Top Banner
Presented By Hiroto TANAKA Thermal & Fluids Analysis Workshop TFAWS 2019 August 26-30, 2019 NASA Langley Research Center Hampton, VA TFAWS Interdisciplinary Paper Session Thermal Analysis of Spacecraft using Data Assimilation Hiroto TANAKA 1 , Hiroki NAGAI 1 and Takashi Misaka 2 1 Tohoku University, Japan 2 AIST, Japan
23

Thermal Analysis of Spacecraft using Data Assimilation · 2019. 12. 18. · Node No. Content 1 Heater 2 Aluminum 3 Acrylic resin / upper part 4 Acrylic resin / lower part - Heatsink

Oct 01, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Thermal Analysis of Spacecraft using Data Assimilation · 2019. 12. 18. · Node No. Content 1 Heater 2 Aluminum 3 Acrylic resin / upper part 4 Acrylic resin / lower part - Heatsink

Presented By

Hiroto TANAKA

Thermal & Fluids Analysis Workshop

TFAWS 2019

August 26-30, 2019

NASA Langley Research Center

Hampton, VA

TFAWS Interdisciplinary Paper Session

Thermal Analysis of Spacecraft

using Data Assimilation

Hiroto TANAKA1, Hiroki NAGAI1

and Takashi Misaka2

1Tohoku University, Japan2AIST, Japan

Page 2: Thermal Analysis of Spacecraft using Data Assimilation · 2019. 12. 18. · Node No. Content 1 Heater 2 Aluminum 3 Acrylic resin / upper part 4 Acrylic resin / lower part - Heatsink

Table of Contents

1. Research Background

2. Objective

3. Methodology

4. Experiment

5. Result and Discussion

6. Conclusion / Future Work

TFAWS 2019 – August 26-30, 2019 2

Page 3: Thermal Analysis of Spacecraft using Data Assimilation · 2019. 12. 18. · Node No. Content 1 Heater 2 Aluminum 3 Acrylic resin / upper part 4 Acrylic resin / lower part - Heatsink

Research Background

Thermal analysis of the Spacecraft

TFAWS 2019 – August 26-30, 2019 3

Temperature Prediction

✓ Temperature prediction of TMM has uncertainty due to

“model incompleteness” and “disturbance of boundary condition”

✓ In deep space missions, estimating thermal state of entire system is difficult

due to limited temperature data

Uncertainty of TMM

Maximum case

T [

K]

t [sec.]

Minimum case

Prediction

Page 4: Thermal Analysis of Spacecraft using Data Assimilation · 2019. 12. 18. · Node No. Content 1 Heater 2 Aluminum 3 Acrylic resin / upper part 4 Acrylic resin / lower part - Heatsink

Research Background

Temperature Estimation using “Data Assimilation”

TFAWS 2019 – August 26-30, 2019 4

➣ By using flight temperature datasets, estimate the thermal

state in higher accuracy than conventional TMM analysis

Thermal Analysis by TMM Flight Data

Temperature

monitoring

Page 5: Thermal Analysis of Spacecraft using Data Assimilation · 2019. 12. 18. · Node No. Content 1 Heater 2 Aluminum 3 Acrylic resin / upper part 4 Acrylic resin / lower part - Heatsink

Research Background

Data assimilation technique

TFAWS 2019 – August 26-30, 2019 5

✓ Statistic approach to combine observed data and simulated data

Data Assimilation

Simulation

Estimation of System State

Observation

Observed data

Simulated data

Data assimilation

T [

K]

t [sec.]

True Value

Page 6: Thermal Analysis of Spacecraft using Data Assimilation · 2019. 12. 18. · Node No. Content 1 Heater 2 Aluminum 3 Acrylic resin / upper part 4 Acrylic resin / lower part - Heatsink

Objective

TFAWS 2019 – August 26-30, 2019 6

✓ Apply the data assimilation technique to the TMM in order to

improve the temperature estimation accuracy

✓ Confirm the availability of data assimilation assisted TMM and

compare its performance with conventional thermal analysis

Thermal Mathematical Model

Limited Temperature Datasets

Better Temperature Estimation?

Page 7: Thermal Analysis of Spacecraft using Data Assimilation · 2019. 12. 18. · Node No. Content 1 Heater 2 Aluminum 3 Acrylic resin / upper part 4 Acrylic resin / lower part - Heatsink

Methodology

1. Thermal Mathematical Model (TMM)

2. Ensemble Kalman Filter (EnKF)

3. Data Assimilation / Ensenble Kalman Filter

TFAWS 2019 – August 26-30, 2019 7

Page 8: Thermal Analysis of Spacecraft using Data Assimilation · 2019. 12. 18. · Node No. Content 1 Heater 2 Aluminum 3 Acrylic resin / upper part 4 Acrylic resin / lower part - Heatsink

Methodology

1. Thermal Mathematical Model (TMM)

8

4 4

1 1

( 1) ( ) ( ) ( ) ( ) ( ) ( )n n

i i i ij i j ij i j

j ji

tT t T t Q t C T t T t R T t T t

C

Governing equation

Heat balance between nodes

1 2 3

Node

Conductance : Cij

Prediction

STEP : 1 STEP : 2Update

Initial StateUpdate

STEP : 0

Prediction

TMM consists of…

✓Node : heat generation / temperature / heat capacity

✓Path : thermal conductance

Temperature distribution

Page 9: Thermal Analysis of Spacecraft using Data Assimilation · 2019. 12. 18. · Node No. Content 1 Heater 2 Aluminum 3 Acrylic resin / upper part 4 Acrylic resin / lower part - Heatsink

Methodology

2. Ensemble Kalman Filter (EnKF)

9

Kalman Filtering

Xest = Xsimu + K × ( Xsimu – Y )

Xest : Estimated data

Xsimu : Simulated data

Y : Observed data

K : Kalman gain

Xest : Estimated data Xsimu : Simulated data Y : Observed data

✓ Simulated data is modified by difference between simulation and observation

✓ Kalman gain “K” is calculated from Variance of Xsimu

Estimation variance σ2 : System Noise σ2 : Observation Noise

Page 10: Thermal Analysis of Spacecraft using Data Assimilation · 2019. 12. 18. · Node No. Content 1 Heater 2 Aluminum 3 Acrylic resin / upper part 4 Acrylic resin / lower part - Heatsink

Methodology

2. Ensemble Kalman Filter (EnKF)

10

Prediction

Observation

Estimation

Filtering

STEP : 1 STEP : 2

・・・

PDF : Probability Density Function

Update

σ2 : System Noise

σ2 : Observation Noise

Minimum Variance Estimation

Prediction

Observation

Estimation

Filtering

σ2 : Noise

σ2 : Noise

Update

STEP : 0

Initial State

PDF

Page 11: Thermal Analysis of Spacecraft using Data Assimilation · 2019. 12. 18. · Node No. Content 1 Heater 2 Aluminum 3 Acrylic resin / upper part 4 Acrylic resin / lower part - Heatsink

Methodology

2. Ensemble Kalman Filter (EnKF)

11

Initial State Prediction

Observation

Estimation

Update

Filtering

・・・

PDF : Probability Density Function

Update

σ2 : Noise

σ2 : Noise

PDF

Prediction

Observation

Estimation

Filtering

σ2 : Noise

σ2 : NoiseDiscretization of PDF

: Particle

STEP : 1 STEP : 2STEP : 0

Page 12: Thermal Analysis of Spacecraft using Data Assimilation · 2019. 12. 18. · Node No. Content 1 Heater 2 Aluminum 3 Acrylic resin / upper part 4 Acrylic resin / lower part - Heatsink

Experiment

1. Overview

2. Building a TMM

3. Thermal Test Setup

4. Correlation and Uncertainty Analysis of TMM

TFAWS 2019 – August 26-30, 2019 12

Page 13: Thermal Analysis of Spacecraft using Data Assimilation · 2019. 12. 18. · Node No. Content 1 Heater 2 Aluminum 3 Acrylic resin / upper part 4 Acrylic resin / lower part - Heatsink

Experiment

13

Compare the Accuracy of Temperature Estimation

Thermal Test A (Ground Test Data)

Build a Simple Thermal Mathematical Model

Model - Test Correlation

Thermal Test B (Flight Data)

Conventional

TMM Analysis

EnKF Assisted TMM

Analysis

1. Overview

Page 14: Thermal Analysis of Spacecraft using Data Assimilation · 2019. 12. 18. · Node No. Content 1 Heater 2 Aluminum 3 Acrylic resin / upper part 4 Acrylic resin / lower part - Heatsink

Experiment

2. Building a TMM

TFAWS 2019 – August 26-30, 2019 14

1

2

4

C12

C23

3

C34

C45

Qin

Qout

✓ 1-Dimensional thermal mathematical model

✓ Each conductance Cij has different uncertainty

✓ Heat input and output Q have uncertainty

➣ Built a simple and high uncertain thermal model

Governing Equation

4 4

1 1

(T T ) (T T )N N

ii i ij i j ij i j

j j

dTC Q C R

dt

Page 15: Thermal Analysis of Spacecraft using Data Assimilation · 2019. 12. 18. · Node No. Content 1 Heater 2 Aluminum 3 Acrylic resin / upper part 4 Acrylic resin / lower part - Heatsink

Experiment

3. Thermal Test

TFAWS 2019 – August 26-30, 2019 15

Heater

Heatsink

Aluminum

Acrylic resin

Temperature Sensor

Node No. Content

1 Heater

2 Aluminum

3 Acrylic resin / upper part

4 Acrylic resin / lower part

- Heatsink

Test Model

1

2

4

C12

C23

3

C34

C45

Qin

Qout

Page 16: Thermal Analysis of Spacecraft using Data Assimilation · 2019. 12. 18. · Node No. Content 1 Heater 2 Aluminum 3 Acrylic resin / upper part 4 Acrylic resin / lower part - Heatsink

Experiment

3. Thermal Test

TFAWS 2019 – August 26-30, 2019 16

1

2

4

C12

C23

3

C34

C45

Qin

Qout

Heater

Heatsink

Aluminum

Acrylic

resin

Parameter Factor ± 3σ

Qin Heat generation : Qheater ± 15 %

Qout Heatsink temperature : Theatsink ± 0.45 K

C12 Contact conductance : h12 ± 50 %

C23 Contact conductance : h23 ± 50 %

C34 Thermal conductivity : kresin ± 0.04 W/(m・K)

C45 Contact conductance : h45 ± 50 %

Model Uncertainty

Uncertainty of the Thermal Test

Page 17: Thermal Analysis of Spacecraft using Data Assimilation · 2019. 12. 18. · Node No. Content 1 Heater 2 Aluminum 3 Acrylic resin / upper part 4 Acrylic resin / lower part - Heatsink

Experiment

4. Correlation and Uncertainty Analysis of TMM

① Test A (Ground Test Simulation)

Test Condition Value

Qheater 2.0 W

Theatsink 383.2 K

Measurement Error (3σ) ± 1.0 K

Thermal Test Result

③ Test B (Flight Data Simulation)

Test Condition Value

Qheater 2.4 W

Theatsink 383.2 K

Measurement Error (3σ) ± 1.0 K

④ Thermal Analysis② Model-Test Correlation result

Content Value

h12 300 W/(m2・K)

h23 500 W/(m2・K)

kresin 0.26 W/(m・K)

h45 10000 W/(m2・K)

1

2

4

h12

h23

3kresin

h45

Page 18: Thermal Analysis of Spacecraft using Data Assimilation · 2019. 12. 18. · Node No. Content 1 Heater 2 Aluminum 3 Acrylic resin / upper part 4 Acrylic resin / lower part - Heatsink

Result and Discussion

1. Conventional TMM Analysis

2. EnKF Assisted TMM Analysis

3. Comparison of Two Methods

TFAWS 2019 – August 26-30, 2019 18

Page 19: Thermal Analysis of Spacecraft using Data Assimilation · 2019. 12. 18. · Node No. Content 1 Heater 2 Aluminum 3 Acrylic resin / upper part 4 Acrylic resin / lower part - Heatsink

Result and Discussion

1. Conventional TMM Analysis

19

T1 Transition

T3 Transition

T2 Transition

T4 Transition

Thermal Analysis by TMM

1

2

4

T1

3

T2

T3

T4

Page 20: Thermal Analysis of Spacecraft using Data Assimilation · 2019. 12. 18. · Node No. Content 1 Heater 2 Aluminum 3 Acrylic resin / upper part 4 Acrylic resin / lower part - Heatsink

Result and Discussion

2. EnKF Assisted TMM Analysis

20

T1 Transition / observing T1

T3 Transition / observing T1

T2 Transition / observing T1

T4 Transition / observing T1

1

2

4

T1

3

T2

T3

T4

Thermal Analysis by EnKF applied TMM / Observation Node : Node 1

Page 21: Thermal Analysis of Spacecraft using Data Assimilation · 2019. 12. 18. · Node No. Content 1 Heater 2 Aluminum 3 Acrylic resin / upper part 4 Acrylic resin / lower part - Heatsink

Result and Discussion

21

➣ The data assimilation result agrees with measured data very well

➣ The uncertainty of the temperature estimation decrease drastically

comparing with conventional TMM analysis

T1 Transition / observing T1 T3 Transition / observing T1

1

2

4

T1

3

T2

T3

T4

Comparison with “Conventional TMM” & “EnKF assisted TMM”

3. Comparison of Two Methods

Page 22: Thermal Analysis of Spacecraft using Data Assimilation · 2019. 12. 18. · Node No. Content 1 Heater 2 Aluminum 3 Acrylic resin / upper part 4 Acrylic resin / lower part - Heatsink

Result and Discussion

3. Comparison of Two Methods

22

Standard Deviation of Analysis Result

TMMEnKF assisted TMM

(T1 Observation)

T1 2.13 K 0.00 K

T2 1.96 K 0.08 K

T3 2.07 K 0.37 K

T4 - 0.41 K -0.43 K

Difference from Measured Temperature

TMMEnKF assisted TMM

(T1 Observation)

T1 2.91 K 0.27 K

T2 2.74 K 0.68 K

T3 2.28 K 0.75 K

T4 0.43 K 0.55 K

➣ Difference from measured data is decreased by data assimilation

➣ The uncertainty of the analysis is decreased by data assimilation

➣ T4 result was not improved very well due to observation position

and dominant effect of heatsink

Page 23: Thermal Analysis of Spacecraft using Data Assimilation · 2019. 12. 18. · Node No. Content 1 Heater 2 Aluminum 3 Acrylic resin / upper part 4 Acrylic resin / lower part - Heatsink

Conclusion

23

➣ The data assimilation result agreed with measured data

➣ The uncertainty of the temperature estimation decreased drastically

comparing with conventional TMM analysis

➣We confirmed an availability of data assimilation on thermal analysis

by simple model and thermal test

✓ Data assimilation technique was introduced

✓ Data assimilation was applied to TMM and node temperature was

estimated using partial measured data

✓ Performance of conventional TMM and data assimilation assisted

TMM were compared

Content of the presentation

Result