Top Banner

of 67

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 1

    Text Book: Elementary Theory of Structures, 2nd Edition, by: YUAN-YU HSIEH References:

    1. Elementary Structural Analysis, by: NORRIS, WILBAR UTKU. 2. Statically Indeterminate Structures, by: CHU-KIA WONG. 3. Indeterminate Structural Analysis, by: KINNEY

    First Semester:

    4. Stability and Determinacy of Structures: 4.2. Stability and Determinacy of Beams. 4.3. Stability and Determinacy of Trusses. 4.4. Stability and Determinacy of Frames. 4.5. Stability and Determinacy of Composite Structures.

    5. Axial Force, shear Force and Bending Moment Diagrams: 5.2. Axial Force, shear Force and Bending Moment Diagrams for Frames. 5.3. Axial Force, shear Force and Bending Moment Diagrams for Arched

    Frames. 5.4. Axial Force, shear Force and Bending Moment Diagrams for Composite

    Structures.

    6. Statically Determinate Trusses: 6.2. Types of Trusses. 6.3. Stability and Determinacy of Complex Trusses. 6.4. Examples on Solving and Analyzing Trusses.

    7. Influence Lines for Statically Determinate Structures: 7.2. Influence Lines for Statically Determinate Beams. 7.3. Maximum Effect of a Function due to external loading: 4.2.1. Due to Concentrated loading. 4.2.2. Due to Distributed loading.

    Distributed Dead Load. Distributed Live Load (occupying any length of the structure). Distributed Live Load (of a specific length).

    4.3. Influence Lines for Girders with Floor Systems. 4.4. Influence Lines for Statically Determinate Frames. 4.5. Influence Lines for Girders in Trusses. 4.6. Influence Lines for Statically Determinate Composite Structures. 4.7. Maximum Effect of a Function due to Multiple External Moving Loads.

    5. Absolute Maximum Moment for Simply Supported Beams.

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 2

    6. Elastic Deformation of Structures (Deflection & Rotation). 6.1. Conjugate Beam Method. 6.2. Deflection of Beams and Frames. 6.2.1. Unit-Load Method (Virtual Work Method). 6.3. Deflection and Rotation of Trusses. 6.4. Deflection and Rotation of Composite Structures.

    Second Semester:

    1. Approximate Analysis of Statically Indeterminate Structures: 1.1. Approximate Analysis of Statically Indeterminate Trusses.

    Trusses with Double Diagonal System. Trusses with Multiple Systems.

    1.2. Approximate Analysis of Statically Indeterminate Portals. 1.3. Approximate Analysis of Statically Indeterminate Frames.

    Frames Subjected to Vertical Loads Only. Frames Subjected to Lateral Loads Only.

    2. Symmetry and Anti-Symmetry of Structures. 3. Analysis of Statically Indeterminate Structures by the Method of

    Consistent Deformations.

    4. Fixed End Moments of some Important Beams with Constant EI.

    5. Analysis of Statically Indeterminate Beams and Rigid Frames by the Slope-Deflection Method.

    5.1. Analysis of Statically Indeterminate Beams by the Slope-Deflection Method.

    5.2. Analysis of Statically Indeterminate Rigid Frames without joint translation by the Slope-Deflection Method.

    5.3. Analysis of Statically Indeterminate Rigid Frames with One Degree of Freedom of joint translation by the Slope-Deflection Method.

    6. Analysis of Statically Indeterminate Beams and Rigid Frames by the

    Moment Distributed Method. 6.1. Fixed-End Moments. 6.2. Stiffness, Distribution Factor and distribution of External Moment Applied

    to a Joint. 6.3. Distributed Moment and Carry-Over Moment 6.4. Analysis of Statically Indeterminate Rigid Frames with One Degree of

    Freedom of joint translation by the Moment Distributed Method.

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 3

    R R R90o

    R2R1

    F.B.D Link 1

    Link 2

    Ry

    Rx

    R

    R

    M Rx

    M

    Ry

    Review:

    1) Roller: One unknown element.

    (2 Degree of Freedom)

    2) Link or strut: One unknown element.

    (Two Degree of Freedom) 3) Hinge: Two unknown elements.

    (One Degree of Freedom)

    4) Fixed: Three unknown elements.

    (Zero Degree of Freedom)

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 4

    1. Stability and Determinacy of Structures: 1.1. Stability and Determinacy of Beams.

    (r) = no. of reactions (c) = The total no. of equations of conditions. (Where: c=1 for an internal hinge, c=2 for an internal roller and c=0 for beams without internal connection) (c + 3) = The total no. of the equilibrium equations. The beam is set to be:

    3cr +=+=+>

    ==

    Stable & Indeterminate to the 2nd degree

    if ( )

    3cr +=Determinate if Stable if ( )

    3cr +>Indeterminate if Stable if ( )

    The degree of indeterminacy (m) can be obtained by: ( )3crm +=

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 5

    1.2. Stability and Determinacy of Trusses.

    (b) = no. of bar elements of truss (r) = no. of reactions (j) = no. of joints. The truss is set to be:

    j2rb +Indeterminate if Stable if ( )

    The degree of indeterminacy (m) can be obtained by: ( ) ( )j2rbm +=

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 6

    1.3. Stability and Determinacy of Frames.

    (b) = no. of frame members (r) = no. of reactions (j) = no. of joints. (c) = The total no. of equations of conditions. (Where: c=1 for an internal hinge, c=2 for an internal roller and c=0 for beams without internal connection) (c = no. of members connected at joint 1) The frame is set to be:

    cj3rb3 ++Indeterminate if Stable if ( )

    The degree of indeterminacy (m) can be obtained by: ( ) ( )cj3rb3m ++=

    Frame b r j c 3b+r 3j+c Classification

    10 9 9 0 39 27

    Indeterminate to the 12th

    degree

    10 9 9 6 39 33

    Indeterminate to the 6th degree

    Unstable

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 7

    1.4. Stability and Determinacy of Composite Structures.

    (E) = no. of equilibrium equations (U) = no. of unknowns The structure is set to be:

    EU

    The degree of indeterminacy (m) can be obtained by: EUm =

    Composite Structure U E Classification

    10 10 Determinate

    11 9 Indeterminate to the 2nd degree

    2. Axial Force, shear Force and Bending Moment Diagrams: Sign convention:

    N: Axial Force (tension +ve, compression ve) V: Shear Force (turning structure clockwise +ve, counter clockwise ve) M: Bending Moment (compression outside of structure and tension inside

    +ve, otherwise ve)

    2.1. Axial Force, shear Force and Bending Moment Diagrams for Frames.

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 8

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 9

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 10

    2.2. Axial Force, shear Force and Bending Moment Diagrams for Arched Frames.

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 11

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 12

    2.3. Axial Force, shear Force and Bending Moment Diagrams for Composite

    Structures.

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 13

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 14

    2

    3

    4

    5

    Link

    Link

    Link

    Hinge

    Link

    3. Statically Determinate Trusses: 3.1. Types of Trusses.

    A truss may be defined as a plane structure composed of a number of

    members joined together at their ends by smooth pins so as to form a rigid

    framework. Each member in a truss is a two-force member and is subjected

    only to direct axial forces (tension or compression).

    A rigid plane truss can always be formed by beginning with three bars

    pinned together at their ends in the form of a triangle.

    Common trusses may be classified according to their formation as simple,

    compound and complex.

    Simple Truss: ( ) A simple truss is formed by a basic triangle; each new joint is connected to

    the basic triangle by two new bars.

    Compound Truss: ( ) A compound truss is formed from two or more simple trusses connected

    together as one rigid framework either by three links neither parallel nor

    concurrent, or by a link and a hinge.

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 15

    Complex Truss: ( ) The truss which is neither simple nor compound is called a complex truss.

    h1

    h2

    g

    3.2. Stability and Determinacy of Complex Trusses.

    h1

    h2

    g

    For the shown complex truss there are two cases:

    1. If h1=h2=h, then the truss is unstable. 2. If h1h2, then the truss is stable.

    3.3. Examples on Solving and Analyzing Trusses.

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 16

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 17

    4. Influence Lines for Statically Determinate Structures:

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 18

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 19

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 20

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 21

    4.1. Influence Lines for Statically Determinate Beams.

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 22

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 23

    4.2. Maximum Effect of a Function due to external loading:

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 24

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 25

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 26

    4.3. Influence Lines for Girders with Floor Systems.

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 27

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 28

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 29

    4.4. Influence Lines for Statically Determinate Frames.

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 30

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 31

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 32

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 33

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 34

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 35

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 36

    4.5. Influence Lines for Girders in Trusses.

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 37

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 38

    4.6. Influence Lines for Statically Determinate Composite Structures.

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 39

    4.7. Maximum Effect of a Function due to Multiple External Moving Loads.

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 40

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 41

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 42

    5. Absolute Maximum Moment for Simply Supported Beams.

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 43

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 44

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 45

  • )9002-8002( serutcurtS fo yroehT deegaM ludbA siaQ .rD

    64 egaP

    (dohteM maeB etagujnoC)

    :

    (

    .

    . (

    (

    .

    ( )

    8IE) ( ) 4 lw

    ( P

    dohteM etagujnoC (.)

    xxd

    x

    y

    w

    B A

    2/lw=AR

    2/2lw=AM

    2Mlw

    2

    = A

    .gaiD ecroF raehS 2/lw

    .gaiD tnemoM gnidneB

    8IE4 lw

    = B

    ( )

    ) erutavruC : (

    IEM

    xddy2

    2

    = :

  • )9002-8002( serutcurtS fo yroehT deegaM ludbA siaQ .rD

    74 egaP

    nat = xdyd

    :

    IEM

    xddy

    xddxdyd

    2

    2

    ==

    =

    :

    )1( ------ xd MIE = xd) ( )

    yd xd ydxdMIE == : (

    IExd xd == ydxdM

    :

    )2( ------ xd yxdMIExd == ( ) ( xd)

    :

    xd VdxdwVdwxdVw === MdxdVMdVxdMVxdwxdxd ====

    :

    xd Vw = )( ------ MVxdwxd == )4( ------ xd

  • )9002-8002( serutcurtS fo yroehT deegaM ludbA siaQ .rD

    84 egaP

    ( maeb etagujnoC )

    ) ( )

    htgnel tinu rep )w(

    )a(

    )maeB etagujnoC( )b(

    2IE2 lw

    6IElw

    3l

    2IEeRlusnattlw

    23

    =

    =

    BMB A

    3/4l ) (

    B l

    B A

    -( )

    IEM

    (

    ( b-)

    ( ) ( ) ( ) ( ) ( MV w)

    IE)M

    : (

    )5( ------ VMIExd = )6( ------ MMIExdxd =

    ( ) ( ) ( ) ( )

    :

    ( ) . =V ( maeB lautcA)

    . ( maeB etagujnoC)

  • )9002-8002( serutcurtS fo yroehT deegaM ludbA siaQ .rD

    94 egaP

    lautcA ) () . = yM ( maeB

    . ( maeB etagujnoC)

    lautcA ) ( maeB etagujnoC) .

    . ( maeB

    ( maeB etagujnoC)

    ( ) (. maeB lautcA)

    :

    dnE eerF dnE dexiF

    dnE elpmiS dnE elpmiS troppuS roiretnI noitcennoC roiretnI

    ( )

    maeb etagujnoC maeB lautcA )daoL citsalE ot detcejbus( )daoL deilppa ot detcejbuS(

    00

    ==

    M0

    V0

    ==

    dnE dexiF dnE eerF

    00

    M0

    V0

    dnE eerF dnE dexiF

    00

    =

    M0

    V0

    = )rellor ro egnih( )rellor ro egnih( dnE elpmiS dnE elpmiS

    00

    =

    M0

    V0

    = )rellor ro egnih( )rellor ro egnih( troppuS roiretnI noitcennoC roiretnI

    00

    M0

    V0

    )rellor ro egnih( )rellor ro egnih( noitcennoC roiretnI troppuS roiretnI

    ): (noitnevnoC ngiS

    :

    ( x)

    .

  • )9002-8002( serutcurtS fo yroehT deegaM ludbA siaQ .rD

    05 egaP

    (:dohteM maeB etagujnoC)

    . ( DMB) (

    . (

    ( ) ( DMB) (

    .

    (

    .

    (

    .

    :

    maeb etagujnoC maeB lautcA

    a b ab

    c a b c a b

    l l

    l l

    l l

    l l

    )daoL citsalE ot detcejbus( )daoL deilppa ot detcejbuS(

    )a(

    )b(

    )c(

    )d(

    )e(

    )f(

    ) (

    ) -b (.

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 51

    ) ( )Actual BeamB (

    )Conjugate Beam ( )B ( :

    B

    EI8wl

    EI8wl

    EI24wl3l

    43

    EI6wlM

    4

    B

    443

    B

    =

    ===

    )Conjugate Beam Method :(-

    1) Using the (Conjugate Beam Method), find ( ) for the loaded beam shown

    below:

    B

    (b) S.F.D

    (c) B.M.D

    (a) Actual Beam x

    y

    RA=P

    MA=Pl P

    l

    A B

    EI3Pl 3

    B =

    -Pl

    P

    )(

    x

    y

    RA=P

    MA=Pl

    l

    A B(d) Conjugate Beam

    Pl/EI

    l/3 2/3l

    :-

  • )9002-8002( serutcurtS fo yroehT deegaM ludbA siaQ .rD

    25 egaP

    . ( DMB) (

    (

    (.) ( IE)

    :. (

    ) (

    2IElP

    IEllP

    2eRlusnatt1

    2

    =

    =2l/3] * [

    l/3] [

    .

    ( B) (

    .

    l ==32

    2IEMlP

    2

    BB

    3IE3 lP

    )nwoD( = B

    :

    .

    etagujnoC eht gnisu BA noitrop ni noitcelfed mumixam etulosba eht dniF )2

    .dohteM maeB

    )tnatsnoc IE(

    -:

    . ( DMB) (

    (

    . ( IE)

    BA :. (

  • )9002-8002( serutcurtS fo yroehT deegaM ludbA siaQ .rD

    35 egaP

    ) (

    IELP

    IE2LLP

    2eRlusnatt1

    2

    =

    =

    .B ] [ A L/32L/3] [ * ( B ( A ) .

    M0 ) B =) ( ) (

    3IELP

    3IE2LP

    2LR1

    2LR2L031

    IELP

    32

    A

    A

    2

    ==

    =

    .A x )

    L3

    x2

    03IE

    xLP2IE

    xP2V1

    2

    =

    ==

    B AC

    L L2

    P

    P2P 3

    21

    LP

    D.M.B

    3IE2LP

    IE 2LP

    IELP

    etagujnoC maeB

    C B A

    IELP

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 54

    ))

    EI39PL4

    EI39PL6

    EI39PL2

    EI33PL2

    EI39PL2M

    L3

    2EI3

    PL3

    L3

    2

    EI4

    L3

    2Px

    EI3PL

    3x

    EI4PxM

    33333

    max

    2

    2

    22

    max

    ===

    ==

    )EI39

    PL4M3

    max =

    6. Elastic Deformation of Structures (Deflection & Rotation).

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 55

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 56

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 57

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 58

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 59

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 60

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 61

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 62

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 63

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 64

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 65

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 66

  • Dr. Qais Abdul Mageed Theory of Structures (2008-2009)

    Page 67