Top Banner
The real number line is a good model for the physical con6nuum David Tong University of Cambridge February 2013
19

The$real$number$line$is$agood$model$ for$the$physical ...

Nov 21, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The$real$number$line$is$agood$model$ for$the$physical ...

The  real  number  line  is  a  good  model  for  the  physical  con6nuum  

David  Tong  University  of  Cambridge  

February  2013  

Page 2: The$real$number$line$is$agood$model$ for$the$physical ...

The  Punchline  

No  one  knows  how  to  write  down  a  discrete  version  of  the  laws  of  physics  

Page 3: The$real$number$line$is$agood$model$ for$the$physical ...

Quantum  Field  Theory  

a =R

T 2

F = ma =mR

T 2

F ∼ 1

R2

SE

SB= x

Area(SEF )

Area(SBC)= x2

∆t ∼ R2

∆v = F∆t = constant

�uP · �vP = 0

σ ∼ ω−2/3

φ(x)

ψα(x)

Aµ(x)

References

[1] Gibbons and Rychenkova, 9608085

[2] Kapustin and Strassler, 9902033

5

a =R

T 2

F = ma =mR

T 2

F ∼ 1

R2

SE

SB= x

Area(SEF )

Area(SBC)= x2

∆t ∼ R2

∆v = F∆t = constant

�uP · �vP = 0

σ ∼ ω−2/3

φ(x)

ψα(x)

Aµ(x)

References

[1] Gibbons and Rychenkova, 9608085

[2] Kapustin and Strassler, 9902033

5

a =R

T 2

F = ma =mR

T 2

F ∼ 1

R2

SE

SB= x

Area(SEF )

Area(SBC)= x2

∆t ∼ R2

∆v = F∆t = constant

�uP · �vP = 0

σ ∼ ω−2/3

φ(x)

ψα(x)

Aµ(x)

References

[1] Gibbons and Rychenkova, 9608085

[2] Kapustin and Strassler, 9902033

5

Con6nuum  space6me   Interes6ng  physics  

Page 4: The$real$number$line$is$agood$model$ for$the$physical ...

The  Trouble:  Chiral  Fermions  

a =R

T 2

F = ma =mR

T 2

F ∼ 1

R2

SE

SB= x

Area(SEF )

Area(SBC)= x2

∆t ∼ R2

∆v = F∆t = constant

�uP · �vP = 0

σ ∼ ω−2/3

φ(x)

ψα(x)

Aµ(x)

{γ5, /D} = 0

P± =1

2(1± γ5)

ψL = P+ψ

ψR = P−ψ

References

[1] Gibbons and Rychenkova, 9608085

[2] Kapustin and Strassler, 9902033

5

a =R

T 2

F = ma =mR

T 2

F ∼ 1

R2

SE

SB= x

Area(SEF )

Area(SBC)= x2

∆t ∼ R2

∆v = F∆t = constant

�uP · �vP = 0

σ ∼ ω−2/3

φ(x)

ψα(x)

Aµ(x)

{γ5, /D} = 0

P± =1

2(1± γ5)

ψL = P+ψ

ψR = P−ψ

References

[1] Gibbons and Rychenkova, 9608085

[2] Kapustin and Strassler, 9902033

5

a =R

T 2

F = ma =mR

T 2

F ∼ 1

R2

SE

SB= x

Area(SEF )

Area(SBC)= x2

∆t ∼ R2

∆v = F∆t = constant

�uP · �vP = 0

σ ∼ ω−2/3

φ(x)

ψα(x)

Aµ(x)

{γ5, /D} = 0

P± =1

2(1± γ5)

ψL = P+ψ

ψR = P−ψ

References

[1] Gibbons and Rychenkova, 9608085

[2] Kapustin and Strassler, 9902033

5

a =R

T 2

F = ma =mR

T 2

F ∼ 1

R2

SE

SB= x

Area(SEF )

Area(SBC)= x2

∆t ∼ R2

∆v = F∆t = constant

�uP · �vP = 0

σ ∼ ω−2/3

φ(x)

ψα(x)

Aµ(x)

{γ5, /D} = 0

P± =1

2(1± γ5)

ψL = P+ψ

ψR = P−ψ

References

[1] Gibbons and Rychenkova, 9608085

[2] Kapustin and Strassler, 9902033

5

!"#$%&'&(!"%)$(*&%+",-#(.&''"-.(/"**"$01'

•  A  massive  fermion  needs  both  chirali6es    •  A  massless  fermion  needs  only  one  

Page 5: The$real$number$line$is$agood$model$ for$the$physical ...

Anomalies  

Symmetries  that  act  differently  on  fermions  of  opposite  chirality  oJen  don’t  exist  in  the  quantum  theory.  

Page 6: The$real$number$line$is$agood$model$ for$the$physical ...

An  Example  in  d=1+1  

d=1+1  dimensional  Maxwell  coupled  to  a  massless  Dirac  fermion  

E  

p  

Page 7: The$real$number$line$is$agood$model$ for$the$physical ...

An  Example  in  d=1+1  

Turn  on  an  electric  field  E(t)  for  some  6me    

E  

p  

momenta  shiJ  

Extra  right-­‐moving  par6cles  

Extra  leJ-­‐moving  an6-­‐par6cles  

Axial  charge  is  violated  

Page 8: The$real$number$line$is$agood$model$ for$the$physical ...

Anomalies  

Where  did  the  extra  charge  come  from?    

From  infinity!  

The  anomaly  is  an  effect  arising  from  the  con6nuum  

Page 9: The$real$number$line$is$agood$model$ for$the$physical ...

Gauge  Anomalies  

Anomalies  in  global  symmetries  are  merely  interes6ng.    

Anomalies  in  gauge  symmetries  are  fatal.  

Page 10: The$real$number$line$is$agood$model$ for$the$physical ...

Chiral  Gauge  Theories  

Page 11: The$real$number$line$is$agood$model$ for$the$physical ...

A  Discrete  World  

•  Replace  the  con6nuum  with  a  discre6zed  la[ce  •  Now  quantum  field  theory  =  quantum  mechanics  •  No  infini6es.  No  anomalies.    

Page 12: The$real$number$line$is$agood$model$ for$the$physical ...

Anomalies  on  the  La[ce  

Anomalous  global  symmetries  are  explicitly  broken  by  the  discre6za6on  procedure.  

What  about  gauge  symmetries?    

Page 13: The$real$number$line$is$agood$model$ for$the$physical ...

Fermions  on  the  La[ce  

a =R

T 2

F = ma =mR

T 2

F ∼ 1

R2

SE

SB= x

Area(SEF )

Area(SBC)= x2

∆t ∼ R2

∆v = F∆t = constant

�uP · �vP = 0

σ ∼ ω−2/3

φ(x)

ψα(x)

Aµ(x)

{γ5, /D} = 0

P± =1

2(1± γ5)

ψL = P+ψ

ψR = P−ψ

S =

�d4x ψ̄(i∂µγ

µ −m)ψ

=

� π/a

−π/ad4p

�i

asin(pµ)γ

µ −m

�ψ̄−pψp

References

[1] Gibbons and Rychenkova, 9608085

[2] Kapustin and Strassler, 9902033

5

BZ   la[ce  spacing  

                           24  fermions!    

•  This  is  fermion  doubling.    •  Try  to  naively  discre6ze  a  chiral  theory  and  you  get  a  non-­‐chiral  theory  

Page 14: The$real$number$line$is$agood$model$ for$the$physical ...

Nielsen-­‐Ninomiya  Theorem  

You  can’t  do  it*.    

*  up  to  certain  assump6ons  

Page 15: The$real$number$line$is$agood$model$ for$the$physical ...

Overlap  Fermions  Kaplan,  Neuberger,  Narayan,    Luscher,  late  1990s  

Project  onto  leJ/right  fermions  with  

a =R

T 2

F = ma =mR

T 2

F ∼ 1

R2

SE

SB= x

Area(SEF )

Area(SBC)= x2

∆t ∼ R2

∆v = F∆t = constant

�uP · �vP = 0

σ ∼ ω−2/3

φ(x)

ψα(x)

Aµ(x)

{γ5, /D} = 0

P± =1

2(1± γ5)

ψL = P+ψ

ψR = P−ψ

γ̂5 = γ5�1− a /D

{γ5, /D} = a /Dγ5 /D

S =

�d4x ψ̄(i∂µγ

µ −m)ψ

=

� π/a

−π/ad4p

�i

asin(pµ)γ

µ −m

�ψ̄−pψp

5

a =R

T 2

F = ma =mR

T 2

F ∼ 1

R2

SE

SB= x

Area(SEF )

Area(SBC)= x2

∆t ∼ R2

∆v = F∆t = constant

�uP · �vP = 0

σ ∼ ω−2/3

φ(x)

ψα(x)

Aµ(x)

{γ5, /D} = 0

P± =1

2(1± γ5)

ψL = P+ψ

ψR = P−ψ

γ̂5 = γ5�1− a /D

{γ5, /D} = a /Dγ5 /D

S =

�d4x ψ̄(i∂µγ

µ −m)ψ

=

� π/a

−π/ad4p

�i

asin(pµ)γ

µ −m

�ψ̄−pψp

5

depends  on  momentum  and  gauge  field.  

with  

Page 16: The$real$number$line$is$agood$model$ for$the$physical ...

Just  One  Last  Thing…  

Is  this  defini6on  of  chirality  gauge  invariant?  (i.e.  does  the  theory  exist?)    

Page 17: The$real$number$line$is$agood$model$ for$the$physical ...

Abelian  Theories  

Yes,  if  and  only  if  the  con6nuum  theory  is  non-­‐anomalous.    

Page 18: The$real$number$line$is$agood$model$ for$the$physical ...

Non-­‐Abelian  Theories  

No  one  knows.    

Page 19: The$real$number$line$is$agood$model$ for$the$physical ...

The  Punchline  

The  Standard  Model  is  a  non-­‐Abelian  chiral  gauge  theory.    

No  one  knows  how  to  write  down  a  discrete  version  of  the  Standard  Model.