Top Banner
THROUGHPUT OF A NORMAL INCIDENCE SPECTROMETER DESIGN IN DIFFERENT WAVELENGTH RANGES Luca Teriaca Max Planck Institut für Sonnensystemforschung
19

THROUGHPUT OF A NORMAL INCIDENCE SPECTROMETER DESIGN IN DIFFERENT WAVELENGTH RANGES Luca Teriaca Max Planck Institut für Sonnensystemforschung.

Mar 31, 2015

Download

Documents

Toby Rutter
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: THROUGHPUT OF A NORMAL INCIDENCE SPECTROMETER DESIGN IN DIFFERENT WAVELENGTH RANGES Luca Teriaca Max Planck Institut für Sonnensystemforschung.

THROUGHPUT OF A NORMAL INCIDENCE SPECTROMETER

DESIGN IN DIFFERENT WAVELENGTH RANGES

Luca TeriacaMax Planck Institut für Sonnensystemforschung

Page 2: THROUGHPUT OF A NORMAL INCIDENCE SPECTROMETER DESIGN IN DIFFERENT WAVELENGTH RANGES Luca Teriaca Max Planck Institut für Sonnensystemforschung.

Expected throughput for spatiallyresolved observations.

A = 3.848×10−3 m2, area of the entrance aperture (primary mirror of D=7 cm).

S = 2.56×1010 m2, area of the solar surface imaged over one pixel at perihelion (160×160 km2) by EUS. Equivalent to 1″/pixel angular scale.

r = 3.2912×1010 m, Solar Orbiter–Sun distance at perihelion (0.22 AU).

RP(λ) = Reflectance of the primary SiC mirror.

RG(λ) = Reflectance of the concave variable line-spacing SiC grating (diffraction efficiency times SiC reflectance).

V(λ) = Slit vignetting. Here a 1” wide slit is assumed.

DQE(λ) = Detector quantum efficiency.

L(λ) = Spectral radiance (ph m–2 s–1 sr–1 nm–1). Both average quiet Sun and active region spectra are considered.

Δλ = Spectral resolution element. A value of 0.005 nm is assumed.

LDVRRr

SA

t

NQEGP2

Page 3: THROUGHPUT OF A NORMAL INCIDENCE SPECTROMETER DESIGN IN DIFFERENT WAVELENGTH RANGES Luca Teriaca Max Planck Institut für Sonnensystemforschung.

Reflectance of SiC mirrors

Page 4: THROUGHPUT OF A NORMAL INCIDENCE SPECTROMETER DESIGN IN DIFFERENT WAVELENGTH RANGES Luca Teriaca Max Planck Institut für Sonnensystemforschung.

Bare and KBr-coated MCPs

Page 5: THROUGHPUT OF A NORMAL INCIDENCE SPECTROMETER DESIGN IN DIFFERENT WAVELENGTH RANGES Luca Teriaca Max Planck Institut für Sonnensystemforschung.

Grating diffraction efficiency (SUMER)

λ (nm) efficiency (%) 77 17100 28122 28

efficiencies at higher orders are taken equal to that of the first order

Page 6: THROUGHPUT OF A NORMAL INCIDENCE SPECTROMETER DESIGN IN DIFFERENT WAVELENGTH RANGES Luca Teriaca Max Planck Institut für Sonnensystemforschung.

1165 – 1265 Å: Quiet Sun

Page 7: THROUGHPUT OF A NORMAL INCIDENCE SPECTROMETER DESIGN IN DIFFERENT WAVELENGTH RANGES Luca Teriaca Max Planck Institut für Sonnensystemforschung.

1165 – 1265 Å: Quiet Sun

Page 8: THROUGHPUT OF A NORMAL INCIDENCE SPECTROMETER DESIGN IN DIFFERENT WAVELENGTH RANGES Luca Teriaca Max Planck Institut für Sonnensystemforschung.

1165 – 1265 Å: Quiet Sun

Page 9: THROUGHPUT OF A NORMAL INCIDENCE SPECTROMETER DESIGN IN DIFFERENT WAVELENGTH RANGES Luca Teriaca Max Planck Institut für Sonnensystemforschung.

1165 – 1265 Å: Active Region

Page 10: THROUGHPUT OF A NORMAL INCIDENCE SPECTROMETER DESIGN IN DIFFERENT WAVELENGTH RANGES Luca Teriaca Max Planck Institut für Sonnensystemforschung.

1165 – 1265 Å: Active Region

Page 11: THROUGHPUT OF A NORMAL INCIDENCE SPECTROMETER DESIGN IN DIFFERENT WAVELENGTH RANGES Luca Teriaca Max Planck Institut für Sonnensystemforschung.

1165 – 1265 Å: Active Region

Page 12: THROUGHPUT OF A NORMAL INCIDENCE SPECTROMETER DESIGN IN DIFFERENT WAVELENGTH RANGES Luca Teriaca Max Planck Institut für Sonnensystemforschung.

950 – 1050 Å: Quiet Sun

C III

H I Ly γ H I Ly β O VI

Si XII Si XII

Page 13: THROUGHPUT OF A NORMAL INCIDENCE SPECTROMETER DESIGN IN DIFFERENT WAVELENGTH RANGES Luca Teriaca Max Planck Institut für Sonnensystemforschung.

950 – 1050 Å: Quiet Sun

C III

H I Ly γH I Ly β O VI

Si XII Si XII

Page 14: THROUGHPUT OF A NORMAL INCIDENCE SPECTROMETER DESIGN IN DIFFERENT WAVELENGTH RANGES Luca Teriaca Max Planck Institut für Sonnensystemforschung.

950 – 1050 Å: Active Region

Fe XVI

Si XII Si XII

Page 15: THROUGHPUT OF A NORMAL INCIDENCE SPECTROMETER DESIGN IN DIFFERENT WAVELENGTH RANGES Luca Teriaca Max Planck Institut für Sonnensystemforschung.

950 – 1050 Å: Active Region

Fe XVI

Si XII Si XII

Page 16: THROUGHPUT OF A NORMAL INCIDENCE SPECTROMETER DESIGN IN DIFFERENT WAVELENGTH RANGES Luca Teriaca Max Planck Institut für Sonnensystemforschung.

700 – 800 Å: Quiet Sun

O III O II O V Ne VIII O IV

N IV S V

Mg IX

Page 17: THROUGHPUT OF A NORMAL INCIDENCE SPECTROMETER DESIGN IN DIFFERENT WAVELENGTH RANGES Luca Teriaca Max Planck Institut für Sonnensystemforschung.

700 – 800 Å: Quiet Sun

O III O II O V Ne VIII O IV

N IV S V

Mg IX

Page 18: THROUGHPUT OF A NORMAL INCIDENCE SPECTROMETER DESIGN IN DIFFERENT WAVELENGTH RANGES Luca Teriaca Max Planck Institut für Sonnensystemforschung.

700 – 800 Å: Active Region

O III O II O V Ne VIII O IV

N IV S V

Fe XVI Mg IX

Page 19: THROUGHPUT OF A NORMAL INCIDENCE SPECTROMETER DESIGN IN DIFFERENT WAVELENGTH RANGES Luca Teriaca Max Planck Institut für Sonnensystemforschung.

700 – 800 Å: Active Region

O III O II O V Ne VIII O IV

N IV S V

Fe XVI Mg IX