Top Banner
Quantum Mechanics and Einstein Gravity The Heisenberg Uncertainty Principle The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty Principle in Einstein Gravity, (DA) The Uncertainty Principle and Einstein Gravity The photon gravitational interaction The gravitational interaction of light Spin ? The light as a beam of null particles Appendix A Weak Gravitational Fields Appendix B The Uncertainty Principle in Einstein Gravity Gaetano Vilasi Università degli Studi di Salerno, Italy Istituto Nazionale di Fisica Nucleare, Italy International Conference Geometry, Integrability and Quantization Varna, June 2012 Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, Italy The Uncertainty Principle in Einstein Gravity
58

The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Sep 11, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

The Uncertainty Principle in Einstein Gravity

Gaetano VilasiUniversità degli Studi di Salerno, Italy

Istituto Nazionale di Fisica Nucleare, Italy

International ConferenceGeometry, Integrability and Quantization

Varna, June 2012

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 2: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

Outline1 Quantum Mechanics and Einstein Gravity2 The Heisenberg Uncertainty Principle3 The Uncertainty Principle in Newton Gravity, (DA)4 The Uncertainty Principle in Einstein Gravity, (DA)5 The Uncertainty Principle and Einstein Gravity6 The photon gravitational interaction7 The gravitational interaction of light

Geometric propertiesPhysical Properties

8 Spin ?9 The light as a beam of null particles10 Appendix A11 Weak Gravitational Fields12 Appendix B

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 3: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

QM and GRThe problem of reconciling quantum mechanics (QM) with generalrelativity (GR) is a task of modern theoretical physics which hasnot yet found a consistent and satisfactory solution. The difficultyarises because general relativity deals with events which definethe world-lines of particles, while QM does not allow the defini-tion of trajectory; indeed, the determination of the position of aquantum particle involves a measurement which introduces an un-certainty into its momentum (Wigner, 1957; Saleker and Wigner,1958; Feynman and Hibbs, 1965).

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 4: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

Weak Equivalence Principle?These conceptual difficulties have their origin, as argued in Can-delas and Sciama (1983) and Donoghue et al. (1984, 1985), in theviolation, at the quantum level, of the weak principle of equivalenceon which GR is based. Such a problem becomes more involved inthe formulation of a quantum theory of gravity owing to the non-renormalizability of general relativity when one quantizes it as alocal quantum field theory (QFT) (Birrel and Davies, 1982).

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 5: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

Planck lengthNevertheless, one of the most interesting consequences of this uni-fication is that in quantum gravity there exists a minimal observ-able distance on the order of the Planck distance, lP =

√G~/c3 '

10−33cm , where G is the Newton constant. The existence of sucha fundamental length is a dynamical phenomenon due to the factthat, at Planck scales, there are fluctuations of the backgroundmetric, i.e., a limit of the order of the Planck length appears whenquantum fluctuations of the gravitational field are taken into ac-count. Other "Planck quantities" are: TP = lp/c, mp = ~/lpc.

lP =√G~/c3 ' 10−33cm TP =

√G~/c5 ' 0.54 · 10−43s

mp =√~c/G ' 2.2 · 10−5g Ep =

√~c5/G ' 1.2 · 1019GeV

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 6: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

In the absence of a theory of quantum gravity, one tries to analyzequantum aspects of gravity retaining the gravitational field as aclassical background, described by general relativity, and interact-ing with a matter field (Lambiase et al. 2000). This semiclassicalapproximation leads to QFT and QM in curved space-time andmay be considered as a preliminary step toward a complete quan-tum theory of gravity. In other words, we take into account a the-ory where geometry is classically defined while the source of theEinstein equations is an effective stress-energy tensor where con-tributions of matter quantum fields, gravity self-interactions, andquantum matter - gravity interactions appear (Birrel and Davies,1982).

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 7: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

A theory containing a fundamental length on the order of lP (whichcan be also related to the extension of particles) is string theory.It provides a consistent theory of quantum gravity and avoids theabove-mentioned difficulties. In fact, unlike point particle theo-ries, the existence of a fundamental length plays the role of a nat-ural cutoff. In such a way the ultraviolet divergences are avoidedwithout appealing to renormalization and regularization schemes(Green et al., 1987).

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 8: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

By studying string collisions at Planckian energies and through arenormalization group-type analysis (Veneziano, 1986; Amati etal., 1987, 1988, 1989, 1990; Gross and Mende, 1987, 1988; Kon-ishi et al., 1990; Guida and Konishi, 1991; Yonega, 1989), theemergence of a minimal observable distance yields the generalizeduncertainty principle

∆x ' ~∆p

+ l2p∆p

~At energies much below the Planck energy, the extra term in theprevious equation is irrelevant, and the Heisenberg relation is re-covered, while as we approach the Planck energy this term becomesrelevant and is related to the minimal observable length.

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 9: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

Outline1 Quantum Mechanics and Einstein Gravity2 The Heisenberg Uncertainty Principle3 The Uncertainty Principle in Newton Gravity, (DA)4 The Uncertainty Principle in Einstein Gravity, (DA)5 The Uncertainty Principle and Einstein Gravity6 The photon gravitational interaction7 The gravitational interaction of light

Geometric propertiesPhysical Properties

8 Spin ?9 The light as a beam of null particles10 Appendix A11 Weak Gravitational Fields12 Appendix B

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 10: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

In the early days of quantum theory, Heisenberg showed that theuncertainty principle follows as a direct consequence of the quan-tization of electromagnetic radiation (photons). Consider a wavescattering from an electron into a microscope and thereby giving ameasurement of the position of the electron. According both to op-tics and the intuition, with an electromagnetic wave of wavelengthλ we cannot obtain better precision than

∆xH ' λ

Such a wave is quantized in the form of photons, each with amomentum

p =h

λ

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 11: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

In order to interact with the electron an entire photon in the wavemust scatter and thereby impart to the electron a significant part of itsmomentum, which produces an uncertainty in the electron momentumof about ∆p ' p. Thus we obtain the standard Heisenberg position-momentum uncertainty relation

∆xH ·∆p ' λ(h

λ) ' ~

Until now, no gravitational interaction between the photon and theelectron has ben considered.

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 12: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

Outline1 Quantum Mechanics and Einstein Gravity2 The Heisenberg Uncertainty Principle3 The Uncertainty Principle in Newton Gravity, (DA)4 The Uncertainty Principle in Einstein Gravity, (DA)5 The Uncertainty Principle and Einstein Gravity6 The photon gravitational interaction7 The gravitational interaction of light

Geometric propertiesPhysical Properties

8 Spin ?9 The light as a beam of null particles10 Appendix A11 Weak Gravitational Fields12 Appendix B

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 13: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

The photon is assumed to be located in an experimental region ofcharacteristic size L inside of which it interacts with the photon,and to behave as a classical particle with an effective mass equalto E/c2 (Adler Santiago 2008). Because of the gravity,

~a = −G E

c2r3~r

where r is the electron-photon distance. During the interaction(which occurs in characteristic time L/c), because of the gravitythe electron will acquire a velocity ∆v ' G E

c2r2

(Lc

)and move a

distance given by

∆xG ' GE

c2r2

(L

c

)2

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 14: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

The photon scatters electromagnetically from the electron at someindeterminate time during the interaction and the electron maybe anywhere in the interaction region. So the electron-photondistance should be of order r ' L, which is the only distancescale in the problem. Since the photon energy is related to themomentum by E = pc we may also express this as

∆xG 'Gp

c3

The electron momentum uncertainty must be of order of the pho-ton momentum so that, by using the Planck length l2p = G~/c3 asa parameter, we have

∆xG 'G∆p

c3= l2p

∆p

~

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 15: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

Adding this uncertainty to the Heisenberg relation we obtain themodified uncertainty relation

∆x ' ~∆p

+ l2p∆p

~

This relation, referred descriptively as the generalized uncertaintyprinciple (GUP), is invariant under

∆plp~

�~

∆plp

That is, it has a kind of momentum inversion symmetry (M. B.Green, J. H. Schwarz, and E. Witten, Superstring Theory, Cam-bridge University Press, 1987).

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 16: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

Outline1 Quantum Mechanics and Einstein Gravity2 The Heisenberg Uncertainty Principle3 The Uncertainty Principle in Newton Gravity, (DA)4 The Uncertainty Principle in Einstein Gravity, (DA)5 The Uncertainty Principle and Einstein Gravity6 The photon gravitational interaction7 The gravitational interaction of light

Geometric propertiesPhysical Properties

8 Spin ?9 The light as a beam of null particles10 Appendix A11 Weak Gravitational Fields12 Appendix B

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 17: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

Previous heuristic arguments are based on action-at-a-distanceNewtonian gravitational theory, with the additional ad hoc as-sumption that the energy of the photon produces a gravitationalfield. However, based on general relativity theory, a dimensionalestimate free of such drawbacks can be done. The Einstein fieldequations of general relativity are

Rµν −1

2gµνR =

8πG

c4Tµν

The left side has the units of inverse distance squared, since it isconstructed from second derivatives and squares of first derivativesof the metric.

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 18: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

Thus on dimensional grounds we may write the left hand sidein terms of deviations (hµν) of the metric from Lorentzian, inschematic order of magnitude dimensional form, as

LHS ' hµνL2

.

Similarly the energy-momentum tensor has the units of an energydensity, so its components must be roughly equal to the photonenergy over L3. Thus we can write the right hand side of the fieldequations schematically as

RHS '(

8πG

c4

)· EL3' Gp

c3L3

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 19: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

Thus, we get an estimate for the deviation of the metric,

hµν 'Gp

Lc3

This deviation corresponds to a fractional uncertainty in all posi-tions in the region L, which we identify with a fractional uncer-tainty in position, ∆xG/L. Thus the gravity uncertainty positionis

∆xG ' hµν · L 'Gp

c3

where the characteristic size L doesn’t appear anymore. Since theuncertainty in momentum of the electron must be comparable tothe photon momentum, ∆p ' p, and we obtain ∆xG ' G∆p/c3

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 20: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

Outline1 Quantum Mechanics and Einstein Gravity2 The Heisenberg Uncertainty Principle3 The Uncertainty Principle in Newton Gravity, (DA)4 The Uncertainty Principle in Einstein Gravity, (DA)5 The Uncertainty Principle and Einstein Gravity6 The photon gravitational interaction7 The gravitational interaction of light

Geometric propertiesPhysical Properties

8 Spin ?9 The light as a beam of null particles10 Appendix A11 Weak Gravitational Fields12 Appendix B

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 21: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

Outline1 Quantum Mechanics and Einstein Gravity2 The Heisenberg Uncertainty Principle3 The Uncertainty Principle in Newton Gravity, (DA)4 The Uncertainty Principle in Einstein Gravity, (DA)5 The Uncertainty Principle and Einstein Gravity6 The photon gravitational interaction7 The gravitational interaction of light

Geometric propertiesPhysical Properties

8 Spin ?9 The light as a beam of null particles10 Appendix A11 Weak Gravitational Fields12 Appendix B

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 22: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

The photon-photon and photon-electron scatterings may occurthrough the creation and annihilation of virtual electron-positronpairs and may even lead to collective photon phenomena. Pho-tons also interact gravitationally but the gravitational scatteringof light by light has been much less studied.First studies go back to Tolman, Ehrenfest and Podolsky (1931)and to Wheeler (1955) who analysed the gravitational field of lightbeams and the corresponding geodesics in the linear approxima-tion of Einstein equations. They also discovered that null raysbehave differently according to whether they propagate parallelor antiparallel to a steady, long, straight beam of light, but theydidn’t provide a physical explanation of this fact.

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 23: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

Results of Tolman, Ehrenfest, Podolsky, Wheeler were clarified inpart by Faraoni and Dumse 1999, in the setting of classical pureGeneral Relativity, the general point of view being that gravita-tional interaction is mediated by a spin-2 particle.More recently however, within the context of modern quantumfield theories, it was proven (Fabbrichesi and Roland, 1992)thatin supergravity and string theory, due to dimensional reduction,the effective 4-dimensional theory of gravity may show repulsiveaspects because of the appearance of spin-1 graviphotons.

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 24: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

In the usual treatment of gravitational waves only Fourier expand-able solutions of d’Alembert equation are considered; then it ispossible to choose a special gauge (TT-gauge) which kills the spin-0 and spin-1 components.However there exist (see section 2 and 3) physically meaningfulsolutions (Peres 1959 Stephani 1996, Stephani, Kramer, MacCal-lum, Honselaers and Herlt 2003, Canfora, Vilasi and Vitale 2002)of Einstein equations which are not Fourier expandable and nev-ertheless whose associated energy is finite.

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 25: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

For some of these solutions the standard analysis shows that spin-1components cannot be killed (Canfora and Vilasi 2004, Canfora,Vilasi and Vitale 2004). In previous works it was shown that lightis among possible sources of such spin-1 waves (Vilasi 2007) andthis implies that repulsive aspects of gravity are possible withinpure General Relativity, i.e. without involving spurious modifica-tions (Vilasi et al, Class. Quant. Grav. 2011) .

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 26: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

Geometric propertiesPhysical Properties

Outline1 Quantum Mechanics and Einstein Gravity2 The Heisenberg Uncertainty Principle3 The Uncertainty Principle in Newton Gravity, (DA)4 The Uncertainty Principle in Einstein Gravity, (DA)5 The Uncertainty Principle and Einstein Gravity6 The photon gravitational interaction7 The gravitational interaction of light

Geometric propertiesPhysical Properties

8 Spin ?9 The light as a beam of null particles10 Appendix A11 Weak Gravitational Fields12 Appendix B

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 27: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

Geometric propertiesPhysical Properties

Geometric properties

In previous papers (Sparano, Vilasi, Vinogradov, Canfora 2000-2010)a family of exact solutions g of Einstein field equations, representingthe gravitational wave generated by a beam of light, has been explicitlywritten

g = 2f(dx2 + dy2) + µ[(w (x, y)− 2q)dp2 + 2dpdq

], (1)

where µ(x, y) = AΦ(x, y) + B (with Φ(x, y) a harmonic function andA, B numerical constants), f(x, y) = (∇Φ)

2√|µ|/µ, and w (x, y) is

solution of the Euler-Darboux-Poisson equation:

∆w + (∂x ln |µ|) ∂xw + (∂y ln |µ|) ∂yw = ρ,

Tµν = ρδµ3δν3 representing the energy-momentum tensor and ∆ theLaplace operator in the (x, y)−plane.

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 28: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

Geometric propertiesPhysical Properties

Previous metric is invariant for the non Abelian Lie agebra G2 of Killingfields, generated by

X =∂

∂p, Y = exp (p)

∂q,

with [X,Y ] = Y , g (Y, Y ) = 0 and whose orthogonal distribution isintegrable.

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 29: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

Geometric propertiesPhysical Properties

Table:

D⊥, r = 0 D⊥, r = 1 D⊥, r = 2G2 integrable integrable integrableG2 semi-integrable semi-integrable semi-integrableG2 non-integrable non-integrable non-integrableA2 integrable integrable integrableA2 semi-integrable semi-integrable semi-integrableA2 non-integrable non-integrable non-integrable

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 30: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

Geometric propertiesPhysical Properties

In the particular case s = 1, f = 1/2 and µ = 1, the above family islocally diffeomorphic to a subclass of Peres solutions and, by using thetransformation

p = ln |u| q = uv,

can be written in the form

g = dx2 + dy2 + 2dudv +w

u2du2, (2)

with ∆w(x, y) = ρ, and has the Lorentz invariant Kerr-Schild form:

gµν = ηµν + V kµkν , kµkµ = 0.

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 31: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

Geometric propertiesPhysical Properties

Wave CharacterThe wave character and the polarization of these gravitationalfields has been analyzed in many ways. For example, the Zel’manovcriterion (Zakharov 1973) was used to show that these are grav-itational waves and the propagation direction was determined byusing the Landau-Lifshitz pseudo-tensor. However, the algebraicPirani criterion is easier to handle since it determines both thewave character of the solutions and the propagation direction atonce. Moreover, it has been shown that, in the vacuum case, thetwo methods agree. To use this criterion, the Weyl scalars mustbe evaluated according to Petrov classification (Petrov 1969).

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 32: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

Geometric propertiesPhysical Properties

In the Newmann-Penrose formulation (Penrose 60) of Petrov classifi-cation, we need a tetrad basis with two real null vector fields and tworeal spacelike (or two complex null) vector fields. Then, if the metricbelongs to type N of the Petrov classification, it is a gravitational wavepropagating along one of the two real null vector fields (Pirani crite-rion). Let us observe that ∂x and ∂y are spacelike real vector fieldsand ∂v is a null real vector but ∂u is not. With the transformationx 7→ x, y 7→ y, u 7→ u, v 7→ v + w(x, y)/2u, whose Jacobian isequal to one, the metric (2) becomes:

g = dx2 + dy2 + 2dudv + dw(x, y)dln|u|. (3)

Since ∂x and ∂y are spacelike real vector fields and ∂u and ∂v are nullreal vector fields, the above set of coordinates is the right one to applyfor the Pirani’s criterion.

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 33: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

Geometric propertiesPhysical Properties

Since the only nonvanishing components of the Riemann tensor, corre-sponding to the metric (3), are

Riuju =2

u3∂2ijw(x, y), i, j = x, y

these gravitational fields belong to Petrov type N (Zakharov 73). Then,according to the Pirani’s criterion, previous metric does indeed repre-sent a gravitational wave propagating along the null vector field ∂u.

It is well known that linearized gravitational waves can be characterizedentirely in terms of the linearized and gauge invariant Weyl scalars. Thenon vanishing Weyl scalar of a typical spin−2 gravitational wave is Ψ4.Metrics (3) also have as non vanishing Weyl scalar Ψ4.

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 34: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

Geometric propertiesPhysical Properties

Spin

Besides being an exact solution of Einstein equations, the metric (3)is, for w/u2 << 1, also a solution of linearized Einstein equations,thus representing a perturbation of Minkowski metric η = dx2 + dy2 +2dudv = dx2 + dy2 + dz2 − dt2 (with u = (z − t)/

√2 v = (z + t)/

√2)

with the perturbation, generated by a light beam or by a photon wavepacket moving along the z-axis, given by

h = dw(x, y)dln|z − t|,

whose non vanishing components are

h0,1 = −h13 = − wx(z − t)

h0,2 = −h23 = − wy(z − t)

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 35: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

Geometric propertiesPhysical Properties

A transparent method to determine the spin of a gravitational wave is tolook at its physical degrees of freedom, i.e. the components which con-tribute to the energy (Dirac 75). One should use the Landau-Lifshitz(pseudo)-tensor tµν which, in the asymptotically flat case, agrees withthe Bondi flux at infinity canfora, Vilasi and Vitale 2004). It is worth toremark that the canonical and the Landau-Lifchitz energy-momentumpseudo-tensors are true tensors for Lorentz transformations. Thus, anyLorentz transformation will preserve the form of these tensors; thisallows to perform the analysis according to the Dirac procedure. Aglobally square integrable solution hµν of the wave equation is a func-tion of r = kµx

µ with kµkµ = 0.

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 36: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

Geometric propertiesPhysical Properties

With the choice kµ = (1, 0, 0,−1), we get for the energy density t00 andthe energy momentum t30 the following result:

16πt00 =1

4(u11 − u22)

2+ u212, t00 = t30

where uµν ≡ dhµν/dr. Thus, the physical components which contributeto the energy density are h11 − h22 and h12. Following the analysis ofDirac 1975, we see that they are eigenvectors of the infinitesimal rota-tion generator R, in the plane x− y, belonging to the eigenvalues ±2i.The components of hµν which contribute to the energy thus correspondto spin−2.

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 37: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

Geometric propertiesPhysical Properties

In the case of the prototype of spin−1 gravitational waves (3), bothLandau-Lifchitz energy-momentum pseudo-tensor and Bel-Robinson ten-sor (1958) single out the same wave components and we have:

τ00 ∼ c1(h0x,x)2 + c2(h0y,x)2, t00 = t30

where c1 e c2 constants, so that the physical components of the metricare h0x and h0y. Following the previous analysis one can see that thesetwo components are eigenvectors of iR belonging to the eigenvalues±1. In other words, metrics (3), which are not pure gauge since theRiemann tensor is not vanishing, represent spin−1 gravitational wavespropagating along the z−axis at light velocity.

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 38: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

Geometric propertiesPhysical Properties

SummarizingGlobally square integrable spin−1 gravitational waves propagating on aflat background are always pure gauge.

Spin−1 gravitational waves which are not globally square integrable arenot pure gauge. It is always possible to write metric (3) in an appar-ently transverse gauge (Stefani 96); however since these coordinatesare no more harmonic this transformation is not compatible with thelinearization procedure.

What truly distinguishes spin−1 from spin−2 gravitational waves is thefact that in the spin−1 case the Weyl scalar has a non trivial depen-dence on the transverse coordinates (x, y) due to the presence of theharmonic function. This could led to observable effects on length scaleslarger than the characteristic length scale where the harmonic functionchanges significantly.

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 39: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

Geometric propertiesPhysical Properties

Indeed, the Weyl scalar enters in the geodesic deviation equation im-plying a non standard deformation of a ring of test particles breakingthe invariance under of π rotation around the propagation direction.Eventually, one can say that there should be distinguishable effects ofspin−1 waves at suitably large length scales.

It is also worth to stress that the results of Aichelburg and Sexl 1971,Felber 2008 and 2010, van Holten 2008 suggest that the sources ofasymptotically flat PP_waves (which have been interpreted as spin−1gravitational waves Canfora, Vilasi and Vitale 2002 and 2004) repeleach other. Thus, in a field theoretical perspective (see Appendix),pp-gravitons" must have spin−1 .

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 40: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

Geometric propertiesPhysical Properties

Gravitoelectromagnetism

Hereafter the spatial part of four-vectors will be denoted in bold and thestandard symbols of three-dimensional vector calculus will be adopted.

Metric (3) can be written in the GEM form

g = (2Φ(g) − 1)dt2 − 4(A(g) · dr)dt+ (2Φ(g) + 1)dr · dr, (4)

wherer = (x, y, z) , 2Φ(g) = h00, 2A

(g)i = −h0i.

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 41: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

Geometric propertiesPhysical Properties

Gravito-Lorentz gauge

In terms of Φ(g) and A(g) the harmonic gauge condition reads

∂Φ(g)

∂t+

1

2∇ ·A(g) = 0, (5)

and, once the gravitoelectric and gravitomagnetic fields are defined interms of g-potentials, as

E(g) = −∇Φ(g) − 1

2

∂A(g)

∂t, B(g) = ∇∧A(g),

one finds that the linearized Einstein equations resemble Maxwell equa-tions. Consequently, being the dynamics fully encoded in Maxwell-likeequations, this formalism describes the physical effects of the vectorpart of the gravitational field.

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 42: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

Geometric propertiesPhysical Properties

Gravito-Faraday tensor

Gravitational waves can be also described in analogy with electromag-netic waves, the gravitoelectric and the gravitomagnetic components ofthe metric being

E(g)µ = F

(g)µ0 ; B(g)µ = −εµ0αβF (g)

αβ /2 ,

where

F (g)µν = ∂µA

(g)ν − ∂νA(g)

µ

A(g)µ = −h0µ/2 = (−Φ(g),A(g)).

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 43: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

Geometric propertiesPhysical Properties

Geodesic motion

The first order geodesic motion for a massive particle moving withvelocity vµ = (1, v

¯), |v| << 1, in a light beam gravitational field char-

acterized by gravitoelectric E(g) and gravitomagnetic B(g) fields, is de-scribed (at first order in |v|) by the acceleration:

a(g) = −E(g) − 2v ∧B(g).

with E(g) = (wx, wy, 0)/4u2, B(g) = (wy,−wx, 0)/4u2, so that thegravitational acceleration of a massive particle is given by

a(g) = −[wx(1 + 2vz)i + wy(1 + 2vz)j− (wxvx + wyvy)k]/4u2. (6)

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 44: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

Outline1 Quantum Mechanics and Einstein Gravity2 The Heisenberg Uncertainty Principle3 The Uncertainty Principle in Newton Gravity, (DA)4 The Uncertainty Principle in Einstein Gravity, (DA)5 The Uncertainty Principle and Einstein Gravity6 The photon gravitational interaction7 The gravitational interaction of light

Geometric propertiesPhysical Properties

8 Spin ?9 The light as a beam of null particles10 Appendix A11 Weak Gravitational Fields12 Appendix B

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 45: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

Rather than geodesic orbits, the motion of spinning particles, shouldbe described by Papapetrou equations

D

Dτ(mvα + vσ

DSασ

Dτ) +

1

2Rασµνv

σSµν = 0,

where Sµν is the angular momentum tensor of the spinning particle and

Sα =1

2εαβρσvβSρσ

defines the spin four-vector of the particle.

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 46: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

Outline1 Quantum Mechanics and Einstein Gravity2 The Heisenberg Uncertainty Principle3 The Uncertainty Principle in Newton Gravity, (DA)4 The Uncertainty Principle in Einstein Gravity, (DA)5 The Uncertainty Principle and Einstein Gravity6 The photon gravitational interaction7 The gravitational interaction of light

Geometric propertiesPhysical Properties

8 Spin ?9 The light as a beam of null particles10 Appendix A11 Weak Gravitational Fields12 Appendix B

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 47: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

The relativistic interaction of a photon with an electron can be de-scribed by the geodesic motion of the electron in the light gravitationalfield. For a flow of radiation of a null em field along the z-axis, the elec-tromagnetic (em) energy-momentum tensor macroscopic componentsTµν = FµαF

αν + 1

4gµνFαβFαβ reduce to

T00 =ρ

z − ct, T03 = T30 = − ρ

z − ct, T33 =

ρ

z − ct

where ρ =(E2 +B2

)/2 represents the amplitude of the field, i.e. the

density of radiant energy at point of interest. They are just the com-ponents in the coordinates (t, x, y, z) of the energy-momentum tensorT = ρdu2 of section 53.

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 48: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

We assume then that the energy density is a constant ρ0 within a certainradius 0 ≤ r =

√x2 + y2 ≤ r0 and vanishes outside. Thus, the source

represents a cylindrical beam with width r0 and constitutes a simplegeneralization of a single null particle.

Introducing back the standard coupling constant of Einstein tensor withmatter energy-momentum tensor, we have:

∆w(x, y) =8πG

c4ρ. (7)

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 49: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

The cylindrical symmetry implies that w(x, y) will depend only on thedistance r from the beam. A solution w(r) of Poisson equation (7)satisfying the continuity condition at r = r0 can be easily written as

w(r) =4πG

c4ρ0r

2 r ≤ r0 (8)

w(r) =8πG

c4ρ0r

20

[ln

(r

r0

)+

1

2

]r > r0 (9)

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 50: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

Or also

w(r) =4πGρ0c4

r20W (r) =4πGEr20c4L

W (r) =4πGpr20c3L

W (r) (10)

where we have assumed that the cylinder has length L

W (r) =

{r2/r20 r < ro

1 + ln(rr0

)2r > r0

(11)

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 51: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

so that the gravitational acceleration at the space-time point (t, x, y, z)of a massive particle is given by

a(g) =4πGpr20

c3L(z − ct)2

[v · ∇W (r)

ck− (1 + 2

v · kc

)∇W (r)

](12)

i.e.

d2r

dc2t2= − 4πGpr20

c3L(z − ct)2(1 + 2

v · kc

)r

r2,

d2z

dc2t2=

2Gpr20c3L(z − ct)2

r · vr2

(13)

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 52: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

1 MG58 Morrison P and Gold T 1958 in: Essays on gravity, Ninewinning essays of the annual award (1949-1958) of the GravityResearch Foundation (Gravity Research Foundation, New Boston, NH1958) pp 45-50

2 Mo58 Morrison P 1958 Ann. J. Phys. 26 358

3 NG91 Nieto M M and Goldman T 1991 Phys. Rep. 205 221

4 FR92 Fabbrichesi M and Roland K 1992 Nucl. Phys. B 388 539

5 Pe59 Peres A 1959 Phys. Rev. Lett. 3 571

6 St96 Stephani H 1996 General relativity: an introduction to the theoryof the gravitational field, (Cambridge: Cambridge University Press)

7 SKMHH03 Stephani H, Kramer D, MacCallum M, Honselaers C andHerlt E 2003 Exact Solutions of Einstein Field Equations,(Cambridge: Cambridge University Press) numerate

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 53: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

1 CVV02 Canfora F, Vilasi G and Vitale P 2002 Phys. Lett. 545 373

2 CV04 Canfora F and Vilasi G 2004 Phys. Lett. B 585 193

3 CVV04 Canfora F, Vilasi G and Vitale P 2004 Int. J. Mod. Phys. B18 527

4 CPV07 Canfora F, Parisi L and Vilasi G 2007 Theor. Math. Phys.152 1069

5 Vi07 Vilasi G 2007 J. Phys. Conference Series 87 012017

6 FPV88 Ferrari V, Pendenza P and Veneziano G 1988 Gen. Rel. Grav.20 1185

7 FI89 Ferrari V and Ibanez J 1989 Phys. Lett. A 141 233 (1989).numerate

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 54: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

1 TEP31 Tolman R, Ehrenfest P and Podolsky B 1931 Phys. Rev. 37602.

2 Wh55 Wheeler J 1955 Phys. Rev. 97 511.

3 BBG67 Barker B, Bhatia M and Gupta S 1967 Phys. Rev. 158 1498.

4 BGH66 Barker B, Gupta S and Haracz R 1966 Phys. Rev. 149 1027.

5 FD99 Faraoni V and Dumse RM 1999 Gen. Rel. Grav. 31 9.

6 BEM06 Brodin G, D. Eriksson D and Maklund M 2006 Phys. Rev. D74 124028

7 Ch91 Christodoulou D 1991 Phys. Rev. Lett. 67 1486 numerate

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 55: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

1 Th92 Thorne K 1992 Phys. Rev. D 45 5202 Ma08 Mashhoon B 2003 Gravitoelectromagnetism: A Brief

review, gr-qc/0311030v23 Ze03 A. Zee 2003 Quantum Field Theory in a Nutshell

(Princeton: Princeton University Press)4 SVV01 Sparano G , Vilasi G and Vinogradov A 2001 Phys. Lett.

B 5131425 SVV02a Sparano G , Vilasi G and Vinogradov A 2002 Diff.

Geom. Appl. 16 956 SVV02b Sparano G , Vilasi G and Vinogradov A 2002 Diff.

Geom. Appl. 17 157 Ma75 Mashhoon B 1975 Ann. Phys. 89 254

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 56: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

1 Za73 Zakharov V 1973 Gravitational Waves in Einstein’s Theory(N.Y. Halsted Press)

2 Pe69 Petrov A 1969 Einstein Spaces (N.Y. Pergamon Press)3 Pen60 Penrose R 1960 Ann. Phys. 10 1714 Di75 Dirac PAM 1975 General Theory of Relativity (N. Y. Wiley)5 Be58 Bel L 1958 C.R. Acad. Sci. Paris 247 1094

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 57: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

1 Be59 Bel L 1959 C.R. Acad. Sci. Paris 248 12972 Ro59 Robinson I 1997 Class. Quantum Grav. 20 41353 AS71 Aichelburg A and Sexl R 1971 Gen. Rel. Grav. 2 3034 Fe08 Felber FS 2008 Exact antigravity-field solutions of Einstein’s

equation arxiv.org/abs/0803.2864; Felber FS 2010 Dipole gravitywaves from unbound quadrupoles arxiv.org/abs/1002.0351

5 Ho08 van Holten JW 2008 The gravitational field of a light wave,arXiv:0808.0997v1

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity

Page 58: The Uncertainty Principle in Einstein Gravityobzor.bio21.bas.bg/conference/Conference_files/sa12/slides/Vilasi.pdf · The Uncertainty Principle in Newton Gravity, (DA) The Uncertainty

Quantum Mechanics and Einstein GravityThe Heisenberg Uncertainty Principle

The Uncertainty Principle in Newton Gravity, (DA)The Uncertainty Principle in Einstein Gravity, (DA)

The Uncertainty Principle and Einstein GravityThe photon gravitational interactionThe gravitational interaction of light

Spin ?The light as a beam of null particles

Appendix AWeak Gravitational Fields

Appendix B

1 BCGJ06 Bini D, Cherubini C, Geralico A, Jantzen T 2006 Int. J.Mod. Phys. D15 737

2 SPHM00 Piran T 2004 Rev. Mod. Phys. 76 1145, Sari R, PiranT and Halpern J P 1999 Ap. J. L17 519; Piran T 2000 Phys.Rept. 333, 529-553; Mészáros P 1999 Progress of TheoreticalPhysics Supplement 136 300-320.

3 NAA03 Neto, E C de Rey, de Araujo J C N, Aguiar O D,Class.Quant.Grav. 20 (2003) 1479-1488

4 STM87 Stacey F, Tuck G and Moore G 1987 Phys. Rev. D 362374

5 Ze03 Zee A, Quantum Field Theory in a nutshell, PrincetonUniversity Press (Princeton N.J.)

Gaetano Vilasi Università degli Studi di Salerno, ItalyIstituto Nazionale di Fisica Nucleare, ItalyThe Uncertainty Principle in Einstein Gravity