Top Banner

of 59

Thermochemistry_2

Jun 03, 2018

Download

Documents

Tarun Malviya
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/12/2019 Thermochemistry_2

    1/59

  • 8/12/2019 Thermochemistry_2

    2/59

    2

    Mole

    Formally defined as the amount of substance that contains as many elementary

    entities as there are in exactly 0.012 kg of Carbon 12.

    Abbreviation of mole is mol 1kmol=103mol.

    But how many elementary entities are there?

    6.022141991023entities molecules or atoms;

    This number is called Avogadro number (NAV)

    Alternate definition

    A mole is an Avogadro number of units of a substance

    Avogadro, who?

    IIT Bombay

    ME 445

  • 8/12/2019 Thermochemistry_2

    3/59

    Ideal Gas Mixtures (contd.)

    3

    Relations between mole fractions and mass fractions :

    IIT Bombay

    ME 445

    Mixture molecular weight:

    imixii

    mixiii

    MWMWYX

    MWMWXY

    /

    /

    i

    ii

    mix

    iiimix

    MWYMW

    MWXMW

    )/(

    1

  • 8/12/2019 Thermochemistry_2

    4/59

    Pressure of Ideal Gas Mixtures

    4

    Partial Pressureof ithspecies :

    IIT Bombay

    ME 445

    PXPii

    i

    iPP

    Mixture Pressure:

    Daltons Model

  • 8/12/2019 Thermochemistry_2

    5/59

    H, U, cpandcvof Ideal Gas Mixtures

    5

    IIT Bombay

    ME 445

    i

    ii

    i

    ii ThmThNTH )()()(

    Mixture Enthalpy:

    Mixture Specific Enthalpy:

    )()( ThXThi

    ii

    )()( ThYThi ii

    U, cpandcvexhibit similar behaviors

  • 8/12/2019 Thermochemistry_2

    6/59

    IIT Bombay

    ME 445

    6

    Standard Enthalpy / Heat of Formation

    is defined as the heat evolved when 1 mole of thesubstance is formed from its elements in their respective

    standard states. (istands for the ithcompound)

    Standard-state temperature:T0 = 25C (298.15K)

    Standard-state pressure:

    P0= 1 atm (101,325Pa)

    Elements at T0and P0are assigned

    6

    )( 00, Th if

    0)( 00

    , Th if

  • 8/12/2019 Thermochemistry_2

    7/59

    IIT Bombay

    ME 445

    7

    Standard Values

    7

    Compound / Element (kJ/mol)

    CH4(g) 74.81

    CO(g) 110.53

    CO2(g) 393.51

    C2H4(g) +52.26

    H2O(g) 241.82

    H2O(l) 285.8NO(g) +90.25

    )( 00

    , Th if

    )( 00

    , Th if

  • 8/12/2019 Thermochemistry_2

    8/59

    IIT Bombay

    ME 445

    8

    Absolute Enthalpy,

    at any state (T,P) is defined as the sum ofand the sensible enthalpy change between the standard state

    (T0,P0) and the given state (T,P). (istands for the ithcompound)

    8

    )(Thi

    )()()( 0,00

    , TThThTh isenifi

    )(Thi

    )( 00, Th if

  • 8/12/2019 Thermochemistry_2

    9/59

    IIT Bombay

    ME 445

    9

    Ideal GasTables (Turns P. 622)

    9

  • 8/12/2019 Thermochemistry_2

    10/59

    IIT Bombay

    ME 445

    10

    Tables (Turns P. 646)

    10

  • 8/12/2019 Thermochemistry_2

    11/59

    IIT Bombay

    ME 445

    11

    Example

    Express at any state (T,P0) in terms of andthe enthalpy change of all elements involved in the formation

    reaction.

    11

    j

    jjf ThThTh )()()( 0'0

    )(Th)(0 Thf

    )(' compoundMj

    jj T

    T0Reac Prod

  • 8/12/2019 Thermochemistry_2

    12/59

    IIT Bombay

    ME 445

    12

    Example

    A gas stream at 1 atm contains a mixture of CO, CO2,and N2in which the CO mole fraction is 0.10 and the CO2mole

    fraction is 0.20. The gas stream temperature is 1200K.

    Determine the absolute enthalpy of the mixture on bothmole-basis (kJ/kmol) and mass-basis (kJ/kg).

    Also determine the mass fractions of the three components.

    12

  • 8/12/2019 Thermochemistry_2

    13/59

    S of Ideal Gas Mixtures

    13

    IIT Bombay

    ME 445

    Mixture Entropy:

    Mixture Specific Entropy:

    ),(),(

    ),(),(

    ii

    i

    i

    ii

    i

    i

    PTsXPTs

    PTsYPTs

    i

    iii

    i

    iii PTsmPTsNPTS ),(),(),(

  • 8/12/2019 Thermochemistry_2

    14/59

    IIT Bombay

    ME 445

    14

    Pure Species Entropy,

    14

    0

    0 ln)(),(P

    PRTsPTs iuii

    ),( PTsi

    0

    0 ln)(),(P

    PRTsPTs iii

    T

    dTcTsTs

    T

    T iPii

    0,0

    00 )()(Where,

  • 8/12/2019 Thermochemistry_2

    15/59

    IIT Bombay

    ME 445

    15

    Stoichiometry

    Stoichiometric mixture:Amount of oxidizer required to completely

    burn/oxidize a given amount of fuel (Oxst) (no dissociation)

    Fuel Lean mixture:Ox > Oxst

    Fuel Rich mixture:

    Ox < Oxst

    15

  • 8/12/2019 Thermochemistry_2

    16/59

    IIT Bombay

    ME 445

    16

    Hydrocarbon Stoichiometry (contd.)

    Assume air is composed of 79% N2

    and 21% O2by volume

    16

    22222 76.3)2/()76.3( aNOHyxCONOaHC yx

    4/yxa

  • 8/12/2019 Thermochemistry_2

    17/59

    IIT Bombay

    ME 445

    17

    Air-Fuel Ratio

    Stoichiometric air-fuel ratio :

    17

    )/(

    1

    76.4)/( kgkg

    MW

    MWa

    m

    mFA

    fuel

    air

    stfuel

    airst

    Fuel (A/F)st

    CH4+ air 17.11H2+ O2 8.0

    C(s) + air 11.4

  • 8/12/2019 Thermochemistry_2

    18/59

    IIT Bombay

    ME 445

    18

    Equivalence Ratio

    18

    st

    st

    AF

    AF

    FA

    FA

    )/(

    )/(

    )/(

    )/(

    Mixture

    Stoichiometric 1

    Lean 1

  • 8/12/2019 Thermochemistry_2

    19/59

    IIT Bombay

    ME 445

    19

    Example

    A natural gas fired boiler operates with an O2concentration of 3% by mole (wet basis) in the flue gases.

    Determine the operating air-fuel ratio and the equivalence

    ratio. Treat the natural gas as methane.

    Recalculate using dry basis of measurement of O2.

    If the inlet fuel flow rate is 20 kg/s, find the flue gas flow

    rate.

    19

  • 8/12/2019 Thermochemistry_2

    20/59

    IIT Bombay

    ME 445

    20

    Enthalpy or Heat of Reaction,

    Steady State Steady Flow Reactor with complete combustion

    Reactants and products at T0and P0

    20

    RH

    i

    ii

    i

    iiRPR hhHHH '"

    i

    ii

    i

    ii MM "'

    (KJ)

  • 8/12/2019 Thermochemistry_2

    21/59

    IIT Bombay

    ME 445

    21

    Forms of Enthalpy of Reaction

    Per unit mole of fuel : (KJ/mol of fuel)

    21

    Rh

    Per unit mass of fuel : (KJ/kg of fuel)fuelRR MWhh /

    Per unit mass of mixture : (KJ/kg of

    mixture)1)/(

    FA

    h

    m

    mh R

    mix

    fuel

    R

  • 8/12/2019 Thermochemistry_2

    22/59

    IIT Bombay

    ME 445

    22

    Enthalpy of Reaction for CH4

    Per unit mole of fuel : (KJ/mol of fuel)

    22

    405,802 Rh

    Per unit mass of fuel : (KJ/kg of fuel)016,50 Rh

    Per unit mass of mixture : (KJ/kg of

    mixture)8.2761 Rh

    kJHR 405,802

  • 8/12/2019 Thermochemistry_2

    23/59

    IIT Bombay

    ME 445

    23

    Heat of Combustion,

    Upper / Higher Heating Value (HHV): Heat of combustioncalculated assuming all water in product stream has been

    condensed to liquid

    23

    RC HH

    CH

    Lower Heating Value (LHV) : Heat of combustion calculated

    assuming all water in product stream is in gaseous form

  • 8/12/2019 Thermochemistry_2

    24/59

    IIT Bombay

    ME 445

    24

    Tables (Turns P. 649)

    24

  • 8/12/2019 Thermochemistry_2

    25/59

    IIT Bombay

    ME 445

    25

    Example

    Express the heat of reaction at any state (T,P0) interms of the standard enthalpy of formation and the specific

    heats at constant pressure of the reactants and products.

    25

    i

    T

    T ipifi

    i

    T

    T ipifiR dTcThdTcThTh

    00,0

    0

    ,

    '

    ,0

    0

    ,

    " )()()(

    )(ThR

    T

    T0Reac Prod

    iii

    iii MM

    "'

  • 8/12/2019 Thermochemistry_2

    26/59

    IIT Bombay

    ME 445

    26

    Example

    Determine the HHV and the LHV at 298 K of n-decane (gas)(C10H22) (MW = 142.284 kg/kmol)

    per kmol of fuel.

    per kg of fuel.

    Recalculate for n-decane (liquid). (hfg= 359 kJ/kgfuelat 298 K)

    26

  • 8/12/2019 Thermochemistry_2

    27/59

    IIT Bombay

    ME 445

    27

    Adiabatic Flame Temperature,

    Adiabatic Flame Temperature for P= Constant : Temperature ofthe products after complete adiabatic combustion of a fuel-air

    mixture at constant pressure

    27

    adT

    Reac to

    Prod

    ),(),( PTHPTH adprodireac

    Gas turbine combustorDiesel engine

    Furnace

    Also called the Adiabatic Frozen Flame Temperature

  • 8/12/2019 Thermochemistry_2

    28/59

    IIT Bombay

    ME 445

    28

    Adiabatic Flame Temperature,

    Adiabatic Flame Temperature for V= Constant : Temperature ofthe products after complete adiabatic combustion of a fuel-air

    mixture at constant volume

    28

    adT

    Reac to

    Prod

    ),(),( fadprodiireac PTUPTU

    Bomb calorimeterGasoline engine

    0)(),(),( adprodireacufadprodiireac TNTNRPTHPTH

  • 8/12/2019 Thermochemistry_2

    29/59

    IIT Bombay

    ME 445

    29

    Example

    Estimate the constant pressure adiabatic flametemperature for the combustion of a stoichiometric methane-

    air mixture. The pressure is 1 atm and the initial reactant

    temperature is 298 K. Use the following assumptions

    Complete combustionUse constant specific heats at 1200 K for evaluating

    the product enthalpies

    Recalculate using variable specific heats

    Recalculate using tables from Appendix A

    29

    http://www.youtube.com/watch?v=tvvuUILhHUo

    http://www.youtube.com/watch?v=65KIexy4New

    http://www.youtube.com/watch?v=tvvuUILhHUohttp://www.youtube.com/watch?v=65KIexy4Newhttp://www.youtube.com/watch?v=65KIexy4Newhttp://www.youtube.com/watch?v=tvvuUILhHUo
  • 8/12/2019 Thermochemistry_2

    30/59

  • 8/12/2019 Thermochemistry_2

    31/59

    IIT Bombay

    ME 445

    31

    Example

    Calculate the constant pressure adiabatic flame temperatureof water vapor based on the reaction of gaseous H2and O2.

    Recalculate the same starting with liquid H2at -255C and

    liquid O2at -225C (cryogenic combustion). Boiling point ofliquid O2is 182.96C and that of liquid H2is 252.87 C.

    31

  • 8/12/2019 Thermochemistry_2

    32/59

    IIT Bombay

    ME 445

    32

    Dissociation of Species

    Unknowns :

    32

    2222224 2222)76.3( OnNnOHnCOnNOaCH ONOHCO

    No dissociation (Low flame temperature) :

    adONOHCO Tnnnn ,,,, 2222

    OnNnOHnNOnCOnOnNnOHnCOnNOaCH

    ONOHNOCO

    ONOHCO 2222224 2222)76.3(

    Dissociation (High Flame temperature):

  • 8/12/2019 Thermochemistry_2

    33/59

    IIT Bombay

    ME 445

    33

    Equilibrium Reactions

    33

    OHHOH 2221

    OHHOH 2

    2221 OCOCO

    222 ONNO

    HH 22

    OO 22

    NN 22

    GRI-Mech 3.0: Methane-air

    reaction mechanism with53 species and 325 reactions.

    http://www.me.berkeley.edu/gri_mech/

    http://www.me.berkeley.edu/gri_mech/http://www.me.berkeley.edu/gri_mech/
  • 8/12/2019 Thermochemistry_2

    34/59

    IIT Bombay

    ME 445

    34

    Condition for Equilibrium

    34

    Since most combustion systems are in equilibrium at a

    particular pressure and temperature, the general criterion is :

    0, PTdG

    where,

    ),()(, PTTSTHPTG

  • 8/12/2019 Thermochemistry_2

    35/59

    IIT Bombay

    ME 445

    35

    Free Energy

    35

    0

    0 ln,P

    PTNRTGPTG u

    0

    0 ln,

    P

    PTRTgPTg u

    elementsj

    jjf TgTgTg )()()( 0'00

  • 8/12/2019 Thermochemistry_2

    36/59

    IIT Bombay

    ME 445

    36

    Derivation of (Equilibrium Constant)

    36

    PK

    dDcCbBaA

    Consider the following simplified reaction at P0and T

    Gof the mixture of A,B,C, and D:

    ii

    uiiPPTRTgNPTG 0

    0 ln,

  • 8/12/2019 Thermochemistry_2

    37/59

    IIT Bombay

    ME 445

    37

    Derivation of (contd.)

    37

    PK

    Differentiating :

    i

    iuii

    i

    iuii

    P

    PTRTgdN

    P

    PTRTgdNPTdG

    0

    0

    0

    0

    ln

    ln,

    At equilibrium: 0, PTdG

  • 8/12/2019 Thermochemistry_2

    38/59

    IIT Bombay

    ME 445

    38

    Derivation of (contd.)

    38

    PK

    i

    ii

    u

    i

    ii dNP

    PTRdNTg 0ln

    0

    0

    Since dNiis proportional to the stoichiometric coefficients:

    Pu KTRTG ln)(0

    TR

    TGK

    u

    P

    )(exp

    0

  • 8/12/2019 Thermochemistry_2

    39/59

    IIT Bombay

    ME 445

    3939

    bB

    a

    A

    dD

    cC

    P

    PPPP

    PPPPK

    00

    00

    PK

    Alternatively for a general reaction,

    i

    isi

    i

    isi MM "

    ,

    '

    ,

    Where:

    i

    iP

    sisi

    PPK',

    ",0

  • 8/12/2019 Thermochemistry_2

    40/59

    IIT Bombay

    ME 445

    4040

    )(0 TG

    G0(T)is defined as the Standard state Gibbs Energy Change,

    )()(

    )(

    0Reac0 odPr

    0000

    00

    TGTG

    TgdTgcTgbTga

    dNTgTG

    DCBA

    iii

  • 8/12/2019 Thermochemistry_2

    41/59

    IIT Bombay

    ME 445

    4141

    Alternatively for a general reaction,

    i

    ifsi

    i

    ifsi TgTgTG )()()( 0

    ,

    '

    ,

    0

    ,

    "

    ,0

    Where is defined as the Gibbs Free Energy of Formationof

    the ithcompound, listed in Appendix A.

    )(0, Tg if

    )(0 TG

    i

    isi

    i

    isi MM "

    ,

    '

    ,

  • 8/12/2019 Thermochemistry_2

    42/59

    IIT Bombay

    ME 445

    42

    Observations about

    P in KPsignifies that the equilibrium constant is written interms of partial pressures.

    Other quantities that may be used to define Kare

    concentration, CiNumber of moles, NiMole fraction,Xi

    For a positive value of G0, KPis a fraction, thus reactants would

    be favored at equilibrium

    For a negative value of G0, KPis greater than unity, thus

    products would be favored at equilibrium

    42

    PK

  • 8/12/2019 Thermochemistry_2

    43/59

  • 8/12/2019 Thermochemistry_2

    44/59

    IIT Bombay

    ME 445

    44

    Example

    Consider the dissociation of CO2as a function of Pand T.

    State the necessary relations required to derive thecomposition of the mixture that results from subjecting

    originally pure CO2to T1and P1.

    44

    )(2

    1)()( 22 gOgCOgCO

  • 8/12/2019 Thermochemistry_2

    45/59

    IIT Bombay

    ME 445

    45

    Example

    Consider the combustion of methane under fuel-rich conditions.

    Assume that the following water-gas equilibrium reaction occurs

    within the product species.

    Namely, a portion of the combustion product undergoes a further

    reaction. The equilibrium mixture may be assumed to consist of

    Write the necessary mathematical relationships required for

    solving the equilibrium composition and the adiabatic flame

    temperature. 45

    OHCOOCH 224 223

    222 HCOOHCO

    222)2()1( xHxCOOHxCOx

  • 8/12/2019 Thermochemistry_2

    46/59

    IIT Bombay

    ME 445

    46

    Propane-Air Combustion (Turns P. 46)

    46

    CO2, CO,

    H2O, H2, H,OH, O2, O,

    NO, N2, and

    N

  • 8/12/2019 Thermochemistry_2

    47/59

  • 8/12/2019 Thermochemistry_2

    48/59

    IIT Bombay

    ME 445

    48

    NASA CEA Code

    Equilibrium compositions are important in various systems

    Gas turbines

    Aircraft combustors

    Rocket motors

    Shock tubes

    Automobile engines

    Nozzles and diffusers

    Gun propulsion systems 48

    Chemical Equilibrium with

    Applications (CEA) :

    Developed at NASA Lewis(Glenn) Research Centre by

    Gordon, McBride, Zeleznik,

    and Svehla

    http://www.grc.nasa.gov/WWW/C

    EAWeb/ceaguiDownload-win.htm

    http://www.grc.nasa.gov/WWW/CEAWeb/ceaguiDownload-win.htmhttp://www.grc.nasa.gov/WWW/CEAWeb/ceaguiDownload-win.htmhttp://www.grc.nasa.gov/WWW/CEAWeb/ceaguiDownload-win.htmhttp://www.grc.nasa.gov/WWW/CEAWeb/ceaguiDownload-win.htmhttp://www.grc.nasa.gov/WWW/CEAWeb/ceaguiDownload-win.htmhttp://www.grc.nasa.gov/WWW/CEAWeb/ceaguiDownload-win.htm
  • 8/12/2019 Thermochemistry_2

    49/59

    IIT Bombay

    ME 445

    49

    NASA CEA Code Problems Handled

    Equilibrium compositions of assigned thermodynamic

    states

    Theoretical rocket performance

    ChapmanJouguet detonations

    Shock-tube parameter calculations for both incident andreflected shocks

    49

  • 8/12/2019 Thermochemistry_2

    50/59

    IIT Bombay

    ME 445

    50

    NASA CEA Code Problems Handled

    Equilibrium compositions of assigned thermodynamic states Temperature and Pressure

    Enthalpy and Pressure - Constant Pressure Combustion

    Entropy and Pressure

    Temperature and Volume or Density

    Internal Energy and Volume - Constant VolumeCombustion

    Entropy and Volume

    50

  • 8/12/2019 Thermochemistry_2

    51/59

    IIT Bombay

    ME 445

    51

    CEA Input

    51

  • 8/12/2019 Thermochemistry_2

    52/59

    IIT Bombay

    ME 445

    52

    CEA Input (contd.)

    52

  • 8/12/2019 Thermochemistry_2

    53/59

    IIT Bombay

    ME 445

    53

    CEA Input (contd.)

    53

  • 8/12/2019 Thermochemistry_2

    54/59

    IIT Bombay

    ME 445

    54

    CEA Input (contd.)

    54

  • 8/12/2019 Thermochemistry_2

    55/59

    IIT Bombay

    ME 445

    55

    CEA Output

    55

  • 8/12/2019 Thermochemistry_2

    56/59

    IIT Bombay

    ME 445

    5656

    CEA Output for = 0.6

  • 8/12/2019 Thermochemistry_2

    57/59

    IIT Bombay

    ME 445

    57

    CEA Output for = 0.6 (Contd.)

    57

  • 8/12/2019 Thermochemistry_2

    58/59

    IIT Bombay

    ME 445

    58

    CEA Output for = 1.05

    58

  • 8/12/2019 Thermochemistry_2

    59/59

    IIT Bombay

    ME 445CEA Output for = 1.05 (Contd.)