Top Banner
Three- and four-particle scattering A. Deltuva Centro de Física Nuclear da Universidade de Lisboa
41

Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

May 18, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

Three- and four-particle scattering

A. Deltuva

Centro de Física Nuclear da Universidade de Lisboa

Page 2: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

Few-particle scattering

Three-particle scattering equations

Three-nucleon system

Three-body direct nuclear reactions

Four-particle scattering equations

Four-nucleon system

Four-boson universal physics

Page 3: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

Three-particle system

Hamiltonian H0+∑α

• v1

v2 •

v3

1

2

3

Page 4: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

Three-particle system

Hamiltonian H0+∑α

• v1

v2 •

v3

1

2

3

Faddeev equations

(E−H0−vα)|ψα〉 = vα ∑σ

δασ|ψσ〉

|Ψ〉 = ∑α|ψα〉

Page 5: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

Alt, Grassberger, and Sandhas equations

Uβα = δβαG−10 +∑

σδβσTσG0Uσα

U0α = G−10 +∑

σTσG0Uσα

Tσ = vσ +vσG0Tσ

G0 = (E + i0−H0)−1

channel states (E−H0−vα)|φα〉 = 0

...

Page 6: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

AGS equations: numerical solution

Uβα = δβαG−10 +∑

σδβσTσG0Uσα

3 sets of Jacobi momenta

• pα

αqα

momentum-space partial wave basis

set of coupled 2-variable integral equations

integrable singularities in kernel

Coulomb interaction: screening and renormalization

Page 7: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

Proton-deuteron elastic scattering at Ep = 135 MeV

1

10

0 60 120 180

dσ/d

Ω (

mb/

sr)

Θc.m. (deg)

AV18AV18 + UIXCD BonnCD Bonn + ∆

-0.4

0.0

0.4

0 60 120 180A

y (N

)

Θc.m. (deg)

-0.4

0.0

0.4

0 60 120 180

Ay

(d)

Θc.m. (deg)

0.0

0.4

0.8

0 60 120 180

Ayy

Θc.m. (deg)

-0.4

0.0

0.4

0 60 120 180

Axx

Θc.m. (deg)

0.0

0.4

0.8

0 60 120 180

Axz

Θc.m. (deg)

[PRC 80, 064002]

Page 8: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

Coulomb vs 3NF: 1H(d,pp)n at Ed = 130 MeV

0.0

0.2

(15o,15o,160o)0.0

0.2

(20o,15o,160o)0.0

0.2

(25o,15o,160o)

0.0

0.2

0.4

d5 σ/dS

1 dΩ

2 (

mb

MeV

-1sr

-2)

(30o,15o,160o)0.0

0.1

(20o,20o,160o)0.0

0.1

(25o,20o,160o)

0.0

0.1

50 100 150

S (MeV)

(30o,20o,160o)

AV18(nd)AV18(pd)AV18+UIX(pd)

0.0

0.1

50 100 150

S (MeV)

(25o,25o,160o)0.0

8.0

50 100 150

S (MeV)

(13o,13o,20o)

Page 9: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

Application to 3-body nuclear reactions

p+(nA)

d+A

n+(pA)

p+(nA)

d+Ap+n+A

with A = 4He, 10Be, 12C, 14C, 16O, 28Si, 40Ca, 48Ca, 58Ni, . . .

Validity test of approximate nuclear reaction methods:DWBA, ADWA, CDCC, . . .

Novel dynamic input: nonlocal potentials, . . .

Page 10: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

CDCC test: 12C(d, pn)12C & 58Ni(d,d)58Ni

-60 -40 -20 0 20 40 60θp (deg)

100

101

102

103

d4 σ/dΩ

ndΩp (

mb/

sr2 )

Matsuoka (1982)FaddeevCDCC-BU

12C(d,pn)

12C @ Ed=56 MeV

θn=15o

0 30 60 90 120θc.m. (deg)

10-2

10-1

100

(dσ/

dΩ)/

(dσ R

/dΩ

)

Exp. (80.0 MeV)Exp. (79.0 MeV)FaddeevCDCC-BU

CDCC: A. M. Moro & F. M. Nunes

[PRC 76, 064602 (2007)]

Page 11: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

CDCC test: 12C(d, p)13C and12C(d, pn)12C

0

20

40

60

8012 MeV

56 MeV

CDCCAGSADWA

0 20 40 60 80θ (degrees)

0

5

10

15

dσ /

dΩ (m

b/sr

)

0

20

40

6012 MeV

20 40 60 80 100θ (deg)

0

100

200

dσ /

dΩ (m

b/sr

)

56 MeVCDCCAGS

0 4 8Epn (MeV)

0

5

10

dσ /

dE

0 20 40Epn (MeV)

0

2

4

6

dσ /

dE

CDCC/ADWA: F. M. Nunes, N. Upadhyay [PRC 85, 054621]

Page 12: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

Comparison with r-space FM results

1.0

10.0

(dσ/

dΩ)/

(dσ R

/dΩ

)

p+13C → p+13C

AGSFM

0.0

0.5

0 60 120 180

Ay

Θc.m. (deg)

0.1

1.0

10.0

(dσ/

dΩ)/

(dσ R

/dΩ

)

d+12C → d+12C

AGSFM

0.1

1.0

10.0

0 60 120 180

dσ/d

Ω

(mb/

sr)

Θc.m. (deg)

d+12C → p+13C(1/2-)

FM: R. Lazauskas [arXiv:1201.4979]

Page 13: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

Nonlocal OP: transfer reactions

1.0

10.0

dσ/d

Ω (

mb/

sr)

d+16O → p+17O(5/2+)

local OPnonlocal OP

0.1

1.0

10.0

0 50 100 150

dσ/d

Ω (

mb/

sr)

Θc.m. (deg)

Ed = 36 MeV

d+16O → p+17O(1/2+)

1

10

100

dσ/d

Ω (

mb/

sr)

d+14C → p+15C(1/2+)

Ed = 14 MeV

local OPnonlocal OP

1

10

100

0 50 100 150

dσ/d

Ω (

mb/

sr)

Θc.m. (deg)

d+14C → p+15C(5/2+)

[PRC 79, 021602, PRC 79, 054603]

Page 14: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

Four-particle scattering

Hamiltonian H0+∑i> j

vi j

• •

v12

1

2

3

4

Wave function:Schrödinger equation

Wave function components:Faddeev-Yakubovsky equations

Transition operators:Alt-Grassberger-Sandhas equations

Page 15: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

Symmetrized AGS equations

t = v+vG0t

G0 = (E + iε−H0)−1

u j = PjG−10 +Pj tG0u j

3+1 : P1 = P12P23+P13P23

2+2 : P2 = P13P24

U11 = (G0 tG0)−1ζP34+ζP34u1G0 tG0U11+u2G0 tG0U21

U21 = (G0 tG0)−1(1+ζP34)+(1+ζP34)u1G0 tG0U11

U12 = (G0 tG0)−1 +ζP34u1G0 tG0U12+u2G0 tG0U22

U22 = (1+ζP34)u1G0 tG0U12

ζ = −1 (+1) for fermions (bosons)

basis states partially symmetrized

Page 16: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

Scattering amplitudes: E + iε → E + i0

2-cluster reactions:

Tf i = sf i〈φ f |U f i|φi〉

|φ j〉 = G0tPj |φ j〉

|Φ j〉 = (1+Pj)|φ j〉

3-cluster breakup/recombination:

T3i = s3i〈φ3|[(1+ζP34)u1G0 tG0U1i +u2G0 tG0U2i]|φi〉

4-cluster breakup/recombination:

T4i = s4i〈φ4|[1+(1+P1)ζP34](1+P1)tG0u1G0 tG0U1i|φi〉

+ 〈φ4|(1+P1)(1+P2)tG0u2G0 tG0U2i|φi〉

Page 17: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

Wave function

|Ψi〉 = si[1+(1+P1)ζP34](1+P1)|ψ1,i〉+(1+P1)(1+P2)|ψ2,i〉

with Faddeev-Yakubovsky components

|ψ j,i〉 = δ ji |φi〉+G0 tG0u jG0 tG0U ji |φi〉

Page 18: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

Solution of 4N AGS equations

U11|φ1〉 = −G−10 P34P1|φ1〉−P34u1G0 tG0U11|φ1〉+u2G0 tG0U21|φ1〉

1

l l lx l lx

l

y

z

z y

2

momentum-space partial-wave basis|kxkykz[lz(ly[(lxSx) jxsy]SyJysz)Sz]JM, [(Txty)Tytz]TMT〉1

|kxkykz[lz(lxSx) jx[ly(sysz)Sy] jySz]JM, [Tx(tytz)Ty]TMT〉2

large system (up to 30000) of coupled 3-variableintegral equations with integrable singularities

Coulomb interaction: screening and renormalization[PRC 75, 014005, PRL 98, 162502]

Page 19: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

Singularities of 4N AGS equations

3H, 3He, or d+d bound state poles

G0u jG0 →Pj |φ j〉sj j 〈φ j |Pj

E + iε−Ebj −k2

z/2µj

treated by subtraction below 3-cluster threshold

Z q

pk2

z dkzF(kz)

k20−k2

z + i0

= PZ q

pk2

z dkzF(kz)

k20−k2

z−

12

iπk0F(k0)

=Z q

pdkz

k2zF(kz)−k2

0F(k0)

k20−k2

z

−12

k0F(k0)[

iπ+ ln(k0 + p)(q−k0)

(k0− p)(k0 +q)

]

Page 20: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

p-3Hescattering

0 60 1200

100

200

300

400

500dσ

/dΩ

[mb/

sr] Famularo 1954

Fisher 2006I-N3LOAV18low-k

2.25 MeV

0 60 1200

0.2

0.4

Ay0

Fisher 2006George 2001

0 60 120θc.m. [deg]

0

0.1

A0y

Daniels 2010

0 60 120

Mcdonald 1964Fisher 2006

4.05 MeV

0 60 120

Fisher 2006

0 60 120θc.m. [deg]

Daniels 2010

0 60 120 180

Mcdonald 1964

5.54 MeV

0 60 120 180

Alley 1993

0 60 120 180θc.m. [deg]

Alley 1993Daniels 2010

AGS/HH/FY (Lisbon/Pisa/Strasbourg, PRC 84, 054010)

Page 21: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

∆-isobar excitation: effective 3N and 4N forces

Fujita-Miyazawa higher order 3N force

4N force

[PLB 660, 471]

Page 22: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

n-3Heelastic scattering

0

200

400

dσ/d

Ω (

mb/

sr)

En = 1 MeV

AV18N3LO

CD BonnCD Bonn + ∆

INOY04

En = 3.5 MeV

0.0

0.4

0 50 100 150

Ay

Θc.m. (deg)

En = 1 MeV

0 50 100 150Θc.m. (deg)

En = 3.7 MeV

[PRC 76, 021001]

Page 23: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

p-3H elastic scattering

Ep = 4.15 MeV

0

200

400

0 50 100 150

dσ/d

Ω (

mb/

sr)

Θc.m. (deg)

N3LOINOY04

AV18CD Bonn

0.0

0.2

0.4

0.6

0 50 100 150

Ay

Θc.m. (deg)

0

0.2

0.4

0.6

3 4 5 6

max

(Ay)

Ep (MeV)

p-3He

p-3H

CD Bonn

Page 24: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

Charge exchange reaction 3H(p,n)3He

0

40

80

dσ/d

Ω (

mb/

sr)

Ep = 2.48 MeVAV18N3LO

CD BonnCD Bonn + ∆

INOY04

Ep = 6 MeV

0.0

0.4

0 50 100 150

Ay

Θc.m. (deg)0 50 100 150

Θc.m. (deg)

[PRC 76, 021001]

Page 25: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

d-d elastic scattering at Ed = 3 MeV

102

103

0 50 100 150

/dΩ

(m

b/s

r)

Θc.m. (deg)

CD BonnCD Bonn + ∆

0.000

0.002

0 50 100 150

T2

2

Θc.m. (deg)

[PLB 660, 471]

Page 26: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

2H(d,p)3H and 2H(d,n)3He

0

20dσ

/dΩ

(m

b/sr

) d+d → p+3H d+d → n+3He

Ed = 1.5 MeV

0

20

40

dσ/d

Ω (

mb/

sr) AV18

N3LOCD BonnCD Bonn + ∆INOY04 Ed = 3 MeV

0

20

0 50 100 150

dσ/d

Ω (

mb/

sr)

Θc.m. (deg)0 50 100 150

Θc.m. (deg)

Ed = 4 MeV

[PRC 81, 054002]

Page 27: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

2H(d,p)3H and 2H(d,n)3He

0.0

0.2

iT11

d+d → p+3H d+d → n+3He

Ed = 1.5 MeV

0.0

0.2

iT11

INOY04CD Bonn + ∆CD BonnN3LOAV18

Ed = 3 MeV

0.0

0.2

0 50 100 150

iT11

Θc.m. (deg)0 50 100 150

Θc.m. (deg)

Ed = 4 MeV

0.0

0.2

T21

d+d → p+3H d+d → n+3He

Ed = 1.5 MeV

0.0

0.2

T21

AV18N3LOCD BonnCD Bonn + ∆INOY04

Ed = 3 MeV

0.0

0.2

0 50 100 150T

21Θc.m. (deg)

0 50 100 150Θc.m. (deg)

Ed = 4 MeV

Page 28: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

Above breakup: additional singularities in AGS equations

deuteron bound state poles

t →v|φd〉〈φd|v

E + iε−ed −k2y/2µy

j −k2z/2µj

free resolvent

G0 →1

E + iε−k2x/2µx

j −k2y/2µy

j −k2z/2µj

Page 29: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

Above breakup: additional singularities in AGS equations

deuteron bound state poles

t →v|φd〉〈φd|v

E + iε−ed −k2y/2µy

j −k2z/2µj

free resolvent

G0 →1

E + iε−k2x/2µx

j −k2y/2µy

j −k2z/2µj

treated by complex-energy method:

1. solve for U f i(E + iε) with finite ε = ε1, ...,εn

2. extrapolate to ε → 0 for physical amplitudes U f i(E + i0)

[H. Kamada et al, Prog. Theor. Phys. 109, 869L (2003)]

Page 30: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

Integration with special weights

accuracy & efficiency of the complex-energy method isgreatly improved by a special integration

Z b

a

f (x)xn

0 + iy0−xndx≈

N

∑j=1

f (x j)w j(n,x0,y0,a,b)

where the quasi-singular factor is absorbed into specialweights

w j(n,x0,y0,a,b) =Z b

a

Sj(x)xn

0 + iy0−xndx

that may be calculated using spline functions Sj(x) forstandard Gaussian grid x j [PRC 86, 011001]

Page 31: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

Extrapolation ε → 0: n+3H at 22.1 MeV

10

100

dσ/d

Ω (

mb/

sr)

[εmin,εmax]/MeV:

[1.0, 2.0]

[1.2, 2.0]

[1.4, 2.0]

[1.2, 1.8]

ε = 1.4 MeV

-0.4

0.0

0.4

0.8

0 60 120 180

Ay

Θc.m. (deg)

Page 32: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

Extrapolation ε → 0: n+3H at 22.1 MeV

[εmin,εmax] δ(1S0) η(1S0) δ(3P0) η(3P0) δ(3P2) η(3P2)

[1.0,2.0] 62.63 0.990 43.03 0.959 65.27 0.950[1.2,2.0] 62.60 0.991 43.04 0.959 65.29 0.951[1.4,2.0] 62.67 0.991 43.03 0.958 65.27 0.950[1.2,1.8] 62.65 0.992 43.03 0.959 65.28 0.9501.4 73.37 0.916 44.77 0.840 67.38 0.933

[PRC 86, 011001]

Page 33: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

n+3H elastic scattering

10

100

dσ/d

Ω (

mb/

sr)

En = 14.1 MeV

INOY04CD BonnFrenjeDebertin

10

100

dσ/d

Ω (

mb/

sr)

En = 18.0 MeV

DebertinSeagrave

1

10

100

0 60 120 180

dσ/d

Ω (

mb/

sr)

Θc.m. (deg)

En = 22.1 MeV

Seagrave, 21 MeVSeagrave, 23 MeV -0.4

0.0

0.4

0.8

0 60 120 180

Ay

Θc.m. (deg)

En = 22.1 MeV

INOY04CD BonnSeagraveINOY04, 14.1 MeVINOY04, 18.0 MeV

Page 34: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

n+3H total and breakup cross sections

1.5

2.0

2.5

0 2 4 6

σ t (

b)

En (MeV)

AV18N3LOCD BonnCD Bonn + ∆INOY04

0

1

2

0 5 10 15 20

σ t (

b)

En (MeV)

PhillipsBattatINOY04CD Bonn

0

20

40

60

10 15 20

σ b (

mb)

En (MeV)

INOY04

Page 35: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

Recombination reaction 2H+n+n → n+3H

1 × 10-5

2 × 10-5

3 × 10-5

0 1 2 3 4

NA2 K

3 (

cm6 s

-1 m

ol-2

)

E3 (MeV)

dρt

dt= Kγ

2ρdρn +K3ρdρ2n + . . .

Page 36: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

p+3He elastic scattering

10

100dσ

/dΩ

(m

b/sr

) Ep = 21.3 MeV

INOY04

Murdoch

-0.4

0.0

0.4

0.8

0 60 120 180

Ay

Θc.m. (deg)

Birchall

Page 37: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

4-boson system with resonant interactions

T(n−1,1)

T(n−1,2)

a+t(n−1)

a+t(n)

IVS T(n,2)

Energy

d+d

d+a+a

1/a

T(n,1)

T(n,0)d

Page 38: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

Four-atom recombination at threshold

100

103

106

109

1012

0.2 0.4 0.6 0.8 1.0

κ n

a/an0

n = 1

n = 2

n = 3

n = 4

[PRA 85, 012708]

T(n−1,1)

T(n−1,2)

a+t(n−1)

a+t(n)

IVS T(n,2)

Energy

d+d

d+a+a

1/a

T(n,1)

T(n,0)d

a0n : bn = 0

a0n,k : Bn,k = 0

a0n,1/a0

n = 0.4254a0

n,2/a0n = 0.9125

Page 39: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

Atom-trimer scattering length

-200

0

200

0.1 1.0

An/

a ndd

andd/a

Re An/andd

Im An/andd

[EPL 95, 43002, PRA 85, 042705]

T(n−1,1)

T(n−1,2)

a+t(n−1)

a+t(n)

IVS T(n,2)

Energy

d+d

d+a+a

1/a

T(n,1)

T(n,0)d

addn : bn = 2bd

Page 40: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

Summary

3/4-body Faddev/AGS equations in momentum space

complex-energy methodwith special integration weights

Page 41: Three- and four-particle scatteringADWA 0 20 40 60 80 θ (degrees) 0 5 10 15 d σ / d Ω (mb/sr) 0 20 40 60 12 MeV 20 40 60 80 100 θ (deg) 0 100 200 d σ / d Ω (mb/sr) 56 MeV CDCC

Summary

3/4-body Faddev/AGS equations in momentum space

complex-energy methodwith special integration weights

3N scattering

3-body nuclear reactions

4N scattering

universal 4-boson physics