Top Banner
Thermal engineering Lab. department of Science and Mechanical engineering Kansai university Seminar on neutron imaging @KURRI 谷谷 谷 谷谷谷谷 () 谷谷谷谷谷谷谷谷谷谷谷谷谷谷 谷谷谷谷谷谷谷谷谷谷谷谷谷谷谷谷谷 Quantitative evaluation of void fraction of boiling two-phase flow in a tube using neutron radiography 2011 / 01 / 06 - 07 (Thu.-Fri.)
21

Thermal engineering Lab. , department of Science and Mechanical engineering , Kansai university

Jan 11, 2016

Download

Documents

les

2011 / 01 / 06 - 07 (Thu.-Fri.). Seminar on neutron imaging @KURRI. 中性子ラジオグラフィを用いた 円管内沸騰二相流のボイド率定量評価. Quantitative evaluation of void fraction of boiling two-phase flow in a tube using neutron radiography. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Thermal engineering Lab. , department of Science and Mechanical engineering , Kansai university

Thermal engineering Lab. , department of Science and Mechanical engineering , Kansai university

Seminar on neutron imaging @KURRI

谷口 斉 (関大院)

中性子ラジオグラフィを用いた円管内沸騰二相流のボイド率定量評価

Quantitative evaluation of void fraction of boiling two-phase flow in a tube using neutron radiography

2011 / 01 / 06 - 07 (Thu.-Fri.)

Page 2: Thermal engineering Lab. , department of Science and Mechanical engineering , Kansai university

Contents

     1. Background and objective

     2. Experimental apparatus

    3. Image processing method ( Consideration of measurement error )

     4. Experimental result

    5. Summary

Page 3: Thermal engineering Lab. , department of Science and Mechanical engineering , Kansai university

Background

Bubbly flow Slug flow Annular flow

Isothermal two-phase flow

Boiling two-phase flowJ.G.Collier , J.R.Thome ( 1972 )

Bubbly flow

Slug flow

Churn flow

Annular flow

Drop flow

流動様式の予測相関式

限界熱流束の予測(液膜流モデル)

・・・断熱二相流のデータを基本とする.

壁面沸騰,環状流液膜の蒸発は再現不能.

Page 4: Thermal engineering Lab. , department of Science and Mechanical engineering , Kansai university

Neutron radiography

・測定対象に非接触

・金属は透過し,水に対して強く減衰

⇒ 金属管内を流れる水の沸騰二相流の測定に適している.

Source Detector

Radiation

II0

mII exp0

0 20 40 60 80 10010-2

10-1

100

101

102

103

Atomic number ZM

ass

atte

nuat

ion

coef

fici

ent

m

cm

2 /g

X-ray(0.126 MeV) Thermal neutron

H

B

CN

O

FNa

AlSi

Cl

Ca

Ti

Cr

Fe

Ni

Cu

Ag

Cd

I

Xe

Pr

Gd

Pt

Au

Hg

Pb

Bi

U

H2O

・ Scatter・ Absorption・ Transmission

中性子ラジオグラフィを用いて沸騰二相流のボイド率定量評価,液膜測定に関する検討を行う.

Objective

Page 5: Thermal engineering Lab. , department of Science and Mechanical engineering , Kansai university

Electrode

Electrode

Experimental apparatus ( flow loop and test section )

Experimental condition

ps 0.3 MPa

G 300 , 500 , 700 kg/m2s

xeq(outlet) ( Liquid )~ 0.20

Workingfluid

Water

Page 6: Thermal engineering Lab. , department of Science and Mechanical engineering , Kansai university

Experimental apparatus ( imaging system )

Nuclear reactor KUR ( B4 port )Thermal output 1 MW

Guide tube length

11.7 m

Guide tubecross section

10 ( D ) ×75( D’ ) mm

Typical spectrum 1.2 A

Neutron flux 1×107 n/cm2s

o

Neutron source Beam port

Pit( Depth=1.0 m )

Camera box

Flamefor test loop

Page 7: Thermal engineering Lab. , department of Science and Mechanical engineering , Kansai university

Experimental apparatus ( imaging system )

CCD camera “PIXIS 1024B”( Princeton Instruments )

Imaging array

1024×1024 pixels

Lens “APO MACRO 180mm F3.5”( SIGMA corporation )

Teleconverter “APO TELECONVERTER 2x EX DG”

( SIGMA corporation )Reproduction

ratio2x that of master lens

Converter “ZNSL-L100-AL1016”

( CHICHIBU FUJI co., ltd. )

Camera

Spatial resolution 0.030 mm

31.7 mm( 1024 pixel )

7.0 mmTest section

Thermocouple

Exposure 30 s

31.7 mm( 1024 pixel )

Page 8: Thermal engineering Lab. , department of Science and Mechanical engineering , Kansai university

Image processing method

yxOyxyxGyxS

yxOyxGyxS

yxOyxGyxS

II

LLmLwmwwTP

wmwwG

LLmLwmwwL

m

,,1exp,,

,exp,,

,exp,,

exp0

ボイド率

S:輝度値, G:ゲイン, O:オフセット

w L G

液相透過厚さ と

気相透過厚さの比

yxOyxS

yxOyxS

yxOyxS

yxOyxS

yx

L

G

L

TP

,,

,,ln

,,

,,ln

,

Page 9: Thermal engineering Lab. , department of Science and Mechanical engineering , Kansai university

Grid

Object

Converter

Grid

Object

Converter

Grid

Measurement error

Nondestructive Testing and Evaluation Vol.16, pp.345-354N. Takenaka ; H. Asano ; T. Fujii ; M. Matsubayashi

( 1 ) Scattered neutron

Grid Test section

Converter

Reactor 1MWExposure 30 s

Direct shadow method

Page 10: Thermal engineering Lab. , department of Science and Mechanical engineering , Kansai university

Grid

Object

Converter

Grid

Object

Converter

Grid

Measurement error

Nondestructive Testing and Evaluation Vol.16, pp.345-354N. Takenaka ; H. Asano ; T. Fujii ; M. Matsubayashi

( 1 ) Scattered neutron -4 -3 -2 -1 0 1 2 3 40

2000

4000

6000

8000

x mm

Gra

y le

vel

Air only Liquid only

-4 -3 -2 -1 0 1 2 3 40

2000

4000

6000

8000

x mm

Gra

y le

vel

-4 -3 -2 -1 0 1 2 3 40

2000

4000

6000

8000

x mm

Gra

y le

vel

Air only Liquid only

-4 -3 -2 -1 0 1 2 3 40

2000

4000

6000

8000

x mm

Gra

y le

vel

Air only Liquid only

Non compensated

Compensated

Direct shadow method

Without teleconverter

Without teleconverter

Reactor 1MWExposure 30 s

0 1 2 3 4 5 610-1

100

L mm

Att

enua

tion

rat

io(S L

/SG)

non compensated value compensated value

2

,,,,,

yxSyxSyxSyxOyxS c

Page 11: Thermal engineering Lab. , department of Science and Mechanical engineering , Kansai university

Measurement error

- =

SG SL Dynamic range

( 2 ) Gray scale

-4 -3 -2 -1 0 1 2 3 40

500

1000

1500

2000

2500

3000

3500

4000

x mm

Gra

y le

vel

"Gas only"-"Liquid only"

Exposure 0.1 s Exposure 5 s Exposure 10 s Exposure 30 s

10-3 10-2 10-1 100 1010

20

40

60

80

100

L mm

Mea

sure

men

t err

or

%

Dynamic range = 500 Dynamic range = 1000 Dynamic range = 3200

・ Dynamic range ⇒ 透過方向の分解能

・輝度は整数しか取れない ⇒測定誤差となる.

Without teleconverter

-4 -3 -2 -1 0 1 2 3 40

500

1000

1500

2000

2500

3000

3500

4000

x mm

Gra

y le

vel

"Gas only"-"Liquid only"

Exposure 0.1 s Exposure 5 s Exposure 10 s Exposure 30 s

Reactor 1MW

Page 12: Thermal engineering Lab. , department of Science and Mechanical engineering , Kansai university

Measurement error

縦方向  Ig’ = 0.401 mm

( D’=75 mm , L/D’=62.3 )

DL

L

DL

LI g

'

/

'

( 3 ) Geometric unsharpness ( Vertical )

D’

D

Beam port ConverterTest section

Beam port

L=4675mm L’=25mm

D’

Ig’

Vertical

Page 13: Thermal engineering Lab. , department of Science and Mechanical engineering , Kansai university

Measurement error

Converter

Test sectionBeam port

L=4675mm L’=25mm

DIg

( 3 ) Geometric unsharpness ( Horizontal )Without slit ( D=10 mm )

Converter

Test sectionBeam port

L=4675mm L’=25mm

DIg’

With Slit ( D=2.5 mm )

Ig = 0.054 mm Ig = 0.013 mm

Without slit With slit

LiF

・ L/D を上げることでボケを低減し平行度を上げることで(照射時間は長くなるが) Dynamic range を上げる.

Reactor 1MWExposure 30 s

Page 14: Thermal engineering Lab. , department of Science and Mechanical engineering , Kansai university

Measurement error

Converter

Test sectionBeam port

L=4675mm L’=25mm

DIg

( 3 ) Geometric unsharpness ( Horizontal )Without slit ( D=10 mm )

Converter

Test sectionBeam port

L=4675mm L’=25mm

DIg’

With Slit ( D=2.5 mm )

Ig = 0.054 mm Ig’ = 0.013 mm

Without slit With slit

Without slit : 500

With slit : 120

-4 -3 -2 -1 0 1 2 3 40

100200300400500600700800900

x mm

Gra

y le

vel

Air only Liquid only without slit

with slit(2.5mm)

Reactor 1MWExposure 30 s

With teleconverter

Page 15: Thermal engineering Lab. , department of Science and Mechanical engineering , Kansai university

□ NRG using high-speed camera in KUR

□ Development of void fraction

□ Point of net vapor generation ( PNVG )

□ Application to measurement of liquid film thickness

Experimental result

Discussion point

Page 16: Thermal engineering Lab. , department of Science and Mechanical engineering , Kansai university

Experimental result

Isothermal two-phase flow ( Slug flow )( Reactor 5 MW )

jG = 0.40 m/s

jL = 0.23 m/s

( Playback speed : 1/5 )

Shading correction

2000 fps 500 fps 100 fps200 fps

Page 17: Thermal engineering Lab. , department of Science and Mechanical engineering , Kansai university

Experimental result

-0.009 -0.002 0.004 0.050-0.110 -0.023

xeq (middle)

0.165

Void fraction

0.00 1.00

Boiling two-phase flow( Static image )

ps = 0.3 MPa G = 300 kg/m2s

Reactor 1MWExposure 30 s

Page 18: Thermal engineering Lab. , department of Science and Mechanical engineering , Kansai university

-0.15 -0.1 -0.05 0 0.05 0.1 0.150

0.2

0.4

0.6

0.8

1

xeq

ave

Sekoguchi(1980) Bowring(1967) Drift flux model

ps=0.3 MPa G=500 kg/m2s

z=125 mm

Experimental result

Time averaged void fraction ( cross sectional average )( Effect of vertical position ) -0.15 -0.1 -0.05 0 0.05 0.1 0.15

0

0.2

0.4

0.6

0.8

1

xeq

ave

Sekoguchi(1980) Bowring(1967) Drift flux model

ps=0.3 MPa G=300 kg/m2s

z=125 mm

下流側に比べて沸騰開始点の xeq が高い.⇒気泡の発達や合体に伴う ボイド率の上昇が少ない.

= Constanteqx

-0.15 -0.1 -0.05 0 0.05 0.1 0.150

0.2

0.4

0.6

0.8

1

xeq

ave

Sekoguchi(1980) Bowring(1967) Drift flux model

ps=0.3 MPa G=500 kg/m2s

z=275 mm

-0.15 -0.1 -0.05 0 0.05 0.1 0.150

0.2

0.4

0.6

0.8

1

xeq

ave

Sekoguchi(1980) Bowring(1967) Drift flux model

ps=0.3 MPa G=500 kg/m2s

z=370 mm

PNVG

PNVG

PNVG

Page 19: Thermal engineering Lab. , department of Science and Mechanical engineering , Kansai university

Experimental result

Time averaged void fraction ( cross sectional average )( Estimation of PNVG )

○高熱流束条件・ PNVG 以降のボイド率の発達⇒どの相関式も定量的には不一致.

○低熱流束条件・ PNVG は Sekoguchi による推算式が近い値.・ PNVG 以降のボイド率の発達⇒加熱部出口付近については Drift flux model がよく一致.

-0.15 -0.1 -0.05 0 0.050

0.1

0.2

0.3

0.4

0.5

0.6

0.7

xeq

ave

Sekoguchi(1980) Bowring(1962) Drift flux model

ps = 0.3 MPa G=500 kg/m2s q = 500 kW/m2

ln y=a + b xa=-5.85452263e-01b=6.43260764e+013.22313656e-01|r|=9.79487812e-01

PNVG(Sekoguchi)

PNVG(Bowring)

PNVG(Saha-Zuber)

-0.15 -0.1 -0.05 0 0.050

0.1

0.2

0.3

0.4

0.5

0.6

0.7

xeq

ave

Sekoguchi(1980) Bowring(1962) Drift flux model

ps = 0.3 MPa G=500 kg/m2s q = 500 kW/m2

ln y=a + b xa=-5.85452263e-01b=6.43260764e+013.22313656e-01|r|=9.79487812e-01

PNVG(Sekoguchi)

PNVG(Bowring)

PNVG(Saha-Zuber)

-0.15 -0.1 -0.05 0 0.05 0.1 0.150

0.10.20.30.40.50.60.70.80.9

1

xeq

ave

Sekoguchi(1980) Bowring(1967) Drift flux model

ps = 0.3 MPa G=500 kg/m2s q = 900 kW/m2

y=Σ an xn

a0=3.14922733e-01a1=7.47602227e+00a2=1.49994969e+01a3=-3.68705622e+022.36593801e-02|r|=9.97700419e-01

PNVG(Sekoguchi)

PNVG(Bowring)

PNVG(Saha-Zuber)

= Constantq

Page 20: Thermal engineering Lab. , department of Science and Mechanical engineering , Kansai university

Experimental result

Time averaged liquid phase thickness( Center of the tube )

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.20

0.5

1

1.5

2

2.5

3

xeq

L

mm

z=370 mm z=275 mm z=125 mm

ps=0.3 MPa G=300 kg/m2s

Onset of annular flow

Film flow model

Tube radius

環状流中の液相⇒液膜と液滴液膜厚さ測定への応用

管中心のボイド率⇒液相透過厚さ

0 0.05 0.1 0.15 0.20

0.5

1

xeq

L

mm

z=370 mm z=275 mm z=125 mm

ps=0.3 MPa G=300 kg/m2s

Onset of annular flow(Wallis)

Film flow model

Tube radius

Page 21: Thermal engineering Lab. , department of Science and Mechanical engineering , Kansai university

Summary

中性子ラジオグラフィを用いて沸騰二相流のボイド率測定を行い以下の結論を得た.

・熱出力 5MW 運転時において高速度カメラを用いて流れを撮影したところ, 500fps程度の撮影速度以上で定性的な評価を見込める動画が得られることを確認した.

・同じ熱流束条件において軸方向にボイド率分布を測定することで, PNVG の推定を行ったところ, PNVG 自体は既存の相関式と近い値を示すが, PNVG 以降のボイド率の発達の仕方について,従来の相関式と異なる特性を示した.

・沸騰流中の液相透過厚さを計測することで,液膜あるいは液滴の計測に応用が可能であると考えられる.