Top Banner
JAEA Conference 2014-10-09 - 2014-10-10 RADEBOLD Ingenieurbüro Berlin / Germany Thermodynamics of the Biological Energy System Thermodynamics of the Biological Energy System Dr. Reinhart Radebold in cooperation with Dr. Walter Radebold fig. 1 Contact: RADEBOLD Ingenieurbüro Quastenhornweg 14a D-14089 Berlin Mail: [email protected]
24

Thermodynamics of the Biological Energy System › news › symposium › RRW2014 › shiryo › 5-1.pdf · Thermodynamics of the Biological Energy System Thermodynamics of the Biological

Jun 29, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Thermodynamics of the Biological Energy System › news › symposium › RRW2014 › shiryo › 5-1.pdf · Thermodynamics of the Biological Energy System Thermodynamics of the Biological

JAEA Conference2014-10-09 - 2014-10-10

RADEBOLD IngenieurbüroBerlin / Germany

Thermodynamics of the Biological Energy System

Thermodynamics of the Biological Energy System

Dr. Reinhart Radebold

in cooperation with Dr. Walter Radebold

fig. 1

Contact: RADEBOLD IngenieurbüroQuastenhornweg 14aD-14089 BerlinMail: [email protected]

Page 2: Thermodynamics of the Biological Energy System › news › symposium › RRW2014 › shiryo › 5-1.pdf · Thermodynamics of the Biological Energy System Thermodynamics of the Biological

JAEA Conference2014-10-09 - 2014-10-10

RADEBOLD IngenieurbüroBerlin / Germany

Thermodynamics of the Biological Energy System

Agenda:

1. How does the biological energy system works in view of thermodynamics?

2. Why did we start to understand the biological energy system?

3. What are the conclusions for establishing a bionic energy system?

fig. 2

Page 3: Thermodynamics of the Biological Energy System › news › symposium › RRW2014 › shiryo › 5-1.pdf · Thermodynamics of the Biological Energy System Thermodynamics of the Biological

JAEA Conference2014-10-09 - 2014-10-10

RADEBOLD IngenieurbüroBerlin / Germany

Thermodynamics of the Biological Energy System

a

BES (1) → TES → NES → ? → BES (2) → TBES

BES (1) : Biological Energy System - role for our life, now and in it`s past

TES : Technical Energy System - role for our life, thermodynamics

NES : Nuclear Energy System - terrestrial atoms for peace

? : Point of No Return

BES (2) : Biological Energy System - thermodynamic analysis

TBES : Technical - Biological Energy System - concept and results.

Page 4: Thermodynamics of the Biological Energy System › news › symposium › RRW2014 › shiryo › 5-1.pdf · Thermodynamics of the Biological Energy System Thermodynamics of the Biological

JAEA Conference2014-10-09 - 2014-10-10

RADEBOLD IngenieurbüroBerlin / Germany

Thermodynamics of the Biological Energy System

electro-magnetic fields

(Sucrose + H2O)+12O2

sources for exergy: solar nuclear fusion-reactions

ch-em

{C12H22O11 + H2O} + 12 3O2

sinks for exergy:organelles and organs

em-ch

ch-em

work + anergy produced

electro-magnetic fields

fig. 3.1

hum

an a

nd

zool

ogic

al

orga

nism

s

bota

nica

l org

anis

ms

Page 5: Thermodynamics of the Biological Energy System › news › symposium › RRW2014 › shiryo › 5-1.pdf · Thermodynamics of the Biological Energy System Thermodynamics of the Biological

JAEA Conference2014-10-09 - 2014-10-10

RADEBOLD IngenieurbüroBerlin / Germany

Thermodynamics of the Biological Energy System

photosynthesis:= storage of electro-magnetic field exergy

in electro-magnetic-to-chemical converters

surcrose = final product of field exergy storage

respiration:= release of electromagnetic field exergy in

chemo-to-electro-magnetical converters

electro-magnetic fields

(Sucrose + H2O)+12O2

sources for exergy: solar nuclear fusion-reactions

ch-em

{C12H22O11 + H2O} + 12 3O2

sinks for exergy:organelles and organs

em-ch

ch-em

work + anergy produced

electro-magnetic fields

fig. 3.2

Page 6: Thermodynamics of the Biological Energy System › news › symposium › RRW2014 › shiryo › 5-1.pdf · Thermodynamics of the Biological Energy System Thermodynamics of the Biological

JAEA Conference2014-10-09 - 2014-10-10

RADEBOLD IngenieurbüroBerlin / Germany

Thermodynamics of the Biological Energy System

exergyThermal energy of a working fluid Twork = 2.5 * Tamb

Chemical energy of fossil reactants ∆G-T∆S(average)

Electro-magnetic field energy h*ν, U*I = 100% exergy

= 90% exergy

= 60% exergy

= 0% exergyThermal energy of the ambience Twork = Tamb anergy

Energy energy

fig. 4

Page 7: Thermodynamics of the Biological Energy System › news › symposium › RRW2014 › shiryo › 5-1.pdf · Thermodynamics of the Biological Energy System Thermodynamics of the Biological

JAEA Conference2014-10-09 - 2014-10-10

RADEBOLD IngenieurbüroBerlin / Germany

Thermodynamics of the Biological Energy System

acquisition of carriers of exergy from sources

internal distribution of exergy

conversion of exergy into forms as required

storage of carriers of exergy if possible

transfer of carriers of exergy to customers

work anergy

sources for exergy

sinks for exergy (converters of customers)

carrier of exergy

carrier of exergy

convertersof the given

energysystem

fig. 5

Page 8: Thermodynamics of the Biological Energy System › news › symposium › RRW2014 › shiryo › 5-1.pdf · Thermodynamics of the Biological Energy System Thermodynamics of the Biological

JAEA Conference2014-10-09 - 2014-10-10

RADEBOLD IngenieurbüroBerlin / Germany

Thermodynamics of the Biological Energy System

b

BES (1) → TES → NES → ? → BES (2) → TBES

BES (1) : Biological Energy System - role for our life, now and in it`s past

TES : Technical Energy System - role for our life, thermodynamics

NES : Nuclear Energy System - terrestrial atoms for peace

? : Point of No Return

BES (2) : Biological Energy System - thermodynamic analysis

TBES : Technical - Biological Energy System - concept and results.

Page 9: Thermodynamics of the Biological Energy System › news › symposium › RRW2014 › shiryo › 5-1.pdf · Thermodynamics of the Biological Energy System Thermodynamics of the Biological

JAEA Conference2014-10-09 - 2014-10-10

RADEBOLD IngenieurbüroBerlin / Germany

Thermodynamics of the Biological Energy System

fuels

electro-magnetic fields

(Sucrose + H2O)+12O2

sources for exergy: solar fusion-reactions

ch-em

{C12H22O11 + H2O} + 12 3O2

sinks for exergy

em-ch

ch-em

work + anergy produced

electro-magnetic fields

th-me

~20%

work + anergy produced

electro-magnetic fields

carrier: thermal energy

~80%

fuels

thermo-mechanical converters

coal, gas, oil

fig. 6

Page 10: Thermodynamics of the Biological Energy System › news › symposium › RRW2014 › shiryo › 5-1.pdf · Thermodynamics of the Biological Energy System Thermodynamics of the Biological

JAEA Conference2014-10-09 - 2014-10-10

RADEBOLD IngenieurbüroBerlin / Germany

Thermodynamics of the Biological Energy System

c

BES (1) → TES → NES → ? → BES (2) → TBES

BES (1) : Biological Energy System - role for our life, now and in it`s past

TES : Technical Energy System - role for our life, thermodynamics

NES : Nuclear Energy System - terrestrial atoms for peace

? : Point of No Return

BES (2) : Biological Energy System - thermodynamic analysis

TBES : Technical - Biological Energy System - concept and results.

Page 11: Thermodynamics of the Biological Energy System › news › symposium › RRW2014 › shiryo › 5-1.pdf · Thermodynamics of the Biological Energy System Thermodynamics of the Biological

JAEA Conference2014-10-09 - 2014-10-10

RADEBOLD IngenieurbüroBerlin / Germany

Thermodynamics of the Biological Energy System

solar fusion-reactions

th-me

terrestrial fission-reactions

sinks for exergy

electro-magnetic fields

(Sucrose + H2O)+12O2

ch-em

{C12H22O11 + H2O} + 12 3O2

em-ch

ch-em

work + anergy produced

electro-magnetic fields

thermal energy

electro-magnetic fields

work + anergy produced

fig. 7

Page 12: Thermodynamics of the Biological Energy System › news › symposium › RRW2014 › shiryo › 5-1.pdf · Thermodynamics of the Biological Energy System Thermodynamics of the Biological

JAEA Conference2014-10-09 - 2014-10-10

RADEBOLD IngenieurbüroBerlin / Germany

Thermodynamics of the Biological Energy System

Nuclear „MHD-Staustrahlrohr“ (MHD ram jet) for space applications (AEG)

fig. 8

Page 13: Thermodynamics of the Biological Energy System › news › symposium › RRW2014 › shiryo › 5-1.pdf · Thermodynamics of the Biological Energy System Thermodynamics of the Biological

JAEA Conference2014-10-09 - 2014-10-10

RADEBOLD IngenieurbüroBerlin / Germany

Thermodynamics of the Biological Energy System

Liquid-metal MHD-System (AEG):above: stator of inductive MHD-generatorbelow: thermodynamic drive for MHD-generator Heater to replace nuclear fission reactor

fig. 9

Page 14: Thermodynamics of the Biological Energy System › news › symposium › RRW2014 › shiryo › 5-1.pdf · Thermodynamics of the Biological Energy System Thermodynamics of the Biological

JAEA Conference2014-10-09 - 2014-10-10

RADEBOLD IngenieurbüroBerlin / Germany

Thermodynamics of the Biological Energy System

d

BES (1) → TES → NES → ? → BES (2) → TBES

BES (1) : Biological Energy System - role for our life, now and in it`s past

TES : Technical Energy System - role for our life, thermodynamics

NES : Nuclear Energy System - terrestrial atoms for peace

? : Point of No Return

BES (2) : Biological Energy System - thermodynamic analysis

TBES : Technical - Biological Energy System - concept and results.

Page 15: Thermodynamics of the Biological Energy System › news › symposium › RRW2014 › shiryo › 5-1.pdf · Thermodynamics of the Biological Energy System Thermodynamics of the Biological

JAEA Conference2014-10-09 - 2014-10-10

RADEBOLD IngenieurbüroBerlin / Germany

Thermodynamics of the Biological Energy System

solar fusion-reactions

terrestrial fission-reactions

sinks for exergy

electro-magnetic fields

(Sucrose + H2O)+12O2

ch-em

{C12H22O11 + H2O} + 12 3O2

em-ch

ch-em

work + anergy produced

electro-magnetic fields

thermal energy

electro-magnetic fields

work + anergy produced

th-em

{2 H2 + O2}

em-ch

ch-em

fig. 10

Page 16: Thermodynamics of the Biological Energy System › news › symposium › RRW2014 › shiryo › 5-1.pdf · Thermodynamics of the Biological Energy System Thermodynamics of the Biological

JAEA Conference2014-10-09 - 2014-10-10

RADEBOLD IngenieurbüroBerlin / Germany

Thermodynamics of the Biological Energy System

fig. 11

Assumptions :

Efficiency of nuclear power plant = 0,35

Efficiency of electrolysis = 0,65

Efficiency of 2 H2/O2 fuel cells = 0,65

Overall efficiency of a full nuclear thermal-electric system (withoutradio-active waste management and H2-logistics)

= 0,15

Page 17: Thermodynamics of the Biological Energy System › news › symposium › RRW2014 › shiryo › 5-1.pdf · Thermodynamics of the Biological Energy System Thermodynamics of the Biological

JAEA Conference2014-10-09 - 2014-10-10

RADEBOLD IngenieurbüroBerlin / Germany

Thermodynamics of the Biological Energy System

“Power and water from sun and sea“, Sinai (Red Sea) (own Company)

fig. 12

Page 18: Thermodynamics of the Biological Energy System › news › symposium › RRW2014 › shiryo › 5-1.pdf · Thermodynamics of the Biological Energy System Thermodynamics of the Biological

JAEA Conference2014-10-09 - 2014-10-10

RADEBOLD IngenieurbüroBerlin / Germany

Thermodynamics of the Biological Energy System

e

BES (1) → TES → NES → ? → BES (2) → TBES

BES (1) : Biological Energy System - role for our life, now and in it`s past

TES : Technical Energy System - role for our life, thermodynamics

NES : Nuclear Energy System - terrestrial atoms for peace

? : Point of No Return

BES (2) : Biological Energy System - thermodynamic analysis

TBES : Technical - Biological Energy System - concept and results.

Page 19: Thermodynamics of the Biological Energy System › news › symposium › RRW2014 › shiryo › 5-1.pdf · Thermodynamics of the Biological Energy System Thermodynamics of the Biological

JAEA Conference2014-10-09 - 2014-10-10

RADEBOLD IngenieurbüroBerlin / Germany

Thermodynamics of the Biological Energy System

3

electro-magnetic fields

work + anergy produced

electro-magnetic fields

1

2

1*

3*

2*

1*

3*

2*

{C12H22O11 + H2O} + 12 3O2

absorption

storage

logistics

absorption

release

logistics

sinks

sources for exergy: solar fusion-reactions

fig. 13

Page 20: Thermodynamics of the Biological Energy System › news › symposium › RRW2014 › shiryo › 5-1.pdf · Thermodynamics of the Biological Energy System Thermodynamics of the Biological

JAEA Conference2014-10-09 - 2014-10-10

RADEBOLD IngenieurbüroBerlin / Germany

Thermodynamics of the Biological Energy System

3

electro-magnetic fields

work + anergy produced

electro-magnetic fields

1

2

1*

3*

2*

1*

3*

2*

{C12H22O11 + H2O} + 12 3O2

8 5392 8465 693

5 6935 6935 693 2 846

5 6934 270

4 2705 693

5 693

1 423

product of storage

fluxes of exergy in kJ/mol formula conversion

sinks: organs + organelles

Sources for exergy: solar fusion-reactions

fig. 14

absorption

storage

logistics

absorption

release

logistics

Page 21: Thermodynamics of the Biological Energy System › news › symposium › RRW2014 › shiryo › 5-1.pdf · Thermodynamics of the Biological Energy System Thermodynamics of the Biological

JAEA Conference2014-10-09 - 2014-10-10

RADEBOLD IngenieurbüroBerlin / Germany

Thermodynamics of the Biological Energy System

f

BES (1) → TES → NES → ? → BES (2) → TBES

BES (1) : Biological Energy System - role for our life, now and in it`s past

TES : Technical Energy System - role for our life, thermodynamics

NES : Nuclear Energy System - terrestrial atoms for peace

? : Point of No Return

BES (2) : Biological Energy System - thermodynamic analysis

TBES : Technical - Biological Energy System - concept and results.

Page 22: Thermodynamics of the Biological Energy System › news › symposium › RRW2014 › shiryo › 5-1.pdf · Thermodynamics of the Biological Energy System Thermodynamics of the Biological

JAEA Conference2014-10-09 - 2014-10-10

RADEBOLD IngenieurbüroBerlin / Germany

Thermodynamics of the Biological Energy System

sources for exergy: solar fusion-reactions

3

electro-magnetic fields

work + anergy produced

electro-magnetic fields

1

2

1*

3*

2*

1*

3*

2*

{C12H22O11 + H2O} + 12 3O2

8 5392 8465 693

5 6935 6935 693 2 846

sinks: organs + organelles

5 6934 270

4 2705 693

5 693

1 423

product of storage

fluxes of exergy in kJ/mol formula conversion

10 674

10 674

10 674

10 674

12 (NH2)2 + 24 H2O2

consumer

fig. 15

Page 23: Thermodynamics of the Biological Energy System › news › symposium › RRW2014 › shiryo › 5-1.pdf · Thermodynamics of the Biological Energy System Thermodynamics of the Biological

JAEA Conference2014-10-09 - 2014-10-10

RADEBOLD IngenieurbüroBerlin / Germany

Thermodynamics of the Biological Energy System

fig. 16

Summary:

1. A bionic energy system does not need to transfer and distribute oxygen O in the gaseous state of O2 via the atmosphere like the biological energy system : In the contrary H2O2 as a primary liquid product of redox-reactions transfers electro-magnetic field exergy in combination with 2H.

2. Calculation of reaction data for the bionic system confirm the much higher flux of exergy, combined with an exergetic efficiency ϕ = 1,0 .

3. The bionic systems technical construction including (NH2)2 / 2 H2O2- chemo-electric converters (fuel cells) will lower the exergetic efficiency to about 0,7 (much higher than any the terrestrial nuclear system because of its limitations by the Carnot-factor).

4.The bionic energy system will be a modular, decentralized system, solving the CO2-problem as well as that of radio-active waste management.

Page 24: Thermodynamics of the Biological Energy System › news › symposium › RRW2014 › shiryo › 5-1.pdf · Thermodynamics of the Biological Energy System Thermodynamics of the Biological

JAEA Conference2014-10-09 - 2014-10-10

RADEBOLD IngenieurbüroBerlin / Germany

Thermodynamics of the Biological Energy System

Thermodynamics of the Biological Energy System

Dr. Reinhart Radebold

in cooperation with Dr. Walter Radebold

Thank You for Your Attention!

fig. 17