Top Banner
E COLE N ATIONALE S UPÉRIEURE DE T ECHNIQUES A VANCÉES L ABORATOIRE DE M ATHÉMATIQUES A PPLIQUÉES The Universe as a dynamical system From Friedmann, to Bianchi passing by the Jungle Greco Seminar Monday, April 18 th , 2016 Jérôme Perez Ensta-ParisTech, Universite Paris Saclay
108

The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Apr 10, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

E C O L E N A T I O N A L E S U P É R I E U R E D E T E C H N I Q U E S A V A N C É E S

L A B O R A T O I R E D E M A T H É M A T I Q U E S A P P L I Q U É E S

The Universe as a dynamical systemFrom Friedmann, to Bianchi passing by the Jungle

Greco SeminarMonday, April 18 th, 2016

Jérôme PerezEnsta-ParisTech, Universite Paris Saclay

Page 2: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Overview

A Dynamical Universe ?

Friedmann Universe

Bianchi Universe

Page 3: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Einstein Legacy

Page 4: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Einstein Legacy1905 - Special Relativity Principle −→

The equations of physicsare the same in all

galilean (inertial) frames

←− Minkowski : M4 = C± ∪ L ∪ A

Sm = −∫

mcds−∫

(

AαJα +

1

4µ0FαβF

αβ

)

Page 5: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Einstein Legacy1905 - Special Relativity Principle −→

The equations of physicsare the same in all

galilean (inertial) frames

←− Minkowski : M4 = C± ∪ L ∪ A

Sm = −∫

mcds−∫

(

AαJα +

1

4µ0FαβF

αβ

)

1907 - Equivalence principle ⇒ General relativityր

We [...] propose the complete equivalence between a gravitationnal field and theacceleration of the corresponding frame

The material content of the universe makes impossible the existence of aninertial frame at the universe scale !

The equations of physics are the same in all frames

We pass from M4 [ξα] to a Riemann manifold [xµ] in dimension 4

ds2 = ηαβdξαdξβ = ηαβ

∂ξα

∂xµ

∂ξβ

∂xνdxµdxν = gµνdx

µdxν

Page 6: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The universe becomes dynamical

R>0

Two parallels

can cross

The sum of triangle’s

angles is greater

than p

Geodesics are

arc of circlel

Page 7: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The universe becomes dynamical1915 - General Relativity χ = 8πGc−4

S = Sm −1

gµνRµν

√−gdΩ with Rµν = Rµν(g) Ricci Tensor

variation of which gives : Gµν := Rµν −1

2gµνR = χTµν

R>0

Two parallels

can cross

The sum of triangle’s

angles is greater

than p

Geodesics are

arc of circlel

Page 8: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The universe becomes dynamical1915 - General Relativity χ = 8πGc−4

S = Sm −1

gµνRµν

√−gdΩ with Rµν = Rµν(g) Ricci Tensor

variation of which gives : Gµν := Rµν −1

2gµνR = χTµν

1917 - Homogeneous, static and isotropic Universe (Einstein )

ds2 = −dt2 + a

(

dr2

1−Rr2+ r2dθ2 + r2 sin2 θdϕ2

)

R>0

Two parallels

can cross

The sum of triangle’s

angles is greater

than p

Geodesics are

arc of circlel

Page 9: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The universe becomes dynamical1915 - General Relativity χ = 8πGc−4

S = Sm −1

gµνRµν

√−gdΩ with Rµν = Rµν(g) Ricci Tensor

variation of which gives : Gµν := Rµν −1

2gµνR = χTµν

1917 - Homogeneous, static and isotropic Universe (Einstein )

ds2 = −dt2 + a

(

dr2

1−Rr2+ r2dθ2 + r2 sin2 θdϕ2

)

R=0Two parallels

don’t cross

geodesics are straight

lines

The sum of any

triangle’s angles is p

The plane ...no static solutions

R>0

Two parallels

can cross

The sum of triangle’s

angles is greater

than p

Geodesics are

arc of circlel

Page 10: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The universe becomes dynamical1915 - General Relativity χ = 8πGc−4

S = Sm −1

gµνRµν

√−gdΩ with Rµν = Rµν(g) Ricci Tensor

variation of which gives : Gµν := Rµν −1

2gµνR = χTµν

1917 - Homogeneous, static and isotropic Universe (Einstein )

ds2 = −dt2 + a

(

dr2

1−Rr2+ r2dθ2 + r2 sin2 θdϕ2

)

R<0

The sum of triangle’s

angles is less

than p

Two parallels can

diverge

Geodesics

are

hyperbolae

The hyperboloïd ...no static solutions

R>0

Two parallels

can cross

The sum of triangle’s

angles is greater

than p

Geodesics are

arc of circlel

Page 11: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The universe becomes dynamical1915 - General Relativity χ = 8πGc−4

S = Sm −1

gµνRµν

√−gdΩ with Rµν = Rµν(g) Ricci Tensor

variation of which gives : Gµν := Rµν −1

2gµνR = χTµν

1917 - Homogeneous, static and isotropic Universe (Einstein )

ds2 = −dt2 + a

(

dr2

1−Rr2+ r2dθ2 + r2 sin2 θdϕ2

)

R>0

Two parallels

can cross

The sum of triangle’s

angles is greater

than p

Geodesics are

arc of circlel

The sphere ...allows a static solution

p = cste, ǫ = cste

a = cste, R = 6/a2

ifGµν + Λgµν = χTµν

Λ : Cosmological Const.

Page 12: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The universe becomes dynamical1915 - General Relativity χ = 8πGc−4

S = Sm −1

gµνRµν

√−gdΩ with Rµν = Rµν(g) Ricci Tensor

variation of which gives : Gµν := Rµν −1

2gµνR = χTµν

1917 - Homogeneous, static and isotropic Universe (Einstein )

ds2 = −dt2 + a

(

dr2

1−Rr2+ r2dθ2 + r2 sin2 θdϕ2

)

R>0

Two parallels

can cross

The sum of triangle’s

angles is greater

than p

Geodesics are

arc of circlel

The sphere ...allows a static solution

p = cste, ǫ = cste

a = cste, R = 6/a2

ifGµν + Λgµν = χTµν

Λ : Cosmological Const.

Einstein Universe isunstable !

a(t) = a(1 + δa(t))

p(t) = p(1 + δp(t))

ǫ(t) = a(1 + δǫ(t))

δp(t) = ωδǫ(t)

a(t) diverges if ω > −1/3

Page 13: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Friedmann, Lemaitre and Hubble

1922 - 1924 : Alexandre Friedmann

Page 14: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Friedmann, Lemaitre and Hubble

1922 - 1924 : Alexandre Friedmann

(

1

a

da

dt

)2

+k

a2=

8πGǫ

3(F1)

1

a

d2a

dt2= −4πG

3(ǫ+ 3P ) (F2)

a3dP

dt=

d[

(ǫ+ P ) a3]

dt(F3)

Energy impulsion conservation

Page 15: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Friedmann, Lemaitre and Hubble

1922 - 1924 : Alexandre Friedmann

(

1

a

da

dt

)2

+k

a2=

8πGǫ

3(F1)

1

a

d2a

dt2= −4πG

3(ǫ+ 3P ) (F2)

a3dP

dt=

d[

(ǫ+ P ) a3]

dt(F3)

Energy impulsion conservation

(F2) : If ǫ+ 3P > 0 then(

a > 0,d2a

dt2< 0

)

⇒ a concave⇒ Big-Bang

Page 16: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Friedmann, Lemaitre and Hubble

1922 - 1924 : Alexandre Friedmann

(

1

a

da

dt

)2

+k

a2=

8πGǫ

3(F1)

1

a

d2a

dt2= −4πG

3(ǫ+ 3P ) (F2)

a3dP

dt=

d[

(ǫ+ P ) a3]

dt(F3)

Energy impulsion conservation

(F2) : If ǫ+ 3P > 0 then(

a > 0,d2a

dt2< 0

)

⇒ a concave⇒ Big-Bang

(F1) : Hubble’s Constant : H = a/a

Critical Density : ǫo =3H2

8πG= 1.87847(23)× 10−29 h2 · g · cm−3

We can mesure k = 83πGa2 (ǫ− ǫo)

Page 17: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Friedmann, Lemaitre and Hubble

1922 - 1924 : Alexandre Friedmann

(

1

a

da

dt

)2

+k

a2=

8πGǫ

3(F1)

1

a

d2a

dt2= −4πG

3(ǫ+ 3P ) (F2)

a3dP

dt=

d[

(ǫ+ P ) a3]

dt(F3)

Energy impulsion conservation

(F2) : If ǫ+ 3P > 0 then(

a > 0,d2a

dt2< 0

)

⇒ a concave⇒ Big-Bang

(F1) : Hubble’s Constant : H = a/a

Critical Density : ǫo =3H2

8πG= 1.87847(23)× 10−29 h2 · g · cm−3

We can mesure k = 83πGa2 (ǫ− ǫo)

Big controversy with Einstein but Friedmann dies in September ’25

Page 18: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Friedmann, Lemaitre and Hubble

Page 19: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Friedmann, Lemaitre and Hubble

1925 - Firsts observations Using cepheids stars, Hubble computes thedistance of "Islands Universes" closing the "Great Debate". Slipher measures asystematic red-shift in their spectra.

Page 20: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Friedmann, Lemaitre and Hubble

1925 - Firsts observations Using cepheids stars, Hubble computes thedistance of "Islands Universes" closing the "Great Debate". Slipher measures asystematic red-shift in their spectra.

1927 - Lemaıtre’s Idea Lemaître links observations and Friedmann’stheoretical results. He postulates "the birth of space".

Page 21: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Friedmann, Lemaitre and Hubble

1925 - Firsts observations Using cepheids stars, Hubble computes thedistance of "Islands Universes" closing the "Great Debate". Slipher measures asystematic red-shift in their spectra.

1927 - Lemaıtre’s Idea Lemaître links observations and Friedmann’stheoretical results. He postulates "the birth of space".

1929 - Hubble : The Universe is expanding !

Page 22: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The legend of Λ...

Page 23: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The legend of Λ...

1929 - Einstein’s Renunciation" The cosmological constant is my biggest mistake" =⇒ Λ = 0

Page 24: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The legend of Λ...

1929 - Einstein’s Renunciation" The cosmological constant is my biggest mistake" =⇒ Λ = 0

1990 - Cosmic candlesSystematic observation of White Dwarf SN’s shows a cosmic expansionacceleration (Nobel Prize 2011).

=⇒ Λ 6= 0

Page 25: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The legend of Λ...

1929 - Einstein’s Renunciation" The cosmological constant is my biggest mistake" =⇒ Λ = 0

1990 - Cosmic candlesSystematic observation of White Dwarf SN’s shows a cosmic expansionacceleration (Nobel Prize 2011).

=⇒ Λ 6= 0

A dynamical Universe

Very fun !

(

1

a

da

dt

)2

+k

a2=

8πGǫ

3+

Λ

3(F1)

1

a

d2a

dt2= −4πG

3(ǫ+ 3P ) +

Λ

3(F2)

a3dP

dt=

d[

(ǫ+ P ) a3]

dt(F3)

Impulsion-Energy conservation

Page 26: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Friedmann’s Universes Dynamics

Predator-Prey, competition

Page 27: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Building...

(

a

a

)2

=8πGǫ

3− k

a2+

Λ

3

a

a= −4πG

3(ǫ+ 3P ) +

Λ

3

ǫ = −3H (P + ǫ)

Page 28: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Building...

(

a

a

)2

=8πGǫ

3− k

a2+

Λ

3

a

a= −4πG

3(ǫ+ 3P ) +

Λ

3

ǫ = −3H (P + ǫ)

, setting

H (t) =a

a=

d (ln a)

dt

q (t) = − a

a

1

H2= − a a

a2

Ωm (t) =8πGǫ

3H2, Ωk (t) = −

k

a2H2

and ΩΛ (t) =Λ

3H2

Page 29: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Building...

(

a

a

)2

=8πGǫ

3− k

a2+

Λ

3

a

a= −4πG

3(ǫ+ 3P ) +

Λ

3

ǫ = −3H (P + ǫ)

, setting

H (t) =a

a=

d (ln a)

dt

q (t) = − a

a

1

H2= − a a

a2

Ωm (t) =8πGǫ

3H2, Ωk (t) = −

k

a2H2

and ΩΛ (t) =Λ

3H2

we obtain

Ωm +Ωk +ΩΛ = 1 (F1.1)

4πG

3H2(ǫ+ 3P ) = q +ΩΛ (F2.1)

ǫ = −3H (P + ǫ) (F3.1)

Page 30: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

State equation

Page 31: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

State equation

Barotropic : P = ωǫ = (Γ− 1) ǫ =(γ − 1)

Page 32: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

State equation

Barotropic : P = ωǫ = (Γ− 1) ǫ =(γ − 1)

ω −1 0 1/3 2/3 1

Kind

of Matter

Quantum

Vacuum

Incoherent

Dust Gas

Photon

Ideal Gas

monoatomic

Ideal Gas

Stiff

matter

ω ∈ [−1, 1] , Γ ∈ [0, 2] , γ ∈ [−2, 4]

Page 33: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

State equation

Barotropic : P = ωǫ = (Γ− 1) ǫ =(γ − 1)

ω −1 0 1/3 2/3 1

Kind

of Matter

Quantum

Vacuum

Incoherent

Dust Gas

Photon

Ideal Gas

monoatomic

Ideal Gas

Stiff

matter

ω ∈ [−1, 1] , Γ ∈ [0, 2] , γ ∈ [−2, 4]

Barotropic Friedmann’s Equations :

Ωk = 1 − Ωm − ΩΛ

q =Ωm (1 + 3ω)

2− ΩΛ

(ln ǫ)′= −3 (1 + ω) ′ =

d

d ln a

Page 34: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The dynamical system

Page 35: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The dynamical system

Ωk = 1 − Ωm − ΩΛ

Ω′m = Ωm [(1 + 3ω) (Ωm − 1)− 2ΩΛ]

Ω′Λ = ΩΛ [Ωm (1 + 3ω) + 2 (1− ΩΛ)]

Page 36: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The dynamical system

Ωk = 1 − Ωm − ΩΛ

Ω′m = Ωm [(1 + 3ω) (Ωm − 1)− 2ΩΛ]

Ω′Λ = ΩΛ [Ωm (1 + 3ω) + 2 (1− ΩΛ)]

setting γ = 1 + 3ω in the interval [−2, 4]

X ′ = Fγ (X) with X = [Ωm,ΩΛ]⊤ and Fγ :

R2 → R2

(x, y) 7→ (f1 (x, y) , f2 (x, y))

where

f1 (x, y) = x (γx− 2y − γ)

f2 (x, y) = y (γx− 2y + 2)

Lotka-Volterra like equation

Page 37: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Equilibria

Page 38: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

EquilibriaEquilibrium : X∗ = [x, y]

⊤= [Ωm,ΩΛ]

⊤ such that Fγ (X∗) = 0

x (γx− 2y − γ) = 0

y (γx− 2y + 2) = 0

Page 39: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

EquilibriaEquilibrium : X∗ = [x, y]

⊤= [Ωm,ΩΛ]

⊤ such that Fγ (X∗) = 0

x (γx− 2y − γ) = 0

y (γx− 2y + 2) = 0There is 3 solutions :

Page 40: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

EquilibriaEquilibrium : X∗ = [x, y]

⊤= [Ωm,ΩΛ]

⊤ such that Fγ (X∗) = 0

x (γx− 2y − γ) = 0

y (γx− 2y + 2) = 0There is 3 solutions :

de Sitter Universe : X∗1 = [0, 1]

⊤ and Ωk = 0

If a > 0 then a(t) ∝ e√

Λ3 t

Uncreated Universe in perpetual exponential expansion.

Page 41: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

EquilibriaEquilibrium : X∗ = [x, y]

⊤= [Ωm,ΩΛ]

⊤ such that Fγ (X∗) = 0

x (γx− 2y − γ) = 0

y (γx− 2y + 2) = 0There is 3 solutions :

de Sitter Universe : X∗1 = [0, 1]

⊤ and Ωk = 0

If a > 0 then a(t) ∝ e√

Λ3 t

Uncreated Universe in perpetual exponential expansion.

Einstein-de Sitter Universe : X∗2 = [1, 0]

⊤ and Ωk = 0

If ω > −1 then a (t) ∝ t2

3(1+3ω)

Big-Bang followed by a decelerated expansion.

Page 42: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

EquilibriaEquilibrium : X∗ = [x, y]

⊤= [Ωm,ΩΛ]

⊤ such that Fγ (X∗) = 0

x (γx− 2y − γ) = 0

y (γx− 2y + 2) = 0There is 3 solutions :

de Sitter Universe : X∗1 = [0, 1]

⊤ and Ωk = 0

If a > 0 then a(t) ∝ e√

Λ3 t

Uncreated Universe in perpetual exponential expansion.

Einstein-de Sitter Universe : X∗2 = [1, 0]

⊤ and Ωk = 0

If ω > −1 then a (t) ∝ t2

3(1+3ω)

Big-Bang followed by a decelerated expansion.

Milne Universe : X∗3 = [0, 0]

⊤ and Ωk = 1

k = −a2H2 : Hyperbolic universe with a(t) = a0t+ a0Linearly expanding Universe since Big-Bang : exotic cosmological models ?

Page 43: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Dynamic is a competition !

Ω′m = Ωm (γΩm − 2ΩΛ − γ)

Ω′Λ = ΩΛ (γΩm − 2ΩΛ + 2)

Competition between Ωm and ΩΛ "referred" by Ωk ;

3 equilibrium states :

• Matter (EdS) - γ−Hyperbolic ;

• Curvature (M) - γ−Hyperbolic ;

• Cosmological Constant (dS) - Stable.

The most competitive is always the Cosmological Constant : γ ∈ [−2, 4].

No Limit Cycle (Bendixon criteria, div(F ) has constant sign on [0, 1]2 ?

Page 44: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The fate of Friedmann’s Universes

If ω of Ωm is in ]− 1,−1/3[ :

Page 45: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The fate of Friedmann’s Universes

If ω of Ωm is in ]− 1/3, 1[ :

Page 46: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Coupled species : Jungle Universe

Page 47: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Coupled species : Jungle UniverseWithout any coupling between species (Ωi) the dynamic is fully degenerated :

x = (Ωb,Ωd,Ωr,Ωe)⊤

, x′ = diag(x) (r+ Ax)

with

A =

1 + 3ωb 1 + 3ωd 1 + 3ωr 1 + 3ωe

1 + 3ωb 1 + 3ωd 1 + 3ωr 1 + 3ωe

1 + 3ωb 1 + 3ωd 1 + 3ωr 1 + 3ωe

1 + 3ωb 1 + 3ωd 1 + 3ωr 1 + 3ωe

and r =

−1− 3ωb

−1− 3ωd

−1− 3ωr

−1− 3ωe

As rank(A) = 1, equilibria must lie on axes xi = 0, this is Friedmann’s dynamics.

Page 48: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Coupled species : Jungle UniverseWithout any coupling between species (Ωi) the dynamic is fully degenerated :

x = (Ωb,Ωd,Ωr,Ωe)⊤

, x′ = diag(x) (r+ Ax)

with

A =

1 + 3ωb 1 + 3ωd 1 + 3ωr 1 + 3ωe

1 + 3ωb 1 + 3ωd 1 + 3ωr 1 + 3ωe

1 + 3ωb 1 + 3ωd 1 + 3ωr 1 + 3ωe

1 + 3ωb 1 + 3ωd 1 + 3ωr 1 + 3ωe

and r =

−1− 3ωb

−1− 3ωd

−1− 3ωr

−1− 3ωe

As rank(A) = 1, equilibria must lie on axes xi = 0, this is Friedmann’s dynamics.

Introducing coupling between any barotropic components of the Universe, thedynamical systems becomes

xi = Ωi

ri = −(1 + 3ωi) (1)

Aij = 1 + 3ωj + εij with εij = −εji and εii = 0

The matrix A can have any rank, it can be invertible, equilibria can be everywhere,this is Jungle dynamics. [e.g. Perez et. al., 2014]

Page 49: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Dark coupling...

+r b

t=0

e

e

Coupling between dark energy and dark mater with ε = 4.

The radiative components (Ωr) and the baryonic matter (Ωb) dilutes and disappearswhile the dark component converges toward a limit cycle.

Page 50: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Other possibilities...

-0.1 0 0.1 0.2 0.3 0.4

0

0.2

0.4

0.15

0.25

0.35

0.45

I.C.

0

0.51 0

0.51

0.2

0.4

0.6

0.8

r

d I.C.

r

d

e=5/2

e=3/2

req

eeq

deq

eeq

req

Evolution of the three coupled density parameters, in the 3D phase space. Thebeginning of the orbit is overlined. Initial condition is indicated by a black dot. Relevant

equilibria are indicated by a star.

Page 51: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Other possibilities...

-0.1 0 0.1 0.2 0.3 0.4

0

0.2

0.4

0.15

0.25

0.35

0.45

I.C.

0

0.51 0

0.51

0.2

0.4

0.6

0.8

r

d I.C.

r

d

e=5/2

e=3/2

req

eeq

deq

eeq

req

Evolution of the three coupled density parameters, in the 3D phase space. Thebeginning of the orbit is overlined. Initial condition is indicated by a black dot. Relevant

equilibria are indicated by a star.

Page 52: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Camouflage in the jungle [Simon-Petit, J.P. & Yap, 2016]

10-1

100

101

½1

2

3

½

½

Density(arbitrary units)

Time (arbitrary units)

!1;e® (!1 = 0)

!2;e® (!2 = 0)

!3;e® (!3 = 0)

10-1

100

101

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Effectivebarotropic

index

Time (arbitrary units)

Page 53: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Camouflage in the jungle [Simon-Petit, J.P. & Yap, 2016]

Could dark energy emerge from the jungle coupling ?

10-1

100

101

½1

2

3

½

½

Density(arbitrary units)

Time (arbitrary units)

!1;e® (!1 = 0)

!2;e® (!2 = 0)

!3;e® (!3 = 0)

10-1

100

101

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Effectivebarotropic

index

Time (arbitrary units)

Page 54: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Camouflage in the jungle [Simon-Petit, J.P. & Yap, 2016]

Could dark energy emerge from the jungle coupling ?

The interaction term in the continuity equation of a fluid i reads

ρi = −3Hρi(1 + ωi) +n∑

j=1

ǫijHΩjρi

It actually modifies its equation of state which then describes a barotropic uid with aneffective time-dependent barotropic index ωeff

i = ωi −∑n

j=113ǫijΩj

10-1

100

101

½1

2

3

½

½

Density(arbitrary units)

Time (arbitrary units)

!1;e® (!1 = 0)

!2;e® (!2 = 0)

!3;e® (!3 = 0)

10-1

100

101

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Effectivebarotropic

index

Time (arbitrary units)

Page 55: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Camouflage in the jungle [Simon-Petit, J.P. & Yap, 2016]

Could dark energy emerge from the jungle coupling ?

The interaction term in the continuity equation of a fluid i reads

ρi = −3Hρi(1 + ωi) +n∑

j=1

ǫijHΩjρi

It actually modifies its equation of state which then describes a barotropic uid with aneffective time-dependent barotropic index ωeff

i = ωi −∑n

j=113ǫijΩj

Exemple :

10-1

100

101

½1

2

3

½

½

Density(arbitrary units)

Time (arbitrary units)

!1;e® (!1 = 0)

!2;e® (!2 = 0)

!3;e® (!3 = 0)

10-1

100

101

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Effectivebarotropic

index

Time (arbitrary units)

Jungle Interaction (ǫ12 = −2; ǫ23 = −3; ǫ13 = 0) between three dark matter fluids

Page 56: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Bianchi Universes

The Cosmological Billiard

Page 57: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Save General Relativity !

B

K L

Page 58: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Save General Relativity !

1915 A. Einstein : Gravitationnal Field Theory

B

K L

Page 59: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Save General Relativity !

1915 A. Einstein : Gravitationnal Field Theory

1922-27 A. Friedmann & G. Lemaître : Homogeneous and Isotropic solution(Big Bang ≈ 1960)

B

K L

Page 60: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Save General Relativity !

1915 A. Einstein : Gravitationnal Field Theory

1922-27 A. Friedmann & G. Lemaître : Homogeneous and Isotropic solution(Big Bang ≈ 1960)

1965-66 R. Penrose & S. Hawking : All solutions are singular !

B

K L

Page 61: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Save General Relativity !

1915 A. Einstein : Gravitationnal Field Theory

1922-27 A. Friedmann & G. Lemaître : Homogeneous and Isotropic solution(Big Bang ≈ 1960)

1965-66 R. Penrose & S. Hawking : All solutions are singular !

1969 V. Belinski, L. Khalatnikov & E. Lifchitz : Singularity may be chaotic ifUniverse is anisotropic !

B

K L

Page 62: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Homogeneous Manifold in 3+1 dimension

Page 63: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Homogeneous Manifold in 3+1 dimension

Synchronous Frame : ds2 = gij dxi dxj − dt2, E = Σt, gij = gij(t)

Invariant Forms basis G : eij dxj

C cab =

(

∂iecj − ∂je

ci

)

eja eib (Structure Constants)

σa := eia∂i such that [σa, σb] = C cab σc

The set of C cab is a determination of G.

Page 64: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Homogeneous Manifold in 3+1 dimension

Synchronous Frame : ds2 = gij dxi dxj − dt2, E = Σt, gij = gij(t)

Invariant Forms basis G : eij dxj

C cab =

(

∂iecj − ∂je

ci

)

eja eib (Structure Constants)

σa := eia∂i such that [σa, σb] = C cab σc

The set of C cab is a determination of G.

Decomposition C cab := εabd N

dc + δcb Ma − δca Mb ⇒ Nab symetric

Equivalence Classesof Homogeneous Universes

≡ Equivalence Classesof Nab and Mb such that NabMb = 0

Nab =

n1 0 0

0 n2 0

0 0 n3

Mb = [m, 0, 0]

Page 65: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Bianchi’s Classification

Class A : m = 0, Class B : m 6= 0

n1 n2 n3 m Model

0 is a triple eigenvalue of N 0 0 0 0 BI

0 0 0 ∀ BV

0 is a double eigenvalue of N 1 0 0 0 BII

0 1 0 ∀ BIV

0 is a simple eigenvalue of N 1 1 0 0 BVIIo

0 1 1 ∀ BVIIm

1 −1 0 0 BVIo

0 1 −1 6= 1 BVIm

0 1 −1 1 BIII

0 is not an eigenvalue of N 1 1 1 0 BIX

1 1 −1 0 BVIII

Page 66: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

BKL Formalism(e.g. [Belinski, Khalatnikov et Lifchitz, 69])

ds2 = gijdxidxj − dt2 =

3∑

i=1

eAi(τ)dx2i − V 2(τ)dτ2

The lapse function is the volume of the universe : V 2 = eA1+A2+A3 , dt = V dτ

The matter is isotropic & barotropic : P = (Γ− 1)ǫ =⇒ ǫ = ǫ0V−Γ

0 = Ec + Ep + Em = H

χǫ0 (2− Γ)V 2−Γ = A′′1 +

(

n1eA1

)2 −(

n2eA2 − n3e

A3)2

χǫ0 (2− Γ)V 2−Γ = A′′2 +

(

n2eA2

)2 −(

n3eA3 − n1e

A1)2

χǫ0 (2− Γ)V 2−Γ = A′′3 +

(

n3eA3

)2 −(

n1eA1 − n2e

A2)2

Ec =12

3∑

i 6=j=1

A′iA

′j Ep =

3∑

i 6=j=1

ninjeAi+Aj −

3∑

i=1

n2i e

2Ai

Em = −4χǫ V 2 ′ = d

dτ, χ = 8πG

c4

Page 67: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Vacuum B I Solution : The fondamental state

In conformal time variable, Spatial Einstein Equations write A′′i = 0 which gives in

physical time eAi = λit2ki/Ω where V (t) = 1

2Ωt+Ω0. Time Einstein Equation makesappear a global parameter u ∈ [1,+∞[

p1 = k1/Ω = −u(

1 + u+ u2)−1 ∈

[

− 13 , 0

]

p2 = k2/Ω = (1 + u)(

1 + u+ u2)−1 ∈

[

0, 23

]

p3 = k3/Ω = u (1 + u)(

1 + u+ u2)−1 ∈

[

23 , 1

]

Vacuum BI Universe’s metric writes

ds2 = λ1t2p1dx2

1 + λ2t2p2dx2

2 + λ3t2p3dx2

3 − dt2

If t→ 0 (→ singularity)

• : Exponential Expansion• • : Exponential ContractionV : Linear Contraction

Vacuum BI defines a Kasner State characterized by u and Ω

Page 68: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Vacuum B II solution : The idea by BKL...

Vacuum BII dynamics in τ :

A′′1 = −e2A1

A′′2 = +e2A1

A′′3 = +e2A1

e2A1 = A′1A

′2 +A′

1A′3 +A′

2A′3

But in t it appears as a transition between 2 Kasner States :

Page 69: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Vacuum B II solution : The idea by BKL...

Vacuum BII dynamics in τ :

A′′1 = −e2A1

A′′2 = +e2A1

A′′3 = +e2A1

e2A1 = A′1A

′2 +A′

1A′3 +A′

2A′3

But in t it appears as a transition between 2 Kasner States :

When t −→ +∞

[u,Ω]

(p1 < p2 < p3)

(•••)Kasner 1

−→

When t −→ 0

[u− 1,Ω(1− 2p1)] (•••) si u > 2

[

(u− 1)−1

,Ω(1− 2p1)]

(•••) si u ≤ 2

Kasner 2

Amazing Bianchi Universes !

Page 70: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Hamiltonian Formalism e.g. [Misner ’70]

Page 71: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Hamiltonian Formalism e.g. [Misner ’70]

0 = Ec + Ep + Em = H

χ (2− Γ)V 2−Γ = A′′1 +

(

n1eA1

)2 −(

n2eA2 − n3e

A3)2

χ (2− Γ)V 2−Γ = A′′2 +

(

n2eA2

)2 −(

n3eA3 − n1e

A1)2

χ (2− Γ)V 2−Γ = A′′3 +

(

n3eA3

)2 −(

n1eA1 − n2e

A2)2

Ep =3∑

i 6=j=1

ninjeAi+Aj −

3∑

i=1

n2i e

2Ai

Em = −4χǫ V 2

Ec =12

3∑

i 6=j=1

A′iA

′j

Diagonalize Ec ...

Page 72: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Hamiltonian Formalism e.g. [Misner ’70]

M :=

1√2

−1√2

01√6

1√6

−2√6

1√6

1√6

1√6

q := [q1 q2 q3]⊤= M [A1 A2 A3]

p := [p1 p2 p3]⊤= M [A′

1 A′2 A′

3]⊤

Page 73: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Hamiltonian Formalism e.g. [Misner ’70]

M :=

1√2

−1√2

01√6

1√6

−2√6

1√6

1√6

1√6

q := [q1 q2 q3]⊤= M [A1 A2 A3]

p := [p1 p2 p3]⊤= M [A′

1 A′2 A′

3]⊤

Einstein Equations become Todda-Like

q′1,2 = −∇p1,2H p′1,2 = −∇q1,2H

q′3 = ∇q3H p′3 = −∇p3H

with H = 12 〈p,p〉+

7∑

i=1

kie(ai,q)

(x, y) := +x1y1 + x2y2 + x3y3

〈x, y〉 := −x1y1 − x2y2 + x3y3

k1 := 2n1n2 k2 := 2n1n3 k3 := 2n2n3

k4 := −n21 k5 := −n2

2 k6 := −n23

k7 = −4εoχ

Page 74: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Integrability

Integrable Differential System =⇒ Regular Solutions (Reciprocally ?)

Two used methods :

Show that the solution is analytic (formal series)

Kovalewski-Poincaré Theory (Painlevé)

Show that the system admits enough first integrals

Lax Theory (Liouville)

Page 75: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Kovalewski-Poincaré Theory

Ifdx

dt= f (x) with x ∈ Rn admits Self-Similar Solution (3S)

x =[

c1 (t− to)−g1 , ..., cn (t− to)

−gn]⊤

g ∈ Zn c ∈ Rn

Page 76: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Kovalewski-Poincaré Theory

Ifdx

dt= f (x) with x ∈ Rn admits Self-Similar Solution (3S)

x =[

c1 (t− to)−g1 , ..., cn (t− to)

−gn]⊤

g ∈ Zn c ∈ Rn

then the linearized system around x too !

z =[

k1 (t− to)ρ1−g1 , ..., kn (t− to)

ρn−gn]⊤

ρ ∈ Cn

Kovalewski Exponents : ρ = Sp [Df (x) (c) + diag (g)]

Page 77: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Kovalewski-Poincaré Theory

Ifdx

dt= f (x) with x ∈ Rn admits Self-Similar Solution (3S)

x =[

c1 (t− to)−g1 , ..., cn (t− to)

−gn]⊤

g ∈ Zn c ∈ Rn

then the linearized system around x too !

z =[

k1 (t− to)ρ1−g1 , ..., kn (t− to)

ρn−gn]⊤

ρ ∈ Cn

Kovalewski Exponents : ρ = Sp [Df (x) (c) + diag (g)]

Poincaré and Yoshida then show that

xi (t) ∝ (t− to)−gi S [(t− to)

ρ1 , ..., (t− to)ρn ]

ρ ∈ Qn is sufficient for analiticity of x(t)

Page 78: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Kovalewski & Bianchi

e.g. Melnikov’s Team in Moscow, [Gavrilov et al.,94] ,[Pavlov,96] and [Szydlowksi & Besiada,02]

Page 79: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Kovalewski & Bianchi

e.g. Melnikov’s Team in Moscow, [Gavrilov et al.,94] ,[Pavlov,96] and [Szydlowksi & Besiada,02]

A new change of variables

q,p 7→ u,v avec

[

u ∈ R7, ui=1,...,7 := 〈ai,p〉v ∈ R7, vi=1,...,7 := exp (ai,q)

Page 80: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Kovalewski & Bianchi

e.g. Melnikov’s Team in Moscow, [Gavrilov et al.,94] ,[Pavlov,96] and [Szydlowksi & Besiada,02]

A new change of variables

q,p 7→ u,v avec

[

u ∈ R7, ui=1,...,7 := 〈ai,p〉v ∈ R7, vi=1,...,7 := exp (ai,q)

The Bianchi dynamics becomes

∀i = 1, ..., 7

v′i = uivi

u′i =

7∑

j=1

Wijvjwith Wij := −kj 〈ai, aj〉

which admits a plenty of 3S : x =[

λt−1, µt−2]⊤

for each [λ, µ] ∈ R7 × R7 solution of

7∑

j=1

Wij µj = −λi

λi µi = −2µi

Page 81: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Bianchi’s Integrability

[JP & Larena,07]

Page 82: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Bianchi’s Integrability

[JP & Larena,07]

4 class of equivalence of Bianchi Universes in Kovalewski senseClass I : BI Class II : BII & BIV

Class III :BIII, BVIo,a

& BVIIo,a

Class IV : BVIII & BIX

Page 83: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Bianchi’s Integrability

[JP & Larena,07]

4 class of equivalence of Bianchi Universes in Kovalewski senseClass I : BI Class II : BII & BIV

Class III :BIII, BVIo,a

& BVIIo,a

Class IV : BVIII & BIX

Vacuum & ∀Γ ∈ Q : KI ⊂ Q : Int.Vacuum & Stiff matter : KII ∪KIII ⊂ Q : Int.Matter with Γ ∈ Q ∩ [0,Γo] : KII ∪KIII ⊂ Q : Int.Matter with Γ ∈ [Γo, 2[ : KII ∪KIII ⊂ C : Not Int.

Vacuum & ∀Γ ∈ [0, 2[ : KIV ⊂ C : Not Int.

Γo :=11 +

√73

3≈ 0, 82

Γ = 0 : Scalar Field Γ = 1 : DustΓ = 4/3 : Quantum Id. Gas.(µ = 0) Γ = 5/3 : Classical Id. Gas

Γ = 2 : Stiff Matter

Singularity could be chaotic...

Page 84: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Bianchi’s Billiards

e.g. [Jantzen,82] , [Uggla,97]

Page 85: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Bianchi’s Billiards

e.g. [Jantzen,82] , [Uggla,97]

Setting dt = V 1/3dt et m = V 4/3 the dynamics becomes

dq1,2

dt=

p1,2m

=∂E

∂q1,2

dp1,2

dt= − ∂ξ

∂q1,2=

∂E

∂p1,2

withE =

p21 + p222m

− ξ (q1, q2) =(dV/dt)2

V 2/3

Pour t→ 0

E → +∞m→ 0

ξ (q1, q2) =7∑

i=1

kie(π(ai),q) ,q ∈ R2 , π : Projector on (e 1, e2)

Page 86: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Bianchi’s Billiards

e.g. [Jantzen,82] , [Uggla,97]

Setting dt = V 1/3dt et m = V 4/3 the dynamics becomes

dq1,2

dt=

p1,2m

=∂E

∂q1,2

dp1,2

dt= − ∂ξ

∂q1,2=

∂E

∂p1,2

withE =

p21 + p222m

− ξ (q1, q2) =(dV/dt)2

V 2/3

Pour t→ 0

E → +∞m→ 0

ξ (q1, q2) =7∑

i=1

kie(π(ai),q) ,q ∈ R2 , π : Projector on (e 1, e2)

BianchiDynamics

⇔Dynamics of 2D decreasing mass particle

with an increasing energyin the potential well ξ

Page 87: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The Cosmological Billiard

q y

k

k3

k1

q y1

Page 88: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The Cosmological Billiard

"Isolated" Dynamics :d2y

dx2= −k2ey with y (0) = 0 =

dy

dx

x=0

.

y (x) = ln

[

1− th2(

kx√2

)]

= −2 ln[

ch

(

kx√2

)]

≈ ±√2kx+ 2 ln 2

when x→ ±∞

q y

k

k3

k1

q y1

Page 89: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The Cosmological Billiard

"Isolated" Dynamics :d2y

dx2= −k2ey with y (0) = 0 =

dy

dx

x=0

.

y (x) = ln

[

1− th2(

kx√2

)]

= −2 ln[

ch

(

kx√2

)]

≈ ±√2kx+ 2 ln 2

when x→ ±∞

Rebound on 1 cushion

q y

k

k3

k1

q y1

Page 90: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The Cosmological Billiard

"Isolated" Dynamics :d2y

dx2= −k2ey with y (0) = 0 =

dy

dx

x=0

.

y (x) = ln

[

1− th2(

kx√2

)]

= −2 ln[

ch

(

kx√2

)]

≈ ±√2kx+ 2 ln 2

when x→ ±∞

Rebound on 1 cushionSeveral cushions ...

q y

k

k3

k1

q y1

Page 91: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Cushions’s form of B II billiard

n1 = 1, n2 = n3 = 0 : ξ(q1, q2) = −e√

63 q2+

√2q1

Isocontours ξ = E

Page 92: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Cushions’ form of B III billiard

n1 = 1, n2 = −1, n3 = 0 : ξ(q1, q2) = −e√

63 q2+

√2q1 − e

63 q2−

√2q1 − 2e

63 q2

Isocontours ξ = E

Page 93: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Cushions’ form of B VII billiard

n1 = 1, n2 = 1, n3 = 0 : ξ(q1, q2) = −e√

63 q2+

√2q1 − e

63 q2−

√2q1 + 2e

63 q2

Isovaleurs ξ = E

Page 94: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Cushions’ form of B VIII billiard

n1 = 1, n2 = 1, n3 = −1 : ξ(q1, q2) = · · ·!

Isocontours ξ = E

Page 95: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Cushions’ form of B IX billiard

n1 = 1, n2 = 1, n3 = 1 : ξ(q1, q2) = · · ·!

Isocontours ξ = E

Page 96: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

A few numerics ...

Dynamics in BIX not easy !

... but understandable !

Page 97: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Poincaré’s Sections

Page 98: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Poincaré’s Sections

−→ toward singularity −→

Page 99: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Poincaré’s Sections

−→ toward singularity −→

Page 100: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Vacuum B IX BKL Dynamics

Random IC’s

Page 101: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

ω = 1/3 B IX BKL Dynamics

Random IC’s

Page 102: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

ω = 1 B IX BKL Dynamics

Random IC’s

Page 103: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Attractors

e.g. [Cornish&Lewin,97]

Page 104: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Attractors

e.g. [Cornish&Lewin,97]

IC’s : (θo, ωo)

Stop when u > ue = 8

• : p1 x1

• : p1 x2

• : p1 x3

Page 105: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Attractors

e.g. [Cornish&Lewin,97]

IC’s : (θo, ωo)

Stop when u > ue = 8

• : p1 x1

• : p1 x2

• : p1 x3

BVIII

Page 106: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Attractors

e.g. [Cornish&Lewin,97]

IC’s : (θo, ωo)

Stop when u > ue = 8

• : p1 x1

• : p1 x2

• : p1 x3

BVIII

BIX

Page 107: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The B IX Fractal

Page 108: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Conclusion