Top Banner
THz waveguides : a review Alexandre Dupuis École Polytechnique de Montréal M. Skorobogatiy Canada Research Chair in photonic crystals http:// www.photonics.phys.polymtl.ca /
26

THz waveguides : a review Alexandre Dupuis École Polytechnique de Montréal M. Skorobogatiy Canada Research Chair in photonic crystals

Dec 26, 2015

Download

Documents

Lynne Clarke
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: THz waveguides : a review Alexandre Dupuis École Polytechnique de Montréal M. Skorobogatiy Canada Research Chair in photonic crystals

THz waveguides : a reviewAlexandre Dupuis

École Polytechnique de Montréal

M. Skorobogatiy

Canada Research Chair in photonic crystals

http://www.photonics.phys.polymtl.ca/

Page 2: THz waveguides : a review Alexandre Dupuis École Polytechnique de Montréal M. Skorobogatiy Canada Research Chair in photonic crystals

Outline• Introduction • Applications in the THz regime• Early waveguide attempts

- Coplanar striplines, plastic ribbons, sapphire fibers, metal tubes• Recent breaktroughs

- Metal wire, microstructured fiber, plastic fiber, hollow plastic tubes with inner metal layer• Perspectives

Page 3: THz waveguides : a review Alexandre Dupuis École Polytechnique de Montréal M. Skorobogatiy Canada Research Chair in photonic crystals

Bridges the gap between the microwave and optical regimes.

= 0.1 THz - 10 THz

= 3000 m - 30 m

Major applications sensing, imaging and spectroscopy.

IntroductionWhat is the THz regime ?

Page 4: THz waveguides : a review Alexandre Dupuis École Polytechnique de Montréal M. Skorobogatiy Canada Research Chair in photonic crystals

Applications•Imaging of biological tissues (tissue recognition)

Löffler, Opt. Exp., 9, 12 (2001)

Page 5: THz waveguides : a review Alexandre Dupuis École Polytechnique de Montréal M. Skorobogatiy Canada Research Chair in photonic crystals

Applications•Chemical recognition of gases

Jacobsen, Opt. Lett., 21, 24 (1996)

Time domain spectroscopy

Page 6: THz waveguides : a review Alexandre Dupuis École Polytechnique de Montréal M. Skorobogatiy Canada Research Chair in photonic crystals

Applications• Tomography

Pearce, Opt. Lett., 30, 13 (2005)

Mittleman, Opt. Lett., 22, 12 (1997)

Page 7: THz waveguides : a review Alexandre Dupuis École Polytechnique de Montréal M. Skorobogatiy Canada Research Chair in photonic crystals

Applications• Non destructive sensing

Kawase, Opt. Exp., 11, 20 (2003)

Combining imaging and spectroscopy for the detection of organic compounds

Page 8: THz waveguides : a review Alexandre Dupuis École Polytechnique de Montréal M. Skorobogatiy Canada Research Chair in photonic crystals

Applications• Non destructive sensing

Kawase, Opt. Exp., 11, 20 (2003)

Page 9: THz waveguides : a review Alexandre Dupuis École Polytechnique de Montréal M. Skorobogatiy Canada Research Chair in photonic crystals

Applications•Inspecting electrical faults in integrated circuits

Kiwa, Opt. Lett.,

28, 21 (2003)

Page 10: THz waveguides : a review Alexandre Dupuis École Polytechnique de Montréal M. Skorobogatiy Canada Research Chair in photonic crystals

Technological challenges•Bulky free-space propagation of THz radiation

Goto, Jap. J. Appl. Phys. Lett.,

43, 2B (2003)

Page 11: THz waveguides : a review Alexandre Dupuis École Polytechnique de Montréal M. Skorobogatiy Canada Research Chair in photonic crystals

Technological challenges1. Virtually no low-loss waveguides

Conventionnal waveguides don’t work in the THz regime

Metals: high loss due to finite conductivity

Dielectrics: high absorption

2. Low dispersion waveguides necessary for spectroscopy

Page 12: THz waveguides : a review Alexandre Dupuis École Polytechnique de Montréal M. Skorobogatiy Canada Research Chair in photonic crystals

Early waveguides•Coplanar striplines

Frankel, IEEE Transactions on microwave theory and techniques, 39, 6 (1991)

Metal electrodes on a

semiconductor substrate

= ~20 cm-1 at =1 THz

~3

Page 13: THz waveguides : a review Alexandre Dupuis École Polytechnique de Montréal M. Skorobogatiy Canada Research Chair in photonic crystals

Early waveguides•Plastic ribbon waveguides

Mendis, J. Appl. Phys., 88, 7 (2000)

PE ribbon 150 mm thick

Dispersive single-mode propagation

No cut-off frequency

= ~1 cm-1

Page 14: THz waveguides : a review Alexandre Dupuis École Polytechnique de Montréal M. Skorobogatiy Canada Research Chair in photonic crystals

Early waveguides•Sapphire fiber

Jamison, Appl. Phys. Lett., 76, 15 (2000)

Single-crystal sapphire fiber

Diameter of 125, 250 and 325 m

= ~1 cm-1

Dispersive propagation, mainly attributed to the waveguide and not the material

Dominance of HE11 mode despite multimode fiber

Page 15: THz waveguides : a review Alexandre Dupuis École Polytechnique de Montréal M. Skorobogatiy Canada Research Chair in photonic crystals

Early waveguides•Metal tubes

McGowan, Opt. Lett., 24, 20 (1999)

Stainless steel with an inside diameter

of 280 m

= 0.7 cm-1

Very dispersive multimode propagation

Low frequency cut-off at 0.76 THz

Page 16: THz waveguides : a review Alexandre Dupuis École Polytechnique de Montréal M. Skorobogatiy Canada Research Chair in photonic crystals

Recent waveguides•Parrallel metal plates

Mendis, IEEE Microwave and wireless components letters, 11, 11 (2001)

Two 100 m thick copper plates

separated by a 90 m air gap

= 0.1 cm-1 at 1 THz

Low dispersion

Absorption still high and cross-section too large for medical application

Page 17: THz waveguides : a review Alexandre Dupuis École Polytechnique de Montréal M. Skorobogatiy Canada Research Chair in photonic crystals

Recent waveguides•Hollow polymer waveguides with inner metallic layers

Harrington, Opt. Exp., 12, 21 (2004)

• Using liquid-phase chemistry methods, a metal or dielectric layer is deposited inside a silicon or polymer hollow waveguide.• It has been shown in the mid-IR region that hollow waveguides suffer a bending loss of 1/R, where R is the radius of curvature. It is possible to eliminate this effect with photonic bandgap structures.• The losses in Cu hollow waveguides can be significantly reduced if a dielectric coating of the correct optical thickness is deposited over the metallic layer.

Page 18: THz waveguides : a review Alexandre Dupuis École Polytechnique de Montréal M. Skorobogatiy Canada Research Chair in photonic crystals

Recent waveguides•Hollow polymer waveguides with inner metallic layers

Hidaka, “Optical information, data processing and storage, and laser communication technologies”, Proc. SPIE, 5135, 11 (2003)

8 mm bore hollow waveguide with an inner wall of ferroelectric Polyvinylidene Fluoride (PVDF)

= 0.015 cm-1 at 1 THz

With Cu inner layer, ~ 0.045 cm-1 at 1 THz

Page 19: THz waveguides : a review Alexandre Dupuis École Polytechnique de Montréal M. Skorobogatiy Canada Research Chair in photonic crystals

Recent waveguides• Ferroelectric hollow core all-plastic Bragg fibers

Skorobogatiy, Appl. Phys. Lett., 90, 113514, (2007)

Page 20: THz waveguides : a review Alexandre Dupuis École Polytechnique de Montréal M. Skorobogatiy Canada Research Chair in photonic crystals

Recent waveguides•Metal wire

Wang, Nature, 432, (2004)

Stainless steel wire with a diameter of 900

m

< 0.03 cm-1

However, coupling efficiency is (very) low

Non polarization maintaning

Page 21: THz waveguides : a review Alexandre Dupuis École Polytechnique de Montréal M. Skorobogatiy Canada Research Chair in photonic crystals

Recent waveguides•Metal wire

Cao, Opt. Exp., 13, 18 (2005)

Cu wire with a diameter of 450 m should have

= 0.002 cm-1 at 1 THz

Theoretical explanation of Wang’s results:

Azimutely Polarized Surface Plasmon (APSP)

The polarization mismatch with the linearly polarized source leads to a very low coupling efficiency.

Page 22: THz waveguides : a review Alexandre Dupuis École Polytechnique de Montréal M. Skorobogatiy Canada Research Chair in photonic crystals

Recent waveguides•Metal wire

Cao, Opt. Exp., 13, 18 (2005)

Outside the metal, air is very small, so the field decays very slowly in the radial direction and extends several 10 times R outside of the metal.

Inside the metal, m is very large, leaving a field penetration depth of less than 1 m.

Page 23: THz waveguides : a review Alexandre Dupuis École Polytechnique de Montréal M. Skorobogatiy Canada Research Chair in photonic crystals

Recent waveguides•Metal wire with milled grooves

Cao, Opt. Exp., 13, 18 (2005)

Vain attempt to increase coupling

Page 24: THz waveguides : a review Alexandre Dupuis École Polytechnique de Montréal M. Skorobogatiy Canada Research Chair in photonic crystals

Recent waveguides• Subwavelength plastic fibre

Sun, Opt. Lett., (Oct. 2005)

200 m diameter PE fiber

~ 0.01 cm-1 at 0.3 THz

Single-mode HE11 propagation

Fig.: Ponyting vector a) 0.3 THz b) 0.5 THz

c) 0.7 THz d) 0.9 THz

Page 25: THz waveguides : a review Alexandre Dupuis École Polytechnique de Montréal M. Skorobogatiy Canada Research Chair in photonic crystals

Recent waveguides• Plastic photonic crystal fibers (PPCF)

Han, Appl. Phys. Lett., 80, (2002)

500 m diameter HDPE tubes

The tubes were 2cm long, stacked in 2D triangular lattice and fused together at 135°C in a conventional furnace.

= 0.5 cm-1 at 1 THz

Material absorption primary loss factor

Relatively low dispersion, mainly due to waveguide dispersion

Page 26: THz waveguides : a review Alexandre Dupuis École Polytechnique de Montréal M. Skorobogatiy Canada Research Chair in photonic crystals

Recent waveguides• Plastic photonic crystal fibers (PPCF)

Teflon tubes = 0.3 cm-1 at 1 THz

Goto, Jap. J. Appl. Phys. Lett.,

43, 2B (2003)