Top Banner
16.362 Signal and System I The unit step response of an LTI system ] [ n ] [ n h ] [ n y ] [ n u ] [ n h ] [ n s k k n h k n y ] [ ] [ ] [ ] [ ] [ ] [ ] [ n h k n k h n y k n k k k h k n u k h n s ] [ ] [ ] [ ] [
55

The unit step response of an LTI system

Jan 06, 2016

Download

Documents

Stephany Melina

The unit step response of an LTI system. Linear constant-coefficient difference equations. +. delay. When n 1,. Causality. Linear constant-coefficient difference equations. +. delay. Determine A by initial condition:. When n = 0 ,. A = 1. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The unit step response of an LTI system

16.362 Signal and System I • The unit step response of an LTI system

][n ][nh ][ny

][nu ][nh ][ns

k

knhkny ][][][

][

][][][

nh

knkhnyk

n

k

k

kh

knukhns

][

][][][

Page 2: The unit step response of an LTI system

16.362 Signal and System I

• Linear constant-coefficient difference equations

][]1[2

1][ nxnyny

][]1[2

1][ nnhnh

]1[2

1][ nhnh

][]1[2

1][ nnhnh

When n 1, 2

1

]1[

][

nhnh

n

Anh

2

1][

][2

1][ nuAnh

n

Causality

][n

][nh

][nh

2

1

+

delay

Page 3: The unit step response of an LTI system

16.362 Signal and System I

• Linear constant-coefficient difference equations

][n

][nh

][nh

2

1

][]1[2

1][ nxnyny +

][]1[2

1][ nnhnh delay

][]1[2

1][ nnhnh

][2

1][ nuAnh

n

Determine A by initial condition:

When n = 0, 1]0[]0[ h

]0[2

1]0[

0

uAh

A = 1

Page 4: The unit step response of an LTI system

16.362 Signal and System I

• Linear constant-coefficient difference equations

]1[ n ][]1[2

1][ nxnyny

][]1[2

1][ nnhnh

][2

1][ nunh

n

?][ ny

Two ways:

(1) Repeat the procedure

(2) ][][][ nhnxny

]1[2

1

]1[

][]1[][

1

nu

nh

nhnny

n

][nh

][nh

2

1

+

delay

Page 5: The unit step response of an LTI system

16.362 Signal and System I

• Linear constant-coefficient difference equations

)(t

When t>0,dt

dyty

2

1)( tAety 2)(

Determine A by initial condition:

)()( 2 tuAeth t

Causality

)(2

1

2

1)( tx

dt

dyty

)(2

1

2

1)( t

dt

dyty

)(2

1

2

1)( t

dt

dyty

)(th

)(ty

2

1

+

dt

d

2

1

Page 6: The unit step response of an LTI system

16.362 Signal and System I • Linear constant-coefficient difference equations

Determine A by initial condition:

)()( 2 tuAeth t

)(2

1)()

2

1()()2(

2

1)( 222 ttAetuAetuAe ttt

A = 1 )()( 2 tueth t

)(t)(

2

1

2

1)( tx

dt

dyty

)(2

1

2

1)( t

dt

dyty

)(th

)(ty

2

1

+

dt

d

2

1

Page 7: The unit step response of an LTI system

16.362 Signal and System I • Linear constant-coefficient difference equations

)()( 3 tuKetx t

][5

][

)]()[(

)()(

)()()(

23

52

)(23

)(23

tt

t

o

t

t

o

t

t

eeK

deKe

deKe

dtueuKe

dthx

thtxty

)(th

)(ty

2

1

)(2

1

2

1)( tx

dt

dyty +

dt

d

2

1

)()( 2 tueth t

)(][5

)( 23 tueeK

ty tt

Page 8: The unit step response of an LTI system

16.362 Signal and System I

• Fourier series representation of continuous-time periodical signal)()( Ttxtx for all tPeriodic signal

tjk

kkeatx 0)(

tjke 0

k is an integer

form a complete and orthogonal bases

Complete: no other basis is needed.

Fourier series

Orthogonal:

),(),(2

11

0

2

0

)(

00 0

)(

0

0

)(

0

0

000

mkTmk

detde

dtedtee

mkjT tmkj

T tmkjT tjmtjk

),(1

0

00 mkdteeT

T tjmtjk

Orthogonal:

mk

mkmk

0

1),(Kronecker Delta

Page 9: The unit step response of an LTI system

16.362 Signal and System I

• Fourier series representation of continuous-time periodical signal)()( Ttxtx for all tPeriodic signal

tjk

kkeatx 0)(

k is an integer

m

kk

T tmkj

kk

T tjmtjk

kk

T tjmtjk

kk

T tjm

a

mka

dteT

a

dteeT

a

dteeaT

dtetxT

)(

1

1

1)(

1

0

)(

0

00

0

00

000

T tjm

m dtetxT

a0

0)(1

Page 10: The unit step response of an LTI system

16.362 Signal and System I

• Fourier series representation of continuous-time periodical signal)()( Ttxtx for all tPeriodic signal

tjk

kkeatx 0)(

k is an integer T tjm

m dtetxT

a0

0)(1

e.g.

k

Tk

Tk

Tk

jk

ee

T

dteT

dteT

dtetxT

a

TjkTjk

T

TT

tjkT tjk

T tjkk

10

0

10

0

0

0

sinsin2

1

11

)(1

1010

1

01

0

0

T

20

1T

2

T

2

T1TT

T

T

1T

Page 11: The unit step response of an LTI system

16.362 Signal and System I • Fourier series representation of continuous-time periodical signal

k

Tkak

10sin

1T

2

T

2

T1TT

T

T

1T

T tjk

k dtetxT

a0

0)(1

T

Tdt

Ta

T

T

10

21 1

1

tjk

kkeatx 0)(

0 00

Page 12: The unit step response of an LTI system

16.362 Signal and System I • The response of system to complex exponentials

)(tx )(ty

Band limited channel

Bandwidth 0100

-2 -1.5 -1 -0.5 0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

1.2

1.4

Bandwidth 010

Page 13: The unit step response of an LTI system

16.362 Signal and System I • Fourier series representation of discrete-time periodical signal

][][ Nnxnx

N

20

for all tPeriodic signal

1

0

0][N

k

njkkeanx

1

0

0][1 N

n

njkk enx

Na

kNk aa

Page 14: The unit step response of an LTI system

16.362 Signal and System I • Example #1

)sin(][ 0nnx N

20

1

0

0][1 N

n

njkk enx

Na

nNjn

Nj

njnj

ej

ej

j

ee

nnx

22

0

2

1

2

1

2

)sin(][00

ja

2

11 j

a2

11

Nk

njkkeanx 0][

Page 15: The unit step response of an LTI system

16.362 Signal and System I • Properties of discrete-time Fourier series

(1) Linearity

ka

kb

][][][ nBynAxnz kk BbAa

1

0

0][1 N

n

njkk enx

Na

Nk

njkkeanx 0][

Nk

njkkeanx 0][

Nk

njkkebny 0][

Page 16: The unit step response of an LTI system

16.362 Signal and System I

Nk

njknjkk

Nk

nnjkk

eea

eannx

000

00 )(0 ][

(2) Time shifting

0njkkea

(3) Time reversal

kNa

Nk

njkk

Nk

njkk

ea

eanx

0

0 )(][

Page 17: The unit step response of an LTI system

16.362 Signal and System I

)(1

0

0][ njkN

kkeanx

(4) Time scaling

ka

1

0

1

0

1

0

1

0

)(

1

0

1

0

0

0

00][][

N

l

N

k

njklkl

N

l

N

m

nmljml

njmN

mm

njlN

ll

eba

eba

ebeanynx

(5) multiplication

1

0

N

llklba

0

Page 18: The unit step response of an LTI system

16.362 Signal and System I

Nk

njkkeanx 0][

(6) Conjugation and conjugate symmetry

ka

ka

Real signal

][][ nxnx

kk aa

Even

kk aa

kk aa

][][ nxnx

Real & Even kk aa

njkN

kkeanx 0

1

0

*][*

Page 19: The unit step response of an LTI system

16.362 Signal and System I

Nk Nmmk

Nk Nm

N

n

nmkjmk

Nm

njmm

N

n Nk

njkk

N

n

N

n

mkNaa

eaa

eaea

nxnxnx

),(

][*][][

*

1

0

)(*

*1

0

1

0

1

0

2

0

00

(7) Parseval’s relation

Nk

k

N

n

anxN

21

0

2][

1

Page 20: The unit step response of an LTI system

16.362 Signal and System I

k

njkk

j

k

njkk

k

njkk

eae

eaeanxnx

00

00

1

]1[][ )1(

(8) Time difference

kj ae 01

kjk

njk

k

k

n

m

mjkk

n

m k

mjkk

n

m

e

ea

ea

eanx

0

0

0

0

1

][

(9) Running sum

01 jkk

e

a

0k

00 a

Page 21: The unit step response of an LTI system

16.362 Signal and System I

][1 nx

Example

ka

N = 4

][2 nx

[1, 2, 2, 1]

kb [1, 1, 1, 1]

][][][ 11 nxnxny ?kc

1

0

N

llklk bac

132231000 babababac

233201101 babababac

330211202 babababac

031221303 babababac

Page 22: The unit step response of an LTI system

16.362 Signal and System I • Fourier series and LTI system

)(tx )(th )(ty

Periodic signalSystem response doesn’t have to be periodic.

Output periodic?

)(

)(

)()( )(

sHe

dehe

dehty

st

sst

ts

stetx )( )(th

dehsH s)()(

Page 23: The unit step response of an LTI system

16.362 Signal and System I

)()( jHety tjtjetx )( )(th

dehjH j)()(

k

tjkk jkHeaty )()( 0

0 tjk

kkeatx 0)(

)(th

dehjkH jk 0)()( 0

Page 24: The unit step response of an LTI system

16.362 Signal and System I

)(th)(tx )(ty

Filtering

• Frequency-shaping filters

• Frequency-selective filters

(1) Frequency-shaping filters

dt

tdxty

)()(

)(th

kk ajkb 0

00 )( jkjkH

Page 25: The unit step response of an LTI system

16.362 Signal and System I

)(th)(tx )(ty

(1) Frequency-shaping filters

dt

tdxty

)()(

)(th

kk ajkb 0

jjH )(

Page 26: The unit step response of an LTI system

16.362 Signal and System I

)(th)(tx )(ty

(2) Frequency-selective filters

Low-pass

high-pass

band-pass

Page 27: The unit step response of an LTI system

16.362 Signal and System I

][nynjenx ][ ][nh

Discrete-time

k

kjnj

k

knj

k

ekhe

ekh

knxkhny

][

][

][][][

)(

k

kjekhjH ][)(

][ny

Nk

njkkeanx 0][

][nh

Nk

njkk ejkHany 0)(][ 0

ka

][ny

][nx

][nh )( 0jkH

)( 0jkHak

Page 28: The unit step response of an LTI system

16.362 Signal and System I

][nx ][nh

Example: averaging

]1[][2

1][ nxnxny

Nk

jknjk

k

Nk

njkk

njkk

eea

eaea

nxnxny

2

1

2

1

]1[][2

1][

0

0

00 )1(

2

1 0jk

kk

eab

)2/cos(

2

1)(

02/

0

0

0

ke

ejkH

jk

jk

Page 29: The unit step response of an LTI system

16.362 Signal and System I • Continuous-time Fourier transform

)(txAperiodic signal

tjk

kkeatx 0)(

k is an integer

T tjk

k dtetxT

a0

0)(1

)()( Ttxtx Periodic signal

dejXtx tj)(

2

1)(

dtetxjX tj )()(

)'(

)'()(

2

1)(

)(2

1)(

)'(

''

jX

djX

dtedjX

dtedejXdtetx

tj

tjtjtj

kajkX 2)( 0

Page 30: The unit step response of an LTI system

16.362 Signal and System I • Continuous-time Fourier transform

)(txAperiodic signal

tjk

kkeatx 0)(

k is an integer

T tjk

k dtetxT

a0

0)(1

)()( Ttxtx Periodic signal

2

)( 0jkXak

dejXtx tj)(

2

1)(

dtetxjX tj )()(

Page 31: The unit step response of an LTI system

16.362 Signal and System I • Examples

)()( tuetx at

ja

dtee

dtetxjX

tjat

tj

1

)()(

0

jajX

1)(

2/1

22

1)(

ajX

a

1tan

dejXtx tj)(

2

1)(

dtetxjX tj )()(

Page 32: The unit step response of an LTI system

16.362 Signal and System I • Properties of continuous-time Fourier transform

)(tx

(1) Linearity

)(ty

)( jX

)( jY

)()()( tBytAxtz )()()( jBYjAXjZ

dejXtx tj)(

2

1)(

dtetxjX tj )()(

Page 33: The unit step response of an LTI system

16.362 Signal and System I • Properties of continuous-time Fourier transform

dejXtx tj)(

2

1)(

dtetxjX tj )()(

)( 0ttx

(2) Time shifting

0)( tjejX

(3) Time reversal

')'(

)(

)()('

')(

))((

dtetx

dtetx

dtetxjX

tj

tj

tj

)( tx

)( jX

Page 34: The unit step response of an LTI system

16.362 Signal and System I • Properties of continuous-time Fourier transform

dejXtx tj)(

2

1)(

dtetxjX tj )()(

)( tx

(4) Time scaling

tdetx

dtetxjX

tj

tj

)(1

)()('

jX

1

Page 35: The unit step response of an LTI system

16.362 Signal and System I • Properties of continuous-time Fourier transform

dejXtx tj)(

2

1)(

dtetxjX tj )()(

(5) Conjugation and conjugate summary

)(tx

)(

)(

)()('

)(

jX

dtetx

dtetxjX

tj

tj

)(tx Real

)()( txtx )()( jXjX

)()( jXjX

Page 36: The unit step response of an LTI system

16.362 Signal and System I Example

)()( tuetx t

)()( jXjX

)()( jXjX

jjX

1)(

)( tx even

Even and real)()( jXjX

Page 37: The unit step response of an LTI system

16.362 Signal and System I Differential

)(tx

dejXtx tj)(

2

1)(

)( jX

dt

tdxtg

)()(

dejXj

dt

tdx tj)(2

1)(

)( jG

)()( jXjjG

Page 38: The unit step response of an LTI system

16.362 Signal and System I Integral)(tx

j

edjX

jj

ejdjX

dedjddjX

dededjX

dedjX

ddejXdx

tj

tj

t j

t jj

t j

t jt

)()(2

1

1)()(

2

1

)sin()cos()(2

1

)(2

1

)(2

1

)(2

1)(

0

00

0

0

)( jX

tdxtg )()( )( jG

)0()()(

)( Xj

jXjG

Page 39: The unit step response of an LTI system

16.362 Signal and System I

Example

)(tx )( jX

tdxtg )()( )0()(

)()( X

j

jXjG

dt

tdxtf

)()( )()( jXjjF

)(ty)(tx )(th

)()( tuetx bt 0b

)()( tueth at 0a

)()()( thtxty

jbjX

1)(

jajH

1)(

jbjaab

jbjajY

111

11)(

)(1

)(1

)( tueab

tueab

ty btat

ab

Page 40: The unit step response of an LTI system

16.362 Signal and System I Example

)(ty)(tx )(th

)()( tuetx at

)()( tueth at

0a

)()()( thtxty

jajX

1)(

jajH

1)(

jad

dj

jajY

1

1)(

2

)(

)(2

)(2

)(2

)(2

)(

tute

djXet

djXjtej

jdXej

dejXd

djty

at

tj

tj

tj

tj

Page 41: The unit step response of an LTI system

16.362 Signal and System I Example

dejXtx tj)(

2

1)(

dtetxjX tj )()(

21

1)(

jX?)( tx

)1(

1

)1(

1

2

1

)1)(1(

11

1)(

2

jj

jj

jX)(

2

1)(

2

1)( tuetuetx tt

tetx 2

1)(

deetx tjt

21

1

2

1

2

1)(

Page 42: The unit step response of an LTI system

16.362 Signal and System I Example

dejXtx tj)(

2

1)(

dtetxjX tj )()(

?)( jX21

1)(

ttx

deetx tjt

21

1

2

1

2

1)(

dte

te tj

21

1

2

1

2

1

dte

te tj

21

1

2

1

2

1

Page 43: The unit step response of an LTI system

16.362 Signal and System I Parseval’s relation

djXjX

djXdjX

djXdjXdte

dtdejXdejX

dttxtxdttx

tj

tjtj

)'()(2

1

)'(')'()(2

1

')'(2

1)(

2

1

')'()(2

1

)()()(

)'(

'

2

djXdttx22)(

2

1)(

Page 44: The unit step response of an LTI system

16.362 Signal and System I Parseval’s relation for continuous-time Fourier series

k

k

Tadttx

T2

0

2)(

1

djXdttx22)(

2

1)(

Parseval’s relation for continuous-time Fourier transfer

Page 45: The unit step response of an LTI system

16.362 Signal and System I Example

0.5 1.0-0.5-1.0

2/

?)(2

dttx

)( jX

djXdttx22)(

2

1)(

0|)( xtxdt

dD

Page 46: The unit step response of an LTI system

16.362 Signal and System I Example

0.5 1.0-0.5-1.0

2/

?)(2

dttx

)( jX

0|)( xtxdt

dD

dejXtx tj)(2

1)(

dejXjtxdt

d tj)()(2

1)(

0

)()(2

1

|)()(2

1|)( 00

djXj

dejXjtxdt

dt

tjt

Page 47: The unit step response of an LTI system

16.362 Signal and System I Example, P. 4.14

)( jX)(tx

(1) real

(2) )()( 2 tuAetg t)()1()( jXjjG

(3) 2)(2

djX

?)( tx

Solution:

)()( 2 tuAetg t

j

AjG

2

)(

)()1()( jXjjG

)2)(1(

)1(

)()(

jj

A

j

jGjX

Page 48: The unit step response of an LTI system

16.362 Signal and System I Example, P. 4.14

)( jX)(tx

(1) real

(2) )()( 2 tuAetg t)()1()( jXjjG

(3) 2)(2

djX

?)( tx

Solution:

)2)(1()(

jj

AjX

2)(

2

djX

dA

dA

djX

22

2

22

22

4

1

1

1

3

41)(

Page 49: The unit step response of an LTI system

16.362 Signal and System I Example, P. 4.14

Solution:

2

2

2

222

tantan1

1

1

1

d

dd

tan

2

2

1

tantan1

1

2

1

2

21

1

2

1

4

1

2

2

2

22

22

d

d

dd

tan

2

Page 50: The unit step response of an LTI system

16.362 Signal and System I Example, P. 4.14

)( jX)(tx

(3) 2)(2

djX

Solution:

)2)(1()(

jj

AjX

2)(

2

djX

6

4

1

1

1

3)(

2

22

22

A

dA

djX

122 A jeA 12

Page 51: The unit step response of an LTI system

16.362 Signal and System I Example, P. 4.14

)( jX)(tx

(3) 2)(2

djX

Solution:

)2)(1()(

jj

AjX

jeA 12

)2(

1

)1(

112)(

jjejX j )()(12)( 2 tuetueetx ttj

(1) real

)()(12)( 2 tuetuetx tt

Page 52: The unit step response of an LTI system

16.362 Signal and System I • Multiplication

dejXtx tj)(

2

1)(

dtetxjX tj )()(

111

212211

)(2211

2211

2211

))(()(2

1

)(2)(2

1)(

2

1

)(2

1)(

2

1

)(2

1)(

2

1

)(2

1)(

2

1

)()()(

21

21

21

djYjX

djYdjX

dtedjYdjX

dteeedjYdjX

dejYdejXdte

dtetytxjZ

tj

tjtjtj

tjtjtj

tj)()()( tytxtz

)()(2

1)(

jYjXjZ

Page 53: The unit step response of an LTI system

16.362 Signal and System I

Example #1

dejXtx tj)(

2

1)(

dtetxjX tj )()(

)()()( tytxtz )()()( jYjXjZ

ttp 0cos)( )()( 00

)(ts )( jS

ttsty 0cos)()( )( jY

))((2

1))((

2

1

))'(()'()'(2

1

))'(()'(2

1

)()(2

1)(

00

00

jSjS

djS

djSjP

jPjSjY

Page 54: The unit step response of an LTI system

16.362 Signal and System I

Example #2

dejXtx tj)(

2

1)(

dtetxjX tj )()(

)()()( tytxtz )()()( jYjXjZ

ttp 0cos)( )()( 00

)(ts )( jS

ttsty 0cos)()(

)2(()(2)2((4

1

)()(2

1)(

00

jSjSjS

jPjYjG)()()( tptytg

))((2

1))((

2

1

)()(2

1)(

00

jSjS

jPjSjY

Page 55: The unit step response of an LTI system

16.362 Signal and System I • Frequency-selective filtering with variable center frequency

x)(tx Low pass filter x

tj ce tj ce

)(ty )(tw)(tf

c

0

1

0

c cc

0 c