gn :=

Lemma: NCR 1/n

Page 17: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

h3

Proof:

{gn} {gn,T(1),h1} {S(1),f1,g1,h1}

{S(1),f1,T(2),h2} {S(1),S(2),f2,g2,h2}

{S(1),S(2),f2,T(3),h3}

S(3) S(2)S(n) S(n-1) f2fn-1 f3 S(1)f1

T(1)T(n-1)T(n) T(3)hn-1 h1T(2)h2

g2g3 g1gn-1gn

Gn :=

Lemma: NCR 1/n

Page 18: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

Proof:

{gn} … {S(1),S(2),…,S(n)}

Thus 1 H(gn) H(S(1),…,S(n)) = n∙r

So 1/n r

S(3) S(2)S(n) S(n-1) f2fn-1 f3 S(1)f1

T(1)T(n-1)T(n) T(3)hn-1 h1h3 T(2)h2

g2g3 g1gn-1gn

Gn :=

Lemma: NCR 1/n

Page 19: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

Towards a stronger bound Our focus: cut-based bounds

Given A E, we want to infer thatH(A) H(A,P) where P{S(1),…,S(k)}

Meagerness uses Markovicity:(sources in P) A (sinks in P)

Markovicity sometimes not enough…

Page 20: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

Informational Dominance

Def: A dominates B if information in A determines information in Bin every network coding solution.Denoted A B.

Trivially implies H(A) H(A,B) How to determine if A dominates B?

[HKL05] give combinatorial characterization and efficient algorithm to test if A dominates B.

i

Page 21: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

Informational Meagerness Def: For A E and P {S(1),…,S(k)},

A informationally isolates P ifAP P.

iM (A) = minP

for P informationally isolated by A

iM (G) = minA E iM (A)

Claim: NCR iM (G).

iCapacity of edges in A

Demand of commodities in P

Page 22: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

iMeagerness Example

“Obviously” NCR = 1. But no two edges disconnect t1 and t2 from both

sources!

s1 s2

t1

t2

Page 23: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

iMeagerness Example

After removing A, still a path from s2 to t1!

Cut A

s1 s2

t1

t2

Page 24: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

Informational Dominance Examples1 s2

t1

t2

Our characterization shows A {t1,t2}

H(A) H(t1,t2) and iM (G) = 1

Cut A

i

Page 25: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.
Page 26: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

A bad example: Hn

Thm: iMeagerness gap of Hn is (log |V|)

s(00)s(0)

s(01) s(10) s(11)s(1)

s(ε)

q(00) q(01) q(10) q(11)r(00) r(01) r(10) r(11)

t(00)t(0)

t(01) t(10) t(11)t(1)

t(ε)

Capacity 2-nH2

Page 27: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

s(00)s(0)

s(01) s(10) s(11)s(1)

s(ε)

Tn = Binary tree of depth n

Source S(i) iTn

Page 28: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

s(00)s(0)

s(01) s(10) s(11)s(1)

s(ε)

Tn = Binary tree of depth n

Source S(i) iTn

Sink T(i) iTn

t(00)t(0)

t(01) t(10) t(11)t(1)

t(ε)

Page 29: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

r(00) r(01) r(10) r(11)

s(00)s(0)

s(01) s(10) s(11)s(1)

s(ε)

t(00)t(0)

t(01) t(10) t(11)t(1)

t(ε)

q(00) q(01) q(10) q(11)

Nodes q(i) and r(i) for every leaf i of Tn

Page 30: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

r(00) r(01) r(10) r(11)

s(00)s(0)

s(01) s(10) s(11)s(1)

s(ε)

t(00)t(0)

t(01) t(10) t(11)t(1)

t(ε)

q(00) q(01) q(10) q(11)

Complete bip. graph between sources and q’s

Page 31: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

r(00) r(01) r(10) r(11)

s(00)s(0)

s(01) s(10) s(11)s(1)

s(ε)

t(00)t(0)

t(01) t(10) t(11)t(1)

t(ε)

q(00) q(01) q(10) q(11)

(r(a),t(b)) if b ancestor of a in Tn

Page 32: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

r(00) r(01) r(10) r(11)

s(00)s(0)

s(01) s(10) s(11)s(1)

s(ε)

q(00) q(01) q(10) q(11)

t(00)t(0)

t(01) t(10) t(11)t(1)

t(ε)

(s(a),t(b)) if a and b cousins in Tn

Page 33: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

r(00) r(01) r(10) r(11)

s(00)s(0)

s(01) s(10) s(11)s(1)

s(ε)

q(00) q(01) q(10) q(11)

t(00)t(0)

t(01) t(10) t(11)t(1)

t(ε)

Capacity 2-n

All edges have capacity except (q(i),r(i))

Page 34: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

r(00) r(01) r(10) r(11)

s(00)s(0)

s(01) s(10) s(11)s(1)

s(ε)

q(00) q(01) q(10) q(11)

t(00)t(0)

t(01) t(10) t(11)t(1)

t(ε)

Capacity 2-n

Demand of source at depth i is 2-i

Page 35: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

Properties of Hn

Lemma: iM (Hn) = (1)

Lemma: NCR < 1/n

Corollary: iMeagerness gap is n=(log |V|)

Page 36: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

Properties of Hn

Lemma: iM (Hn) = (1)

Lemma: NCR < 1/n

Corollary: iMeagerness gap is n=O(log |V|)

We will prove this

Page 37: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

Entropy moneybags i.e., sets of RVs

Entropy investments Buying sources and edges, putting into moneybag Loans may be necessary

Profit Via Downstreamness or Info. Dominance Earn new sources or edges for moneybag

Corporate mergers Via Submodularity New Investment Opportunities and Debt Consolidation

Debt repayment

Proof Ingredients

Page 38: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

Submodularity of Entropy

Claim: Let A and B be sets of RVs.Then H(A)+H(B) H(AB)+H(AB)

Pf: Equivalent to I( X; Y | Z ) 0.

Page 39: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

Proof: Two entropy moneybags:

F(a) = { S(b) : b not an ancestor of a }E(a) = F(a) { (q(b),r(b)) : b is descendant of a }

Lemma: NCR < 1/n

Page 40: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

Entropy Investment

Let a be a leaf of Tn

Take a loan and buy E(a).

r(00) r(01) r(10) r(11)

s(00)s(0)

s(01) s(10) s(11)s(1)

s(ε)

q(00) q(01) q(10) q(11)

a

Page 41: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

t(00)

Earning Profit

Claim: E(a) T(a)

Pf: Cousin-edges not from ancestors.Vertex r(00) blocked by E(a).

r(00) r(01) r(10) r(11)

s(00)s(0)

s(01) s(10) s(11)s(1)

s(ε)

q(00) q(01) q(10) q(11)

a

Page 42: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

Earning Profit

Claim: E(a) T(a)

Result:E(a) gives free upgrade to E(a){S(a)}.Profit = S(a).

r(00) r(01) r(10) r(11)

s(00)s(0)

s(01) s(10) s(11)s(1)

s(ε)

q(00) q(01) q(10) q(11)

a

t(00)

Page 43: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

q(00) q(01)

r(00) r(01) r(10) r(11)

s(00)s(0)

s(01) s(10) s(11)s(1)

s(ε)

q(00) q(01) q(10) q(11)

E(aL){S(aL)}

r(00) r(01) r(10) r(11)

s(00)s(0)

s(01) s(10) s(11)s(1)

s(ε)

q(10) q(11)

E(aR){S(aR)}

aL

aR

Page 44: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

q(00) q(01)

r(00) r(01) r(10) r(11)

s(00)s(0)

s(01) s(10) s(11)s(1)

s(ε)

q(00) q(01) q(10) q(11)

(E(aL){S(aL)})

(E(aR){S(aR)})

r(00) r(01) r(10) r(11)

s(00)s(0)

s(01) s(10) s(11)s(1)

s(ε)

q(10) q(11)

(E(aL){S(aL)})

(E(aR){S(aR)})

Applying submodularity

Page 45: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

r(00) r(01) r(10) r(11)

s(00)s(0)

s(01) s(10) s(11)s(1)

s(ε)

q(00) q(01) q(10) q(11)

(E(aL){S(aL)})

(E(aR){S(aR)})

New Investment

Union term has more edges

Can use downstreamnessor informational dominance again!

(E(aL){S(aL)}) (E(aR){S(aR)}) = E(a)

a

Page 46: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

Debt Consolidation Intersection term has only sources

Cannot earn new profit.

Used for later “debt repayment” (E(aL){S(aL)}) (E(aR){S(aR)}) = F(a)

q(00) q(01)r(00) r(01) r(10) r(11)

s(00)s(0)

s(01) s(10) s(11)s(1)

s(ε)

q(10) q(11)

(E(aL){S(aL)})

(E(aR){S(aR)})

a

Page 47: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

What have we shown? Let aL,aR be sibling leaves; a is their parent.

H(E(aL)) + H(E(aR)) H(E(a)) + H(F(a)) Iterate and sum over all nodes in tree

where r is the root. Note: E(v) = F(v) {(q(v),r(v))} when v is a leaf

vl

vFHrEHlEH nonleaf leaf

))(())(())((

v

l l

vFHrEH

HlFH lrlq

nonleaf

leaf leaf

))(())((

)())(( ))(),((

Page 48: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

Debt Repayment

Claim:

Pf: Simple counting argument.

vl

vFHlFH nonleaf leaf

))(())((

v

l l

vFHrEH

HlFH lrlq

nonleaf

leaf leaf

))(())((

)())(( ))(),((

))(()( leaf

))(),(( rEHHl

lrlq

Page 49: Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

Finishing up

l lrlqc

leaf ))(),((

))(()( leaf

))(),(( rEHHl

lrlq

i

iSH ))((=

1

=

Rate < 1/n

nv

vdepth )(2

=

(where α = rate of solution)