Top Banner
The Study of Noble Gas – Noble Metal Halide Interactions: Fourier Transform Microwave Spectroscopy of XeCuCl Julie M. Michaud and Michael C. L. Gerry University of British Columbia, Vancouver, BC Canada June 2005 International Symposium on Molecular Spectroscopy
16

The Study of Noble Gas – Noble Metal Halide Interactions: Fourier Transform Microwave Spectroscopy of XeCuCl Julie M. Michaud and Michael C. L. Gerry University.

Dec 30, 2015

Download

Documents

Nigel McDonald
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The Study of Noble Gas – Noble Metal Halide Interactions: Fourier Transform Microwave Spectroscopy of XeCuCl Julie M. Michaud and Michael C. L. Gerry University.

The Study of Noble Gas – Noble Metal Halide Interactions: Fourier Transform Microwave Spectroscopy of XeCuCl

Julie M. Michaud and Michael C. L. GerryUniversity of British Columbia, Vancouver, BC Canada

June 2005

International Symposium on Molecular Spectroscopy

Page 2: The Study of Noble Gas – Noble Metal Halide Interactions: Fourier Transform Microwave Spectroscopy of XeCuCl Julie M. Michaud and Michael C. L. Gerry University.

2

XeCuClAnticipated properties: Short Xe-Cu bond length; Small centrifugal distortion constant; Large changes in nuclear quadrupole

coupling constants (131Xe, Cu and Cl) on bond formation;

Significant theoretical evidence of strong interactions between the Xe and Cu atoms in XeCuCl.

Page 3: The Study of Noble Gas – Noble Metal Halide Interactions: Fourier Transform Microwave Spectroscopy of XeCuCl Julie M. Michaud and Michael C. L. Gerry University.

3

The Experiment

Page 4: The Study of Noble Gas – Noble Metal Halide Interactions: Fourier Transform Microwave Spectroscopy of XeCuCl Julie M. Michaud and Michael C. L. Gerry University.

4

132Xe63Cu35Cl Spectrum

Natural abundance:14.1%

I(63Cu) = 3/2

I(35Cl) = 3/2

Total of 10 transitionsin this one spectrum

Page 5: The Study of Noble Gas – Noble Metal Halide Interactions: Fourier Transform Microwave Spectroscopy of XeCuCl Julie M. Michaud and Michael C. L. Gerry University.

5

131Xe63Cu35Cl Spectrum

Natural abundance: 11.1%

I(131Xe) = 3/2

I(63Cu) = 3/2

I(35Cl) = 3/2

Total of 15 transitionsin this one spectrum

Page 6: The Study of Noble Gas – Noble Metal Halide Interactions: Fourier Transform Microwave Spectroscopy of XeCuCl Julie M. Michaud and Michael C. L. Gerry University.

6

Representative Spectroscopic Constants

Parameter 129Xe63Cu35Cl 131Xe63Cu35Cl 132Xe63Cu35Cl

Bo /MHz 757.30669(9) 753.0300(2) 750.93467(5)

DJ /kHz 0.0794(7) 0.104(2) 0.0782(4)

eQq(Cu) /MHz 41.81(9) 41.6(1) 41.57(6)

eQq(Cl) /MHz -26.10(6) -26.4(1) -26.01(4)

eQq(131Xe) /MHz - -81.4(2) -

eQq(63Cu) /MHz = 16.17 eQq(35Cl) /MHz = -32.1

Nuclear quadrupole coupling constants of the CuCl monomer:

Page 7: The Study of Noble Gas – Noble Metal Halide Interactions: Fourier Transform Microwave Spectroscopy of XeCuCl Julie M. Michaud and Michael C. L. Gerry University.

7

Xe-Cu bond lengths in XeCuCl

Experimental rm(2)(Xe-Cu) = 2.4669(4) Å

MP2 results r(Xe-Cu) = 2.497 Å a

van der Waals limit:

Covalent limit:

a Lovallo, C. C.; Klobukowski, M. Chem. Phys. Lett. 2002, 368, 589.b Pyykkö, P. Chem. Rev. 1997, 97, 597.c Huheey, J. E. et al. Inorganic Chemistry, Principles of Structure and Reactivity, 4th Ed.; Harper-Collins: New York, 1993.d Bartlett, N et al. In Comprehensive Inorganic Chemistry; Bailar, J. C. et al. Eds.;Pergamon:Oxford, 1973; 213-330.e Pyykkö, P. Chem. Rev. 1988, 88, 579.

(rvdW(Xe)b + rion(Cu+)c) = 2.78 Å

(rcov(Xe)d + rcov(Cu(I))e) = 2.36 Å

Page 8: The Study of Noble Gas – Noble Metal Halide Interactions: Fourier Transform Microwave Spectroscopy of XeCuCl Julie M. Michaud and Michael C. L. Gerry University.

8

Centrifugal Distortion Constants

2

34

o

J

BD

k

2

1

Small centrifugal distortion constants Highly rigid molecules

DJ

/kHz X 102

k(Ng-M) /Nm-1

XeCuF 20 94

XeAuF 7 137

ArAgCl 35 34

Ar-NaCla 900 0.6

a Mizoguchi, A.; Endo, Y.; Ohshima, Y. J. Chem. Phys. 1998, 109, 10539.

Page 9: The Study of Noble Gas – Noble Metal Halide Interactions: Fourier Transform Microwave Spectroscopy of XeCuCl Julie M. Michaud and Michael C. L. Gerry University.

9

Nuclear Quadrupole Coupling Constants (MHz) for 131Xe

131Xe 0131Xe-Ara 0.723

131Xe-HClb -4.9131Xe63CuX -81.4 to -87.8

131Xe107AgXc -78.1 to -82.8131XeAuFd -134.5131XeH+ e -369.5

131Xe [Kr]5s24d105p56s1 f -505

a Xu, Y. et al. JCP, 1993, 99, 919. b Keenan, M. R. et al. JCP, 1980, 73(8), 3523.c Cooke, S.A. et al. PCCP, 2004, 6, 3248. d Cooke S.A. et al. JACS, 2004, 126, 17000. e Kellö, V. et al. Chem. Phys. Lett., 2001, 346, 155. f Faust, W. L. et al. Phys. Rev., 1961, 123, 198.

Page 10: The Study of Noble Gas – Noble Metal Halide Interactions: Fourier Transform Microwave Spectroscopy of XeCuCl Julie M. Michaud and Michael C. L. Gerry University.

10

Ab initio calculations A large dissociation energy was

calculated for XeCuCl (55 kJ mol-1); Charge-induced dipole induction energy for

XeCuCl: 21 kJ mol-1;

Mulliken and NBO populations show significant donation of electron density from the Xe to the Cu;

Donation of ~0.1-0.2 of an elementary charge donated from Xe to Cu.

Page 11: The Study of Noble Gas – Noble Metal Halide Interactions: Fourier Transform Microwave Spectroscopy of XeCuCl Julie M. Michaud and Michael C. L. Gerry University.

11

0

20

40

60

80

100

20 40 60 80 100 120 140

Force constant, k (N/m)

Dis

soci

atio

nE

ner

gy,D

e(k

J/m

ol)

ArMX

KrMX

XeMX

ArMX

KrMX

XeMXArAgCl

ArAgFKrAgCl

KrAgF

XeAgClXeAgF

ArCuCl

KrCuClArAuCl

ArCuF

KrCuF

KrAuCl

KrAuF

ArAuF

XeAuF

XeCuClXeCuF

From the Morse Potential:k = 2D âe

2

Plots of dissociation energy vs. force constant for all studied NgMX molecules

Page 12: The Study of Noble Gas – Noble Metal Halide Interactions: Fourier Transform Microwave Spectroscopy of XeCuCl Julie M. Michaud and Michael C. L. Gerry University.

12

MOLDEN plots of valence MOs

X e

C u

C l

3 σ 1 π

Page 13: The Study of Noble Gas – Noble Metal Halide Interactions: Fourier Transform Microwave Spectroscopy of XeCuCl Julie M. Michaud and Michael C. L. Gerry University.

13

Local Energy Densitiesa

H(r) = G(r) + V(r)

Values are calculated at the bond critical point of the maximum electron density (MED) path between bonded atoms.

Negative H(r) implies … V(r) dominates … e- density accumulates

at rB

… a covalent bond forms!!a Cremer, D.; Kraka, E. Angew. Chem. 1984, 96, 612; see also Angew. Chem. Int. Ed. Engl., 1984, 23, 627.

Page 14: The Study of Noble Gas – Noble Metal Halide Interactions: Fourier Transform Microwave Spectroscopy of XeCuCl Julie M. Michaud and Michael C. L. Gerry University.

14

Local Energy Densities

Local Energy Densities at rB

(Hartree Å-3) for several NgMX molecules

ArCuF -0.0151

ArCuCl -0.0148

KrCuF -0.0400

KrCuCl -0.0390

XeCuF -0.0699

XeCuCl -0.0667

XeAgF -0.0542

XeAgCl -0.0457

XeAuF -0.1799

!All negative values

Page 15: The Study of Noble Gas – Noble Metal Halide Interactions: Fourier Transform Microwave Spectroscopy of XeCuCl Julie M. Michaud and Michael C. L. Gerry University.

15

Conclusion

First preparation and characterization XeCuCl;

Very strong Xe-Cu interactions observed; Strong Ng-M interactions similar to those

expected from previous NgMX studies; XeCuCl shows convincing evidence of

covalent Xe-Cu bonding.

Page 16: The Study of Noble Gas – Noble Metal Halide Interactions: Fourier Transform Microwave Spectroscopy of XeCuCl Julie M. Michaud and Michael C. L. Gerry University.

16

AcknowledgementsThank you to Mike Gerry, Steve Cooke and Christine

Krumrey.

This research has been supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada.

Thank you for your attention.