Top Banner
Thermoelastic properties of ferropericlase Thermoelastic properties of ferropericlase R. Wentzcovitch Dept. of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute J. F. Justo, C. da Silva, Z. Wu Dept. of Chemical Engineering and Materials Science T. Tsuchiya Ehime University, Japan
27

Thermoelastic properties of ferropericlase R. Wentzcovitch Dept. of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute J. F.

Dec 17, 2015

Download

Documents

Lora Walters
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Thermoelastic properties of ferropericlase R. Wentzcovitch Dept. of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute J. F.

Thermoelastic properties of ferropericlase

Thermoelastic properties of ferropericlase

R. WentzcovitchDept. of Chemical Engineering and Materials Science,

Minnesota Supercomputing Institute

J. F. Justo, C. da Silva, Z. WuDept. of Chemical Engineering and Materials Science

T. Tsuchiya Ehime University, Japan

Page 2: Thermoelastic properties of ferropericlase R. Wentzcovitch Dept. of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute J. F.

OutlineOutline

Ab initio calculations of Fe in (Mg1-

xFex)O

Thermodynamics of the spin transition

Thermoelastic properties of (Mg1-xFex)O

Geophysical implications

Page 3: Thermoelastic properties of ferropericlase R. Wentzcovitch Dept. of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute J. F.

Motivation: Earth’s MineralsMotivation: Earth’s Minerals

(Mg1-yFey)SiO3

perovskite

(Mg1-xFex)O ferropericlase

+

Lower Mantle: Ferrosilicate Perovskite + ferropericlase

Low iron concentration (< 0.20) High-temperatures and high pressures Elasticity

Page 4: Thermoelastic properties of ferropericlase R. Wentzcovitch Dept. of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute J. F.

First Principles CalculationsFirst Principles Calculations

Density Functional Theory (LDA+U) (Cococcioni and de Gironcoli, PRB, 2005)

Plane waves + Pseudopotential (Troullier-Martins, PRB, 1991, Vanderbilt,

PRB, 1990)

Structural relaxation in all configurations

Density Functional Perturbation Theory (Baroni et al., RMP, 2001)

Page 5: Thermoelastic properties of ferropericlase R. Wentzcovitch Dept. of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute J. F.

14 16 18 20

4

5

6

7

V (Å 3/molec)

Hubbard U (eV)

XFe=3.125% XFe=12.5% XFe=18.75%

FeO (Cococcioni, 2005)

Optimized Hubbard U

HS

LS

Page 6: Thermoelastic properties of ferropericlase R. Wentzcovitch Dept. of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute J. F.

PT = 32±3 GPaNo systematic dependence on XFe

(Tsuchiya et al., PRL, 2006)

0 50 100

-20

0

20

40

P (GPa)

Δ=H H

LS

-HHS

( / )kJ mol

3.125% 12.5% 18.75%

First Principles Calculations: HS-LS First Principles Calculations: HS-LS transitiontransition

Page 7: Thermoelastic properties of ferropericlase R. Wentzcovitch Dept. of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute J. F.

0 50 100

-20

-10

0

10

20

30

P (GPa)

Δ ( / )H kJ mol

XFe=0.03125 XFe=0.125 XFe=0.1875

0 50 100

-20

-10

0

10

20

30

P (GPa)

Δ ( / )H kJ mol

n=0n=1/3n=2/3n=1A

B

C

0 20 40 60 80 1008

9

10

11

12

(V cm

3/ )mol

P (GPa)

n=0 n=1/3 n=2/3 n=1

Experimental: + (J.F.Lin et al., Nature, 2005)

17% Fe and room temperature

Equation of State (MgEquation of State (Mg0.810.81FeFe0.190.19)O)O(Tsuchiya et al., PRL,

2006)

∆ V ~-4%

⎥⎦

⎤⎢⎣

+=

HSLS

LS

nn

nn

Page 8: Thermoelastic properties of ferropericlase R. Wentzcovitch Dept. of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute J. F.

Temperature Effects: n(P,T)Temperature Effects: n(P,T)

1) Magnetic entropy

2) HS/LS configuration entropy 3) Fe/Mg configurational entropy is insensitive to

spin state

4) Vibrational energy and entropy are insensitive to spin state

5) Minimization of G(P,T,n) with respect to n:

(Tsuchiya et al., PRL, 2006)

1( , )

1 (2 1)exp HS LS

Fe B

n P TH

m SX k T

=⎡ ⎤Δ

+ + ⎢ ⎥⎣ ⎦

Page 9: Thermoelastic properties of ferropericlase R. Wentzcovitch Dept. of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute J. F.

Exp

LS fraction n(P,T)LS fraction n(P,T)

XFe=18.75%

Geotherm (Boehler, RG, 2000)

(Tsuchiya et al., PRL, 2006)

Page 10: Thermoelastic properties of ferropericlase R. Wentzcovitch Dept. of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute J. F.

Elasticity of

Ferropericlase

Elasticity of

Ferropericlase

Page 11: Thermoelastic properties of ferropericlase R. Wentzcovitch Dept. of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute J. F.

Volume of the mixed spin state Volume of the mixed spin state V(P,T,n)V(P,T,n) Mixed spin configuration was described by

the Vegard’s rule:

where n = low spin fraction

Iron-iron interaction is not significant for xFe=18.75%

( , , ) ( , ) (1 ) ( , )LS HSV P T n nV P T n V P T= + −

Page 12: Thermoelastic properties of ferropericlase R. Wentzcovitch Dept. of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute J. F.

High temperature elasticityHigh temperature elasticity

( , , ) ( , ) (1 ) ( , )LS HSV P T n nV P T n V P T= + −

Compressibility:

1( ) ( ) (1 ) ( )

9LS HS

ij ij LS ij HS ij LS HST

nS n V n nS V n S V V V

Pα ∂

= + − − −∂

Compliances:

11 12 1α α= = 44 0α =

THSLS

HS

HS

LS

LS

P

nVV

K

Vn

K

Vn

nK

nV

∂∂

−−−+= )()1()()(

Page 13: Thermoelastic properties of ferropericlase R. Wentzcovitch Dept. of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute J. F.

∑∑ ⎟⎟⎠

⎞⎜⎜⎝

⎛⎥⎦

⎤⎢⎣

⎡−−++=

qj B

qjB

qj

qj

Tk

VTk

VVUTVF

)(exp1ln

2

)()(),(

ωω hh

PVTSFG +−=TV

FP ⎥⎦

⎤⎢⎣⎡∂∂

−=VT

FS ⎥⎦

⎤⎢⎣

⎡∂∂

−=

IMPORTANT: crystal structure and phonon frequencies depend on volume alone!!

Static +vibrational free energyStatic +vibrational free energy

VDoS and F(T,V) within the quasiharmonic approximation

Page 14: Thermoelastic properties of ferropericlase R. Wentzcovitch Dept. of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute J. F.

equilibrium structure

kl

re-optimize

Pji

Tij

GTPc

⎥⎥⎦

⎢⎢⎣

∂∂∂

=

2

),(

V

jiTij

Sij C

VTTPcTPc

λλ+= ),(),(

Tii

S

λ

∂∂

=

(Wentzcovitch et al., PRL, 2004)

Thermoelastic Constant Tensor Thermoelastic Constant Tensor CCijij

purepure(P,T)(P,T)

Eulerian Strain

Page 15: Thermoelastic properties of ferropericlase R. Wentzcovitch Dept. of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute J. F.

““Approximate” Virtual Crystal Approximate” Virtual Crystal modelmodel

MgO

(Mg0.8125Fe0.1875)O

Replace Mg mass by the average cation mass of the alloy

ω(V) = ωLS(V) = ωHS(V)

Page 16: Thermoelastic properties of ferropericlase R. Wentzcovitch Dept. of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute J. F.

Compute CijLS(P,T) and Cij

HS(P,T)

SLS(P,T) = [CLS(P,T)]-1 and SHS(P,T) =[CHS(P,T)]-1

Calculate

Compute V(P,T,n) and Sij(P,T,n)

C(P,T,n) = [S(P,T,n)]-1

Compute K(P,T,n) and G(P,T,n)

Procedure to obtain CProcedure to obtain Cijij(P,T,n):(P,T,n):

⎥⎦

⎤⎢⎣

⎡Δ++=

+−

TkXG

Sm

TPn

BFe

vibstLSHSexp)12(1

1),(

Page 17: Thermoelastic properties of ferropericlase R. Wentzcovitch Dept. of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute J. F.

+ Experiments (Lin et al., Nature, 2005) (xFe=17%, RT)

xFe= 18.75%

Volume V(P,T,n(P,T)) for xVolume V(P,T,n(P,T)) for xFeFe= 18.75%= 18.75%

+ 300K (exp.)

Page 18: Thermoelastic properties of ferropericlase R. Wentzcovitch Dept. of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute J. F.

Elastic Constants (xElastic Constants (xFeFe= 18.75%)= 18.75%)

Page 19: Thermoelastic properties of ferropericlase R. Wentzcovitch Dept. of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute J. F.

Experiments: ○ (Lin et al., GRL, 2006) xFe = 25% (NRIXS, RT)

● (Lin et al., Nature, 2005) xFe= 17% (X-ray diffraction, RT)

□ (Kung et al., EPSL, 2002) xFe = 17% (RUS, RT)

Isotropic Elastic ConstantsIsotropic Elastic Constants

Page 20: Thermoelastic properties of ferropericlase R. Wentzcovitch Dept. of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute J. F.

Experiments: ○ (Lin et al., GRL, 2006) xFe = 25% (NRIXS, RT) □ (Kung et al., EPSL, 2002) xFe = 17% (RUS, RT)

3

4P

K GV

ρ

+=

S

GV

ρ=

xFe= 18.75%

Sound Wave VelocitiesSound Wave Velocities

Page 21: Thermoelastic properties of ferropericlase R. Wentzcovitch Dept. of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute J. F.

Geophysical ImplicationsGeophysical Implications

Page 22: Thermoelastic properties of ferropericlase R. Wentzcovitch Dept. of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute J. F.

Elasticity Along Mantle GeothermElasticity Along Mantle Geotherm

Geotherm (Boehler, Rev. Geophys. 2000)

6%

-15%

1150 km 1580 km

Page 23: Thermoelastic properties of ferropericlase R. Wentzcovitch Dept. of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute J. F.

Geotherm (Boehler, GRL,2000)

Wave Velocities Along Mantle Wave Velocities Along Mantle GeothermGeotherm

6%

-9%

-15%

3%

1150 km 1580 km

Page 24: Thermoelastic properties of ferropericlase R. Wentzcovitch Dept. of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute J. F.

Seismic Parameters (Mantle Geotherm)Seismic Parameters (Mantle Geotherm)

/

ln

lnSS P

VR

φ

∂=∂

Geotherm (Boehler, RG, 2000)

(Kara

(Karato, Karki, JGR, 2001)

Page 25: Thermoelastic properties of ferropericlase R. Wentzcovitch Dept. of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute J. F.

Geotherm (Boehler, GRL,2000)

Wave Velocities Along Mantle Wave Velocities Along Mantle GeothermGeotherm

6%

-9%

-15%

3%

1150 km 1580 km

Page 26: Thermoelastic properties of ferropericlase R. Wentzcovitch Dept. of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute J. F.

SummarySummary

HS-LS transition in (Mg1-xFex)O is well reproduced theoretically

There is a strong softening in the bulk modulus across the spin transition. This effect broadens and decreases with temperature

Along a lower mantle geotherm this softening is more pronounced between 45-70 GPa, i.e., 1150-1580 km

The shear modulus increases monotonically in the same region

Transition can produce negative values of R/s in the upper part of the lower mantle

The softening will likely occur also in ferrosilicate perovskite

The Si/(Mg+Fe) ratio in the lower mantle should increase from pyrolitic values because of the spin transtions in ferropericlase and ferrosilicate perovskite

Page 27: Thermoelastic properties of ferropericlase R. Wentzcovitch Dept. of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute J. F.

AcknowledgementsAcknowledgements

NSF/EAR 0135533 NSF/EAR 0230319NSF/ITR 0428774Japan Society for the Promotion of Science (JSPS)Brazilian Agency CNPq

Computations performed at the MSI-UMN