Top Banner
Tight integrality gaps for vertex-cover semidefinite relaxations in the Lovász- Schrijver Hierarchy Avner Magen Joint work with Costis Georgiou, Toni Pitassi and Iannis Tourlakis University of Toronto
31

Tight integrality gaps for vertex-cover semidefinite relaxations in the Lovász-Schrijver Hierarchy Avner Magen Joint work with Costis Georgiou, Toni Pitassi.

Mar 28, 2015

Download

Documents

Sofia Pereira
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Tight integrality gaps for vertex-cover semidefinite relaxations in the Lovász-Schrijver Hierarchy Avner Magen Joint work with Costis Georgiou, Toni Pitassi.

Tight integrality gaps forvertex-cover semidefinite relaxations

in the Lovász-Schrijver Hierarchy

Avner Magen

Joint work with Costis Georgiou, Toni Pitassi and Iannis Tourlakis

University of Toronto

Page 2: Tight integrality gaps for vertex-cover semidefinite relaxations in the Lovász-Schrijver Hierarchy Avner Magen Joint work with Costis Georgiou, Toni Pitassi.

Minimum Vertex Cover

Finding minimum size VC is NP-hard

Exist simple 2-approximations

All known algs are 2 o(1) approximations!

Probabilistically checkable proofs (PCPs) No poly-time 1.36 approximation [Dinur-Safra’02]

Unique Games Conjecture [Khot’02] No poly-time 2 approximation [Khot-Regev’03]

Alternative (concrete) approach [ABL’02, ABLT’06]: Rule out approximations by large subfamilies of algorithms

Page 3: Tight integrality gaps for vertex-cover semidefinite relaxations in the Lovász-Schrijver Hierarchy Avner Magen Joint work with Costis Georgiou, Toni Pitassi.

Linear Programming approach

min iV vi

vi + vj ≥ 1, ij E

vi {0,1} 0 ≤ vi ≤ 1

True Optimum

Optimal Fractional SolutionIntegrality Gap: max

Easy to see IG ≤ 2

for Kn : IG = 2 1/n

Page 4: Tight integrality gaps for vertex-cover semidefinite relaxations in the Lovász-Schrijver Hierarchy Avner Magen Joint work with Costis Georgiou, Toni Pitassi.

SDP: the ultimate remedy?

Vertex Cover on G = (V,E)

Tighter relaxation? Smaller integrality gap?

min iV (1 + v0 · vi)/2

(v0 vi) · (v0 vj) = 0, ij E

|| vi ||2 = 1, vi Rn+1

min iV (1 + x0xi)/2

(x0 xi)(x0 xj) = 0, ij E

|xi| = 1 Hatami-M-Markakis’06:

Integrality gap still 2 o(1), even

with “pentagonal” inequalities

Semidefinite Programming Relaxations

Kleinberg-Goemans’98:

Integrality gap 2 o(1)

Clearly holds in

integral case

vi {1,1}

(v0 vi) · (v0 vj) 0, i,j

(vi vj) · (vi vk) 0, i,j

Charikar’02:

Gap still 2 o(1)

Page 5: Tight integrality gaps for vertex-cover semidefinite relaxations in the Lovász-Schrijver Hierarchy Avner Magen Joint work with Costis Georgiou, Toni Pitassi.

Systematic Approach: Lovász-Schrijver Liftings [LS’91]

Procedures LS0, LS, LS+ for tightening linear relaxations Integral hull in ≤ n rounds Optimize over rth round relaxation in nO(r) time

Very powerful algorithms obtained through small number of rounds: GW’94, KZ’97, ARV’04 algorithms “poly-time” in LS+ All NP in “exponential time”

May view super-constant rounds lower bounds in LS+ models as evidence about inapproximability

Initial Linear Relaxation

Integral Hull

Has PSD constraint Sequence of tighter and tighter SDPs

“Lift” to obtain

SDP Relaxation

n variablesn2 variables

“Project” back

to obtain tighter LP

Page 6: Tight integrality gaps for vertex-cover semidefinite relaxations in the Lovász-Schrijver Hierarchy Avner Magen Joint work with Costis Georgiou, Toni Pitassi.

Previous Lower Bounds for Vertex Cover – without SDP constraints (LS)

[ABLT’06]: Int. gap 2 o(1) after (log n) LS rounds

[Tourlakis’06]: Int. gap 1.5 o(1) after (log2 n) LS rounds

[STT’06b]: Int. gap 2 o(1) after (n) LS rounds

Page 7: Tight integrality gaps for vertex-cover semidefinite relaxations in the Lovász-Schrijver Hierarchy Avner Magen Joint work with Costis Georgiou, Toni Pitassi.

Status of SDP variant LS+

Stronger: one round already Implies clique constraint More generally, gives n-θ(G) lower bound on VC (so

sparse graph are generally not good) Gives rise to SDPs in the “lift” phases.

Page 8: Tight integrality gaps for vertex-cover semidefinite relaxations in the Lovász-Schrijver Hierarchy Avner Magen Joint work with Costis Georgiou, Toni Pitassi.

Integrality gap of 7/6 for LS+ (STT06a)

PCP world: Hastad 0.5-hardness for MAX3XOR and the FGLSS reduction imply 7/6-hardness for VC

AAT05 proved matching LB (for int. gap) in LS+ world for MAX3XOR

STT06b using further ideas from FO06, extend AAT MAX3XOR LB to prove 7/6 int. gap for linear rounds

graph family: FGLSS reduction on random MAX3XOR instances Int. gap 7/6 already after one round

Page 9: Tight integrality gaps for vertex-cover semidefinite relaxations in the Lovász-Schrijver Hierarchy Avner Magen Joint work with Costis Georgiou, Toni Pitassi.

Vertex Cover in LS: results so far

SDP version (LS+)?

Int. gap ≥

2-o(1) ?# rounds

superconsant?

ABLT ’02,STT ’07 NO YES YES

STT ’06 YES NO YES

Charikar ’02 YES YES NO

New result YES YES YES

Page 10: Tight integrality gaps for vertex-cover semidefinite relaxations in the Lovász-Schrijver Hierarchy Avner Magen Joint work with Costis Georgiou, Toni Pitassi.

Main Result

Theorem: Int. gap 2 o(1) for SDPs resulting after(√log n/log log n) LS+ rounds

One LS+ round tighter than [C’02] SDP

SDPs ruled out incomparable to SDPs with (generalized) triangle and pentagonal inequalities (e.g., [HMM’06])

Theorem: Int. gap 2 O(1/√log n/log log n)after O(1) LS+ rounds

Karakostas [K’05] SDP gives 2 (1/√log n) approximation

Use same graph families as [KG’98], [C’02], [HMM’06]SDP solutions rely on sequence of polynomials applying

tensor operations on vectors

Page 11: Tight integrality gaps for vertex-cover semidefinite relaxations in the Lovász-Schrijver Hierarchy Avner Magen Joint work with Costis Georgiou, Toni Pitassi.

xk(xi + xj x0) 0 ij E (x0 xi)(xj – x0) 0 ij E(x0 xi)(x0 xj) 0

vk · (vi + vj v0) 0 ij E(v0 vi) · (v0 vj) = 0 ij E(v0 vi) · (v0 vj) 0

xk(xi + xj x0) 0 ij E (x0 xi)(x0 – xj) = 0 ij E(x0 xi)(x0 xj) 0

Yik + Yjk Y0k 0 ij EY00 Y0i Y0j + Yij = 0 ij EY00 Y0i Y0j + Yij 0

Convert vertex cover LP into an SDP?

Multiply linear inequalities to get valid quadratic constraints.Crucially, add integrality conditions: (x0 xi)xi = 0

E.g.,

Linearize: replace products xixj with linear variables Yij

Lifted SDP in (n + 1)2 variablesProject resulting convex body back onto n + 1 variables Y0i

xk(xi + xj x0) 0 ij E (x0 xi)(xi + xj x0) 0 ij E (x0 xi)(x0 xj) 0

LS+ lift-and-project: the quick guide

min iV xi

xi + xj 1 (i,j) E0 xi 1 i V(x0 = 1)xi + xj x0 0 (i,j) E xi 0 i V x0 xi 0 i V

Yei ,Y(e0ei) K

Y0i = Yii

(x0 xi)xi = 0

(x0 = 1)

Y is PSD

Homogenization:

cone K

= xi

Page 12: Tight integrality gaps for vertex-cover semidefinite relaxations in the Lovász-Schrijver Hierarchy Avner Magen Joint work with Costis Georgiou, Toni Pitassi.

How LS and LS+ tighten VC Relaxation

One round of LS precisely adds “odd-cycle constraints”: For all cycles C in G of odd length,

iC xi ≥ (|C|+1)/2

x1 + x2 + x3 ≥ 2

One round of LS+ adds more: Clique constraints: For all cliques K in G,

iK xi ≥ |K| – 1

min iV xi

xi + xj ≥ 1, ij E

0 ≤ xi ≤ 1

vs. x1 + x2 + x3 ≥ 3/2

Page 13: Tight integrality gaps for vertex-cover semidefinite relaxations in the Lovász-Schrijver Hierarchy Avner Magen Joint work with Costis Georgiou, Toni Pitassi.

Deriving the clique constraints in LS+

0 ≤ x0 – xi) (xi + xj – x0) +((k –x0 – xi)i

2

Edge constraint

i≠j

Let K be a clique of size k in G

SDP condition

xi2 – (k – 1) x0

2

xi ≥ k – 1After projectingi

Page 14: Tight integrality gaps for vertex-cover semidefinite relaxations in the Lovász-Schrijver Hierarchy Avner Magen Joint work with Costis Georgiou, Toni Pitassi.

x K(r) if matrix Y s.t. diagonal is x Y is PSD “columns” K(r 1)

Proving Lower Bounds in LS+ Hierarchies

I.H.

LP relaxation K for G with min VC ~ n:

xi + xj ≥1 ij E

(½, ½,…)

K(1) K(3)

K(2)

Int. gap of K is ≥ 2 – o(1)

(½+, ½+ …)

Use inductive proof: find appropriate Y’s

“Protection”

matrix for xLemma (LS’91):

Page 15: Tight integrality gaps for vertex-cover semidefinite relaxations in the Lovász-Schrijver Hierarchy Avner Magen Joint work with Costis Georgiou, Toni Pitassi.

“Frankl-Rödl” graphs

m-dimensional Hamming cube: n = 2m points

V = {1,1}m

(i, j) E iff (i, j) = (1 )m }

parameter

Theorem: [Frankl-Rödl’87]

Max Ind.Set size |B(v,n/2(1- ))|

m2m(1 2/64)m

Cor: If = (√log m/m) then max IS is o(2m) = o(n)

Graphs used for int.gaps in [KK91, AK94, KG95, C02, HMM06]

(i, j) = (1 )m

Page 16: Tight integrality gaps for vertex-cover semidefinite relaxations in the Lovász-Schrijver Hierarchy Avner Magen Joint work with Costis Georgiou, Toni Pitassi.

o(n)

What’s so wonderful about them?...

Start with a perfect matching

Perturb : edges connect

vertices of Ham. Dist. (1-)n

Vertex Cover = n/2

``Geometric’’ vertex cover = n/2 +O( )

Page 17: Tight integrality gaps for vertex-cover semidefinite relaxations in the Lovász-Schrijver Hierarchy Avner Magen Joint work with Costis Georgiou, Toni Pitassi.

Proof Outline

In induction: need vectors vi to define matrix Yij = vi vj

Show vi exist whenever x {0, 1, ½ + }n and > 6

Ensure S {0, 1, ½ + }n where O()

(/) round lower bound for x = (½ + )1Constant and = (√log m/m)

Int. gap 2 o(1) after (√log n/log log n) rounds

x K(r) if PSD matrix Y s.t.

1. diagonal is x

2. “columns” K(r1) 2’. Show some set S K(r1)

where “columns” conv(S)

(i, j) = (1 )m

VC 1 o(n)

x = (½ + )1

Page 18: Tight integrality gaps for vertex-cover semidefinite relaxations in the Lovász-Schrijver Hierarchy Avner Magen Joint work with Costis Georgiou, Toni Pitassi.

Back to Frankl-Rödl graphs

Natural set {ui} of unit vectors: {1,1}m

(v0 vi) · (v0 vj) = 0, (i, j) E

√m1

Note: ui · uj = 1 2(i, j)/m

Hence (i, j) E ui and uj nearly antipodal

Nearly true for vi = ui

21 for (i, j) E

linear function

F of vi · vj

(i, j) = (1 )m

VC 1 o(n)

ui · uj

1

21

1

F

1

0

1

vi · vj

1

1

Kleinberg-Goemans:

Affine translation onui to obtain vi

F

V = {1,1}m

Page 19: Tight integrality gaps for vertex-cover semidefinite relaxations in the Lovász-Schrijver Hierarchy Avner Magen Joint work with Costis Georgiou, Toni Pitassi.

Use Kleinberg-Goemans vi for LS+?

Fact: One round of LS+ also requires following ineq:

Idea (Charikar): Map ui to wi s.t.

F(wi · wj) 0

F(wi · wj) = 0 if ij E

I.e, when ui · uj = 2 1

How? Use tensoring

(v0 vi) · (v0 vj) 0 i,j

equality whenever ij E

(i, j) = (1 )m

VC 1 o(n)ui · uj

1

21

1

F(vi · vj)1

0

1

vi · vj

1

1

[KG] affine

map on ui

linear

map

F(vi · vj)

F(wi · wj)1

0

1

Desired mapping

on dot-products

Page 20: Tight integrality gaps for vertex-cover semidefinite relaxations in the Lovász-Schrijver Hierarchy Avner Magen Joint work with Costis Georgiou, Toni Pitassi.

Tensoring

u, v Rn

Tensor product: u v Rn2

Value uivj at coordinate (i, j) [n]2

Easy fact: (u v) · (u v) = (u · v)2

Let P(x) = c1xt1 + … + cqxtq

Consider map TP(u) = (c1ut1,…, cqutq)

Example: P(x) = x2 + 4x TP(u) = (u u, 2u) Rn2+2n

TP(u) · TP(v) = (u · v)2 + 4(u · v)2 = P(u · v)

Fact: TP(u) · TP(v) = P(u · v)

22

P determines dot-product

of resulting vectors

Positive coefficients

Page 21: Tight integrality gaps for vertex-cover semidefinite relaxations in the Lovász-Schrijver Hierarchy Avner Magen Joint work with Costis Georgiou, Toni Pitassi.

Back to finding solution for stronger SDP: Use TP

Charikar exhibits appropriate P

(i, j) = (1 )m

VC 1 o(n)

I.e, when ui · uj = 2 1

(v0 vi) · (v0 vj) 0 i,j

equality whenever (i, j) E

F(vi · vj)

ui · uj

1

21

1F

1

0

1

Want wi = TP(ui)s.t. F(wi · wj) min at (i, j) E

ui · uj 11

21

0

KG

C

Page 22: Tight integrality gaps for vertex-cover semidefinite relaxations in the Lovász-Schrijver Hierarchy Avner Magen Joint work with Costis Georgiou, Toni Pitassi.

Charikar sol’n gives one round LS+ lower bound

Charikar vectors define Yij = vi · vj that:

n Diagonal is x = (½ + )1n “Columns” K

x K(r) if PSD matrix Y s.t.

1. diagonal is x

2. “columns” K(r1) I.H.

x = (½ + )1

Can Charikar vectors show “columns” K(1)?

VC = 1 o(n)

Must have seq

of polynomials

Problems: (1) “Columns” not of form (½ + )1 (2) Charikar’s vectors work only for one value

Values distributed like

polynomial of Gaussian

Page 23: Tight integrality gaps for vertex-cover semidefinite relaxations in the Lovász-Schrijver Hierarchy Avner Magen Joint work with Costis Georgiou, Toni Pitassi.

Making non-uniform “columns” uniform

“Columns” we want to continue from not of form (½ + )1

Def [STT]: x K is -saturated if for all ij E so that xi, xj < 1 there is surplus: xi + xj 1 + 2

Lemma [STT]: x is -saturated there exists set of vectorsx(i) {0, 1, ½ + }n in K s.t. x conv({x(i) }).

Can convert “columns” to (essentially) (½ + )1IF “columns” are -saturated

Will be safe to “ignore” 0/1

values distributed like polynomial of Gaussian

Page 24: Tight integrality gaps for vertex-cover semidefinite relaxations in the Lovász-Schrijver Hierarchy Avner Magen Joint work with Costis Georgiou, Toni Pitassi.

Goal: matrix Y for x with “column” saturation ()

Recall P(x) defines TP(u) such that TP(u) · TP(v) = P(u · v)

deg(PC) = O(1/)

Fact: Y has “columns” s.t. some edges never have surplus

Problem: saturation of “close by” edges?

Saturation

Normal. Ham. Dist. from blue edge

Necessary: deg(P) ≥ · m !

For all P

P

Bad saturation zone

The blue edge

~ P(1)P(1-1/m)

≤ P’(1)/m

Is saturation good enough?

= o(m)

Page 25: Tight integrality gaps for vertex-cover semidefinite relaxations in the Lovász-Schrijver Hierarchy Avner Magen Joint work with Costis Georgiou, Toni Pitassi.

Want column saturation O()

Precise technical property needed for P:

| P(ui · uk ) + P(uj · uk) | O()

For all vertices k and all edges ij :

[1, 1]

But ui · uj = 2 1 for all edges ij, so

Need | P(x) + P(y) | O() over R

Red points correspond to 0-1 edges Ignored in saturation calculation

1

1

1

1

12

12

21

21

R

11/m

11/m x

y

Domain of P(x) + P(y)

|ui·uk+uj·uk| 2

|ui·ukuj·uk| 2(1-)

Page 26: Tight integrality gaps for vertex-cover semidefinite relaxations in the Lovász-Schrijver Hierarchy Avner Magen Joint work with Costis Georgiou, Toni Pitassi.

So far: There must be a seq of polys dep. on m. Polynomials must have large degree.

Let x {0, 1, ½ + }n

Take P(x) = (xx 1)m/ + x 1/ + (1- x

Properties: Minimum at ui · uj, ij E P’(1) > m Works as long as > 6 The “Columns” of Y that is produced by

using TP,m(ui) have saturation O()

ui · uj 11 21 0

KG

C

P

arbitrary > 6

Defining the sequence of tensoring polynomials

Page 27: Tight integrality gaps for vertex-cover semidefinite relaxations in the Lovász-Schrijver Hierarchy Avner Magen Joint work with Costis Georgiou, Toni Pitassi.

Putting everything together

Induction: Have x {0, 1, ½ + }n where > 6

Define Y using TP,m(ui)

“Columns” have saturation O()

[STT] Exists S K {0, 1, ½ + }n s.t. “columns” conv(S)

Induction Hypothesis S K(r 1)

Take constant and = (√log m/m)

x K(r) if PSD matrix Y s.t.

1. diagonal is x

2. “columns” K(r1) 2’. Show some set S K(r1)

where “columns” conv(S)

x = (½ + )1

r = (/)

(i, j) = (1 )m

VC 1 o(n)

x K(r)

Page 28: Tight integrality gaps for vertex-cover semidefinite relaxations in the Lovász-Schrijver Hierarchy Avner Magen Joint work with Costis Georgiou, Toni Pitassi.

Requiring that ||vi-vj||2 is l1?

As is, no l1 inequalities are not implied. The results of [HMM] (showing that metric-cut ineqaities

and pentagonal inequalities hold) suggest the examples are still good.

Need to Give Sherali Adams LB introduce dij = ||vi-vj||2

Add more reqs the LS+ proof need to satisfy.

Page 29: Tight integrality gaps for vertex-cover semidefinite relaxations in the Lovász-Schrijver Hierarchy Avner Magen Joint work with Costis Georgiou, Toni Pitassi.

Sherali-Adams [SA’90] Lift-and-Project

Idea: Keep “lifting” but never project!Simulate third, fourth, etc, degree products with linear vars

Only known integrality gap [FK’06]:(log n) SA rounds int. gap ≤ 2 for MAX-CUT

SA+ lower bound would inequalities for lifted variables Triangle, pentagonal, etc., inequalities derivable

E.g., x1x2x3 Y123

LP not SDP version

Page 30: Tight integrality gaps for vertex-cover semidefinite relaxations in the Lovász-Schrijver Hierarchy Avner Magen Joint work with Costis Georgiou, Toni Pitassi.

Relations to Unique Games Conjecture (UGC)

LS+ lower bounds may provide evidence of inapproximability

UGC [Khot’02] implies optimal inapproximability results for Vertex Cover, MAX-CUT, etc

Strong LS+, SA+ lower bounds for VC, MAX-CUT

Page 31: Tight integrality gaps for vertex-cover semidefinite relaxations in the Lovász-Schrijver Hierarchy Avner Magen Joint work with Costis Georgiou, Toni Pitassi.

Thanks