Top Banner
286

The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Sep 11, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet
Page 2: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet
Page 3: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

THESTORYOFEARTH

Page 4: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

THESTORYOF

EARTH

TheFirst4.5BillionYears,fromStardusttoLivingPlanet_________________________

ROBERTM.HAZEN

VIKING

Page 5: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

VIKINGPublishedbythePenguinGroupPenguinGroup(USA)Inc.,375HudsonStreet,NewYork,NewYork10014,U.S.A.•PenguinGroup(Canada),90EglintonAvenueEast,Suite700,Toronto,Ontario,CanadaM4P2Y3(adivisionofPearsonPenguinCanadaInc.)•PenguinBooksLtd,80Strand,LondonWC2R0RL,England•PenguinIreland,25St.Stephen’sGreen,Dublin2,Ireland(adivisionofPenguinBooksLtd)•PenguinBooksAustraliaLtd,250CamberwellRoad,Camberwell,Victoria3124,Australia(adivisionofPearsonAustraliaGroupPtyLtd)•PenguinBooksIndiaPvtLtd,11CommunityCentre,PanchsheelPark,NewDelhi–110017,India•PenguinGroup(NZ),67ApolloDrive,Rosedale,Auckland0632,NewZealand(adivisionofPearsonNewZealandLtd)•PenguinBooks(SouthAfrica)(Pty)Ltd,24SturdeeAvenue,Rosebank,Johannesburg2196,SouthAfricaPenguinBooksLtd,RegisteredOffices:80Strand,LondonWC2R0RL,EnglandFirstpublishedin2012byVikingPenguin,amemberofPenguinGroup(USA)Inc.

10987654321

Copyright©RobertM.Hazen,2012Allrightsreserved

LIBRARYOFCONGRESSCATALOGING-IN-PUBLICATIONDATAHazen,RobertM.,1948–ThestoryofEarth:thefirst4.5billionyears,fromstardusttolivingplanet/RobertM.Hazen.p.cm.Includesindex.ISBN:978-1-101-58068-41.Earth.I.Title.QE501.H3252012550—dc232011043713

PrintedintheUnitedStatesofAmericaDesignedbyCarlaBolteTimeLinesbyJeffreyL.WardNopartofthisbookmaybereproduced,scanned,ordistributedinanyprintedorelectronicformwithoutpermission.Pleasedonotparticipateinorencouragepiracyofcopyrightedmaterialsinviolationofthe

Page 6: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

author’srights.Purchaseonlyauthorizededitions.

ALWAYSLEARNING

PEARSON

Page 7: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

ToGregory:Changewillcome;

mayyouhavethewisdomandcouragetoadapt

Page 8: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

CONTENTS____________

Introduction1 BirthTheFormationofEarth

2 TheBigThwackTheFormationoftheMoon3 BlackEarthTheFirstBasaltCrust

4 BlueEarthTheFormationoftheOceans5 GrayEarthTheFirstGraniteCrust6 LivingEarthTheOriginsofLife

7 RedEarthPhotosynthesisandtheGreatOxidationEvent8 The“Boring”BillionTheMineralRevolution9 WhiteEarthTheSnowball-HothouseCycle

10 GreenEarthTheRiseoftheTerrestrialBiosphere11 TheFutureScenariosofaChangingPlanet

Epilogue

AcknowledgmentsIndex

Page 9: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet
Page 10: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet
Page 11: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Introduction

OneofthemostarrestingimagesofthetwentiethcenturyisaphotoofEarthrise,takenin1968byahumantravelerinorbitaroundtheMoon.Wehavelongknownhowpreciousandspecialourworldis:Earthistheonlyknownplanetwithoceansofwater,withanatmosphererichinoxygen,withlife.Nevertheless,manyofuswereunpreparedforthebreathtakinglystarkcontrastbetweentheutterlyhostilelunarlandscape,thelifelessblackvoidofspace,andourenticingmarbledwhite-on-bluehome.Fromthatdistantvantagepoint,Earthappearsalone,small,andvulnerablebutalsomorebeautifulbyfarthananyotherobjectintheheavens.Wearejustifiablycaptivatedbyourhomeworld.Morethantwocenturies

beforethebirthofChrist,thepolymathGreekphilosopherEratosthenesofCyreneconductedtheearliestdocumentedexperimentonEarth.HebasedhisingeniousmeasurementofEarth’scircumferenceonthesimpleobservationofshadows.IntheequatorialtownofSyene,Egypt,atnoononthesummersolstice,heobservedtheSundirectlyoverhead.Averticalpostcastnoshadow.Bycontrast,onthesamedayatthesametimeinthecoastalcityofAlexandria,some490milestothenorth,asimilarverticalpostcastaslightshadow,thusrevealingthattheSunwasnotquitedirectlyoverheadinthatlocation.EratosthenesemployedthegeometricaltheoremsofhisGreekpredecessorEuclidtoconcludethatEarthmustbeasphere,andhecalculatedthatitmusthaveacircumferenceofabout25,000miles—remarkablyclosetothemodernestablishedvalueof24,902milesaroundtheEquator.Throughoutthecenturies,thousandsofotherscholars,afewwithnames

reveredbutmostlosttohistory,haveprobedandponderedourplanetaryhome.TheyhaveaskedhowEarthwasformed,howitmovesthroughtheheavens,whatit’smadeof,andhowitworks.Andmostofall,thesemenandwomenofsciencehavewonderedhowourdynamicplanetevolved,howitbecamealivingworld.Today,becauseofourremarkableandcumulativeknowledge,andbecauseofthewondersofhumantechnology,weknowmoreaboutEarththanancientphilosopherscouldhavefathomed.Ofcoursewedon’tknoweverything,butourunderstandingisrichanddeep.AndwhileourknowledgeofEarthhasincreasedsincethedawnof

Page 12: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

humankind,refinedoverthemillenniaintoafixedunderstanding,muchofthatprogresshasrevealedthatthestudyofEarthisthestudyofchange.ManylinesofobservationalevidencepointtothefluctuatingnatureofEarth

yearbyyear,epochbyepoch.RhythmicallylayeredorvarvedsedimentdepositsinsomeglaciallakesinScandinaviadisplaymorethanthirteenthousandyearsofalternatingcoarserandfinerparticles—theconsequencesofswiftererosionduringannualspringthaws.FrozenglacialdrillcoresfromAntarcticaandGreenlandrevealmorethaneighthundredthousandyearsofseasonaliceaccumulations.Anddepositsofpaper-thinsedimentlayersfromWyoming’sGreenRiverShalepreservemorethanamillionyearsofannualevents.Eachofthoselayeringsrestsatopvastlyolderrocks,whichthemselveshintatgrandcyclesofchange.Measurementsofgradualgeologicalprocessespointtoevenmoreimmense

spansofEarthhistory.TheformationofthemassiveHawaiianIslandsrequiredslowandsteadyvolcanicactivity,successivelavablanketspilingupovertensofmillionsofyears.TheAppalachiansandotherancientroundedmountainrangesaretheresultofhundredsofmillionsofyearsofgradualerosionpunctuatedbygreatlandslides.Thesometimesherky-jerkymotionsoftectonicplateshaveshiftedcontinents,elevatedmountains,andopenedoceansoverthecourseofgeologicalhistory.Earthhasalwaysbeenarestless,evolvingplanet.Fromcoretocrust,itis

incessantlymutable.Eventodaytheair,theoceans,andthelandarechanging,perhapsatapaceunequaledinourplanet’srecentpast.Wewouldbefoolishnottocareabouttheseunsettlingglobalchanges,andindeedformanyofus,itseemsimpossiblethatwewouldn’t—ourcuriosityandcareforourhomecomesasnaturallytousasitdidtoEratosthenes.ButwewouldbeequallyfoolishtoaddressthecurrentstateofEarthwithouttakingfulladvantageofwhatitalreadytellsusaboutitssurprisingstoriedpast,aboutitsunpredictabledynamicpresent,andaboutourselvesandourplaceinitsfuture.

Mostofmylifehasbeenspenttryingtounderstandourvibrant,complex,changeablehome.Asaboy,Icollectedrocksandminerals,crammingmyroomfulloffossilsandcrystals,sidebysidewithrandombugsandbones.MyentireprofessionalcareerhasfollowedthatEarth-centrictheme.Ibeganwithexperimentsatthesubmicroscopicscaleofatoms,studyingthemolecularstructureofrock-formingminerals,heatingandsqueezingtinymineralgrainstodocumentthepressure-cooker-likeeffectsofEarth’sdeepinterior.Withtime,myviewexpandedtothegranderspatialandtemporaltapestryof

Page 13: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

geology.FromthedesertsofNorthAfricatotheicefieldsofGreenland,fromtheshoresofHawaiitothepeaksoftheRockies,fromtheGreatBarrierReefinAustraliatoancientfossilizedcoralreefsinadozennations,Earth’snaturallibrariesrevealamultibillion-yearstoryofcoevolutionsharedbyelements,minerals,rocks,andlife.Asmyresearchprogramshiftedtotheplausiblerolesofmineralsinlife’sancientgeochemicalorigins,IhavereveledinstudiesthatsuggestthatthecoevolutionoflifeandmineralsthroughEarthhistoryisevenmorestrikingthanpreviouslyimagined—thatnotonlydocertainrocksarisefromlife,asevidentinlimestonecavernsacrossthecontinent,butthatlifeitselfmayhavearisenfromrocks.OverfourbillionyearsofEarthhistory,theevolutionarystoriesofmineralsandlife—geologyandbiology—haveintertwinedinastonishingwaysthatareonlynowcomingintofocus.In2008theseideasculminatedinanunconventionalpaperon“MineralEvolution”—acontroversialnewargumentthatsomewelcomedasperhapsthefirstparadigmshiftinmineralogyintwocenturies,whileothersvieweditwarily,asapossiblyhereticalreframingofourscienceinthecontextofdeeptime.Theancientdisciplineofmineralogy,thoughabsolutelycentraltoeverything

weknowaboutEarthanditsstoriedpast,hasbeencuriouslystaticanddetachedfromtheconceptualvagariesoftime.Formorethantwohundredyears,measurementsofchemicalcomposition,density,hardness,opticalproperties,andcrystalstructurehavebeenthemeatandpotatoesofthemineralogist’slivelihood.Visitanynaturalhistorymuseum,andyou’llseewhatImean:gorgeouscrystalspecimensarrayedincaseafterglass-frontedcase,withlabelsshowingname,chemicalformula,crystalsystem,andlocality.ThesemosttreasuredfragmentsofEartharerichinhistoriccontext,butyouwilllikelysearchinvainforanyclueastotheirbirthagesorsubsequentgeologicaltransformations.Theoldwayallbutdivorcesmineralsfromtheircompellinglifestories.Thattraditionalviewhastochange.ThemoreweexamineEarth’srichrock

record,themoreweseehowthenaturalworld,bothlivingandnonliving,hastransformeditselfagainandagain.Ourgrowingunderstandingofthetwinplanetaryrealitiesoftimeandchangehasmadeitpossibletoconjecturenotjusthowmineralsfirstcametobe,butwhen.Andtherecentdiscoveriesoforganismsinplaceslongconsideredinhospitable—insuperheatedvolcanicvents,acidicpools,Arcticice,andstratosphericdust—haveenlistedmineralogyasakeydisciplineinthequesttocomprehendtheoriginsandsurvivaloflife.IntheNovember2008issueofthefield’sflagshipjournal,AmericanMineralogist,mycolleaguesandIproposedanewwaytothinkaboutthemineralkingdomandits

Page 14: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

incredibletransformationsthroughtheunexploreddimensionoftime.Weemphasizedthatmanybillionsofyearsago,therewerenomineralsanywhereinthecosmos.Nocrystallinecompoundscouldhaveformed,muchlesssurvived,inthesuperheatedmaelstromfollowingtheBigBang.Ittookahalf-millionyearsforeventhefirstatoms—hydrogen,helium,andabitoflithium—toemergefromthecauldronofcreation.Millionsmoreyearspassedwhilegravitycoaxedtheseprimordialgaseouselementsintothefirstnebulas,andthencollapsedthenebulasintothefirsthot,dense,incandescentstars.Onlywhenthosefirststarsexplodedintosupernovabrilliance,whenexpanding,coolingenvelopesofelement-richgascondensedthefirsttinycrystalsofdiamond,couldthecosmicmineralogicalsagahavebegun.AndsoIhavebecomeacompulsivereaderofthetestimonyoftherocks—the

compelling,ifsometimesfragmentaryandambiguous,storiestheyhavetotellofbirthanddeath,ofstasisandflux,oforiginsandevolution.ThisuntoldgrandandintertwinedtaleofEarth’slivingandnonlivingspheres—thecoevolutionoflifeandrocks—isutterlyamazing.Itmustbeshared,becauseweareEarth.Everythingthatgivesusshelterandsustenance,alltheobjectswepossess,indeedeveryatomandmoleculeofourflesh-boundshells,comesfromEarthandwillreturntoEarth.Toknowourhome,then,istoknowapartofourselves.Earth’sstorymustbeshared,too,becauseouroceansandatmospheresare

changingataraterarelymatchedinitslonghistory.Oceansarerising,whiletheyarebecomingwarmerandmoreacidic.Globalpatternsofrainfallarechanging,whiletheatmosphereisbecomingmoreturbulent.Polariceismelting,tundraisthawing,andhabitatsareshifting.Aswewillexploreinthepagesahead,Earth’sstoryisasagaofchange,butonthoserarepreviousoccasionswhenchangeoccurredwithsuchalarmingrapidity,lifeappearstohavepaidaterribletoll.Ifwearetoactthoughtfullyandintimeforourownsake,wemustbecomeintimatewithEarthandherstory.Foraswassublimelyevidentfromthatwondrouspicturesnappedfromalifelessworld239,000milesaway,wehavenootherhome.

InthetraditionofEratosthenesandthethousandsofcuriousmindsthathavefollowedhim,mypurposeinthisbookistoconveyEarth’slonghistoryofchange.AsimmediateandfamiliarasEarthmightseemtobe,itsvibrantstoryembracesasuccessionoftransformationaleventsalmostbeyondimagining.Totrulyknowyourplanetaryhomeandcomprehendtheaeonsthatshapedit,youmustfirstwrapyourmindaroundsevencoretruths.

1. Earthismadeofrecycledandrecyclingatoms.

Page 15: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

2. Earthisimmenselyoldwhencomparedwithhumantimeframes.3. Earthisthree-dimensional,andmostoftheactionishiddenfromview.4. RocksaretherecordkeepersofEarthhistory.5. Earthsystems—rocks,oceans,atmosphere,andlife—arecomplexly

interconnected.6. Earthhistoryencompasseslongperiodsofstasispunctuatedbysometimes

sudden,irreversibleevents.7. LifehaschangedandcontinuestochangeEarth’ssurface.

TheseconceptsofEarth’sexistenceframetheintricatelylayeredstoriesofatoms,minerals,rocks,andlifeintheirvastepicsofspaceandtime;theywillreappearinthefollowingpages,ineveryphaseoftheuniverse’sfieryoriginandEarth’sprotractedevolution.ThecoevolutionofEarthandlife,thenewparadigmthatliesattheheartofthisbook,ispartofanirreversiblesequenceofevolutionarystagesreachingbacktotheBigBang.Eachstageintroducednewplanetaryprocessesandphenomenathatwouldultimatelyresculptourplanet’ssurfaceagainandagain,inexorablypavingthewayforthewondrousworldweinhabittoday.ThisisthestoryofEarth.

Page 16: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet
Page 17: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Chapter1

Page 18: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Birth

TheFormationofEarthSpanningthebillionsofyearsbeforeEarth’sformation

Inthebeginning,therewasnoEarth,oranySuntowarmit.OurSolarSystem,withitsglowingcentralstarandvariedplanetsandmoons,isarelativenewcomertothecosmos—amere4.567billionyearsold.Alothadtohappenbeforeourworldcouldemergefromthevoid.Thestagewassetforourplanet’sbirthmuch,muchearlier,attheoriginofall

things—theBigBang—about13.7billionyearsago,bythelatestestimates.Thatmomentofcreationremainsthemostelusive,incomprehensible,definingeventinthehistoryoftheuniverse.Itwasasingularity—atransformationfromnothingtosomethingthatremainsbeyondthepurviewofmodernscienceorthelogicofmathematics.Ifyouwouldsearchforsignsofacreatorgodinthecosmos,theBigBangistheplacetostart.Inthebeginning,allspaceandenergyandmattercameintoexistencefroman

unknowablevoid.Nothing.Thensomething.Theconceptisbeyondourabilitytocraftmetaphors.Ouruniversedidnotsuddenlyappearwheretherewasonlyvacuumbefore,forbeforetheBigBangtherewasnovolumeandnotime.Ourconceptofnothingimpliesemptiness—beforetheBigBangtherewasnothingtobeemptyin.Theninaninstant,therewasnotjustsomething,buteverythingthatwould

everbe,allatonce.Ouruniverseassumedavolumesmallerthananatom’snucleus.Thatultracompressedcosmosbeganaspurehomogeneousenergy,withnoparticlestospoiltheperfectuniformity.Swiftlytheuniverseexpanded,thoughnotintospaceoranythingelseoutsideit(thereisnooutsidetoouruniverse).Volumeitself,stillintheformofhotenergy,emergedandgrew.Asexistenceexpanded,itcooled.ThefirstsubatomicparticlesappearedafractionofasecondaftertheBigBang—electronsandquarks,theunseenessenceofallthesolids,liquids,andgasesofourworld,materializedfrompureenergy.Soonthereafter,stillwithinthefirstfractionofthefirstcosmicsecond,quarkscombinedinpairsandtripletstoformlargerparticles,includingtheprotonsandneutronsthatpopulateeveryatomicnucleus.Thingswerestillridiculouslyhot

Page 19: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

andremainedsoforaboutahalf-millionyears,untiltheongoingexpansioneventuallycooledthecosmostoafewthousanddegrees—sufficientlycoldforelectronstolatchontonucleiandformthefirstatoms.Theoverwhelmingmajorityofthosefirstatomswerehydrogen—morethan90percentofallatoms—withafewpercentheliumandatraceoflithiumthrownin.Thatmixofelementsformedthefirststars.

FirstLight

Gravityisthegreatengineofcosmicclumping.Ahydrogenatomisalittlething,buttakeoneatomandmultiplyitbytentothesixtiethpower(that’satrillion-trillion-trillion-trillion-trillionhydrogenatoms)andtheyexertquiteanimpressivecollectivegravitationalforceononeanother.Gravitypullstheminwardtoacommoncenter,formingastar—agiantgasballwithepicpressuresatthecore.Asanimmensehydrogencloudcollapses,thestar-formingprocesstransformsthekineticenergyofmovingatomstothegravitationalpotentialenergyoftheirclusteredstate,whichtranslatesintoheatoncemore—thesameviolentprocessthatoccurswhenanasteroidimpactsEarth,butwithvastlymoreenergyrelease.Thecoreofthehydrogensphereeventuallyreachestemperaturesofmillionsofdegreesandpressuresofmillionsofatmospheres.Suchtemperaturesandpressurestriggeranewphenomenoncallednuclear

fusionreactions.Undertheseextremeconditions,thenucleioftwohydrogenatoms(eachwithoneproton)collidewithsuchforcethatneutronsaretransferredfromonenucleustoanother,makingsomehydrogenatomsmoremassivethanothers.Afterseveralsuchcollisions,aheliumnucleuswithtwoprotonsforms.Surprisingly,theresultingheliumatomisabout1percentlessmassivethantheoriginalhydrogenatomsfromwhichitformed.Thatlostmassconvertsdirectlytoheatenergy(justasitdoesinahydrogenbomb),whichpromotesevenmorenuclearfusionreactions.Thestar“ignites,”bathingitssurroundingswithradiantenergy,whilebecomingeverricherinheliumattheexpenseofhydrogen.Largestars,manyofthemmuchbiggerthanourSun,eventuallyusedupthe

prodigioussuppliesofhydrogenintheircores.Butextremeinteriorpressureandheatcontinuedtopromotenuclearfusion.Two-protonheliumatomsinastellarcorefusedtomakecarbon,thevitalelementoflifewithitssixprotons,evenasnewpulsesofnuclearenergytriggeredhydrogenfusioninasphericallayerofatomssurroundingthecore.Thencorecarbonfusedtomakeneon,neontomakeoxygen,thenmagnesium,silicon,sulfur,andonandon.Graduallythestar

Page 20: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

developedanonionlikestructure,withlayeruponconcentriclayeroffusionreactions.Fasterandfasterthesereactionsoccurred,untiltheultimateiron-producingphaselastednomorethanaday.Bythispointinthefirststars’lifecycles,manymillionsofyearsaftertheBigBang,mostofthefirsttwenty-sixelementsintheperiodictablehadbeenbroughtintoexistencebynuclearfusionwithinmanyindividualstars.Ironisasfarasthisnuclearfusionprocesscango.Whenhydrogenfusesto

producehelium,whenheliumfusestoproducecarbon,andduringalltheotherfusionsteps,abundantnuclearenergyisreleased.Butironhasthelowestenergyofanyatomicnucleus.Aswhenablazingfiretransformseverybitoffueltoash,alltheenergyhasbeenusedup.Ironistheultimatenuclearash;nonuclearenergycanbeextractedbyfusingironwithanything.Sowhenthefirstmassivestarproduceditsinevitableironcore,thegamewasover,theresultscatastrophic.Untilthatpoint,thestarhadsustainedastableequilibrium,balancingitstwogreatinnerforces:gravitypullingmasstowardthecenter,nuclearreactionspushingmassoutwardfromthecenter.Whenthecorefilledwithiron,however,theoutwardpushjuststopped,andgravitytookoverinaninstantofunimaginableviolence.Theentirestarcollapsedinwardwithsuchswiftnessthatitreboundedoffitselfandexplodedinthefirstsupernova.Thestarwasrippedapart,blastingmostofitsmassoutward.

TheBirthofChemistry

Forthosereaderswhoseekdesigninthecosmos,supernovasarenearlyasgoodaplacetostartastheBigBang.Tobesure,theBigBangledinevitablytohydrogenatoms,andhydrogenatomsjustasinexorablyproducedthefirststars.Yetit’snotatallobvioushowstars,bythemselves,getyoutoourmodernlivingworld.Abigballofhydrogen,evenifitdoeshaveagrowingcore-boundcollectionofheavierelementsuptoiron,doesn’tseemtohelpmovethingsalonginaveryinterestingway.Butwhenthefirstbigstarsexploded,cosmicnoveltyensued.Thesefractured

bodiesseededspacewiththeelementstheyhadcreated.Carbon,oxygen,nitrogen,phosphorus,andsulfur—theelementsoflife—wereespeciallyabundant.Magnesium,silicon,iron,aluminum,andcalcium,whichdominatethecompositionsofmanycommonrocksandformalargefractionofthemassofEarth-likeplanets,alsoabounded.Butintheincomprehensiblyenergeticenvironmentoftheseexplodingstars,theseelementsfusedinnewandexoticwaystomakealltheperiodictable—elementswaybeyondnumbertwenty-six.

Page 21: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Soappearedthefirsttracesofmanyrarerelements:precioussilverandgold,utilitariancopperandzinc,toxicarsenicandmercury,radioactiveuraniumandplutonium.What’smore,alltheseelementswerehurledoutintospace,wheretheycouldfindoneanotherandclumptogetherinnewandinterestingwaysthroughchemicalreactions.Chemistryhappenswhenoneeverydayatombumpsintoanother.Everyatom

hasatinybutmassivecentralnucleuswithapositiveelectriccharge,surroundedbyacloudlikedistributionofoneormorenegativelychargedelectrons.Isolatedatomicnucleialmostneverinteract,exceptintheultimatepressure-cookerenvironmentsofstellarinteriors.Butelectronsfromoneatomareconstantlybumpingintotheelectronsofadjacentatoms.Chemicalreactionsoccurwhentwoormoreatomsmeetandtheirelectronsinteractandrearrange.Suchshufflingandsharingofelectronsoccursbecausecertaincombinationsofelectrons,notablycollectionsoftwoortenoreighteenelectrons,areparticularlystable.ThefirstchemicalreactionsfollowingtheBigBangproducedmolecules—

smallclustersofafewatomstightlyboundintoasingleunit.Evenbeforehydrogenatomsbeganfusingtogetherinstarstoformhelium,hydrogenmolecules(H2),eachwithtwohydrogenatomschemicallybondedtogether,formedinthevacuumofdeepspace.Eachhydrogenatomcarriesonlyoneelectron,whichisaratherunstablesituationinauniversewheretwoelectronsisamagicnumber.Sowhentwohydrogenatomsmeet,theypooltheirresourcestoformamoleculewiththatmagicnumberoftwosharedelectrons.GiventheabundanceofhydrogenfollowingtheBigBang,hydrogenmoleculessurelypredatedthefirststarsandhavebeenaperpetualfeatureofourcosmossinceatomsfirstappeared.Followingthefirstsupernova,asavarietyofotherelementsseededspace,lots

ofotherinterestingmoleculescouldform.Water(H2O),withtwohydrogenatomsbondedtoanoxygenatom,wasoneearlyexample.Chancesarethatnitrogen(N2),ammonia(NH3),methane(CH4),carbonmonoxide(CO),andcarbondioxide(CO2)moleculesalsoenrichedthespacearoundsupernovas.Allofthesemolecularspecieswouldcometoplaykeyrolesintheformationofplanetsandintheoriginsoflife.Thencametheminerals—microscopicsolidvolumesofchemicalperfection

andcrystallineorder.Thefirstmineralscouldhaveformedonlywherethedensitiesofmineral-formingelementswerehighenough,buttemperaturescoolenough,foratomstoarrangethemselvesinlittlecrystals.JustafewmillionyearsaftertheBigBang,theexpanding,coolingenvelopesofthefirstexploding

Page 22: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

starsprovidedtheperfectsettingsforsuchreactions.Tinycrystallitesofpurecarbon—diamondandgraphite—wereprobablythefirstmineralsintheuniverse.Thosepioneeringcrystalswerelikeafinedust,theindividualgrainsindiscerniblysmallbutperhapslargeenoughtoaddabitofdiamondsparkletospace.Thesecrystallineformsofcarbonweresoonjoinedbyotherhigh-temperaturesolidsthatfeaturedthemorecommonelements,includingmagnesium,calcium,silicon,nitrogen,andoxygen.Somewerefamiliarmineralslikecorundum,thechemicalcompoundofaluminumandoxygenthatissovaluedinitsrichlycoloredvarieties,rubyandsapphire.Tinyamountsofthemagnesiumsilicateolivine,thesemipreciousbirthstoneofAugust,alsoappeared,joinedbymoissanite,asiliconcarbideoftensoldthesedaysasacheapsyntheticsubstitutefordiamond.Altogethertheinterplanetarydusthostedperhapsadozencommon“ur-minerals.”Andso,withtheexplosionofthefirststars,theuniversebegantogetmoreinteresting.Nothinghappensonlyonceinouruniverse(exceptperhapsfortheBigBang).

Scattereddebrisofoldexplodedstarswereconstantlysubjectedtotheorganizingforceofgravity.Thusremnantsoftheformerstellargenerationsinexorablyseedednewpopulationsofstarsbyformingnewnebulas,eachavastinterstellarcloudofgasanddustrepresentingthewreckageofmanypriorstars.Eachnewnebulawasmoreironrich,andalittlepoorerinhydrogen,thantheonebefore.For13.7billionyears,thiscyclehascontinued,asoldstarsproducenewstarsandslowlyalterthecompositionofthecosmos.Countlessbillionsofstarshaveemergedincountlessbillionsofgalaxies.

CosmicClues

Onceuponatime,fivebillionyearsago,ourfuturerealestateinthegalacticsuburbslayhalfwayoutfromtheMilkyWay’scenter,attheuninhabitededgeofastar-studdedspiralarm.Littlewastobefoundinthatunassumingneighborhood,apartfromagreatnebulaofgasandicyduststretchinglight-yearsacrossthedarkvoid.Ninepartsintenofthatcloudwerehydrogenatoms;ninepartsintenofwhatremainedwereheliumatoms.Iceanddust,richinsmallorganicmoleculesandmicroscopicmineralgrains,accountedfortheremaining1percent.Anebularcloudinspacecanlastmanymillionsofyearsbeforeatrigger—a

shockwavefromanearbyexplodingstar,forexample—beginsitscollapseintoanewstarsystem.Almost4.6billionyearsago,suchatriggerinitiatedourSolarSystem.Eversoslowly,overthecourseofamillionyears,theswirlingmassof

Page 23: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

presolargasanddustwasdrawninward.Likeatwirlingice-skater,thebigcloudrotatedfasterandfasterasgravitypulleditswispyarmstothecenter.Asitcollapsedandspunfaster,thecloudbecamedenserandflattenedintoadiskwithagrowingcentralbulge—thenascentSun.Largerandlargergrewthatgreedyhydrogen-richcentralball,whichultimatelyswallowed99.9percentofthecloud’smass.Asitgrew,internalpressuresandtemperaturesrosetothefusionpoint,ignitingtheSun.CluestowhathappenednextarepreservedintherecordofourSolarSystem

—itsplanetsandmoons,itscometsandasteroids,anditsabundantandvariedmeteorites.OnestrikingfeatureisthatalltheplanetsandmoonsorbittheSunonthesameplane,andinthesamedirection.What’smore,theSunandmostoftheplanetsrotateontheiraxesinmoreorlessthatsameplaneanddirection.Nothinginthelawsofmotionrequiresthiscommonalityofspin;planetsandmoonscouldorbitandrotateanywhichway—northtosouth,easttowest,toptobottom,bottomtotop—andstillobeythelawofgravity.Ifplanetsandmoonswerecapturedfromdistant,randomsources,onemightexpectsuchahodgepodge.Theobservedorbitalnear-uniformityinourSolarSystem,bycontrast,suggeststhatplanetsandmoonsallcoalescedfromthesameflatrotatingdiskofdustandgasatmoreorlessthesametime.Allofthesegrandobjectspreservethesamesenseofrotation—thesharedangularmomentumoftheentireSolarSystem—fromthetimeoftheoriginalswirlingcloud.AsecondcluetotheSolarSystem’soriginsisfoundinthedistinctive

distributionofitseightmajorplanets.ThefourplanetsclosesttotheSun—Mercury,Venus,Earth,andMars—arerelativelysmallrockyworldscomposedmostlyofsilicon,oxygen,magnesium,andiron.Denserocks,likeblackvolcanicbasalt,dominatetheirsurfaces.Bycontrast,theouterfourplanets—Jupiter,Saturn,Uranus,andNeptune—aregasgiantsmadeprimarilyofhydrogenandhelium.Theseimmensesphereshavenosolidsurfaces,justanever-thickeningatmospherethedeeperyougo.ThisdichotomyofworldssuggeststhatearlyinthehistoryoftheSolarSystem,withinafewthousandyearsoftheSun’sbirth,anintensesolarwindblewleftoverhydrogenandheliumfarouttothecolderrealms.SufficientlyfarfromtheradiantSun,thesevolatilegasescouldcool,condense,andgatherintospheresoftheirown.Bycontrast,thecoarser,mineral-richgrainsofdustthatremainedclosertothehotcentralstarquicklyclumpedtogethertoformtherockyinnerplanets.DetailsoftheviolentprocessesthatformedEarthandtheotherinnerplanets

arebeautifullypreservedintheamazinglydiversevarietiesofmeteorites.It’sabitunsettlingtothinkthatourhomeisconstantlybeingpepperedbystones

Page 24: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

fallingfromthesky.Infact,thescientificcommunitydidn’tpaythemmuchheeduntilabouttwohundredyearsago,thoughtherewascertainlynoshortageofcolorfulmeteoriteanecdotesinfolklore(includingseveraltalesinvolvingunfortunateFrenchpeasants).Evenwhenscholarsbegantodescribemeteoritefallsmoreformally,littleinthewayofreproduciblescientificevidencecouldbemusteredtodocumentthem,muchlessexplaintheirprovenance.TheAmericanstatesmanandnaturalistThomasJefferson,uponreadingthetechnicalreportfromYaleUniversityofanobservedmeteoriteimpactinWeston,Connecticut,quipped:“IfinditeasiertobelievethattwoYankeeprofessorswouldliethanthatstoneswouldfallfromheaven.”Twocenturiesandtensofthousandsofmeteoritefindslater,theirveracityis

nolongerinquestion.Asmeteoriteexpertscovermoreground,andasavidcollectorsviefortheraresttypes,museumandprivatecollectionsaroundtheworldhaveswelled.Foratime,theserepositorieswereskewedinfavorofdistinctiveironmeteorites,whoseblackcrusts,weirdlysculptedshapes,andunusuallyhighdensitymadethemstandoutagainsteverydayrocks.Butthe1969discoveryofthousandsofmeteoriteslyingonpristineAntarcticicefieldschangedthatperception.Meteoritesaretelltalecluestoourplanet’sorigins.Themostcommonand

ancientones,the4.566-billion-year-oldchondrites,datefromthetimejustbeforetheplanetsandmoonsoftheSolarSystemformed,whentheSun’snuclearreactorfirstturnedonandintenseradiantenergybroiledtheencirclingnebula.Theblastfurnaceeffectmeltedthedustydiskintoclotsofsmall,stickyrockdroplets,calledchondrules,aftertheancientGreekwordfor“grain.”RangingfromthesizeofBBstothatofsmallpeas,theseproductsoftheSun’srefiningfireweremeltedmultipletimes,inrepeatedpulsesofradiationthattransformedtheregionsclosesttotheSun.Clustersoftheseancientchondrules,cementedtogetherbyfiner-grainedpresolardustandmineralfragments,composetheprimitivechondritesthathavelandedontheEarthbythemillions.ChondritesprovideourbestviewofthebrieftimejustaftertheSunwasbornbutbeforetheplanetswereformed.Asecond,youngerclassofmeteorites,collectivelydubbedachondrites,dates

fromthetimewhentheearliestmaterialsoftheSolarSystemwerebeingreworked—melted,smashed,andotherwisetransformed.Thediversityofachondriticmeteoritesisastonishing—nuggetsofshinymetal,chunksofblackenedrock,someasfine-grainedasglass,otherswithlustrouscrystalsaninchacross.ImportantdiscoveriesofnewvarietiesarestillbeingmadeinsomeofEarth’smostremoteregions.

Page 25: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

ThecontinentofAntarcticaholdsvastplainsofancientblueice—placeswhereitneversnowsandthefrozensurfacemayhaveremainedunchangedformanythousandsofyears.Rocksthathavefallenfromspacejustliethere,dark,out-of-placeobjectswaitingtoberetrieved.Internationaltreatiesbanningcommercialexploitationofthearea,coupledwithlimitedaccesstotheremoteicefields,ensurethattheseextraterrestrialresourceswillbepreservedforscientificstudy.Teamsofwarmlybundledscientistsinhelicoptersandonsnowmobilessystematicallyscourmileaftersquaremileoftheseforbiddingicedeserts.Theycarefullyrecordandpackageeachfind,makingsurethatnohand,nobreathcontaminatesitssurface.UponreturningtocivilizationaftereachAntarcticsummerseason,thesemeteoritehuntersdelivertheirtreasurestopubliccollections,mostnotablytheSmithsonianInstitutionstoragefacilitiesinsuburbanSuitland,Maryland,wheremanythousandsofspecimensarepreservedinultraclean,airtightstoragecabinetswithinbuildingsthesizeoffootballfields.Equallyrichinmeteorites,thoughfarlessconducivetoorganizedrecovery

andsterilecuration,areEarth’sgreatdesertsinAustralia,theAmericanSouthwest,theArabianPeninsula,andmostdramatically,NorthAfrica—thevastSaharaDesert.WordhasspreadamongSahara-crossingnomads—Tuaregs,Berbers,Fezzanis—thatmeteoritescanbevaluable.AsinglepreciouslunarmeteoritefoundsomewhereintheshiftingsandsofNorthAfricaearlyinthetwenty-firstcenturyisreputedtohavefetchedamilliondollarsinaprivatesale.It’seasyenoughforadesertridertogetdownoffhiscamelandcarryanoddstonetothenextvillage,wheresomeonefromanunofficialguildofmeteoritemiddlemen,networkedbysatellitephonesandskilledinhyperbole,willofferhimapittanceincash.Fromonedealertothenext,bagsofrocksarepassed,eachtimewithamarkup,untiltheyreachMarrakech,Rabat,orCairoandthencetraveltothebuyersoneBayandthebiginternationalrockandmineralshows.MorethanonceongeologytripstoremotepartsofMorocco,I’vebeen

offeredburlapbagsfilledwithtenortwentypoundsofrockspurportedtobemeteorites—“nomiddlemen,freshfromthedesert,justfoundlastweek.”Thesecash-only“deals”areoftenbrokeredindingy,windowlessbackroomsoftanmud-brickhouses,awayfromtheblazingdesertSun,whereit’salmostimpossibletoseewhat’sbeingoffered.Oncetheformalitiesofgreetingandthetraditionalcupsofmintteahavebeenshared,thesellerdumpsthecontentsonacarpet.Someoftherocksarejustrocks.Ballast.It’slikeatesttoseeifyouknowyourstuff.Afewwillbethecommonestsortofchondrite,thesizeofanoliveoranegg,somewithanicelymeltedfusioncrust,thefieryresultoffallingfastthroughthesky.Thestartingpriceisalwayswaytoohigh.Ifyousaythey’re

Page 26: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

toocommon,asecond,smallerbagmayappear,perhapswithanironmeteoriteorsomethingevenmoreexotic.Irecallonedealworkedbyourguide,Abdullah,onadustysideroadafew

mileseastofSkoura.Theseller,adistantacquaintanceofquestionableintegrity,calledbysatelliteanddemandedsecrecy.“ItmightbeaMartian,”hetoldAbdullah.“Ninehundredgrams.Justtwentythousanddirhams.”About$2,400—ifitwasreal,ifitcouldbeaddedtothetwodozenorsoknownmeteoritesthatcamefromMars,it’dbeabargain.Theyarrangedthetimeandplace.Twonondescriptcarspulledupbesideeachother;threeofusgotoutandstoodinatightcircle.Therockinquestionwaslovinglyslippedfromavelvetpouch.Butitlookedlikeanordinaryrock(asdoallMartianmeteorites).Thepricedroppedtofifteenthousanddirhams.Thentwelvethousand.Buttherewasnowaytobesure,sowepassed.LaterAbdullahconfidedtomethathehadbeentempted,buttherearealwaysmoremeteorites.It’sbestnottobetoogreedywithonebigscore;noonetellsthetruth,andalldealsarefinal.AsinAntarctica,theequatorialdesertsrevealthenaturaldistributionofall

kindsofmeteorites,providingunrivaledcluestothecharacteroftheearlySolarSystemandthustheoriginsofourownplanet.Sadly,unlikemeteoritesfromAntarctica,mostofthesespecimenswillnevermakeittomuseumcollectionsforatleasttworeasons.Firstandforemost,thegrowingcommunityofamateurcollectors(fueledbyafewwealthyaficionadosandthereadilyavailableSaharanfinds)isintenselycompetitive.Anythingraresellsquicklyandforalotofmoney.Someofthosespecimenswillsurelywindupasdonationstomuseums,butmostarepoorlyhandled,andmuchofthescientificvalueinapristinefindissoonlostbycontaminationfromunprotectedhands,multipurposeclothbags,andtheubiquitouscameldung.Equallytroublingisthelackofanyusefuldocumentation,astowhenorwhereinthedesertthemeteoriteswerefound.Allthedealerswillsayis“Morocco,”whichisusuallyafalsehood,asmostofthesandySaharaliestotheeast,inAlgeriaandLibya—countriesfromwhichitisnowillegaltoimportspecimens.Sowithoutrigorousdocumentation,mostmuseumssimplywillnotaccept“Moroccan”or“NorthAfrican”meteorites.Inthosehostile,aridterrainsoftheSahara,ortheicefieldsofAntarctica,any

rockstandsoutasaforeignobjectfallenfromthesky.SuchanunadulteratedsamplingofthemeteoritepopulationgivesscientiststheirbestviewoftheearlieststagesoftheSolarSysteminwhichEarthformed.Chondritesrepresentalmostnineoutofeverytenfinds;therestarethediverseachondrites,belongingtothefew-million-yearserawhenouryoungSolarSystemwasaturbulentnebula,inwhichchondritesclumpedtogetherintolargerandlargerbodies:first

Page 27: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

thesizeofyourfist,thenthesizeofyourcar,thenasmallcity—billionsofobjectsafewmilesorsoindiameterallvyingforspaceinthesamenarrowringaroundtheyoungSun.Largerandlargertheygrew:tothesizeofRhodeIsland,thenOhio,Texas,

Alaska.Asthousandsofsuchplanetesimalsunderwentthischaoticprocessofaccretion,theydiversifiedinnewways.Astheygrewtofiftymilesormoreindiameter,twocoequalsourcesofheatcompounded.Thegravitationalpotentialenergyofmanysmallobjectssmashingtogetherwasmatchedinintensitybythenuclearenergyoffast-decayingradioactiveelementslikehafniumandplutonium.Themineralsmakinguptheseplanetesimalswerethustransformedbyheat,whiletheirinteriorsmeltedoutright,differentiatingintoanegglikearrangementofdistinctivemineralzones:adensemetal-richcore(analogoustotheegg’syolk),themagnesiumsilicatemantle(theeggwhite),andthethinbrittlecrust(theshell).Thelargestplanetesimalswerealteredbyinternalheating,byreactionswithwater,andbytheintenseshockoffrequentcollisionsinthecrowdedsolarsuburbs.Perhapsthreehundreddifferentmineralspeciesaroseasaconsequenceofsuchdynamicplanet-formingprocesses.Thosethreehundredmineralsaretherawmaterialsfromwhicheveryrockyplanetmustform,andallofthemarestillfoundtodayinthediversesuitesofmeteoritesthatfalltoEarth.Fromtimetotime,whentwobigplanetesimalssmashedtogetherwith

sufficientforce,theywereblastedtosmithereens.(ThisviolentprocesscontinuestothisdayintheAsteroidBeltbeyondMars,thankstothegravitationaldisruptionsfromthegiantplanetJupiter.)Consequently,mostofthediverseachondritemeteoriteswefindtodayrepresentdifferentpartsofdestroyedminiplanets.Analyzingachondritesisthusabitlikeamessyanatomylessonfromanexplodedcadaver.Ittakestime,patience,andalotofbitsandpiecestogetaclearpictureoftheoriginalbody.Thedensemetalliccoresofplanetesimals,whichwoundupasadistinctive

classofironmeteorites,aretheeasiesttointerpret.Thoughoncethoughttobethemostcommontypeofmeteorites,theunbiasedAntarcticsamplingrevealsthatironsrepresentamodest5percentofallfalls.Planetesimalcoresmusthavebeencorrespondinglysmall.Thecontrastingsilicate-richmantlesofplanetesimalsarerepresentedinahost

ofexoticmeteoritetypes:howardites,eucrites,diogenites,ureilites,acapulcoites,lodranites,andmore—eachofdistinctivecomposition,texture,andmineralogy,andmostnamedforthelocalitywheretheearliestknownexamplewasrecovered.Someofthesemeteoritesarecloseanaloguestorocktypesfoundon

Page 28: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Earthtoday.Eucritesrepresentarathertypicalkindofbasalt—therocktypethatspewsoutoftheMid-AtlanticRidgeandblanketstheoceanfloor.Diogenites,composedprimarilyofmagnesiumsilicateminerals,appeartobetheresultofcrystalsettlinginalargeundergroundmagmareservoir.Asthemagmacooled,crystalsmoredensethantheirsurroundinghotliquidgrewandthensanktothebottomtoformaconcentratedmass,justastheydoinmagmachambersdeepinsideEarthtoday.Occasionally,duringaparticularlydestructivecollision,ameteoritehappened

tosnatchapieceofaplanetesimal’score-mantleboundary,wherechunksofsilicatemineralsandiron-richmetalscoexisted.Theresultisabeautifulpallasite—astunningmixtureofshinymetalandgoldencrystalsofolivine.Thinpolishedslabsofpallasite,withlightreflectingoffthemetalandpassingthroughtheolivinelikestainedglass,areamongthemostprizedspecimensintheworldofmeteoritecollecting.Asgravityclumpedtheearlychondritestogether—andascrushingpressure,

scaldingtemperature,corrosivewater,andviolentimpactsreworkedthegrowingplanetesimals—moreandmorenewmineralsemerged.Alltogether,morethan250differentmineralshavebeenfoundinallthevarietiesofmeteorites—atwenty-foldincreaseoverthedozenpresolarur-minerals.Thesevariedsolids,whichincludethefirstfine-grainedclays,sheetlikemica,andsemipreciouszircon,becamethebuildingblocksofEarthandotherplanets.Biggerandbiggertheplanetesimalsgrew,asthelargestswallowedthesmaller.Eventuallyafewdozenbigballsofrock,eachthesizeofasmallplanet,actedasgiantvacuumcleaners,sweepingswathsoftheSolarSystemcleanofmostofitsdustandgasastheycoalescedandsettledintonear-circularorbitalpaths.Whereanobjectultimatelywoundupdependedinlargemeasureonitsmass.

AssemblingtheSolarSystem

TheSun,whichhasthelion’sshareoftheSolarSystem’smass,dominateseverything.Oursisnotaparticularlymassivestarsystem,andsotheSunisamodestsortofstar—agoodthingforanearbylivingplanet.Paradoxically,themoremassiveastar,theshorteritslifetime.Thegreaterinteriortemperaturesandpressuresofbigstarspushnuclearfusionreactionsfasterandfaster.SoastartentimesthemassofourSunmightlastlessthanatenthaslong—severalhundredmillionyearsatmost,barelyenoughtimeforanorbitingplanettogetlifestartedbeforethestarexplodesinakillersupernova.Conversely,areddwarfstaratenththeSun’smasswilllastmorethantentimeslonger—onehundred

Page 29: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

billionyearsormore—thoughtheenergyoutputofsuchaweakstarmightnotproveaslife-sustainingasourradiantyellowbenefactor.Ourmiddling-sizeSunhasstruckahappymedium:nottoolargeandshort-

lived,nottoosmallandcool.Anditsprojectednineortenbillionyearsofreliablehydrogenburningmeanthere’sbeenplentyoftimeforlifetogetgoing,andthere’splentymoreforittocontinuetoevolve.True,inanotherfourorfivebillionyears,theSunwillrunoutofhydrogeninitscoreandwillhavetoswitchtoheliumburning.Intheprocess,itwillswelltoamuchlessbenignredgiantstarmorethanonehundredtimesitspresentdiameter,engulfingpoorlittleMercury,firstscaldingandthenswallowingVenus,andmakingthingsprettyunpleasantonEarthaswell.Nevertheless,evenafter4.5billionyears,westillhaveplentyoftimebeforetheSunentersitscrotchetyoldageandlifeonEarthbecomesproblematic.OurSolarSystemhasanotherimportantbenefitforalivingplanet.Unlike

mostothers,oursisasingle-starsystem.Astronomersusingpowerfultelescopeshavefoundthatabouttwoofeverythreestarsweseeinthenightskyareactuallybinaries—systemsinwhichtwostarsorbiteachotherinadanceaboutacommongravitationalcenter.Asthosestarsformed,hydrogenaccumulatedattwoseparateplacestoformbiggasballs.Ifournebulahadbeenabitswirlier,withmoreangularmomentumand

consequentlymoremassoutintheregionofJupiter,ourSolarSystemwouldlikelyhavebeenadouble-starsystemaswell.TheSunwouldhavebeensmaller,andJupiter,insteadofbeingabighydrogen-richplanet,wouldhavegrowntobecomeasmallhydrogen-richstar.Perhapslifewouldhavethrivedbetwixtsuchapolarity.Perhapsanextrastarwouldhaveprovidedanextrasourceoflife-sustainingenergy.Butthegravitationaldynamicsoftwostarscanbetricky,andEarthmighthaveendedupaworldhostiletolifewithaneccentricorbit,wobblyspin,andwildclimaticswingsastwostronggravitationalattractorspulleditthiswayandthat.Asitis,thegasgiantplanetsareratherwellbehaved,withmodestsizeand

near-circularorbitsaroundtheSun.Jupiter,thelargestofthecast,weighsinatjustunderathousandthoftheSun’smass.That’slargeenoughtoexertsignificantcontrolonitsplanetaryneighbors;thankstoJupiter’sdisruptivegravitationalfield,theplanetesimalsthatmakeuptheAsteroidBeltnevercoalescedintoasingleplanet.ButJupiterisnotnearlylargeenoughtotriggernuclearfusionreactionsinitsowncore—thedefiningdifferencebetweenstarsandplanets.ThemoredistantringedplanetSaturnandtheevenmoreremoteandfrigidUranusandNeptunearesmallerstill.

Page 30: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Nevertheless,allthesegasgiantplanetswerelargeenoughtocapturetheirowngravitationallybounddisksofdebris,likelittlesolarsystemswithintheSolarSystem.Consequently,allfourouterplanetshavesuitesoffascinatingmoons,includingsomerelativelysmallasteroidsthatwereattractedandthenheldinorbitbythegiants’gravity.Othermoons,somealmostaslargeasthefourinnerplanetsandwithdynamicgeologicalprocessesoftheirown,formedmoreorlessinplacefromleftoverdustandgas—thedebrisofplanetaryconstruction.Infact,themostactiveobjectintheSolarSystemisJupiter’smoonIo,whichissoclosetothebigplanetthatitcompletesafullorbitonceeveryforty-onehours.Epictidalforcesconstantlystressthemoon’s2,260-milediameterandpowerahalf-dozenvolcanoeswithsulfurplumesthatextendmorethanahundredmilesfromthesurface,unlikeanythingelseintheSolarSystem.EquallyintriguingareEuropaandGanymede,bigmoonsroughlythesizeofMercuryandcomposedofnear-equalproportionsofwaterandrock.BothofthesebigmoonsarekeptwarminsidebyJupiter’sincessanttidalforces.Consequently,theybothhavedeep,encircling,ice-coveredoceans—placestargetedbyNASA,initsongoingsearchforlifeonotherworlds.Saturn,thenextplanetoutfromtheSun,isendowedwithalmosttwodozen

moons,nottomentionagloriousringsystemdominatedbysmallbitsofbrilliantlyreflectivewaterice.MostofSaturn’smoonsarerelativelysmall,somecapturedasteroidsandothersformedfromSaturn’sgassyleftovers;butitslargestmoon,Titan,isbiggerthanMercuryandenshroudedinathickorangeatmosphere.ThankstotheEuropeanSpaceAgency’sHuygenslander,whichtoucheddownonJanuary14,2005,wehaveclose-upviewsofTitan’sdynamicsurface.Abranchingnetworkofriversandstreamsfeedsfrigidlakesofliquidhydrocarbons;thedense,colorful,andturbulentatmosphereislacedwithorganicmolecules.Titanisyetanotherworldworthexploringforsignsoflife.Themostdistantgasgiantplanets,UranusandNeptune,arenolesswell

endowedwithinterestingmoons.Mostshowsignsofwaterice,organicmolecules,andongoingdynamicactivity.Neptune’sbigmoonTritonevenhasanitrogen-richatmosphere.AndbothUranusandNeptunehavetheirowncomplexringsystems,thoughapparentlytheyarecomposedofautomobile-sizechunksofdarkcarbon-richmaterial,quiteunliketheluminousparticlesthatconstitutetheicyringsofSaturn.

RockyWorlds

Closertohome,gravityalsoheldsway.Withmostofthehydrogenandhelium

Page 31: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

blownoutwardtotherealmofthegasgiantsafterignitionoftheSun,theinnerSolarSystemhadmuchlessmasstoplaywith,andmostofthatconsistedofhardrocks—thestuffofchondriteandachondritemeteorites.Mercury,thesmallestanddriestrockyplanet,formedclosesttotheSun.Ahostilescorchedworld,thisinnermostplanetappearstobedeadandbattered:itsbillionsofyearsofintenselycrateredsurfaceispreservedunderanairlesssky.IfyouareeveraskedtonameobjectsintheSolarSystemwhereyou’dbetagainstlife,Mercuryshouldtopyourlist.Venus,thenextplanetout,isEarth’stwininsizebutradicallydifferentin

habitability,thanksinlargemeasuretoitsorbit,almostthirtymillionmilesclosertotheSun.Itmayhavehadamodeststoreofwaterearlyinitshistory,andevenashallowocean,butsubjectedtotheSun’sheatandsolarwind,mostVenusianwaterappearstohaveboiledoff,preventingthatworldfrombeingwet.Carbondioxide,thedominantgasinthethickVenusianatmosphere,sealedintheSun’sradiantenergyandcreatedarunawaygreenhouseeffect.TodayVenus’saveragesurfacetemperaturesexceed900degreesFahrenheit—hotenoughtomeltlead.Mars,onestopoutfromEarth,isalotsmaller—onlyatenthitsmass—butit

isinmanyrespectsthemostEarth-like.Likealltherockyplanets,Marshasametalcoreandasilicatemantle.LikeEarth,ithasanatmosphereandalotofwater.Itsrelativelyweakgravitycannoteasilyholdspeedinggasmoleculesintheupperatmosphere,sobillionsofyearshaveeatenawayatbothairandwater,andyetMarsstillholdswarm,wetundergroundreservoirswherelifemightmaintainatenuousrefuge.Nowondermostplanetarymissionshavetargetedtheredplanet.Earthitself,the“thirdrockfromtheSun,”issmackinthemiddleofthe

habitable“Goldilocks”zone.It’scloseenoughtotheSun,andhotenough,tohaverelinquishedsignificantamountsofhydrogenandheliumtotheouterrealmsoftheSolarSystem,butit’sfarenoughfromtheSun,andcoolenough,tohaveheldontomostofitswaterinliquidform.LiketheotherplanetsinourSolarSystem,itformedabout4.5billionyearsago,essentiallyfromcollidingchondritesandtheirsubsequentgravitationalclumpingsintolargerandlargerplanetesimals,overaspanofafewmillionyears.

DeepTime

LayeredintoalltheevidenceforhowtheSun,theEarth,andtherestofourSolarSystemwerebornistheconceptofimmensetimespans—4.5billionyears

Page 32: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

andcounting.Americanslovetoquotethedatesoffamouseventsinhumanhistory.Wecelebrategreataccomplishmentsanddiscoveries,liketheWrightbrothers’firstflightonDecember17,1903,andthefirstmannedMoonlandingonJuly20,1969.WerecountdaysofnationallossandtragedylikeDecember7,1941,andSeptember11,2001.Andwerememberbirthdays:July4,1776,and,ofcourse,February12,1809(thecoincidentbirthdaysofCharlesDarwinandAbrahamLincoln).Wetrustthevalidityofthesehistoricmomentsbecauseanunbrokenwrittenandoralrecordlinksustothatnot-so-distantpast.Geologistsalsolovetoquotehistorictimemarkers:about12,500yearsago,

whenthelastgreatglaciationendedandhumansbegantosettleNorthAmerica;65millionyearsago,whenthedinosaursandmanyothercreaturesbecameextinct;theCambrianboundary,at530millionyearsago,whendiverseanimalswithhardshellssuddenlyappeared;andmorethan4.5billionyearsago,whenEarthbecameaplanetinorbitabouttheSun.Buthowcanwebesurethoseageestimatesarecorrect?There’snowrittenrecordofEarth’sancientchronologypastafewthousandyears,oranyinformingoraltradition.Fourandahalfbillionisanumberalmostbeyondreckoning.Thecurrent

GuinnessworldrecordforlongevityisheldbyaFrenchwomanwholivedtocelebrateher122ndbirthday—sohumansfallfarshortoflivingevenfor4.5billionseconds(about144years).Allofrecordedhumanhistoryismuchlessthan4.5billionminutes.AndyetgeologistsclaimthatEarthhasbeenaroundformorethan4.5billionyears.There’snoeasywaytocomprehendthisdeeptime,butIsometimestryby

takinglongwalks.JustsouthofAnnapolis,Maryland,twentymilesofstately,undulating,fossil-packedcliffsflankthewesternshoreofChesapeakeBay.Walkingalongthenarrowstripofsandbetweenlandandwater,onecanfindanabundanceofextinctclamsandspiraledsnails,corals,andsanddollars.Onceinawhileonaveryluckyday,asix-inchserratedsharktoothorsix-footstreamlinedwhaleskullturnsup.Theseprizedrelicstellofatimefifteenmillionyearsago,whentheregionwaswarmerandmoretropical,liketoday’sMaui,andmajesticwhalescametocalveandmonstersharkssixtyfeetlongfeastedontheweak.Thefossilspopulatethreehundredverticalfeetofsediments,laiddownoverthreemillionyearsofEarthhistory.Thelayersofsandandmarldipeversogentlytothesouth,sowalkingalongthebeachislikeastrollthroughtime.Eachstridetothenorthexposesslightlyolderlayers.TogetasenseofthescaleofEarthhistory,imaginewalkingbackintime,a

hundredyearsperstep—everypaceequaltomorethanthreehumangenerations.Amiletakesyou175,000yearsintothepast.ThetwentymilesofChesapeake

Page 33: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

cliffs,ahardday’swalktobesure,correspondtomorethan3millionyears.ButtomakeevenasmalldentinEarthhistory,youwouldhavetokeepwalkingatthatrateformanyweeks.Twentydaysofeffortattwentymilesadayandahundredyearsperstepwouldtakeyouback70millionyears,tojustbeforethemassdeathofthedinosaurs.Fivemonthsoftwenty-milewalkswouldcorrespondtomorethan530millionyears,thetimeoftheCambrian“explosion”—thenear-simultaneousemergenceofmyriadhard-shelledanimals.Butatahundredyearsperfootstep,you’dhavetowalkforalmostthreeyearstoreachthedawnoflife,andalmostfouryearstoarriveatEarth’sbeginnings.Howcanwebesure?Earthscientistshavedevelopednumerouslinesof

evidencethatpointtoanincrediblyoldEarth—totherealityofdeeptime.Thesimplestevidenceliesingeologicalphenomenathatproduceannuallayeringsofmaterial;countthelayers,counttheyears.Themostdramaticsuchgeologicalcalendarsarevarvedeposits,thinalternatinglightanddarklayersthatrepresentcoarser-grainedspringsedimentsandfinerwintersediments,respectively.OnemeticulouslydocumentedsequencefromglaciallakesinSwedenrecords13,527yearsoflayering,withanewlight-darklayerdepositedeveryyear.ThefinelylaminatedGreenRiverShale,whichisexposedinscenicsteep-walledcanyonsinWyoming,featurescontinuousverticalsectionswithmorethanamillionannuallayers.Similarly,icedrillcoresthousandsoffeetdeepfromAntarcticaandGreenlandrevealmorethaneighthundredthousandyearsofaccumulation,yearbyyear,snowlayerbysnowlayer.Alloftheselayeringsrestatopvastlyolderrocks.MeasurementsofslowergeologicalprocessesstretchthetimescaleofEarth

historyevenfurther.ThemassiveHawaiianIslandsrequiredslowandsteadyvolcanicactivity,assuccessivelavablanketspiledup—atleasttensofmillionsofyears,basedonmodernratesoferuption.TheAppalachiansandotherancientroundedmountainrangeswereformedbyhundredsofmillionsofyearsofgradualerosion,andthebarelydetectablemotionsoftectonicplatesthathaveshiftedcontinentsandopenedoceansoperateincyclesofhundredsofmillionsofyearsaswell.Physicsandastronomyprovideevidencefordeeptimethatisnoless

persuasive.Thepredictabledecayratesofradioactiveisotopesofcarbon,uranium,potassium,rubidium,andotherelementsareexceptionallyaccurateclocksfordatingrock-formingeventsthatextendbackbillionsofyearstotheformationoftheSolarSystem.Ifyouhaveacollectionofonemillionatomsofaradioactiveisotope,halfofthemwilldecayoveraspanoftimecalledthehalf-life.Leavebehindamillionatomsofuranium-238,forexample,andcomeback

Page 34: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

whenitshalf-lifeof4.468billionyearshaspassed,andyou’llfindonlyaboutahalf-millionatomsofuranium-238remaining.Therestoftheuraniumwillhavedecayedtoahalf-millionatomsofotherelements,ultimatelytostableatomsoflead-206.Waitanother4.468billionyearsandonlyaboutaquarter-millionatomsofuraniumwillremain.Theagedeterminationsoftheoldestprimitivechondrites—4.566billionyearsold—areobtainedbythisradiometricdatingmethod.ButwhatofthemanybillionsofyearsbeforetheSolarSystem?

Astrophysicists’measurementsofdistantgalaxiesinmotionpointtoauniversethatismucholderthan4.5billionyears.Allgalaxiesarespeedingawayfromus.Dopplershiftdata—theso-calledredshift—revealthatthemoredistantgalaxiesareretreatingevenfaster.Playthatcosmictapebackward,andeverythingconvergesdowntoapointabout13.7billionyearsago.That’stheBigBang.Thelightfromsomeofthesemostdistantobjectshasbeentravelingthroughspaceformorethan13billionyears.Thedataonthispointareunassailable.AnyclaimthatEarth’sageisten

thousandyearsorlessdefiestheoverwhelmingandunambiguousobservationalevidencefromeverybranchofscience.Theonlyalternativeisthatthecosmoswascreatedtenthousandyearsagotolookvastlyolder—aconclusionfirstexpoundedbyAmericannaturalistPhilipGossein1857,inhisconvolutedtreatiseOmphalos(namedaftertheGreekwordfor“navel,”becausemotherlessAdamwascreatedwithanavel,soastolookasifhewerebornbywoman).GossecatalogedhundredsofpagesofevidenceforanextremelyancientEarthandthenproceededtodescribehowGodcreatedeverythingtenthousandyearsagotolookmucholder.SomemayfindcomfortinthisCreationistloopholeofcreatedantiquity,

knownasprechronism.Toastrophysicists’observationsofstarsandgalaxiesthatarebillionsoflight-yearsaway,prechronistsretortthattheuniversewascreatedwithlightfromthosestarsandgalaxiesthatwasalreadyonitswaytoEarth.Rockswithancientratiosofradioactiveanddaughterisotopes,theyargue,werecreatedwithjusttherightmixturesofuranium,lead,potassium,andargontomakethemappearmucholderthantheyreallyare.Ifyouareofthisprechronistpersuasion,Isuggestyouskipaheadtochapter11,“TheFuture.”Otherwise,allowyourimaginationtoskipbackseveralbillionyearsintothepast,whenourplanetwasborn.ThebirthofEarth4.5billionyearsagowasadramathathasbeenrepeated

countlesstrillionsoftimesthroughoutthehistoryoftheuniverse.Everystarandplanetarisesinthetenuousnear-vacuumofspacefromgasanddust—individual

Page 35: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

particlesofmattertoosmalltoseewiththeunaidedeye,yetsovastintotalextentthatwecanobserveimmensestar-formingcloudshalfwayacrossthegalaxy.Billionsofyearsago,gravityservedtomidwifetheSolarSystem’sbirth—theSunemergedasthesolitarygiantinalitterofplanetaryrunts.NuclearreactionsinflamedtheSun’ssurface,bathingitsplanetaryneighborsinlightandwarmth.Andsoourhometookitsfirsthaltingstepstobecomingalivingworld.Asalienassuchepiceventsmightseem,weallexperience,everydayofour

lives,thesamecosmicphenomenathatledtoEarth’sformation.TheverysameelementsandatomsthatforgedEarthalsomakeupourbodiesandourdwellings.Thesameuniversalforceofgravitythatassembledthestarsandplanetsfromdustandgas,andthatforgedtheelementsintostars,alsoholdsusfasttoourplanetaryhome.Whenitcomestotheuniversallawsofphysicsandchemistry,thereisnothingnewundertheSun.Thelessonsofrocks,stars,andlifeareequallyclear.TounderstandEarth,you

mustdivorceyourselffromtheinconsequentialtemporalorspatialscaleofhumanlife.Weliveonasingletinyworldinacosmosofahundredbilliongalaxies,eachwithahundredbillionstars.Similarly,welivedaybydayinacosmosagedhundredsofbillionsofdays.Ifyouseekmeaningandpurposeinthecosmos,youwillnotfinditinanyprivilegedmomentorplacetiedtohumanexistence.Thescalesofspaceandtimearetooinconceivablylarge.Butacosmosboundbynaturallawsthatleadinevitably,inexorablytoauniversethatpromisesthepossibilityofknowingitself,asscientificstudyinherentlysuggests,isacosmosthataboundswithmeaning.

Page 36: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet
Page 37: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Chapter2

Page 38: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

TheBigThwack

TheFormationoftheMoonEarth’sAge:0toabout50millionyears

Acentralprincipleofthisbookisthatplanetarysystemsevolve—theychangethroughtime.What’smore,eachnewevolutionarystagedependsonthepriorsequenceofstages.Changesareoftengradual,takingmillionsorevenbillionsofyearstotransformaplanet’senvironment,butsuddenviolentandirreversibleeventscanforeveralteraworldinminutes.SoitwaswithEarth.Fromcountlessscatteredbitsandpieces,Earthformedrelativelyquickly,in

nomorethanamillionyearsbysomeestimates.Towardtheendofthisprocessafewdozenplanetesimals,eachseveralhundredmilesindiameter,sharedspacewiththeproto-Earth.Inaspanofaboutahundredthousandyears,asourplanetapproacheditspresentsize,thefinalstagesofthisprocessoccurredinepisodesofunfathomableviolence.Onceeveryfewthousandyears,aminiplanetsmackedintotheproto-Earthandwasswallowedwhole.Duringthatturbulenttime,Earthwasahot,blackenedsphere,punctuatedwith

glowingredcracks,toweringvolcanicmagmafountains,andincessantmeteorimpacts.Eachofthegiantimpactorssmashedintothesphere,blastingvaporizedrocksintoorbitanddisruptingtheentiresurfaceintoamolten,red-hotrockyslush.Spaceiscold,however.Followingeachgreatimpact,Earth’sairlesssurfacequicklycooledandblackenedagain.

StrangeMoon

ThisstoryofEarth’soriginsseemstobeneatandtidyexceptforonestrikingdetail:theMoon.It’swaytoobigtoignoreand,formuchofthepasttwocenturies,hasprovenexceedinglydifficulttoexplain.Smallmoonsareeasytounderstand.PhobosandDeimos,thetwoirregularcity-sizerocksorbitingMars,appeartobecapturedasteroids.ThedozensofmuchlargermoonsorbitingJupiter,Saturn,Uranus,andNeptuneareteenybycomparisontotheirhosts—muchlessthanathousandthofthemassoftheplanetstheycircle.Thelargest

Page 39: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

moons,formedfromunclaimedremnantsoftheoriginalplanet-formingdustandgas,orbitthesegasgiantslikeplanetsinminiaturesolarsystems.Earth’sMoon,bycontrast,isrelativelyhugecomparedwiththeplanetitorbits:ithasmorethanaquarterofEarth’sdiameterandaboutone-eightiethofitsmass.Wheredidsuchananomalycomefrom?Thehistoricalsciences,especiallyEarthandplanetarysciences,dependon

creativestorytelling(albeitstoriesthatmoreorlessconformtothefacts).Ifmorethanonestoryseemstofittheobservations,thengeologistsadoptacautiousstanceknownas“multipleworkinghypotheses”—astrategyfamiliartoanyonewhoenjoysdetectivenovels.PriortothehistoricApolloMoonlandingsbeginningin1969,whenpristine

MoonrockswererecoveredandcarefulgeophysicalmeasurementsoftheMoon’sinteriorcouldbegin,threeprimesuspectsstoodoutinTheCaseoftheMassiveMoon.Thefirstwidelyacceptedscientifichypothesiswasthefissiontheory,proposedin1878byGeorgeHowardDarwin(whoisfarlessfamousthanhisnaturalistfather,Charles).InGeorgeDarwin’sscenario,theprimordialmoltenEarthwasspinningonitsaxissorapidlythatitstretchedandelongateduntilitflungoffaglobofmagmafromthesurfaceintoorbit(withalittlehelpfromtheSun’sgravitationalpull).TheMoon,inthismodel,isanEarthbudbrokenfree.Inoneimaginativevariantofthisdramatictale,thePacificOceanbasinremainsasatelltalemark—MotherEarth’sbirthingscar.Asecondcompetingidea,thecapturetheory,viewedtheMoonasaseparately

formed,smallerplanetesimaloccupyingmoreorlessthesamezipcodeasEarth,intheemergingSolarSystem.Atsomepoint,thetwobodiespassedcloseenoughtoeachotherthatlargerEarthcapturedsmallerMoon,swingingitintoaloopingorbitthathasgraduallysettleddown.ThatgreedygravitationalmechanismseemedtoworkwellenoughforthesmallerrockymoonsofMars,sowhynotforEarth?Thethirdhypothesis,theco-accretiontheory,positedthattheMoonformed

moreorlessinitspresentlocationfromalargecloudofleftoverdebristhatremainedinorbitaroundtheEarth.ThisplausibleideamimicswhatweknowabouttheSunanditsplanets,aswellasthegasgiantplanetsandtheirmoons.It’sacommontheme,seenoverandoveragainintheSolarSystem:smallerobjectsaccretefromcloudsofdust,gas,androcksaroundlargerobjects.Threecompetinghypotheses;whichoneiscorrect?Inquiringmindshadto

awaitdatafromtheMoonrocks—morethan840poundsofsamplesfromsixApollolandingsites.

Page 40: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

TouchdownontheMoon

TheApolloMoonmissionstransformedplanetaryscienceinmanyways.Sure,theywereanunrivaledshowcaseforAmericantechnologicalprowessandbravado.Undoubtedly,theyprovidedatremendousboosttothemilitary-industrialcomplex.Andtheyinspiredcountlessinnovations,fromminicomputerstopolymerstoTang,providinganeconomicdriverthatmaywellhavepaidforthe$20billionworthofmissionsmanytimesover.It’snotsurprisingthatnationalprideandtheraceforthe“highground,”notlunarscience,weretheprimaryincentivesforthosecostlyanddangerousearlyMoonmissions.Evenso,itwouldbehardtooverstatetheimpactoftheApollomissionsand

theirtreasuretroveofMoonrocksonmygenerationofEarthscientists.Forallofhumanhistory,theMoonwastantalizinglyclose,justunderaquarter-millionmilesaway.Onaclearsummer’sevening,asthereddenedfullMoonrises,youfeelasifyoucouldjustreachoutandtouchit.Butwehadnosamples—nothingtotellusforsureofwhattheMoonwasmade,norwhen,norwhere.Withthefirstbatchoflunarsamples,wecould,forthefirsttimeinhumanhistory,literallytouchtheMoon(ascananyvisitortotheSmithsoniantoday).Myliteralfirstbreathoflunarsamplescameinthewinterof1969–70,during

mysenioryearatMIT,lessthanhalfayearafterApollo11’shistoricmission.Thestagehadbeensetafewmonthsearlier,onJuly24,1969,whenthefirsthumanstowalkontheMoonreturnedtoEarth.Inthoseearlydaysoflunarexploration,concernsofcontaminationbyalienmicrobesdictatedstrictquarantinepoliciesforastronautsandtheirsamples.SoassoonastheirmodulesplasheddowninthePacificnearHawaii,assoonasNeilArmstrong,BuzzAldrin,andMikeCollinswereretrievedbytheUSSHornet,theyandtheforty-fivepricelesspoundsofrocksandsoiltheyhadbroughthomefromspacewerehermeticallysealedinNASA’sMobileQuarantineFacility.FromHawaii,theywereallshippedtoHouston,tothenewLunarReceivingLaboratory,wherethespaceexplorersandtheirprecioussampleswereconfinedforalmostthreeweeks,incasesomethingreallynastyhadaccompaniedthembacktoEarth.Apollomissionsfollowedfastupononeanotherinthenextthreeyears.The

Apollo12lunarmoduleIntrepid,withastronautsCharlesConrad,Jr.,andAlanBean,toucheddownonNovember19,1969,andaweeklaterreturnedwithaboutseventypoundsofMoonrocksandsoil,whichwerewhiskedintotheHoustonquarantinefacilities.Bygoodfortune,mythesisadviser,thebrilliantandebullientDavidWones,wasamemberoftheApollo12LunarSamplePreliminaryInvestigationTeam.Thatsmallbandofscientistshadtheglorious

Page 41: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

adventureofscrutinizingthesecondpreciouslunarsamplehaulwithastate-of-the-artarsenalofanalyticalmachines.Dave’sexpertisewasigneouspetrology—thestudyoftheoriginofrocksthatformfrommagma.AlloftheApollo11and12Moonrockswereigneousinorigin,sohewasingeologistheaven.Insomeways,itwashardduty,beinglockedupforthebetterpartofamonth

withafewotherintensescientists,underpressuretogatherunassailabledataonsomeofthemostcostlyandsignificantrocksamplesevercollected.Butitwasalsoincrediblyexcitingtobeamongthefirsthumanstohandlerocksandsoilfromanotherworld—thespacematterthatwouldonceandforalltellustheoriginoftheMoon.MyfirstglimpseoftheMoonupclosecameonDave’sreturntoMIT.Irecall

theelevatordooropeningonthetwelfthflooroftheGreenBuilding.TherewasDave,ofmodeststatureandbespectacled,flankedbytwobeefy,uniformed,gun-totingfederalagents.TheywereguardingtheMoonsamples,whichatthatpointwouldhavebeenworthmillionsonthecollectors’market.Everymilligramhadtobeaccountedfor.Davelookedtiredandnervous;hehadbeenawayforalongtime,hewasunderconstantscrutiny,andhestillhadajobtodo.Whenthesubjectoflunarsamplescomesup,mostpeopleimmediatelythink

ofMoonrocks,perhapssomethingchunkythatyoucanholdinyourhand.ButasignificantportionoftheApollomaterialwaslunarsoil,orregolith.Thefinest-grainedfractionofregolithispulverizedrockinfragmentssosmallthatyoucan’tresolvetheminamicroscope—theconsequenceofabatteryofcosmicinsults,frommightyasteroidstotheincessantsolarwind.Thisultrapowderhasstrangeproperties,mostnotablythatitstickstoeverythingittouches,likeXeroxtoner.Dave’staskwastotransfersomeofthispowderfromavialaboutthesizeofaCbatteryintothreeorfoursmallervials,aboutthesizeofAAAbatteries,fordistributiontonearbylaboratories.Itsoundseasy.Dumpthepowderfromthebigvialontoathree-inch-square

pieceofglassy-surfacedpowderpaper.Gentlyscoopsmallamountsintothesmallervials.Davehadperformedsimilaroperationshundredsoftimes,anditshouldn’thavetakenmorethanaminute.Butthestakeswerehigherhere.Humorlessguardswerestandingtoeitherside;asmallcohortofstudentswashovering,too.SoDave’shandshookabitashetippedthebigvial.Thestickypowderclungtotheglasssidesanddidn’twanttocomeout.Hetappeditwithhisindexfinger.Nothing.Tappedagain.ThenallofasuddenalltheMoondust—reallyonlyalittlepilethesizeofa

Hersheykiss,butitseemedlikealotunderthecircumstances—cameshlumpingoutallatonce,andthenpoof!Dustflewup,coatedDave’sfingers,andspilled

Page 42: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

overtheedgeofthepowderpaperontothetable.Weallmusthavebreathedinsomeofthefinestairborneparticles.Noonesaidaword.Itwasn’tarealdisaster,asalmostnothingwaslost,andthepowderdid

eventuallygettransferred,andthefedsdideventuallyleavetohandoffthealiquotstootherlabs.Inretrospect,weallthoughtitwasprettyfunny.Andinacoupleofdays,abovethelabbenchwherethetransferhadbeencompleted,weneatlyframedthatthree-inchsquareofpowderpaperwithanear-perfectimprintofDaveWones’sleftindexfingerinMoondust.

FourmoreApolloMoonlandingsfollowed,culminatinginDecember1972withApollo17andthereturnofmorethan240poundsofsamplesfromtheTaurus-LittrowValley,aregionofsuspectedlunarvolcanism.Thatwasthelastmission;noonehasgonebackinfourdecades.Nevertheless,theMoonrocks,meticulouslycuratedinsterilevaultsattheLunarSampleBuildingatNASA’sJohnsonSpaceCenterinHouston(withasecurebackupcollectionatBrooksAirForceBaseinSanAntonio,Texas),continuetoprovideanamazingwealthofopportunitiesforresearchers.AfewyearsafterthelastApollomission,thosesamplesprovidedmemyfirst

realjob,asapostdoctoralfellowwiththeGeophysicalLaboratoryoftheCarnegieInstitution.Mytaskwastoexaminepilesof“fines”fromApollo12,Apollo17,andLUNA20(oneofthreeunmannedSovietmissionsthathadreturnedaboutathirdofapoundoflunarsamples).Interspersedthroughoutthefinedustoflunarsoilarelotsofsilt-andsand-sizegrains,andmyexactingjobwastoscanthousandsofthesegrains,bitbybit.Ispenthoursatamicroscope,peeringatgorgeouslittlegreenandredcrystalsandtinygoldenspheresofcolorfulglass—theremainsofviolentlyblastedrocksthathadbeensubjectedtobillionsofyearsofmeteoritebombardment.OnceI’disolatedafewdozenpromisingspecks,Isubjectedeachunusual

graintothreekindsofanalysis.Thefirstwassingle-crystalX-raydiffraction,totellwhatkindofcrystalIwasdealingwith.Mostofmystudiesfocusedonthecommonmineralsolivine,pyroxene,andspinel.IfIfoundagoodcrystal,I’dcarefullyorientthegrainandmeasureitsopticalabsorptionspectrum(thewayitsoakedupdifferentwavelengthsoflight).Greenolivinecrystals,forexample,typicallyabsorbredwavelengths;redspinelcrystals,bycontrast,absorbmoreinthegreenwavelengths.Ialsomeasuredspectraofanyunusualglassbeads,keepinganeyeoutfortelltalebumpsandwigglesintheabsorptionspectrumthatpointedtorarerelements—chromiumandtitanium,forexample.Discoveryofasmallpeakat625nanometers,aslightabsorptionofred-orangewavelengthscharacteristicoftheelementchromiumasitoccursontheMoonbutquite

Page 43: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

differentfromchromiumonEarth,wasamemorable“eureka”moment.Finally,aftertheX-rayandopticalworkwasdone,Iusedafancyanalytical

machinecalledanelectronmicroprobetodeterminetheexactratiosofelementsinmysamples.TimeandtimeagainIconfirmedwhatothershadfound:theMoon’ssurfaceminerals,whilesimilarinmajorelementstothoseonEarth,areratherdifferentindetail.Theyhavemoretitanium;thechromiumisdifferent,too.TheseandothercluesfromtheApollorocksplacedsevereconstraintsonthe

varioustheoriesofhowtheMooncametobe.Foronething,itturnedoutthattheMoondiffersdramaticallyfromEarth,inthatitsdensityismuchlower;itdoesn’thaveabig,denseironmetalcore.Earth’scoreholdsalmostathirdofitsmass,buttheMoon’stinycoreislessthan3percentofitsmass.Second,Moonrockscontainalmostnotracesofthemostvolatileelements—thosethattendtovaporizethemomentthingsgetwarm.Thenitrogen,carbon,sulfur,andhydrogensocommonatEarth’ssurfacearemissingfromMoondust.ThisdeficiencymeansthatunlikeEarth,whichiscoveredinliquidwaterandwhosesoilscontainabundantwater-richmineralssuchasclaysandmicas,nowater-bearingmineralsofanykindhavebeenbroughtbackfromtheApollomissions.SomethingmusthaveblastedorbakedtheMoontoremovethosevolatiles,fortheMoon’ssurfaceisnowanunforgivinglydryplace.ThethirdkeyfindingoftheApollomissionsisbasedontheelementoxygen,

ormorespecificallythedistributionofitsisotopes.Eachchemicalelementisdefinedbythenumberofpositivelychargedprotonsinitsnucleus.Thenumberisunique—oxygenisjustanothernamefor“atomwitheightprotons.”Atomicnucleialsoholdasecondkindofparticle,theelectricallyneutralneutron.Morethan99.7percentofoxygenatomsintheuniversehaveeightneutrons(eightprotonspluseightneutronsyieldsanisotopecalledoxygen-16),whiletherarerisotopeswithnineortenneutrons(oxygen-17andoxygen-18,respectively)arepresentatafractionofapercent.Oxygen-16,oxygen-17,andoxygen-18arevirtuallyidenticalintheir

chemicalbehavior—youcouldbreatheanymixtureandwouldn’tnoticeadifference—buttheydohavedifferentmasses.Oxygen-18isheavierthanoxygen-16.Consequently,anytimeanoxygen-containingcompoundchangesstatefromasolidtoaliquid,orfromaliquidtoagas,thelessmassiveoxygen-16canmakethemovemoreeasily.IntheturbulentnascentSolarSystem,suchchangesofstatewerecommonplace,andtheyledtoshiftingamountsofoxygenisotopes.Itturnedoutthattheratioofoxygen-16tooxygen-18variesfromplanettoplanetandisverysensitivetotheplanet’sdistancefromtheSunwhen

Page 44: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

itformed.TheApollorocksrevealedthattheMoon’soxygenisotoperatioisvirtuallyidenticaltoEarth’s.Inotherwords,EarthandtheMoonmusthaveformedataboutthesamedistancefromtheSun.SowheredidthesediscoveriesleavethethreecompetingMoon-forming

hypotheses?Theco-accretiontheorywasintroublefromthestart.IftheMoonformedfromEarthleftovers,thenitshouldhaveasimilaraveragecomposition.True,theMoonandEarthdomatchupintermsofoxygenisotopes,buttheco-accretiontheorycan’texplainthelargedifferencesinironandvolatiles.TheMoon’sbulkcompositionisjusttoodifferentforittohaveformedfromthesamestuffasEarth.Thecompositionaldisparitiesalsoposedinsurmountableproblemsforthe

capturetheory.TheoreticalmodelsofplanetarymotionsuggestthatanycapturedplanetesimalmusthaveformedinthesolarnebulaatmoreorlessthesamedistancefromtheSunasEarth,andsoitshouldhavemoreorlessthesameaveragecomposition.TheMoondoesn’t.Ofcourse,aMoon-sizeobjectmighthaveformedinsomeotherdistrictofthesolarnebulaandsubsequentlyadoptedanEarth-crossingorbit,butcomputermodelsoforbitaldynamicsrequirethatsuchaMoonwouldhavehadahighvelocityrelativetoEarth,makingsuchacapturescenarioallbutimpossible.ThatleavesGeorgeHowardDarwin’sfissiontheory.Itcansuccessfully

explainthesimilaroxygenisotopecompositions(EarthandMoonareonesystem)andtheirondifference(Earth’scorehadalreadyformed;theMoon-formingblobwasachunkofEarth’salreadydifferentiated,iron-poormantle).ItbeautifullyaccommodatesthefactthatonesideoftheMoonalwaysfacesEarth:Earth’srotationandtheMoon’sorbitfollowthesamespinningmotionaroundtheEarth’saxis—thesamesenseofturning.Butabigproblemremains:wherearethemissingvolatiles,nowabsentfromtheMoon?Thelawsofphysicsalsogetinthewayofthefissiontheory.Ataboutthetime

oftheApollomissions,computermodelingofplanetformationhadprogressedtoapointthattheoristscouldstudythedynamicsofarapidlyspinningEarth-sizeballofmagmawithconfidence.Simplyput,fissioncan’twork.Earth’sgravityismuchtoostrongtoallowabigblobofmoltenrocktobetossedoutwardintoorbit.Infact,amoltenEarthwouldhavehadtobespinningonitsaxisatanincrediblerate,aboutonceeveryhour,forittoflingoffaMoon-sizeglob.TheEarth-Moonsystemsimplydoesnothaveenoughangularmomentumforthattohappen.Bottomline:noneofthethreeprevailingtheoriesofMoonformationfitsthe

dataaftertheApollomissions.Theremustbeanotherexplanation.

Page 45: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

TheTestimonyoftheMoonRocks

Planetaryscientistsarenothingifnotgoodstorytellers.ObservationsfromApollodisprovedallthreeoftheirpre-1969hypothesesabouttheMoon’sformation,butitdidn’ttakethemlongtocomeupwithanewideafromtheindisputablefacts.NewcompositionalcluesfromApolloprovidedonekey:theMoonmoreorlesslookslikeEarth.Ithasthesameoxygenisotopecompositionandmostofthesamemajorelements,thoughithaswaytoolittleironorvolatiles.Thatcompositionaldatahadtobeintegratedwiththeorbitalclueswe’dknownforthousandsofyears:theMoonorbitsEarthinthesameplaneandinthesamedirectionastheotherplanetsaroundtheSun.Earthdoeshaveaniggling23-degreetiltinitsrotationaxis(that’swhatcausestheseasons).AndonesideoftheMoonalwaysfacesus.Earliermodelsoflunarformationtendedtoignoreorbitalcluesbeyondthe

Earth-Moonsystem,includingsomestrikingexceptionstothegeneralpatternsofourSolarSystem.Foronething,Venusrotatesonitsaxisbackwardcomparedwithalltheotherplanets.Thatmaynotseemsignificant,butVenusisalmostaslargeasEarth—andit’srotatingthewrongway!EvenstrangerismassiveUranus,thethirdlargestplanet,whoserotationaxisissideways,soitseemstokindofrollalongitsorbitaroundtheSun.Themoonsofotherplanets,too,haveoddities.Neptune’slargestmoon,Triton,whichiscomparableinsizetoEarth’sMoon,orbitsatasteepangletotheplanet’srotationandintheoppositedirectionoftherestoftheSolarSystem.Thecultureofsciencehasanoddaspect—onethatmaybeoff-puttingtothose

notinthegame.Ontheonehand,wecomeupwithneattheoriesthatpackagelotsofoddfacts.SothefactthatalltheplanetsandmoonsorbittheSuninthesamedirection,inthesameplane,pointstoacommonoriginfromasingleswirlingnebula.Butthenwefindexceptionstotherule,andthoseexceptionsaresetasideascuriousanomalies.Venusrotatesthewrongway?Tritonorbitsthewrongway?Noproblem.Theiraberrationsareincidentaltothelargerscheme.Thesamekindofsituationcomplicatesmanypublicdebates,likethatover

globalwarming.Manyscientistspredictthatalteredatmosphericconditionswillraisetheaverageglobaltemperaturebyseveraldegrees.Butsuchchangescanalsocauseextremeweather,whichmaymeanworsesnowstormsinthesouthernUnitedStates.GlobalwarmingmayalteroceancurrentsliketheGulfStreamandultimatelyturnnorthernEuropeintoamuchcolderSiberian-typeicebox.Anomalieslikethisfueltheglobalwarmingnaysayers:scientistssaytheworldisgettinghotter,butyou’vejustsufferedthroughthebiggestsnowstorminyour

Page 46: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

region’shistory.Howshouldyourespond?Ajudiciousresponseisthatnatureisamazing—rich,varied,complex,andintricatelyinterconnected,withamessy,longhistory.Anomalies,whetherinplanetaryorbitsorNorthAmericanweather,arenotjustinconvenientdetailstobrushaside:theyaretheveryessenceofunderstandingwhatreallyhappened—howthingsreallywork.Wedevelopgrandandgeneralmodelsofhownatureworks,andthenweusetheodddetailstorefinetheoriginalimperfectmodel(oriftheexceptionsoverwhelmtherule,weregrouparoundanewmodel).That’swhygoodscientistsrevelinanomalies.Ifweunderstoodeverything,ifwecouldpredicteverything,there’dbenopointingettingupinthemorningandheadingtothelab.InthecaseoftheoriginofEarth’sMoon,thoseexceptionstothesystematic

trends—thosenigglingorbitalanomalies—ledtotheconceptofthe“BigSplash”or“BigThwack”model,whicharoseinthemid-1970s.Theoriginalseriesofrelatedbutpoorlyconstrainedhypothesescoalescedintoconventionalwisdomatapivotal1984conferenceinHawaii,whereplanetaryformationexpertsgatheredtoweighalltheiroptions.Insuchaheadyenvironment,Ockham’srazor—thedemandthatthesimplestsolutiontoaproblemconsistentwiththefactsislikelytobecorrect—prevails.TheBigThwackfitthebill.Tounderstandthisradicalidea,thinkbackmorethan4.5billionyears,tothe

timewhentheplanetshadjustformedfromallthosesmallercompetingplanetesimals.AsEarthgrewclosetoitspresentdiameterofeightthousandmiles,itswallowedupalmostalltheremainingproximatebodiesinasuccessionofhugeimpacts.Thosepenultimatecollisionswithobjectsmanyhundredsofmilesacrosswouldhavebeenspectacular,buttheyhadlittleeffectonEarth,themuchmoremassiveproto-planet.Butnotallimpactsareequal.InEarthhistory,onesingleevent—oneday

morememorablethananyother—standsout.About4.5billionyearsago,whentheSolarSystemwasabout50millionyearsold,theblackproto-Earthandaslightlysmallerplanet-sizecompetitorwerejockeyingforthesamenarrowbandofSolarSystemrealestate.Thesmallerwould-beplanet(dubbedTheia,aftertheTitangoddesswhogavebirthtotheMoon)wasworthyofplanetarystatus—perhapstwotothreetimesthesizeofMars(orroughlyathirdofEarth’smass).Aruleofastrophysicsisthatnotwoplanetscansharethesameorbit.Eventuallytheywillcollide,andthelargerplanetalwayswins.SoitwaswithEarthandTheia.Increasinglyvividcomputersimulationsprovidetheprincipalmethodby

whichscientistsattempttounderstandwhatmighthavehappened.Abigcollisionisgovernedbythelawsofphysics,soonecanrunthousandsof

Page 47: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

simulationswithallsortsofinitialconditionstoseeifaMoonresults.Theanswerisintimatelytiedtothestartingparameters:themassandcompositionoftheproto-Earth,themassandcompositionofTheia,theirrelativevelocities,andtheangleandaccuracyoftheblow.Mostcombinationssimplydonotwork;noMoonforms.ButafewmodelsaresurprisinglysuccessfulandproduceanEarth-Moonsystemratherliketheoneweseetoday.Inoneoft-describedversion,theimpactoccursasasolidsideswipe—big

TheiasmashesthebiggerEarthslightlyoffcenter.Seenfromspace,theeventplaysoutinslowmotion.Atthemomentofcontact,thetwoworldsseematfirsttogentlykiss.Thenoverthenextfourorfiveminutes,Theiaissmooshed,likeaballofsoftdoughhittingthefloor,withoutmucheffectonEarth.TenminuteslaterTheiaisprettymuchsquashed,whileEarthbeginstodeformoutofroundness.Halfanhourintothecollision,Theiaissimplyobliterated,whiletheinjuredEarthisnolongerasymmetricalsphere.Superhotrockhasbeenvaporized,blastingoutinluminousstreamsfromthegapingwoundandobscuringthedisruptedworlds.Anotherwidelycitedscenario,firstproposedinthe1970sandrefinedoverthe

nexttwodecades,wasdevelopedbytheoristAlastairCameronoftheHarvard-SmithsonianCenterforAstrophysics.Inhisintriguingscheme,Theiawasroughly40percentthemassoftheproto-Earth.Again,anoff-centerimpactoccurred,butinthisversion,TheiamoreorlessbumpedagainstEarthandbouncedoffasanelongatedblob,thenwaspulledbackinforthecoupdegrâce—asecondthwack,inwhichTheiadisappearedforever.Ineithercase,thecatastropheannihilatedTheia,whichsimplyvaporizedinto

animmenseincandescentcloud,tensofthousandsofdegreeshot,surroundingEarth.Theiahaddoneitsshareofdamageaswell.AsignificantchunkofEarth’scrustandmantlealsovaporizedandblastedoutwardtomixwithTheia’sscatteredremnants.Somematerialescapedtodeepspace,butmostofthesavagedremainswereretainedinorbitbyEarth’sunyieldinggravitationalgrip.Fromthisroilingcloud,densemetalfromthecoresofbothworldscommingledandcooledbackintoliquid,sinkingtoformanew,largercoreforEarth.Mantlematerialsalsomixedandvaporized,formingahellishlyhotglobe-encirclingcloudofvaporizedrock.Foraviolenttimeofdaysorweeks,Earthexperiencedanincessantrainoforange-hotsilicatedroplets,whichmergedwithashoreless,red-glowingmagmaocean.UltimatelyEarthseizedmuchofwhathadbeenTheiaandthusemergedamoremassiveplanet.NotallofTheiawascaptured,however.Higherupinspace,Earthbecame

encircledbyavastaccumulationofrockycollisionaldebris,mostlyanintimate

Page 48: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

mixtureofthetwoplanetarymantles.Coolingrockydropletsstucktogether,withbiggerchunkssweepingupthesmaller.Inasortofinstantreplayofthegravitationalclumpingthatoriginallyformedtheplanets,theMooncoalescedrapidlyandmayhaveachievedmoreorlessitspresentsizeinafewyears.ThephysicsofplanetformationdictatewheretheMooncouldhaveformed.

Everymassiveobjecthasaninvisiblesurroundingsphere,calledtheRochelimit,insideofwhichgravitationalforcesaretoogreatforasatellitetoform.That’swhySaturnhasimmenseringsbutnomoonswithinaboutfiftythousandmilesofitssurface.Saturn’sgravitypreventsthoseicyparticlesfromcoalescingtoformamoon.Calculatedfromthecenterofarotatingobject,Earth’sRochelimitisabout

11,000miles,orroughly7,000milesupfromthesurface.Accordingly,modelsofMoonformationlocatethenewsatelliteatasafedistanceofabout15,000milesup,whereitcouldgrowinanorderlyfashionbysweepingupmostofthescatteredbitsandpiecesfromtheBigThwack.Andso,perhaps4.5billionyearsagobymostestimates,theMoonwasborn.Earthfounditselfwithacompanion,formedinlargepartfrompiecesofitself.ScientistsquicklyembracedtheBigThwacktheorybecauseitexplainsallthe

majorcluesbetterthananyothermodel.TheMoonlacksanironcorebecausemostofTheia’sironwoundupinsideEarth.TheMoonlacksvolatilesbecauseTheia’svolatileswereblastedawayduringtheimpact.OnesideoftheMoonalwaysfacesEarthbecausetheangularmomentumofEarthandTheiawerecoupledintoonespinningsystem.TheBigThwackalsohelpstoexplainEarth’sanomalousaxialtiltofabout23

degrees—afactornotwellhandledbyanyofthepreviousscenarios.TheimpactofTheialiterallytippedEarthontoitsside.Indeed,therealizationthatagiantimpactformedtheMoonhasledtospeculationaboutotherplanetaryanomaliesinourSolarSystem.PerhapslateBigThwackeventsofonekindoranotherarecommon,evennecessary.PerhapsthatexplainswhyVenusrotatesthewrongwayonitsaxisandwhyitlostsomuchofitswater.PerhapsalategiantimpactcausedUranustorotateonitsside.

ADifferentSky

TheMoon’sformationwasapivotalmomentinEarthhistory,withfar-reachingconsequencesthatareutterlyamazingandonlyjustnowcomingintofocus.TheMoonof4.5billionyearsagowasnottheromantic,silverydiskweseetoday.Longagoitwasafarmorelooming,dominant,andunimaginablydestructive

Page 49: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

influenceonEarth’snear-surfaceenvironment.Itallboilsdowntooneamazingfact:theMoonformedonly15,000miles

fromEarth’ssurface—notmuchfartherthanaplaneflightfromWashington,D.C.,toMelbourne,Australia.Today,bycontrast,theMoonis239,000milesaway.Atfirstblush,itseemsutterlyimplausiblethatagiantMooncouldjustdriftawayfromEarthlikethat,butmeasurementsdon’tlie.Apolloastronautsleftshinymirrorsonthelunarsurface.LaserbeamsfromEarthbounceoffthemirrorsandreturntoEarthtoprovidedistancemeasurementsaccuratetowithinatinyfractionofaninch.Everyyearsincetheearly1970s,theMoonhasmovedfartheraway:3.82centimetersperyear,aboutoneandahalfinchesperyearonaverage.Thatdoesn’tsoundlikemuch,butitaddsupovertime—toamilefartherawayeveryfortythousandyearsatpresentrates.Playthetapebackward,anditpointstoaradicallydifferentsituation4.5billionyearsago.Foronething,theMoonlookedtotallydifferent.At15,000milesdistant,the

2,160-mile-diameterMoonwouldhaveappearedgigantic,likenothingwe’veeverseen.Itspannedalmost8degreesofarcinthesky—roughlysixteentimestheapparentdiameteroftheSun—andblockedmorethan250timesasmuchofthefirmamentastheMoondoestoday.Andthat’snotall.TheearlyMoonwasaviolentbodyofintensevolcanism,

quiteunlikethestaticsilvery-grayobjectweseenow.Itssurfacewouldhaveappearedblack,withglowingredmagma-filledcracksandvolcanicbasinseasilyvisiblefromEarth.TheprimordialfullMoonwasequallydramatic,thesurfacereflectinghundredsoftimesmoresunlightthaninourmodernera.Youcouldeasilyreadabookunderitsbrilliantillumination,butastronomicalobservationswouldhavebeenfutile.NostarsorplanetswouldhavebeenvisibleagainsttheyoungMoon’sintenseglare.Addingtothedramawashowfastthingsmovedthen.Inspace,thereisno

friction,sospinningobjectsjustkeepspinningforbillionsofyears.ThetotalamountofspinningenergyoftheEarth-Moonsystem—itsangularmomentum—ismeasuredbyacombinationoftwofamiliarcircularmotions.FirstisEarth’srotationaboutitsaxis;thefasterEarthrotates,themoreangularmomentumithas.TheMoon’sangularmomentum,bycontrast,dependsprimarilyonhowfarawayandhowfastitorbitsaroundEarth.Itsownrotationisnotasignificantpartoftheequation.ThetotalangularmomentumofEarth’srotationplustheMoon’sorbithasn’t

changedsignificantlyoverthelastseveralbillionyears,buttherelativeimportanceofthosetwomotionshaschangedalot.TodayalmostalltheangularmomentumoftheEarth-MoonsystemistiedupintheorbitingMoon,withits

Page 50: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

239,000-miledistanceandtwenty-nine-dayorbitalperiod.ThemoremassivecentralEarth,withitsleisurelytwenty-four-hourday,hasonlyatinyfractionoftheMoon’sangularmomentum.(Bythesametoken,thedistantgasgiantplanetscarryalmostalltheSolarSystem’sangularmomentum,eventhoughthecentralSunhas99.9percentofthemass.)But4.5billionyearsago,thingswereverydifferent.WiththeMoononly

15,000milesaway,everythingwasturningridiculouslyfast,liketheice-skaterwho’spulledinherarmstospeedupherspin.Foronething,Earthrotatedonitsaxisonceeveryfivehours.Itstilltookafullyear(about8,766hours)togoaroundtheSun;thattimehasn’tchangedmuchinthehistoryoftheSolarSystem.Butthereweremorethan1,750shortdaysperyear,andtheSunroseeveryfivehours!Suchanestimateseemsbizarreanduntestable,butatleastacoupleofdirect

measurementsconfirmthisideaofshorterancientdays.Coralreefsareonecompellingformofevidence.Somespeciesofcoraldisplayexceedinglyfine-scalegrowthlinesthatrecordbothsubtledailyandmoreobviousannualcycles.Asexpected,moderncoralsshowabout365dailylinesforeveryyearofgrowth.ButancientfossilcoralsfromtheDevonianPeriod,aboutfourhundredmillionyearsago,displaymorethanfourhundreddailylinesperyear,pointingtoafasterrotationrate.Dayswereonlyabouttwenty-twohourslongbackthen,whentheMoonwasperhapstenthousandmilesclosertoEarth.Asecond,complementarymeasurementrestsontheeuphonicphenomenonof

tidalrhythmites,whicharefinelylayeredsedimentsthatrevealthedaily,lunar,andyearlycyclesofthetides.Exactingmicroscopicstudiesoftidalrhythmitesfromnine-hundred-million-year-oldrocksatBigCottonwoodCanyon,Utah,pointtoaworldwhenEarthdayswereonly18.9hourslong,whentheremayhavebeen464days—464sunrisesandsunsets—everyyear.ThecalculatedEarth-Moondistanceof218,000milesatthattimeimpliesarecessionrateverysimilartothatofmoderntimes:3.91centimetersperyear,slightlymorethanoneandahalfinchesannually.

LoonyWorld

NodirectevidenceyetdocumentsEarth’stidalcyclesmorethanabillionyearsago,butwecanbeconfidentthat4.5billionyearsagothingswerealotwilder.NotonlydidEarthhavefive-hourdays,butthenearbyMoonwasmuch,muchfasterinitscloseorbit,aswell.TheMoontookonlyeighty-fourhours—threeandahalfmoderndays—togoaroundEarth.WithEarthspinningsofastandthe

Page 51: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Moonorbitingsofast,thefamiliarcycleofnewMoon,waxingMoon,fullMoon,andwaningMoonplayedoutinfreneticfast-forward:everyfewfive-hourdayssawanewlunarphase.Lotsofconsequencesfollowfromthistruth,somelessbenignthanothers.

Withsuchabiglunarobstructionintheskyandsuchrapidorbitalmotions,eclipseswouldhavebeenfrequentevents.Atotalsolareclipsewouldhaveoccurredeveryeighty-fourhoursatvirtuallyeverynewMoon,whentheMoonwaspositionedbetweenEarthandtheSun.Forsomefewminutes,sunlightwouldhavebeencompletelyblocked,whilethestarsandplanetssuddenlypoppedoutagainstablacksky,andtheMoon’sfieryvolcanoesandmagmaoceansstoodoutstarklyredagainsttheblacklunardisk.Totallunareclipsesoccurredregularlyaswell,almosteveryforty-twohourslater,likeclockwork.DuringeveryfullMoon,whenEarthliesrightbetweentheSunandtheMoon,Earth’sbigshadowwouldhavecompletelyobscuredthegiantfaceofthebrightshiningMoon.Onceagainthestarsandplanetswouldhavesuddenlypoppedoutagainstablacksky,astheMoon’svolcanoesputontheirruddyshow.MonstertideswereafarmoreviolentconsequenceoftheMoon’sinitial

proximity.HadbothEarthandtheMoonbeenperfectlyrigidsolidbodies,theywouldappeartodaymuchastheydid4.5billionyearsago:15,000milesapartwithrapidrotationalandorbitalmotionsandfrequenteclipses.ButEarthandtheMoonarenotrigid.Theirrockscanflexandbend;especiallywhenmolten,theyswellandrecedewiththetides.TheyoungMoon,atadistanceof15,000miles,exertedtremendoustidalforcesonEarth’srocks,evenasEarthexertedanequalandoppositegravitationalforceonthelargelymoltenlunarlandscape.It’sdifficulttoimaginetheimmensemagmatidesthatresulted.EveryfewhoursEarth’slargelymoltenrockysurfacemayhavebulgedamileormoreoutwardtowardtheMoon,generatingtremendousinternalfriction,addingmoreheatandthuskeepingthesurfacemoltenfarlongerthanonanisolatedplanet.AndEarth’sgravityreturnedthefavor,bulgingtheEarth-facingsideoftheMoonoutward,deformingoursatelliteoutofperfectroundness.TheseepictidaldisruptionslieattheheartofwhytheMoonkeepsmoving

awayfromEarth.Howdoesa2,160-mile-wideobjectdriftfromamere15,000milesto239,000milesaway?Theanswerisfoundintheconservationofangularmomentum—theconstantsumofEarth’srotationalenergyplustheMoon’sorbitalenergy.ThelawsofphysicsdictatethatwhateverangularmomentumtheEarth-Moonsystemhadatitsorigin,itmuststillpossessinlargemeasuretoday.Fourandahalfbillionyearsago,agreattidalbulgesweptaroundplanetEarth

everyfewhours.ButbecauseEarth’ssurfacerevolvedarounditsaxisfaster

Page 52: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

(everyfivehours)thantheMoonorbitedaroundthatsameaxis(everyeighty-fourhours),thetidalbulgewithitsextramasswasalwaysinthelead,constantlypullingontheMoonwiththeforceofgravity,makingitgofasterandfasterwitheveryorbit.Theimmutablelawsofplanetarymotion,firstproposedaboutfourhundredyearsagobytheGermanmathematicianJohannesKepler,statethatthefasterasatelliteorbits,thefartherawayithastobefromitscentralplanet.ButiftheMoonorbitsEarthfasterandfaster,andthusdriftsfartherandfartheraway,itmustalsogainangularmomentum.AtthesametimethatEarth’stidalbulgepulledtheMoonahead,thetidally

deformedMoonpulledbackonEarth’smassivebulgewithequalandoppositegravitationalforce,thusmakingEarthrotatemoreslowlyonitsaxiswitheveryrotation.That’swhereconservationofangularmomentumcomesin.ThefastertheMoonorbited,thefartherithadtobefromEarthandthemoreangularmomentumitpickedup.Tocompensate,EarthhadtorotateevermoreslowlyonitsaxistoconservethetotalangularmomentumoftheEarth-Moonsystem—again,thinkofthefigureskater,stretchingoutherarmsoncemoreandslowingherspin.Overthespanof4.5billionyears,Earth’srotationhasslowedfromonceeveryfivehourstoonceeverytwenty-fourhours,whiletheMoonhasmovedfartherawayandpickedupalotofangularmomentumintheprocess.Noteveryplanet-moonsystemhastofollowthisstoryline.Iftheplanetrotates

onitsaxismoreslowlythanitsmoonorbits,thenaninexorablebrakingeffectensues.Tidalbulgesontheplanetwilltrailbehind;themoonwillslowdownwitheachorbitandfalleverclosertoitsdoom.Eventuallythemoonwillspiralintotheplanetandbeswallowedup,inyetanothervariationontheBigThwacktheme.Perhapsthat’swhyVenus,withitswrong-wayretrograderotation,doesn’thaveamoon.Perhapssuchacataclysmicdemiseofaonce-orbitingmoonexplainswhyVenuslostitswaterandisnowahostile,scalding,lifelessworld.

EarlyinthehistoryoftheEarth-Moonsystem,theseexchangesofangularmomentumfromtheslowingEarthtotheacceleratingMoonwerevastlygreaterthantoday.InthefirstcenturiesaftertheMoon’sformation,bothbodiesweregirdledbyturbulentmagmaoceansthatcouldflexanddeform.ThegiantmagmatidesonEarth,andsimilarmagmabulgingontheMoon,probablycausedtheMoontorecedebytensorhundredsoffeetperyear,evenasEarth’srotationsteadilysloweddownfromitsinitialfreneticpace.Buttheseenormouslandtidescouldnothavelastedforlong.AstheEarth-Moondistanceincreased,thetidalforcesdecreasedevenmore:adoublingofthedistancecuttheforceofgravitybyafactoroffour.Atriplingofthedistanceandgravitationalforces

Page 53: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

werebutaninthoftheirformerstrength.Repeatedtidalstressingdelayedbutcouldnotstopthesolidificationof

worlds.WithinafewmillionyearsoftheBigThwack,thesurfacesofbothEarthandtheMoonwerepavedwithhardblackrock.Landtides—thedeformationofsolidrock—werestillnottrivialinthoseearlydays,buttheywerenothinglikethemightydailyswellingsofthemagmaseathatprecededthem.

_____

TheMoonremainsaluminousreminderthatthecosmosisaplaceofintertwinedcreationanddestruction.Eventodaywearenotimmunetocatastrophiccosmicinsults:killerasteroidsandcometsstillcrossEarth’sorbitfromtimetotime.Millionsofyearsagoonebigrockkilledthedinosaurs;millionsofyearsfromnow,otherbigrockswillinevitablyfindtheirmark.Ifhumansurvivalisourgreatestcollectiveimperativeasaspecies,thenwewoulddowelltokeepwatchingtheskies,forournearestcosmicneighboroffersmutetestimony:whilechangeisusuallygradualandbenign,therecanbereallybaddays.

Page 54: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet
Page 55: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Chapter3

Page 56: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

BlackEarth

TheFirstBasaltCrustEarth’sAge:50to100millionyears

Earthhassufferedmorethanafewtransformativeeventsinitslonghistory.TheBigThwackwassurelythemostdisruptiveand,intheconsequentformationoftheMoon,hadperhapsthemostfar-reachingeffects.Butsuchanoutcome—alargesolitaryMoonorbitingaplanetfullofvolatiles—isbynomeansaninevitableoutcomeofthelawsofchemistryandphysics.HaddetailsofthatancientinteractionbetweenEarthandTheiaunfoldedwithonlyslightvariations,theMoon-formingepisodecouldhaveturnedoutverydifferent.Hadtheimpactbeenbetteraimed,head-onanddeadcenter,muchmoreofTheia’smasswouldhavewoundupaspartofEarth.Inalllikelihood,wewouldnothaveasatellite,asTheiaandEarthwouldhavemergedintoonelargermoonlessworld.OrhadTheiajustmissedEarth,itsorbitmighthavebeensoalteredastobeflunginwardtowardVenusoroutwardtowardMars,perhapstoleaveEarth’sneighborhoodforever.Andhadtheimpactbeenmoreglancing,thedistributionofscattereddebrismighthaveproducedmultiple,albeitmuchsmaller,moonstograceEarth’snightsky.Chanceplaysasignificantrolethroughoutourdynamiccosmicneighborhood.

OurSolarSystem’shistoryisalitanyofthwacksandnear-misses.Theasteroidthathelpedtokilloffthedinosaursmightjustaswellhavebeenoffthemark,savingTyrannosaurusanditsdescendantstoevolvefortensofmillionsmoreyears.Perhapsbig-brainedbirdswouldhavebecomeintelligent,flyingtoolmakers.PerhapstheruntymammalsofthatextendedMesozoicErawouldhaveneveramountedtomuch.Withonlyalittletweakhereorthere,Earthwouldhavetakenadifferentpath.Butsomeaspectsofthecosmosareinevitable,deterministic.Theproduction

ofhugenumbersofprotonsandelectrons,andofcorrespondingamountsofhydrogenandhelium,washardwiredintoouruniversefromtheinstantoftheBigBang.Theformationofstarswasaninescapableconsequenceoftheproductionofhugeamountsofhydrogenandhelium.Thesynthesisofalltheotherelementsbynuclearfusionreactionsandbysupernovaswasequally

Page 57: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

preordainedbytheformationofhydrogen-richstars.Andtheaccretionofallsortsofinterestingplanets—Earth-like,Mars-like,Jupiter-like,anddozensmoretypesthatareonlynowbeingdiscoveredorbitingdistantstars—followedwithcertaintyfromthesynthesisofallthosechemicalelements.Soitwasthatpost-TheiaEarthsettledintoaturbulenttimeofcoolingand

self-organization.Whatwasthatnascentworldlike?GeologistshavedubbedEarth’sfirstfivehundredmillionyearstheHadeanEon,inrecognitionofthehellishconditionsthatmusthaveprevailed.InformedspeculationpaintsaspectacularpictureofEarth’sHadeanEon:sulfurousvolcanicexhalations,riversofglowinglava,andasteadybombardmentofasteroidsandcometsincessantlydisruptedEarth’ssurface.WeareneverthelessseverelychallengedtoknowEarth’sfirstfewhundredmillionyearsinanydetail,forwearecompletelylackingintangibleevidence.OfEarth’sorigin,wehavetherichrecordoftheSolarSystem—theSunand

themyriadobjectsboundtoitbygravity.Tensofthousandsofmeteoritesprovidethemostintimateinteriorglimpsesoftheageofplanetesimals.DetailsoftheMoon’soriginarefoundineveryMoonrockandsoil.ButnothingatallsurvivesfromEarth’searliestdays,atleastnothingknownonEarthitself.Notafragmentofrocknoragrainofmineral.Remarkably,suchevidencemightstillexistintheformofmeteoritesthat

wereejectedfromEarth’searliestsurfaceduringgiantimpactsbillionsofyearsagoandsubsequentlylandedbackonEarthoronthenearbyMoon.Suchspecimensmustexist,perhapsinabundance,somevirtuallyunalteredinallthattime.Indeed,thequestforEarth’searliestrelicshasbeencitedasoneofmanyscientificrationalesforgoingbacktotheMoon.ExactinggeologicalsurveysofthelunarsurfacemightbeluckyenoughtofinderrantHadeanstonesandthusrevealtruthsaboutEarth’sinaccessiblepast.ButasniceasitwouldbetoholdapieceofEarth’sfirsthardenedsurface,we

aren’tcompletelystymied.ForwhileEarthhaschangedoverandoveragain,thelawsofchemistryandphysicshavenot.Fourandahalfbillionyearsago,thoselawsofchemistryandphysicsprevailed,astheyalwaysdo,butwithoutanymorereallybigthwacksorotherplanet-sizecomplications.

ElementalInevitability

TheearlyevolutionofEarthwasaconsequenceoftwointertwinedchemicalrealities:cosmochemistry(makingelements)andpetrochemistry(makingrocks).Firstcamecosmochemistryandthestellarproductionofalltheheavier

Page 58: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

elements:everythingintheperiodictablebeyondhydrogenandhelium,whichareelementsoneandtwointhefirstrow.Inouruniverse,severalofthosechemicalelementsweredestinedtobecomedominant:oxygen,silicon,aluminum,magnesium,calcium,andironfaroutweighallotherheavyelements,particularlyintherockyterrestrialplanets.Thosesixelementsmakeup98percentofEarth’smass,astheydothemassofEarth’sMoonandofMercury,Venus,andMars.Eachofthese“bigsix”elementshasadistinctivechemicalstorytotell.Each,

initsownway,helpedmakeEarththewayitwouldinevitablybeaftertheBigThwack.Thekeyischemicalbonding.Recallthatatomsattachtoeachotherwhentheirfuzzyelectroncloudsinteractandshuffletoformmorestablearrangements—notablyatomswiththemagicnumbersoftwoortenoreighteenelectrons.Forthiskindofexchangetowork,someatomshavetogiveawayelectrons,whileothershavetoacceptthem.OxygenisEarth’smasterelectronacceptor.Everyoxygenatomhaseight

positivelychargedprotonsinitsnucleus,whichareelectricallybalancedbyeightnegativelychargedelectrons.Butoxygenisalwayslookingfortwoextraelectronstomakethemagicnumberoftenelectrons.Thatincessantacquisitiveurgemakesoxygenoneofthemostreactive,corrosivegasesinnature.It’sreallyrathernastystuff.Mostofusthinkofoxygen,firstandforemost,asanessentialpartofthe

atmosphere(the21percentorsothatkeepsusalive).ButthathappyatmosphericdevelopmentisarelativelyrecentchangeinEarthhistory.ForEarth’sfirsttwobillionyearsatleast,theatmospherewasutterlydevoidofoxygen.EventodayalmostallofEarth’soxygen—99.9999percentofit—islockedintorocksandminerals.Whenyouhikeupamajestic,ruggedmountainorwalkonawindswept,rockyoutcrop,mostoftheatomsbeneathyourfeetareoxygen.Whenyoulieonasandybeach,almosttwointhreeoftheatomsthatsupportyourweightareoxygen.Foroxygentoplaythiscriticalchemicalroleaselectronacceptor,therealso

havetobelotsofatomsthatcangiveawayorsharetheirelectrons.Themostprolificelectrondonorissilicon,whichaccountsforalmostoneineveryfouratomsinEarth’scrustandmantle.Siliconhasfourteenpositivelychargedprotonsinitsnucleus,whicharenominallybalancedbyfourteennegativelychargedelectrons.Siliconcommonlygivesupfourelectronstoachievethemagicnumberoftenelectrons,becomingasiliconionwithapositiveelectricalcharge.InEarth’srockycrustandmantle,thosefourrelinquishedelectronsarealmostalwaysgobbledupbytwooxygenatoms,whichbecomenegatively

Page 59: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

chargedions.Consequently,strongsilicon-oxygenbondsarefoundinalmosteveryrock,mostnotablyinquartz,orSiO2—aone-to-twomixtureofsiliconandoxygenatoms.Tough,translucentquartzgrainslastalongtime.Theyaccumulatebytheuntoldtrillionsalongshorelinesandarebyfarthecommonestmineralofbeachsand.You’vealsoprobablyseenthebeautiful,sharplyfaceted,transparentcrystallinespecimensofquartzsoldinNewAgestoresas“powercrystals.”Whenyouholdsuchatreasureinyourhand,two-thirdsofwhatyou’reholdingisoxygen.Crystalswithsilicon-oxygenbonds,collectivelycalledsilicates,areEarth’s

mostcommonminerals,withmorethanthirteenhundreddifferentknownspecies(andmoreaddedalmosteverymonth).Theyarerichlyvariedintheiratomicstructuresandpropertiesbecauseoftheversatilityofthesilicon-oxygenconnection,whetherintheheartyweather-resistantstructureofquartzandfeldspar,ortheclusterarrangementsofgemmygreenolivineandredgarnet(thesemipreciousbirthstonesofAugustandJanuary,respectively),ortheneedlelikechain-silicatehabitsofsomenotoriousformsofasbestos,orthethinflatsheetsofmineralslikemica,onceusedasacheapsubstituteforwindowglass.Thoughlessabundantthansilicon,theelementscalcium,magnesium,and

aluminumallplaykeystructuralrolesinthemostcommonsilicaterocksthroughoutEarth’scrustandmantle.Aspositiveions,liketheirmorebountifulsiliconcousin,theyoccasionallybondwithoxygenalone,formingthecalciumoxidethatwerecognizeasthelawnchemicallime,therarecompoundmagnesiumoxide,and(whentraceamountsoftherarerelementschromiumortitaniumareincorporatedintoaluminumoxide)theprizedgemstonesrubyorsapphire.Itisthesixthofthebigsixelements,iron,thatisbyfarthemostversatile.

Eachoftheotherfive—oxygen,silicon,aluminum,magnesium,andcalcium—assumesonedominantchemicalpersonality.Oxygenalmostalwaysactsasanacceptoroftwoelectrons,siliconalmostalwaysactsasadonoroffourelectrons,aluminumasadonorofthreeelectrons,andmagnesiumandcalciumasdonorsoftwo.Butiron,elementtwenty-six,playsthreequitedistinctchemicalroles.Iron’sversatilityisunderscoredbyEarth’slayeredstructure.Aboutoneinten

atomsinEarth’soxygen-dominatedcrustandmantleisiron,whereasEarth’smetalliccoreismorethan90percentiron.Thissharpcontraststemsfromthefactthatthiselement’stwenty-sixelectronsareaprettyfarcryfromeighteen,thenearestmagicnumber,makingironadonorparexcellence.There’snowayironcangiveawayeightelectrons(nooneatomwillacceptthatmany)soithastomakedowithwhateveracceptorshappentobepresent.

Page 60: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Sometimesironactsjustlikemagnesiumandgivesuptwoelectronstobecomea+2ion.Ironinthisdivalentstatelendsadistinctivegreenishorbluishcolortomanymineralsandotherchemicals.Thecharacteristicgreencolorofthegemstoneperidot(aniron-bearingolivine)andthebluish-greencolorofoxygen-starvedbloodinyourveinsaretelltalesignsofdivalentiron.Inthisguise,ironbondstooxygeninaone-to-oneratio.Andbecausemagnesiumandironatomsaresimilarinsize,theseelementsoftensubstitutefreelyforeachotherincommonmineralsofEarth’scrustandmantle.SomeofEarth’smostabundantminerals,includingolivine,garnet,pyroxene,andmica,havevariantsthatdisplayprettymuchanymagnesium-to-ironratio,fromcolorlessversionswith100percentmagnesiumtodark-huedvarietieswith100percentdivalentiron.Ironisnotrestrictedtothe+2state,however.Inthepresenceoflotsof

electronacceptors,itreadilygivesupathirdelectrontobecomea+3ion.Thistrivalentformofironlendsacharacteristicbrick-redcolortoitshost.Redrust,redsoils,redbricks,andoxygen-richredbloodowetheirvividhuestotrivalentiron.Likealuminum,whichalsoadoptsthe+3state,trivalentironbondsinatwo-to-threeratiowithoxygentoformFe2O3—acommonmineralnamedhematite,foritsbloodredcolor.Justasmagnesiumoftenproxiesforiron’sdivalentform,aluminumcommonlyreplacesiron’strivalentvariant.Themineralsgarnet,amphibole,andmicadisplayeveryimaginablealuminum-to-ironratio,withtheiron-richvarietiespresentingasredratherthangreen.Sowiththeextremelyusefultrickofswitchingbackandforthfromthe+2to

the+3state(we’llcomebacktothisremarkableabilityinacouplebillionyears,whenlifefirstcomesonthescene),ironinitsdivalentandtrivalentguisesactsliketheothermembersofthebigsix.Butwait—ironhasonemorecriticalroletoplayinEarth:itcanrathereasilyformametal.Allthetypesofchemicalbondsintroducedsofarinvolveanexchangeof

electrons,resultinginions.Silicon,aluminum,magnesium,calcium,andirongivethelectrons;oxygentakeththemaway.Consequently,theselinkagesarecalledionicbonds.However,metalsadoptaverydifferentbondingstrategy.Inametal,eachatomgivesuponeormoreelectrons,tobecomepositivelycharged.Butthosedisenfranchisedelectronshangaroundinthemetalinakindofsticky,negativelychargedsea,whichholdsallthepositivelychargedatomstogetherlikeregimentedarraysoflittleBBsinmolasses.Ironmetalisavastcollectionofironatomsthatcollectivelysharesuchdelocalizedelectrons.Theconsequencesofthiscommunalbehaviorareprofound.Foronething,all

thosesharedelectronsarefreetomovearound,sometalsmakeexcellentconductorsofelectricity(electricitybeingnothingmorethanthecontrolledflow

Page 61: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

ofelectrons).Bycontrast,inionicallybondedmaterialsmadeofoxygenplusmagnesiumorsilicon,everyelectronislockedintoplacesotightlythatelectricitycan’tpossiblyflow.Anotherconsequenceofmetallicbondingisthatsuchmaterialstendtobendratherthanbreak.Theelectronseasurroundingtheatomscanbefoldedandtwistedwithoutlosingitscollectivestrength,quiteunlikethebehaviorofmostbrittlerocksandminerals.Theperceptivereaderwillhavenotedthatironisnotaloneinperformingthis

metal-formingtrick.Aluminummetalcans,foil,andhouseholdwiringarecommonplace;magnesiummetalalloysareamainstayofhigh-techracingcarsandothertoys;andthesemimetalsiliconliesattheheartofeveryelectronicgadget(henceSiliconValley).Butmetallicaluminum,magnesium,andsiliconaremodernmarvelsofthechemicalindustry.Ittakeshugechunksofenergytoripthosestubbornelementsawayfromoxygen,andtheirmetallicstatesalmostneverforminnature.Ironislesscommittedtooxygenandmorefickleinitschemicalbonding

partners.Unlikesilicon,aluminum,magnesium,orcalcium,itisperfectlyhappytolinktootherelectronacceptors,notablysulfur—ironsulfideistheshinymineralpyrite,orfool’sgold.Unlikethoseotherelements,ironreadilyformsadensemetalthatsinkstothecenterofplanetsandformstheirmassivecores.

MoltenEarth

Thebigsixelements,eachofwhichisaninescapableconsequenceoftheevolutionofexplodingstarsandterrestrialplanets,arealsoresponsibleforEarth’smostabundantrocks.Theirdistinctivechemicalbehaviorssetourplanetonanirreversiblecourseoftransformationintotheworldweinhabittoday.Butbeforerockscouldform,Earthhadtocool.ImagineonceagaintheviolentyearsfollowingtheMoon-formingimpact.For

afewdaysorweeks,whatwouldbecomeEarthandwhatwouldbecometheMoonwerestillbeingsortedout.NeitherEarthnortheMooninthoseearlypost-Theiadayshadanysolidsurface.Thesecoalescingcompanionglobeswerebothboundedbyanencirclingmagmaocean,roilingandincandescentred,peltedbyanincandescentmoltensilicaterainattemperaturesofthousandsofdegrees.AstheairclearedofTheia’sremains,blast-furnace-likeheatradiatedfrom

Earthintothecoldvacuumofspace,inexorablycoolingtheplanet’soutershell.Evenso,cosmiceventsconspiredtokeepEarth’ssurfacemoltenawhilelonger.Foronething,bigasteroidskeptpoundingtheplanet.Eachcollisionaddedmore

Page 62: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

thermalenergy,superheatingtheimpactarea,thwartinganyattemptstoformastablecrust.Intensegravity-inducedtidesfromthenearbyMoonalsohelpedtomaintainEarth’sliquidstate,asanequatorialbulgeofturbulentmagmasweptaroundtheplaneteveryfivehours,fragmentingtheorganizationofanythin,solidveneer.Earth’samplestoreofhighlyradioactiveelements—boththeshort-lived,heat-generatingisotopesofaluminumandtungstenandthelong-livedradioactiveisotopesofuranium,thorium,andpotassium—continuedtoaddevenmoreheat.Andayoungandgrowingatmosphere,fueledbythevolcanicreleaseofvaporsrichincarbondioxideandwater,mayhaveamplifiedtheseeffectsbyinducinga“supergreenhouse”state.Foranunknownlengthoftime,perhapsahundredyearsorahundred

thousandyears—ageologicalblink—themoltenstateprevailed.Butcoolingandhardeningwerepreordained.Thesecondlawofthermodynamicsdemandsthathotobjects,lackingsignificantnewenergyinputs,mustcool,andthehottertheobject,thefastertherateofcooling.Threefamiliarmechanismsfacilitatethistransferofheat.Firstthere’s

conduction.Whenahotterobjecttouchesacoolerobject,heatenergymustflowfromhottocool.Thisprocess,painfullyobviousifyourfeethaveeverbeenburnedfromwalkingonsunbakedpavementoryourhandhaseverblisteredfromtouchingastoveburner,resultsfromtheconstanttwitchingofatoms.Atomsinhotterobjectsexperiencemoreviolentmotions.Whenacoolerobject,withmoreslowlywigglingatoms,contactsahotterobject,withmorefreneticatoms,someofthatviolentmotionistransferredbyatom-to-atomcollisions.Ifthehotobjectyoutouchishotenough,itcandisruptthemoleculesinyourskin,killingcells,causingaburn.Conductionisafinewaytotransferheatlocally,fromoneobjecttoanadjacentobject,butitisapoorchoiceforheattransferonaplanetaryscale.Itjusttakestoolongtomoveheatfromonewigglingatomtothenext.Convection,bywhichcollectionsofhotatomsmovethermalenergy

wholesale,isabetterplanetarychoiceforcooling.Youexperienceconvectionwheneveryouboilwater.Pourwaterinapan,turnuptheheat,andwait.Theprocessisslowatfirst,asthehotpancontactsthecoldwaterandtransfersheatbyconduction—wigglebywiggle,metalatomsinthepanjostlemoleculesofwater.Butsoonanothermechanismtakesover.Heatedvolumesofwateronthebottombegintoexpandandrisethroughthecooler,denseroverlyingwater,transferringheatenmassetothesurface.Simultaneously,thecooler,densersurfacewaterssinktothehotbottom.Fasterandfastertheheatexchangeprogresses,withcolumnsofwaterrisingandsinking,untilyoureacharolling

Page 63: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

boil.Throughtheconvectivecyclingofhotwaterupandcoolwaterdown,largevolumesofwaterspreadheatthroughouttheliquidinafastandefficientdance.OnthegrandscaleofEarth,convectionappearsoverandover—incooling

offshorebreezesonasummerday,ingrandoceancurrentsthatsweepfromtheEquatortotheArctic,intheturbulentlightning-lacedfrontsofthunderstorms,inboilinghotspringsandspurtinggeysers.AndsoitisinEarth’sinterior;cooler,densermagmasandrocksnearthesurfacesink,ashotter,less-densemagmasdeepdownrisetothesurface.ForallofEarth’shistory,convectionhasbeentheprimarydriverofplanetarycooling.Andthenthere’sradiation,thethirdmechanismofheattransfer.Anyhot

objectradiatesheattoitscoolersurroundingsintheformofinfraredradiationthattravels186,000milespersecondthroughavacuum.Thisfamiliarformofenergy,abundantlyevidentwheneveryourelaxandsoakuptheraysoftheshiningSun,issimilarinitsbehaviortowavesofvisiblelight(thoughheatradiationhasslightlylongerwavelengths).PerhapsthemostobviousinfraredenergysourceistheSun,whichbathesEarthininfraredradiationthattravelsacrossthevacuumofspaceinabout8.3minutes.Anelectricspaceheater,atoastyfireinyourfireplace,andanoldhotwaterradiatorareotherfamiliarexamples.Everywarmerobjectradiatesheattoitscoolersurroundings.Yourbodyisnoexception.That’swhyacrowdedauditoriumcangetsouncomfortablywarm—eachpersonradiatesheatlikeahundred-wattlightbulb—afactonemayeasilyverifybyputtingonapairofnight-visiongoggles,whichmakepeopleandotheranimalsthatemitinfraredradiationappeartoglowbrightlyinthedark.Therateofheattransfer,whetherbyconduction,convection,orradiation,

dependsonthedifferenceintemperaturebetweenthehotterandcolderobjects.Conductionisswifter,convectionmorevigorous,andradiationmuchmoreintenseifthetemperaturedifferencesarelarge.Earthisawarmplanet.OrbitingtheSunasitdoesinthecoldnessofspace,itisalwaysradiatingheatintothevoid.Butthered-hotpost-TheiaEarthblasteditsexcessheatenergyintospaceatarateunmatchedinmoderntimes.Itliterallyglowedintheblackvoidofspace.

FirstRocks

GivenEarth’sprodigiousheatlosstospace,theformationofarockycrustwasinevitable.Somewhere,probablynearoneofEarth’slesstidallystressedpoles,themoltensurfacecooledjustenoughforthefirstcrystalstoform.Butcooling

Page 64: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

andcrystallizingwasfarfromasimpleevent.Manyeverydaysubstanceshaveawell-definedtemperatureatwhichacoolingliquidbecomessolid—thefamiliarfreezingpoint.Liquidwaterfreezesat32degrees,silverymercurymetalat–38degrees,andethanol(thecommonalcoholinbooze)at–179degreesFahrenheit.Butmagmaisdifferent.Itisacuriosityofmagmathatitdoesn’thaveonesinglefreezingpoint(althoughfreezingpointinthecontextofmagmaatmorethan2,500degreesFahrenheitseemssomethingofanoxymoron).Let’sbeginwiththeimmediatepost-Theiainferno4.5billionyearsago,atime

whenEarthanditsMoonsharedaradiantsilicatevaporatmosphereattemperaturesof10,000degreesFahrenheit.Thathellishrockgascooledrapidlyandeventuallycondensedintodropletsandrainedmagmaontothenewtwinworlds,asitinexorablycooledtobelow5,000degrees,then4,000degrees,then3,000degrees.That’swhenthefirstcrystalsstartedtoform.SuchstoriesofEarth’sfirstrocksarethescientificdomainoftheexperimental

petrologists,womenandmenwhodevisenovellabtechniquestobakeandsqueezerocksinordertomimicconditionsofEarth’sdeepinterior.Thequesttodiscoverrockoriginsfacestwotechnicalchallenges.First,youneedtocontrolincrediblyhightemperaturesofthousandsofdegrees,farhotterthananyovenorfurnaceinyourhome.Todoso,scientistscraftplatinumwireintometiculouslyspacedcoils,throughwhichtheydeliverhighelectricalcurrentstoachievetemperatureextremes.Evenmorechallenging,thesetemperaturesmustbeappliedwhilesamplesaresubjectedtocrushingpressurestensorhundredsofthousandsoftimesthatoftheatmosphere.Forthisexactingtask,researchersenlistmassivehydraulicramsandgiantviselikepresses.Formorethanacentury,theCarnegieInstitution’sGeophysicalLaboratory,

myscientifichome,hasbeenacenterfortheseheroicquestsforEarth’sdeeptruths.Forashortwhile,beforehisuntimelydeathbyhospital,IhadthechancetoworksidebysidewithHattenS.Yoder,Jr.,oneofthepioneersofexperimentalpetrologyandtheworld’sforemostexpertontheoriginsofbasalt.Imposing,dynamic,enthusiastic,andattentive,Yoderwasliterallyatoweringfigureinthefield.AsanavalofficerinWorldWarII,hewasintimatelyfamiliarwithgiganticmetalhardware.Inthe1950s,hejoinedtheGeophysicalLaboratoryandusednavalsurplusgunbarrelsandarmorplating,stillpaintedbattleshipgray,tobuildthehigh-pressurelabthatwouldframenotjusthishalf-centurycareerbutourcomprehensionofthegroundwestandon.ThecenterpieceofYoder’sdevicewasa“bomb”—amassivesteelcylindera

footindiameter,twentyincheslong,withaninch-diameterbore.Oneendofthebombwasconnectedtoaseriesofgaspumps,compressors,andintensifiersthat

Page 65: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

couldgenerateastaggeringtwelvethousandatmospheresofgaspressure—thepressurefoundtwenty-fivemilesbeneathEarth’ssurface—withapent-upenergyequivalenttotheexplosivepowerofastickofdynamiteiftheapparatuseverfailedcatastrophically.Thebomb’sotheropenendacceptedafoot-longrocksampleassemblyandagianthexagonalnut,sixinchesindiameter.Wesealedthedevicebytighteningthenutwithathree-foot-long,twenty-poundwrench.ThebeautyofHatYoder’sapparatuswasthatwecouldloadpowderedrock

andmineralsamplesintolittlegoldtubes,packthetubesintoacylindricalheater,andsecuretheentireassemblyinsidethebomb’spressurechamber.Pumpupthepressure,turnontheelectricheater,andthebombdidallthework.Eachexperimentalrunhelduptosixsmallgoldtubes;eachrunlastedfromafewminutestoafewdays.HatYoder’sremarkableinventionwasideallysuitedtostudyhowrocksevolveinEarth’scrustanduppermantle.WhatHatYoderandhiscolleaguesfoundwasthatanincandescentmeltrich

inthebigsixelementswilltypicallybegintosolidifybyformingcrystalsofthemagnesiumsilicateolivineasitcoolsbelowabout2,700degreesFahrenheit.OnbothEarthandtheMoon,duringthatlong-agocoolingperiod,beautifultinygreencrystalsbegantogrowinthemagmaasmicroscopicseeds,whichexpandedtothesizeofBBs,peas,grapes.Butolivineistypicallydenserthantheliquidinwhichitgrows,sothosefirstcrystalsbegantosink,fasterandfasterasthecrystalsgrewlargerandlarger,accumulatinghugedeepmassesofnearlypurecrystals—formingastunninggreenrockcalleddunite.OnEarththisrockisrelativelyraretoday,appearingatthesurfaceonlyonthespecialoccasionswhenmountain-buildingactivitiesofupliftanderosionexposethedistinctivedense,deep-formedolivinecumulates.Thecontinuoussinkingofolivinecrystalsgraduallyalteredcoolingmagmas

insideEarthandtheMoon.Theremaininghotmeltschangedcomposition;astheybecameprogressivelydepletedinmagnesium,theybecamecorrespondinglymoreconcentratedincalciumandaluminum.OntheMoon,asthemagmaoceancontinuedtocool,asecondmineralstartedtoform.Anorthite,afeldsparmadeofcalciumaluminumsilicate,begantocrystallizealongsideolivine,formingpaleblocks.Unlikeolivine,anorthiteislessdensethanitshostliquid,soittendstofloat.OntheMoon,immensequantitiesofanorthitepoppedtothesurfaceofthemagmaoceantoformavastcrustoffloatingfeldsparmountainrangesrisingasmuchasfourmilesabovethemoltensurface.Thesewhitish-graymasses,whichstilldominate65percentoftheMoon’sreflectivesilveryface,arecalledtheLunarHighlands.Risingastheydiddirectlyfromthemagmaocean,theyaretheoldestknownformationsontheMoon.Apollosamplesrevealarangeof

Page 66: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

ancientagesforthesedistinctiveanorthositesfromasyoungas3.9billionyearstoalmost4.5billionyears,shortlyaftertheBigThwack.OnEarth,withitswettercomposition,deepermagmaoceans,and

correspondinglygreaterinternaltemperaturesandpressures,asomewhatdifferentscenariounfolded.AsmallamountofanorthiteprobablycrystallizedearlyinEarthhistoryinsomenear-surface,low-pressureenvironments,butitwasaratherminormineral.Instead,magnesium-richpyroxene,thecommonestofthechainsilicateminerals,appearedinabundance,tocomminglewitholivineinathickcrystalslush.Earth’searliestrocksthuspredominantlyfeaturedolivineandpyroxeneinahard,greenish-blackrockcalledperidotite.VarietiesofperidotitebegantocrystallizethroughoutEarth’souterfiftymiles,probablycommencingmorethan4.5billionyearsagoandcontinuingformanyhundredsofmillionsofyears.Inspiteofitsearlyabundance,peridotite,too,isrelativelyrareatEarth’s

surfacetoday.Byonepersuasivescenario,raftsofperidotitehardenedandcooledtoformEarth’sfirsttransientrigidsurface.Butcoolingperidotite,likeitsdunitepredecessor,issignificantlydenserthanthehotmagmaoceaninwhichitformed.Theperidotitesurfacelayerthuscracked,buckled,andsankbackintothemantle,todisplacemoremagmathatcooledtoformmoreperidotite.Overaspanofhundredsofmillionsofyears,themantleitselfslowlysolidified,ridingakindofperidotiteconveyorbeltthatoperatedinEarth’souterfiftymiles.Theratioofdensesolidperidotitetomagmaincreased,untiltheuppermantlewasmostlysolidolivine-pyroxenerock.

CoreTruths

Deeperinthemantle,fiftytotwohundredmilesbeneaththecrust,coolingandcrystallizationmusthaveproceededinasimilarfashion,albeitmoreslowly.Detailsoftheprocessremainuncertain—thenextgenerationofhigh-pressure,high-temperatureapparatusmustbebroughttobeartosortoutthecomplexities—butseparationofcrystalsfrommeltsbysinkingandfloatingprobablyplayedasignificantrole,astheydidinthenearersurfaceenvironment.Muchofwhatweknowofthosehidden,deepdomainscomesfromthe

scienceofseismology,thestudyofsoundwavesspeedingthroughEarth’sdeepinterior.Earthisconstantlyringinglikeabell:crashingtides,rumblingtrucks,andearthquakesbothbigandsmallallconspiretoshakeEarthandpropagateseismicwaves.Andlikesoundwavesinasteep-walledcanyon,seismicwavesechowhentheybumpintoasurface.SeismicwavesrevealthatEarth’sinterioris

Page 67: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

acomplexlylayeredplace.Atthemostbasicanatomicallevel,Earthistriplylayered—ithasathin,

lower-densitycrustatthesurface,athick,higher-densitymantleinthemiddle,andathicker,reallydensemetalliccoreinthecenter.Eachofthosethreedomainscontainsfurtherlayering.Themantle,forexample,isdividedintothreesublayers—uppermantle,transitionzone,andlowermantle.Theperidotite-dominateduppermantleextendsdownperhaps250miles,atwhichdepthpressureforcestheatomsinolivinetopackintoadensersilicatecrystalformcalledwadsleyite,thedominantmineralofthemantle’stransitionzone.Thelowermantle,150milesfartherdown,featuresanevendenserassemblageofmagnesiumsilicates.Thepressuresinthelowermantlearesohigh—hundredsofthousandsoftimesthesurfacepressure—thatsilicon-oxygenbondsadoptanevendenser,moreefficientpackingarrangementofatomscalledperovskite.Seismicstudiesdocumentthenatureandextentofeachofthese

mineralogicallydistinctmantlelayers,andbyandlargethetransitionsfromonetothenextareneatandtidy.Theexactdepthsofthetransitionsvaryslightlybytenortwentymilesfromplacetoplace—beneaththecontinentsversustheoceans,forexample—buteachboundaryappearstoberelativelysmoothandwellbehaved.Bycontrast,seismologyprovidestantalizingevidencetosuggestthatthecore-mantleboundaryisanespeciallycomplicatedzone,ratherdifferentfromthecleanmantle-mantletransitions.Toafirstapproximation,thecore-mantleboundaryproducestheexpectedstrongecho.Indeed,thedensitycontrastbetweensilicatemantleandmetalcoreissoextremeastocreateaphysicalboundaryassharpasthatbetweenairandwater—producingthestrongestreflectedseismicsignalfromEarth’sdeepinterior.Morethanacenturyago,thatdividewasoneofthefirsthiddenfeaturesofEarth’sdeepinteriorthatseismologistsdiscovered.Aperfectlysmoothandregularboundarywouldproduceasharp,focused

seismicreflection—anechoingresponsethatcouldberecordedasadistinctivespikeonaseismometer.Butseismicsignalsreflectingoffthecore-mantleboundaryareoftenmessy,smearedout,brokenup.There’sextrastructuredownthere,likeirregularlumpsorpilesofdebris.Geophysicists,whoarenotalwaysknownforemployingthecatchiestterminology,callthislumpychaoticzonetheD´´(Ddoubleprime)layer.(Astrophysicists,whocoinedsuchimaginativetermsasbrowndwarf,redgiant,darkenergy,andblackhole,arerathermoresuccessfulatthescientificnamegame.)ThecomplexityofthisdeepD´´featureisinparttheresultofthesharp

densitycontrastbetweenthecore’shomogeneousironmetalandthemantle’s

Page 68: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

variedoxygen-richminerals.Allmantlemineralsfloatonthedensecorelikecorksonwater,butthesediversemineralscandifferwidelyintheirdensities.Intheprimordialmagmaocean,somesilicatessank,andsomefloated.Asaresult,bigchunksoftheearliestcrystallizedsolidssankthroughthemantleallthewaydown,tofloatlikeraftsonthemetalcore.Someseismologistsenvisionthree-hundred-mile-high“mountains”withirregularpilesofdensemineralsrestingonthecore-mantleboundary,wheretheychaoticallydeflectseismicsignals.Surprisingly,theremayalsobebigcore-mantleboundarypuddlesandponds

ofunusuallydensesilicateliquid,perhapsrichintheelementsaluminumandcalciumaswellasaslewof“incompatibleelements”thatseemtobemissingfrominventoriesofEarth’souterlayers.Wehavenoeasywaytobesure,butseismologistspointtodeep,localized“ultra-lowvelocityzones,”intheD´´layerjustabovethecore-mantleboundary,whereseismicwavestravelabout10percentslowerthantheydoinadjacentrocks.Slowseismicwavesareoftenatelltalesignofliquid.Suchdeepliquidlakesandpondscouldalsoprovideaneatsolutiontothatnigglingmissing-elementproblem:juststickalltheincompatibleelementsintheinaccessibleD´´layer,wheretheyareforeversequesteredinthatenigmatic,heterogeneouszoneofmineralogicaljunk.Andwhatofthecoreitself?WhenEarthwasveryyoung,thedense,iron-rich

core,morethan2,000milesindiameter,hadfullyformedandwasprobablyentirelymolten(unliketoday,whentheinnercoreappearstobeagrowingballofsolidironcrystals750milesindiameter).Temperaturesatthatsharpcore-mantledividinglinemayhaveexceeded10,000degreesFahrenheit,whilepressuresexceededamilliontimesthatofourmodernatmosphere.Thehotcorewasfromtheoutset,andremainstothisday,adynamicplaceof

swirlingliquidmetalcurrents.OneimportantconsequenceofthesecurrentswastheearlygenerationofEarth’smagneticfield—themagnetosphere,whichislikeanimmenseelectromagnet.Magneticfieldsbendthepathsofelectricallychargedparticles,soEarth’smagnetosphereprovidesakindofinvisibledeflectorshieldtotheintensebombardmentofsolarwindandcosmicrays—abarrierthatisperhapsaprerequisitefortheoriginsandsurvivaloflife.Thecoreisalsoanimportantsourceofheatenergythathelpstodrive

convectioninthemantle.Eventodayplumesofhotmagmafromthecore-mantleboundaryrisealmosttwothousandmilestothesurfaceinvolcanichotspotssuchasHawaiiandYellowstone.Remarkably,thefixedlocationsoftheseplumesonthesurfacemaybedictatedbydeeptopography.Thethree-hundred-mile-tallmountainsoftheD´´layermayactasthermalblanketslyingonthehotcore,soit’spossiblethathotspotsoriginateatthedeepest,heat-releasingvalleys

Page 69: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

betweenthoseepic,hiddenmountains.

Basalt

Atheart,themineralevolutionstoryrestsonapreordainedsuccessionofrocktypes,eachmineral-formingstagefollowinglogicallyfromthepreviousstage.Earth’sfirstperidotitecrustwasacriticalbutfleetingjuvenilephase,bornoftheprimordialmagmasea.Whenitultimatelycooledandhardened,itprovedtoodensetoremainanywherenearthesurfaceandthussankbackintoEarth’sdepths.Another,lessdenserockwasrequiredtogirdletheglobe.Thatrockwasbasalt.Blackbasaltdominatesthenear-surfacerocksofeveryterrestrialplanet.The

asteroid-scarredexteriorofMercuryismostlybasalt.Soarethescorched,mountainoussurfaceofVenusandtheweatheredredsurfaceofMars.TheMoon’sdarklysplotchedmares(seas),whichcontrastsovividlywiththepalergrayanorthositehighlands,arethehardenedremainsofimmenseblackbasalticlakes.AndonEarth,70percentofthesurface,includingallthefloorsofalltheoceans,isunderlainbybasaltcrust.Basaltcomesinavarietyofflavors,buttwoessentialsilicateminerals

dominatethemall.Onekeymineralisplagioclasefeldspar,byfarthemostimportantaluminum-bearingmineralinterrestrialplanetsandmoonsandEarth’scommonestcrustalmineral.MyMITprofessorDaveWonesonceadvisedmethatifIwasevershownamysteryrockandquizzedastoitsmineralogy,Ishouldjustsay“plagioclase,”andI’dberight90percentofthetime.Thesecondessentialmineralogicalingredientofbasaltispyroxene,thecommonchainsilicatealsofoundinperidotite.Pyroxeneisoneofahandfulofcommonmineralsthatcanincorporateallofthebigsixelements(andmanymorelesscommonelements,aswell).Tounderstandtheoriginsofplagioclaseandpyroxene,thetwoessential

mineralingredientsofbasalt,considerthestrangefreezingandmeltinghabitsofrocks.Fourandahalfbillionyearsago,asEarth’smagmaoceancooled,olivineformedfirst,thenalittlebitofanorthite,andfinallyalotofpyroxene.Theresultingmagnesiumsilicaterockwasperidotite,whichformedmuchoftheuppermantle.Asmassesofperidotiteformedandsank,theywerereheatedandpartiallyremelted.Oureverydayexperiencewithmeltingsuggeststhatthechangefromsolidto

liquidtakesplaceatonespecifictemperature.Watericemeltsat32degrees,mosthouseholdcandlewaxatabout130degrees,anddensemetalleadat621

Page 70: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

degreesFahrenheit.Butrockmeltingisn’tsosimple;mostrocksdon’tmeltentirelyatonetemperature.Ifyouheatperidotitetoabout2,000degreesFahrenheit,thefirstmeltwillappear.(Itwillappearsooneriftheperidotiteisrichinvolatilewaterandcarbondioxide.)Thecompositionofthosefirstmicroscopicdropletsdiffersdramaticallyfromthatofthebulkofperidotiterock.Theinitialmelthasalotmorecalciumandaluminum,alittlemoreironandsilicon,andalotlessmagnesium.Thisinitialliquidisalsoalotlessdensethanitsperidotitehost.Consequently,evena5percentmeltingofperidotiteinthemantlegeneratesalotofmagmathatgathersalongmineralgrainboundaries,collectsinfissuresandpockets,andrisestowardthesurface—magmathatwilleventuallybecomebasalt.OverbillionsofyearsofEarthhistory,thepartialmeltingofperidotitehasgeneratedhundredsofmillionsofcubicmilesofbasaltmagma.Moltenbasaltcomestoplanetarysurfacesintwocomplementaryways.The

morespectacularisthroughvolcaniceruptionslikethoseinHawaiiandIceland,withfierymagmafountainsandriverlikeflows.Suchdramaticeruptionsareaconsequenceofwaterandothervolatiles,whichremainlockedinthesilicateliquidatthehighpressuresmorethanamiledown,butwhichtransformexplosivelytogasnearthesurface.Suchexplosivevolcanismcanejectashandtoxicgaseshighintothestratosphereandcanhurlcar-sizevolcanic“bombs”morethanamileoutwardtosmushthesurroundingcountryside.Layerbylayer,thesebasalteruptionsoflavaandashcanbuildmountains

severalmilestallandcoverthousandsofsquaremilesinblackrock.Thistypeofbasalticlavaflowandashisextremelyfine-grainedandrichinglass,theconsequenceofliquidcoolingsorapidlythatcrystalsdon’thavetimetoform.Theresultisafeaturelessblackcrustofhardenedlava.Otherdistinctiveolivinebasalts,whichoccuronlywhenperidotiteispartiallymeltedatrelativelyshallowdepthsoflessthantwentymiles,containafewlustrousolivinecrystalsthatformedundergroundinthefirststageofmeltsolidification.Thegreencrystalsdecoratetheotherwiseblandblackrock.Ittakesalotofexplosiveforceformagmatobreakthroughtothesurface,so

asignificantfractionofbasalticmagmanevermakesitaboveground.Rather,thesered-hotliquidsarestuckfarunderground,wheretheycoolmoreslowlyandforminch-long,lathe-shapedfeldsparandpyroxenecrystalsinrockscalleddiabaseorgabbro.Sometimesthemagmaisinjectedintonear-verticalcracksinsubsurfacerockstoformsmooth-faceddikes.Ifthehostrockissoftanderodesawaymillionsofyearslater,theresultcanbealong,straightdiabasewallthatcanlookuncannilylikeacrumblingarchaeologicalsite.Alternatively,ifthe

Page 71: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

magmaisinjectedbetweenflat-lyinglayersofsedimentaryrocks,itcanformathickblanketlikesill.ThePalisadescliffsontheHudsonRiver,prominentjustupstreamfromNewYorkCityonthewesternshoreoftheHudsonRiver,aretheresultofoneofaseriesofbasalticsillsthatdipgentlytothewesttoformparallelhighlands(andsomeofthemostexpensiverealestate)innorthernNewJerseyandsouthernNewYork.Stillothertimestheliquidsitsandcoolsinirregularmagmachambersthatcanformmilesundergroundandthatstretchformilesacross.Butwhatevertheirultimategeometry,diabaseandgabbroarereallyexactlylikebasalt.Withtheinevitableformationofthebasalticcrust,Earthforthefirsttime

enjoyedasturdy,solidsurfacethatcouldfloat.Beforethecrust,whenmagmaandperidotitealonedefinedtheplanet’ssurface,notopographicfeaturecouldriseforlongtoasignificantheightabovethemeanelevation.Red-hotperidotitemushisnotnearlystrongenoughtosupportamountain.Buttoughbasalt,withitsrelativelylowdensity,isadifferentstory.Theaveragedensityofbasaltismorethan10percentlowerthanthatofperidotite.Thatmeansafloatingmassofbasalttenmilesthickwillprojectmorethanamileabovethemagmaocean.Rapidlyaccumulatingvolcanicconescouldriseevenhigher,perhapsmorethantwomilesabovethemean.Asaconsequence,Earth’sblemishedsurfacebegantodevelopsomerealcharacter.

HostileWorld

Seenfromspace—fromthesafedistanceoftheyoungMoon,forexample—Earth’sbasalticveneerappeareddeepblackwitharcuateredcracksandlocalbrightpointswhereimmensefountainingvolcanoesbrokethesurface.Jetsofdirtywhite,ash-ladensteamobscuredsomeofthemostvolatile-richvolcanicconesandadjacentportionsoftheglobe.Imagineyourselfbackmorethan4.4billionyearsintimetothenewlyminted

blacksurfaceofthatHadeanEarth.Youcouldnothavesurvivedlongintheharsh,alienlandscape.Meteorsincessantlybombardthesurface,crackingthethinbrittleblackcrust,showeringshatteredrockandgobsofmagmaacrosstheplains.Countlessvolcanicconesrise,growingsteadilytoheightsofmanythousandsoffeet,theirimmensemagmafountainspoweredbytheexplosivereleaseofsteamandothervolatilesthatwill,somefineday,coolenoughtobecometheoceansandatmosphere.Notraceoflife-supportingoxygenistobefound.OnthisunforgivingyoungEarth,yournostrilsareassaultedbyfoul-smellingsulfurouscompounds,yourskinscaldedbyventingsteam,youreyes

Page 72: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

burnedbythenoxioushotgases.Yourexcruciatingdeathagonieswillbebriefonsuchahostileworld.TherecedingMooncontinuedtoplayamajorroleinshapingthecrust.Globe-

spanningtidesofrockandmagma,thoughlessextremethaninthefirstcenturiesfollowingTheia’sdemise,repeatedlycrackedandbuckledthesurface,openingfissuresthatoozedred-hotrockymushandthwartedtheformationofasolidsurface.TheMoon’suncomfortableproximityalsoperpetuatedEarth’sinsanelyrapidrotation—five-hourdayspersisted,accompaniedbymegastormsandultratornadoesfarmoreseverethananythinghypedontoday’sWeatherChannel.Butbeneaththatwretchedsurface,Earth’sinexorableevolutiontoaliving

worldhadbegun.Thewell-mixed,molteninteriorbegantoseparateintovolumesofdistinctivecompositions—matterthatwouldbecomethecontinentsanddeep-seacrust,theatmospheresandoceans,plantsandanimals.Heatingandcoolingandcrystallization,crystalseparationbysettlingandfloating,accumulationofperidotite,partialmelting—theseprocessesshapedEarththroughitsinfancy4.5billionyearsago,andtheypersistevenuntothepresentday.Earth’svastreservoirofinternalheat,thecentralthemeofthischapter,

continuestoplaythedominant,transformativeroleinshapingourplanetaryhome.Todaythemostobviousmanifestationsofthisdeep,hotrealmareintermittentvolcanoes,withtheirfierymagmafountainsandred-hotriversofmoltenrock.Eruptinggeysersandsulfuroushotspringsalsohintatahellishhiddensubsurfacerealm.ThroughoutEarth’s4.567-billion-yearhistory,asheatinexorablyworkeditswayoutwardfromtheincandescentcentertothefracturedcrustandthenceintothecoldnessofspace,thesurfacehasbornethebrunt.BuffetedbytheswirlingconvectionofthemantleandstressedbytheMoon’sincessantpull,thecrusthasbentandbuckled,crackedandtwisted.Continentshaveconstantlyshuttledacrosstheglobe,rippingapart,colliding,andscrapingpastoneanotherintheongoingheat-drivendanceofthetectonicplates.Everydayofourlives,Earth’sinnerheatreworkstherocksonwhichwelive,recyclesthewaterwedrink,andalterstheairwebreathe.Becauseofheat,Earthwasdestinedforabrieftimetobeablackworld,

glazedwithathinbasalticveneer.Butthatbriefjuvenilephasecouldnotlastlong.Anewvolcano-bornlayerofbrilliantbluewasabouttogirdtheglobe.

Page 73: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet
Page 74: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Chapter4

Page 75: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

BlueEarth

TheFormationoftheOceansEarth’sAge:100to200millionyears

Earth’sinfancy,itsfirsthalf-billionyearsorso,isshroudedinmystery.Rocksandmineralsprovidetangibleevidenceformostofourplanet’sstoriedpast,butfewrocksormineralssurvivefromthatmostancientHadeantime.Asaconsequence,anynarrativeofEarth’sinitialcoolingandthesubsequentwateringofitsblacksurfacemustbebasedonspeculationsinformedbyexperiments,models,andcalculations.Evenso,someuncertaintieswillalwaysremain.That’snotabadthing.Whatmakeseachdayatthelabnewandexcitingisthe

richnessof“whatweknowwedon’tknow”andthepossibilityeachdaythatwewilldiscoversomesmallcluethatbringsusclosertotruth.Evenmoretantalizingistheprospectofdiscoveringaspectsofthenaturalworldthat“wedidn’tknowwedidn’tknow”—discoveriesthatincreasethebreadthofmystery.*Thesenewwaysofaskingquestions—“Howdidmineralsevolve?”forexample,ratherthansimply“Whataretheirchemicalandphysicalproperties?”—pavethewayforbreakthroughs.It’simportanttotakeaninventoryofwhatwedon’tknow.Alltheevidence

suggeststhattheMoonformedbyanepicimpact,yetwecan’tbesureexactlywhenthecollisionoccurred,norwhatwerethenuancesofTheia’sfinaltrajectory.Followingthatcolossalcollision,wecanimagineanincandescenttorrentialrainofsilicatesontoEarth’storturedmagmaocean,butthedurationandrateofcoolingofsuchasuperheatedworldarepoorlyconstrainedandwillremaintopicsofmuchdebatefordecadestocome.TheproximityandrecessionrateofthenewlyformedMoon,thoughcriticaltounderstandingthedynamicsandevolutionofearlyEarth,areequallyuncertain.Likewise,nooneknowswhentheoceansfirstformed,norexactlywhattheylookedlike.Butformtheydid,andthefollowingstoryisbasedonthebestevidenceavailableandsoisasgoodasitgetsforthetimebeing.TheblackEarthcouldnotremainblackforlong.Global-scalevolcanism

spewedhotnitrogen,carbondioxide,noxioussulfurcompounds,andwatervaporintothethickeningatmosphereatratesofbillionsoftonsperday.Those

Page 76: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

volatileelementsandcompounds—theverysamemoleculesthatformedthevariedicesoftheformernebula,theverysameatomsthatyouarenowbreathingandthatmakeuptheintricatetissuesofyourbody—playedmanyrolesintherapidlyevolvingEarth.Whenhotwatermixedwithrockmagmas,itloweredtheirmeltingtemperaturesandturnedthemintoasuperheatedsoupthatrosetowardthesurface.Closetothesurface,thegasesdissolvedinthatmagmaticsouptransformedfromliquidtoviolentlyexpandinggasinmassivevolcanicexplosions,muchasashakensodawillblastitswayoutofaconfiningcan.Water-richfluidsalsodissolvedandconcentratedrareelements—beryllium,zirconium,silver,chlorine,boron,uranium,lithium,selenium,gold,andmanymore—thatwouldeventuallybecomethegreatorebodiesofEarth’sdiversifyingcrust.Atthechaoticsurface,roaringriversandcrashingwavesbecameprincipalagentsfortheerosionofrock,theformationofEarth’sfirstsandybeaches,andtheaccumulationofthickeningnear-shorewedgesofsediments.Inshort,waterbecamethechiefarchitectofEarth’ssolidsurface.Anyfocusonoceansandatmospherereflectsasomewhatanthropocentric

view,forthesefluidbodiesaretrivialcomponentsoftheplanetasawhole.Oceanstodayrepresentonlyabout0.02percentofEarth’stotalmass,whiletheatmosphereisnomorethanonepartpermillionofitsbulk.Nevertheless,oceansandatmospherehaveexerted,andcontinuetoexert,disproportionatelylargeinfluencesinmakingEarththeuniqueworldthatitis.Fourprincipalplayers—nitrogen,carbon,sulfur,andwater—taketheleading

rolesasEarth’smobile,gaseouscomponents.Alloftheseingredientsareproducedabundantlyinlargestars,allarewidelydispersedinsupernovaexplosions,andallbecameconcentratedinthemostprimitivecarbon-richchondritemeteoritesmorethan4.56billionyearsago.Inmanyrespects,theaveragecompositionofchondritemeteoritesclosely

matchesthatofEarthtoday.Thebigsixelementsdiscussedinchapter3(oxygen,silicon,aluminum,magnesium,calcium,andiron)areremarkablysimilarintheirproportions,asarenumerouslesscommonelements.ButevenacursorystudyofthosefascinatingancientobjectsrevealsthatmuchofEarth’soriginalinventoryofvolatilesismissingfromtoday’splanet.Themostprimitivechondritesaveragemorethan3percentcarbon,butalltheknowncarbonreservoirsonEarthnowadduptolessthan0.1percent.Similarly,thewatercontentofchondritesismuchgreaterthanEarth’smodernaverage—perhapsahundredtimesmore.Suchgrosscompositionaldisparitiespointtoachaoticandviolentpast.MostofEarth’svolatilesmusthavebeenlosttospaceordeeplyburied,farbeyondourabilitytosample.

Page 77: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

ThekeytounderstandingEarth’searlytransformationfromablasted,inhospitableblackplanettoacooler,habitableblueplanetliesinthestoryofitsperipateticvolatiles.ButnovolatilessurvivedinanunalteredstatefromtheEarth’sfirsthalf-billionyears.Almostallthenitrogenandcarbon,allthesulfurandwater,havebeenrecycledcountlessthousandsoftimes,asthesameatomshavebeenusedoverandoveragain.Chondritemeteoritesprovideaquantitativestartingpointforourguesswork;thefewknownrockandmineralsamplesfromEarth’sfirstbillionyears,coupledwithdatafromtheMoonandotherobjectsintheSolarSystem,furtherdelineateourspeculations.AndaswasthecasewithunderstandingtheevolutionofmantleandcrustduringEarth’sfirsthundredmillionyears,aswellastheformationofstarslongbeforethat,thekeytoanyviablescenarioisknowledgeoftheimmutablecharacteristicsoftheelementsinquestion—inthisinstance,thephysicalandchemicalpropertiesofvolatilenitrogen,carbon,sulfur,andwater.Ofthesefouringredients,nitrogenistheeasiesttodealwith.It’sachemically

inertgasthatformsfewminerals,playsalmostnoroleinrockformation,andtendstoconcentrateintheatmosphere.OnlysincetheriseoflifehasthenitrogencyclehadmucheffectonEarth’souterlayers.CarbonandsulfurwouldalsocomeintomuchgreaterprominenceoneortwobillionyearsintoEarth’sexistence,whenlifeandanoxygen-richatmospheretransformedthesurfacerealm.Butthefourthingredient,water,hasbeencentraltoEarth’sstoryfromtheget-go.

Water:AShortCV

Water’svariedgeologicalrolesfollowfromtheuniquechemicalpropertiesofhydrogenoxide.Recallthathydrogeniselementnumberone,whileoxygeniselementeight;neitherelementhasamagicnumberoftwoortenelectrons.Eachelectron-acceptingoxygenatomseekstwomoreelectronstoreachthemagicnumberten,whileeachhydrogenatomwithoneelectrontosharewantsonemore.Themolecularresultisatwo-to-oneratioofhydrogentooxygen:H2O.TheatomsinthiscompactunitformaVshape:thecentrallargeroxygenatomisflankedbytwohydrogenbumps,notunlikeMickeyMouse’sears.Theoxygenatom,havingborrowedelectronsfromtwohydrogenatoms,assumesaslightnegativeelectricalcharge,whileeachhydrogenatomiscorrespondinglyslightlypositive.Theresultisapolarmolecule,withopposedpositiveandnegativeelectricallychargedparts(Mickey’searsandchin,respectively).Suchpolarityinwater’smoleculesaccountsformanyofitsdistinctive

Page 78: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

properties.Polarwaterisasupersolvent,becauseitspositiveandnegativeendsexertstrongforcesthatcanpullapartothermolecules.Consequently,tablesalt,sugar,andmanyotheringredientsdissolverapidlyinwater.Mostrockstakeabitlongertodissolve,butovermillionsofyears,theoceanshavebecomerichinalmostallthechemicalelements.(Asaconsequence,everycubicmileofoceanwaterholdsaboutfourhundredpoundsofgold—morethan$10millionworthatthepreciousmetal’srecenthighvalue,ifonlywehadthetechnologytoextractit.)Thisunparalleledabilityofwatertodissolveandtransportotherchemicalsalsomakesitanidealmediumfortheoriginsandevolutionoflife.AlllifeonEarth,andperhapsalllifeinthecosmos,dependsonwater.Thepolarityofwatermoleculescausesthemtobondstronglytooneanother:

thepositivesideofonemoleculeattractsthenegativesidesofothermolecules.Consequently,iceisanunusuallystrongmolecularsolid(afactyou’llnotsoonforgetifyou’veeverfallenhardwhileice-skating).Unusuallystrongintermolecularbondingalsoresultsinwater’sunusuallyhighsurfacetension—afascinatingpropertythatallowssmallinsectsliterallytowalkonwater.Surfacetensionalsoleadstocapillaryaction,whichcauseswatertorisethroughthestemsofvascularplantsandallowstreestosoarhundredsoffeetabovetheland.Roundedraindrops,pulledtogetherbythestrongmutualattractionofwatermolecules,areyetanothermanifestationofsurfacetensionandavitallinkinmaintainingEarth’sunusuallyrapidwatercycle.Nonpolarvolatilemoleculeslikemethaneandcarbondioxidecan’tformsuchdroplets.Theywouldjustfloatintheatmosphereasanultrafine,pervasivemist,so“rain”wouldbeunknownonaplanetdominatedbythoseatmosphericgases.Strongbondsbetweenmoleculesresultinanotherofwater’smostcuriousand

importantproperties:liquidwaterisabout10percentdenserthansolidice.Inalmosteveryknownchemicalcompound,thesolidsinksinitsliquid—asituationthatisintuitivelylogicalbecausetheregular,repeatedpackingofmoleculesinsolidscontrastswiththeirrandomdistributioninliquids.Thinkaboutstoringshoeboxesinthebackroomofashoestore.Neatstacksandrowsofboxes(likeperfectlyalignedmoleculesinasolidcrystalstructure)takeupmuchlessvolumethanarandompile(likechaoticallytumblingmoleculesinaliquid).Butinwater,themoleculesactuallypackmoreefficientlyintheirrandomliquidstatethantheydoinorderlyicecrystals.Theimportantconsequenceisthatice,whetheritisacubeinyourdrink,a

layeronafrozenriverorstream,oragianticeberg,floats.Wereitnotforthisunusualcharacteristic,manybodiesofwaterwouldfreezesolid,bottomtotop,ratherthanformingathick,protectivesurfacelayeroficeeverywinter.Insucha

Page 79: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

solidlyfrozenworld,aquaticlifewouldbeseverelychallenged,whilethevitalwatercyclewouldallbutcometoahalt.Curiously,thesamephenomenonisoneofseveralfactorsthatfacilitateice-skatingandskiing.Thehighpressureexertedbythebladeofyourskatepressingdownonsolidicehelpstoproduceathinlayerofdenserliquidwateroverwhichyoucanglide.Ifthetemperaturebecomestoocold,typicallybelowabout–100degreesFahrenheit,thelubricatingwaterlayerdoesn’tform,andice-skatingandskiingbecomemuchmoredifficult.Yetanotherdistinctivecharacteristicof“pure”waterisitslackofpurity.No

matterhowcarefullyfilteredordistilled,waterisnevermadeentirelyofH2Omolecules.Asmallfractionofthosethree-atomunitsinevitablysplitsapartintopositivelychargedhydrogenions(hydrons,orH+ions,whichareactuallyjustindividualpositivelychargedprotonswithoutanyelectronsattached),plusnegativelychargedhydroxylgroups(OH−ions).HydronsquicklylatchontowatermoleculestoproduceH3O+hydroniumions.Whatwecallpurewateratroomtemperaturecontainsequalnumbersofpositivehydroniumandnegativehydroxylgroups,ataconcentrationthattranslatestoapHof7(a“powerofhydrogen”of10−7molesofhydroniumgroupsperliter,inchemistryterms).AprimefocusofspeculationonEarth’searliestoceansistheirpHandsalt

content.Watereasilydissolveslotsofimpurities,someofwhicharepositivelychargedlikesodium(Na+)orcalcium(Ca2+)ions,andothersnegativelychargedlikechlorine(Cl−)orcarbonate(CO32−)ions.Aruleofthumbisthatthenetelectricalchargeofanybulkwatersolutionmustbezero:thetotalnumberofpositivechargesmustbebalancedbyanequalnumberofnegativecharges.Inpurewateratroomconditions,10−7molesofH3O+isperfectlybalancedby10−7molesofOH−.Inacids,however,excessH3O+hastobalancenegativeions(suchaschlorineinhydrochloricacid,HCl).Inbases,excessOH−hastobalancepositiveions(suchassodiuminthebasesodiumhydroxide,NaOH).ThestrengthofacidsandbasesisquantifiedbythepHscale.Smallervalues

ofpHpointtoacidicsolutionswithmoreH3O+thanOH−ions.AslightlyacidicsolutionwithpH6(typicalofuntreatedtapwaterinmanylocalities)hastentimesmorehydroniumionsthananeutralsolutionatpH7.Morestronglyacidicliquidsincludecoffee(pH5,withahundredtimesmoreH3O+),vinegar(pH3,withtenthousandtimesmoreH3O+),andlemonjuice(pH2,withonehundredthousandtimesmoreH3O+).Bycontrast,basesareliquidswithmoreOH−thanH3O+,andthuswithpHvaluesgreaterthan7.Commonbasesincludebakingsoda(pH8.5),milkofmagnesia(acommonantacidwithpH10),andhousehold

Page 80: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

ammoniacleaners(pH12).Asweshallsee,thepHandsalinityofEarth’searliestoceansremainsahotlydebatedmatter.

Water,WaterEverywhere

Waterisoneofthemostabundantchemicalsinthecosmos.Themorewelook,themorewefind,anditspresenceonotherplanetsandmoonsandcometsprovidescluestoitsabundanceonEarth,aswellasthepossibledistributionofwater-dependentlifeintheuniverse.Telescopicobservationscanbetricky,sinceourwater-richatmospheretendstoobscureallbutthemostconcentrateddepositsofH2Oonmoredistantsources.Nevertheless,someobjectsindeepspacerevealanicysurfaceviatheirdistinctiveabsorptionofinfraredradiation.Thisspectroscopicfingerprintrevealsthatsomecometsandasteroids

incorporatesignificantamountsoffrozenwater.AstronomershavedocumentednumerousicyworldsinourSolarSystem,fromPlutoanditscompanionmoonCharon,toSaturn’sluminousicerings.Allofthegasgiantplanets,thoughprimarilymadeofhydrogenandhelium,holdsignificantstoresofwatervaporintheirdenseatmospheres.AndJupiter’slargemoonsEuropaandCallistoarenowthoughttofeatureaniceveneerafewmilesthickovermuchdeeperencirclingoceansofwater.Closertohome,theotherterrestrialplanetsatfirstglanceappeartoberather

dry.MercuryissoclosetotheSunthatanynear-surfacewaterhaslikelybeenbakedoff,makingthishottestofplanetsalsothemostdesiccated.Venus,thenextplanetout,mayinitiallyhavehadanEarth-likeshareofwater,buttodayitappearstobealmosttotallylackinginnear-surfaceH2O.Itsthick,superheatedcarbondioxideatmospherespeaksofarunawaygreenhouseeffectandancientlossofwhatevernear-surfacewatermighthavebeentherewhenitformed.Mars,withitswhitepolaricecapsthatexpandandrecedeinconcertwiththe

687-daycycleofMartianseasons,isanaltogetherdifferentstory.Astronomershavelongspeculatedthattheredplanetmightbeawet,livingworld.Inthe1870s,duringaparticularlycloseorbitalapproachofMarstoEarth,ItalianastronomerGiovanniSchiaparellidocumenteddark,linearfeaturesthatheinterpretedasnatural,possiblywater-bearingchannels,orcanaliinItalian.WhentheEnglishtranslationofhisoriginaldescriptionserroneouslycalledthemcanals,implyinghigh-techengineeredstructures,theideaofanintelligent,extinctMartianracetookonalifeofitsown.MostnotableoftheseMarslifeenthusiastswasHarvard-trainedastronomerPercivalLowell,whobecame

Page 81: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

obsessedbySchiaparelli’sdiscoveriesinthe1890s.Heusedhisfamily’swealthtoconstructaprivateobservatoryinFlagstaff,Arizona,andtherehedevotedhimselftothestudyofMars.Employingastate-of-the-arttwenty-four-inchtelescopeundertheclearArizonaskies,heimaginedthathecouldresolveavastnetworkofcanalsstretchingfromthepresumablyice-coveredpolestothedesiccatedEquator.Inhisimmenselypopularbooks,Mars(1895),MarsandItsCanals(1905),andMarsastheAbodeofLife(1908),Lowelldescribesthelastdesperatetechnologicalmasterpieceofavanished,water-starvedrace.Lowell’scolorfulimaginingsfueledawaveofsciencefictionstoriesand

novels(includingH.G.Wells’s1898classic,TheWaroftheWorlds)butdidlittletoconvincethescientificcommunitythatMarsiswet,muchlessliving.Inspiteofmorethanacenturyofsubsequentstudiesemployinglargerandlargertelescopes,supplementedbyaflurryofsophisticatedMarsflybymissions(commencingwithMariner4in1965),orbiters(Mariner9wasthefirstin1971),andlanders(startingwithVikingin1976),definitiveevidenceforMartianwaterrepositoriesandtheirsignificantextentprovedelusive.Thepresenceofwatericeinthenorthernpolarregionswasfinally,unambiguouslydocumentedbytheVikingmissionswithspectralmeasurementsinthelate1970s,butonlysince2000,withanarsenalofinstrumentsonthelatestgenerationofsatellites,coupledwithscrapingtoolsonthePhoenixlanderandtheSpiritandOpportunityrovers,hasthetruevastextentofwaterandthenatureofitsrepositoriesonMarsbeenrevealed.TodaymostofMars’swateroccursassubsurfacepermafrostandperhapsas

groundwaterindeeperwarmzones—potentiallyhugerepositoriesthatremainhiddenfromthedryoutermostlayer.Hintsoftheextentofthissubsurfacewaterwereprovidedin2002bytheMarsOdysseyspacecraft,whichcarriedasophisticatedneutronspectrometer.WhencosmicraysbombardMars’ssurface,theycandislodgeneutronsfromhydrogen-rich(thatis,water-bearing)deposits.ThespectrometerwasdesignedtodetectsuchneutronsastheysprayoutfromawideswathoftheMartiansurface,fromtheEquatortohighlatitudes.However,theseintriguingresultsraisedasmanyquestionsastheyanswered,fortheexactformofwater—liquid,ice,ormineralbound—couldnotbedetermined.In2007NASA’sMarsReconnaissanceOrbiter,usingground-penetrating

radar,providedamuchhigher-resolutionpictureofthisburiedwater.Thesepioneeringmeasurementsdetectedglacier-sizeaccumulationsoficeinthemid-southernlatitudes.Morerecently,theEuropeanSpaceAgency’sMarsExpressOrbiteremployedasimilarradarsystemtodetectdeepiceacrossawiderswathoftheplanet.Someareasnearthesouthpolerevealice-richzonesmorethan

Page 82: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

fifteenhundredfeetdeep.Indeed,Marsmayholdaquantityofsubsurfacefrozenwaterequivalenttoaglobe-spanningoceanhundredsoffeetdeep.SoEarth’soceansmayhaveoncehadaMartiancousin.Watercanalsoberevealedbythepresenceofdistinctiverocksandminerals.

NASA’sPhoenixlanderanditspluckyrovers,SpiritandOpportunity,foundabundantcomplementaryevidenceintheformofmineralsformedthroughwater-rockinteractions.Water-richclaymineralsturnouttobeacommonphenomenoninthenear-surfaceenvironmentofMars,andtheymayrepresentmuchofthehydrogen-richmaterialthattheneutronexperimentsobservedseveralyearsearlier.Evaporitemineralscharacteristicofdried-uplakesoroceansarealsocommon,asisopal—apoorlycrystallizedvarietyofquartzthattypicallyformsinwetsedimentsontheoceanfloor.Asplanetaryscientistsexaminetheredplanetwithneweyes,theyalsosee

moreandmoreevidencethatwateronceflowedfreelyacrossthesculptedMartiansurface.High-resolutionphotosrevealancientrivervalleysandgulliesstrewnwithboulders,teardrop-shapedislands,slumps,andbraidedstreamchannels.Theselandformscutthroughlayersofsedimentthatappeartohavebeenlaiddowninshallowlakesorseas.Indeed,thebeachliketerracesthatgirdlethenorthernhemisphereofMarsimplythatnorthern-latitudeoceansmayoncehavecoveredmorethanathirdoftheMartiansurface.Ifso,thencoolerMarsmayhavebeenablue,life-givingplanetmanymillionsofyearsbeforeEarth.Andthenthere’stheMoon—akeytounderstandingthehistoryofwateronits

largercompanion,Earth.TheMoonisbone-drybyconventionalwisdom(actuallydrierthanbone,whichretainsasignificantwatercomponentevenwhenbakedinthedesertsun).Multiplelinesofevidencepointtothisaridity:Earth-basedtelescopesrevealnocharacteristicinfraredabsorption;MoonrocksfromallsixApollolandingsitesheldnodetectabletracesofwater(atleastby1970analyticalstandards);andthefindingofunrustedironmetalafterfourbillionyearsonthelunarsurfacewouldseemtoprecludeevenatraceofcorrosivewater.It’safunnythingaboutconventionalwisdom,though.Eventuallysomeone

willchallengewhateveryoneelseknowstobetrue,andonceinawhilesomethingreallyinterestingwillbefound.In1994asingleflybyoftheClementinemissionproducedradarmeasurementsthatwereconsistentwithwaterice,thoughmanyplanetaryscientistswereunconvinced.FouryearslatertheLunarProspectoremployedneutronspectroscopytodetectasignificantconcentrationofhydrogenatoms,andhencepossiblywatericeorwater-

Page 83: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

containingminerals,nearthepoles.Still,manyexpertspointedtoimplantedhydrogenionsfromtheSun’ssolarwindasamorelikelysourceofthesignal.TheninOctober2009NASAsmashedtheupperstageofanAtlasrocketintooneofthesecraters(theCabeuscrater,nearthesouthernlunarpole)andscrutinizedtheplumeofimpactdebrisforsignsofH2O.Sureenough,theflurryofdustincorporatedasmallbutsignificantamountofthelife-givingstuff—enoughtorenewinterestinlunarwateranditspossibleorigins.Threeback-to-backarticlesinSciencethatsameOctoberestablishedthatevidenceforwaterontheMoonisnowunambiguous.EnterErikHauriandhiscolleaguesattheCarnegieInstitution.Usinganion

microprobe—ahighlysensitiveinstrumentthathadn’tbeenavailabletothefirstgenerationofscientistswhostudiedtheApollosamples—Hauri’steamhasrevisitedthecolorfulglassbeadsofthesortIstudiedinmyfirstgeologyjob,pickingoutMoonspecks,backin1976.Otherscientistshadexaminedtheglassbeadsforsignsofwaterdecadesearlier,buttheirdetectioncapacitieswerenomatchfortheionmicroprobe’sabilitytoresolvemeasurementsatthescaleofamillionthofaninch.Hauriandhiscoworkerspolishedavarietyofglassbeadssothattheirroundcrosssectionswererevealedintheionprobe.Thebeads’outerrimsprovedtobeverydry,withonlyafewpartspermillionwater,butthecoresofthelargestbeadshaveasmuchasahundredpartspermillion.Overbillionsofyears,mostoftheglassbeads’originalwaterhasevaporatedtospace,morefromtheoutsidesthanfromthecores.However,basedonthesignificantamountofremainingwaterdeepinsidethebeads,HauriandhiscolleaguescalculatethattheoriginalwatercontentoftheMoon’smagmamayhavebeenashighas750partspermillion—alotofwater,comparabletomanyvolcanicrocksonEarth,andmorethanenoughtodrivesurfacevolcanismthatwouldhavedispersedmagmainexplosiveeruptionsbillionsofyearsago.IfthatmuchwaterpoweredvolcanoesintheMoon’spast,thenagreatdealof

watermuststillbelockedsomewhereintheMoon’sfrozeninterior.AndsincetheMoonformedprimarilybyTheia’swholesaleexcavationofEarth’sprimordialmantle,ourplanet’sdeepinteriorlikelyholdsprodigiousamountsofunseenwateraswell.

TheVisibleWaterCycle

HowevermuchwaterweendupfindingonMarsortheMoon(anditnowappearsthere’salot),EarthremainsourSolarSystem’soneandonlywaterworld.ThestoryofEarth’swater—howmuchthereis,whatformitassumes,

Page 84: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

whereitresides,andhowitmoves—ismorethanalittlecomplicated.Untilasrecentlyasthe1990s,theoceanswerethoughttobebyfarthelargestwaterrepository,storingabout96percentofEarth’saccessibleinventory.Icecapsandglaciers,withabout3percenttoday(andperhapsnomorethan5or6percentevenaticeagepeaksofglacialadvance),comeinatadistantsecond.Groundwater(allthenear-subsurfaceH2O,bothinwell-definedaquifersandasmorewidelydispersedstores)accountsfor1percent,whileallthelakes,rivers,streams,ponds,andtheatmospherecombinedrepresentnomorethanaboutahundredthofapercentofEarth’snear-surfacewatersupply.Allthiswaterisinconstantmotion,shiftingfromonerepositorytoanotheron

ascaleofdaystomillionsofyears.Thedynamic,life-sustainingwatercyclerepresentsthemostobvioussourceofchangeonourperpetuallychangingplanet.Imaginethepossibleperambulationsofasinglewatermolecule—amoleculeformedfromanoxygenatomandtwohydrogenatomsthathaveexistedformanybillionsofyears.BeginwithourmoleculeinthemightyPacificOcean,wheremostofEarth’snear-surfacewatermoleculesspendmostoftheirtime.Agreatoceanriverofcoldwater,theCaliforniaCurrent,sweepsthatmoleculefromnearAlaskasouthwardalongtheCaliforniacoasttoBajaandtheEquator.Asthesurroundingwaterwarmsandrises,themoleculereachesneartheoceansurfaceandbeginsanepicclockwisejourneyaroundtheNorthPacific—firsttheNorthEquatorialCurrentthatflowswesttocurvepastJapan,thentheNorthPacificCurrentheadingeasttoNorthAmerica.AsourmoleculeonceagainmovesclosetoCalifornia,ithappenstorisetothesunlitoceansurfaceandevaporatesintotheatmosphere,wherecloudsarebeginningtoform.Prevailingwindssweepthethickeningmassofraincloudseastward,across

thedesertSouthwest,intotheelevatedterrainoftheRockyMountains.Asthecloudsriseintohigher,coolerelevations,therainbeginstofall.OurmoleculeeventuallydescendstoEarthaspartofaraindrop;itfollowsasinuouspathfromrivulet,tocreek,tostream,toaswollenriverthatoverflowsitsbank.Tothispointthewatermolecule’smovementshavebeenswift—ayearortwotocycletheentirePacificOcean,adayortwotojointhecloudsandfallasrain,aweekorsotoflowacrossthehillyterrain.Butasitsoaksdeeperintothegroundandmergeswithavast,hiddenaquifer,themoleculemayspendmanythousandsofyearscreepingthroughthesubsurfacerealm.Herehumanactionsalternature’sancientrhythm,forwater-hungryfarmers

pumpoutimmensequantitiesofdeepwatertosustainagricultureinthesemiaridSouthwest.Aquifers,minedoftheirwateratunsustainablerates,arethusdryingup.Ourmoleculesuccumbstothistrendandfindsitselfbackatthesurface,

Page 85: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

splashingoveraTexascornfield,whereitquicklyevaporatesbackintothecloudlessskyandcontinuesitseastwardjourney.Thisstorycycleswithoutend.Somemoleculesaretemporarilybrokenapart

intohydroniumandhydroxylions,onlytorecombineintonewwatermoleculeswithnewatomiccompanions.OthermoleculesbecomefrozenintothickAntarcticice,wheretheywillremainlockedformillionsofyears.Stillotherwatermoleculesundergochemicalreactionstobecomepartofclaymineralsinthesoil.Lifehasbecomeanintegralpartofthewatercycleaswell.Plantstakeup

watermoleculesandcarbondioxideandcombinethem,intheSun-drivenprocessofphotosynthesis,tomanufactureroots,stems,leaves,andfruit.Andwhenthosenutrient-richplanttissuesareeatenbyanimalsandbrokendownbythemetabolicmiracleofrespiration,thewasteproducts,exhaledwitheverybreathwetake,arereassembledmoleculesofcarbondioxideandwater.

TheDeepWaterCycle

Inthemid-1980sEarthscientistsbegantothinkinearnestaboutwaterataglobalscale,forthenear-surfacewatercyclecan’tbethewholestory.Becauseweknowthatmagmasoriginatingtensorhundredsofmilesdownholdenoughwatertocauseexplosivevolcanism,wecanassumethatsilicatemineralscrystallizeddeepinsideourplanetmustsomehowtrapH2O.Theremustbeadeep,hiddenpartofthewatercyclethatcouldtellusmuchabouthowandwhenEarthbecametheocean-bathedplanetitistoday.Theexperimentalapproachtodeepwaterhasfocusedonthepossibilitythat

themostcommonofminerals—olivine,pyroxene,garnet,andtheirdenserdeep-Earthvariants—maybeabletoincorporateasmallamountofwateratmantleconditions.Thestudyofwaterin“nominallyanhydrous”minerals,whichbecameamajorfocusofhigh-pressuremineralogyinthe1990s,yieldedastonishingresults.Itturnsoutthatathighpressureandtemperature,it’srelativelyeasyforsomemineralstoincorporatelotsofhydrogenatoms,whicharethemineralogicalequivalentofwater(becausehydrogenatomscombinewithoxygenintheseminerals).Mineralsthatareinvariablydryinthecooler,low-pressureenvironmentsoftheshallowcrust—whereexplosivevolcanismreleasesanywater—canbecomeratherwetinthedeepmantle.Inprinciple,theexperimentalstrategyisprettystraightforward.Takeasample

ofolivineorpyroxene,addwater,heatwhilesqueezing,andseewherethewater

Page 86: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

goes.Inpractice,it’snotsoeasy.InordertoreproduceEarth’sdeepermantleconditions,thesamplemustbepressurizedtohundredsofthousandsoftimestheatmosphericpressure(equivalenttomillionsofpoundspersquareinch)andsimultaneouslyheatedtotemperaturesashighas4,000degreesFahrenheit.Toaccomplishthisdauntingfeat,scientistsemploytwocomplementaryhigh-pressureapproaches.Somerelyonmassive,room-sizemetalpressesthatexerttonsofpressureona

tinysample—elaboratevariationsonHatYoder’spressurebombfromhalfacenturyago.Oneoft-usedexperimentalassemblyinvolvesfournestedstageslikeRussiandolls:eachstagesurroundsandhugsthenext,focusingimmensepressuresontoasmallerandsmallervolume.First,agiantpairofmetalplatessqueezesfromaboveandbelowwithawesomeforcethatcanreachthousandsoftons.Thosemassiveplatesexertaviselikegriponthecleversecondstage,whichconsistsofsixcurved,interlockingsteelanvils—threeaboveandthreebelow—whichinturnpressuniformlyfromallsidesagainstathirdstagewithacube-shapedclusterofeighttungstencarbideanvils.Thesampleofpowderedmineralpluswatermustbetightlyencasedinsidetheinnermostfourthstage,oftenwithagoldorplatinumlinersothatthereactantsdon’tsquirtoutthesides.Asifgeneratingpressureisn’thardenough,thesamplemustalsobebakedwithelectricalheatersburieddeepinsidethesampleholder,andthetemperaturehastobemeasuredcontinuouslywithadelicateloopofspecialwirecalledathermocouple.AnotherpopularexperimentalapproachtosimulatingEarth’sdeepinterioris

thediamondanvilcell,whichgeneratesextremepressuresbysqueezingtwodiamondswithflattipstogether.Firsttaketwotypicalhalf-caratbrilliant-cutgemdiamonds,justlikethestonesinoldweddingrings,andpolishdownthesharppointsonthebottomtoflat,circularsurfacesatwentiethofaninchacross—whatwillbecometheanvilfaces.Thenmountthediamondsinapreciselyalignedmetalvise,andbetweenthemplaceathinpieceofmetalwithatinyholepunchedout.Centertheholeovertheopposeddiamondanvils,loaditwithwaterandmineralpowder,andsqueeze.Amodestforceonthediamondscreatesatremendouspressurebecausetheanvilsaresosmallandthusconcentratetheforce.DiamondanvilcellshavesustainedrecordhighpressuresequaltothethreemillionatmospheresfoundinEarth’sinnercore.Thebeautyofthediamondanvilcellisthatyoucanseeyourpressurizedsamplebylookingthroughthetransparentgems.Abatteryofanalyticalspectroscopictechniquescanbebroughttobear,andit’seasytoheatthesampletomantleconditionswithahigh-poweredlaser,whichcanalsoshinethroughthetransparentdiamond

Page 87: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

anvils.Ifeverythinggoeswell—ifthedesiredpressuresandtemperaturesarereached

andmaintained,ifthethermocoupledoesn’tbreak,ifthesampledoesn’tleak—thenthetrickyanalyticaltasksbegin.Somewater-bearingmineralslikeclaysandmicasareeasytorecognize,buthowdoyoumeasureafewpartspermillionofwaterinanotherwisedrysample?Theionprobeisoneoption;itshighsensitivityandspatialresolutionledtoErikHauri’sdiscoveryoftraceamountsofwaterinlunarvolcanicglass.Infraredspectroscopy,whichcanrevealcharacteristicbondsbetweenoxygenandhydrogen,isanotherusefultool.Newlyformedbondsbetweenhydrogenandoxygenalterthewaythatinfraredradiationinteractswithacrystal—changesthatcanrevealwaterenteringthemineralstructure.Nevertheless,cautiouscolleagues(andwaryrivalsloathtobescooped)willalwaysraisethepossibilitythatexperimentsareflawedoranalyticaltechniquestooinsensitive.Asinglefluidinclusion—aminutepocketofwatertoosmalltoseewithamicroscope—canyieldafalsesignalinsuchfinickymeasurements.Asinanynewscientificendeavor,ittookawhilefortheseexperimentsto

catchon,butthemorescientistslooked,themoremineralsemergedaslikelyhostsfordeepwater.Olivineandpyroxeneinthelowercrustarefairlydry,holdingnomorethanahundredthofapercentwater.Butraisethepressuretomantleconditionsof100,000atmospheresandthetemperatureto2,000degreesFahrenheit,andolivinetransformstowadsleyite,whichcanincorporateawhopping3percentwater.ThecorrespondingEarthlayer,themantle’stransitionzonefromabout255to410milesdeep,isoneofthewettestplacesintheplanetandmayholdninetimesallthewaterintheoceans.Mineralsofthelowermantlearelesswaterlogged,buttheymakeupforthatintheirhugevolume—halfofEarth’stotal—sothelowermantleisestimatedtoholdanothersixteentimesthewaterinEarth’soceans.Giventhelikelihoodofotherwater-richmineralsandthatEarth’sironcoreprobablyholdsalotofhydrogenaswell,thedeepinteriormaystoremorethaneightyoceans’worthofwater.

FirstOcean

Conservativeestimatesplaceproto-Earth’soriginalbudgetofvolatilesatmorethanahundredtimesmodernlevels.Indeed,oneoftheprincipalchallengesinmodelingthehistoryofEarth’svolatilesisfiguringouthowmuchwaslost—andhowitescaped.Ofsomethingswecanbesure.Fromdayone,volatileswerereleased

Page 88: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

prodigiouslyfromthedeepinterior,asmegavolcanoespumpedhugequantitiesofsteamintoarapidlythickeningatmosphere.Inthefirstfewmillionyearsofproto-Earth’sexistence,thatfirstatmospheremayhavebeenmanytimesdenserthanthatofthemodernworld.Watermayhavepouredoutontothesurfaceinliquidform,coolingthefirstrocksandformingwide,shallowseaswithinafewtensofmillionsofyears.AndthentheBigThwackblasteditallaway.Almosteverymoleculethathad

workeditswaytothesurfacewaslosttospace,inwhatamountedtothepushingofagiantresetbutton.WehavenoreasonableestimatesastohowmuchofEarth’sstoreofnitrogen,water,andothervolatileswaslostinthatsingleevent,butitwasalot.Dozensofsmaller-scaleimpactsofhundred-mile-diameterrockscausedunimaginabledisruptionsforanotherfivehundredmillionyears,eachonevaporizingasignificantfractionoftheoceansandfurtherdiminishingthevolatileinventory.Nonetheless,withinafewmillionyearsfollowingtheBigThwack,water

vaporhadagainbecomeaprincipalcomponentoftheprimordialatmosphere,formingaglobaltempestofturbulentdarkclouds,howlingwinds,shatteringlightning,andunceasingtorrentialrain.Thesurfaceofthestorm-lashedbasaltcrustcooledandhardened,aslowlyingbasinsgraduallyfilled,slowlyformingtheoceans.Foratimetheencroachingseascreatedaglobalsauna,asthethinveneerofsurfacewaterpenetratedcracksandfissures,contactedthehotrocksbelow,andreturnedtothesurfaceasgargantuangeysersofroaringsteamandsuperheatedwater.Suchintensewater-rockinteractionsservedtohastencrustalcooling,makingwayfordeeperponds,thenlakes,thenoceans.Theexacttimingoftheglobalocean’sformationisunknown,buttantalizing

evidencehasemergedintheformofEarth’soldestcrystals.SomeofthemostancientrocksonEartharethree-billion-year-oldlayersofsedimentsinthearidsheep-ranchingterrainofWesternAustralia,knownastheJackHills.Thesand-sizemineralandrockfragmentsthatmakeupthosesedimentswouldhaveerodedfromvanishedrockformationsthatmusthavebeenmucholder.Atinyfractionofthosesandgrains,notmorethanoneinamillion,ismadeofthemineralzircon—zirconiumsilicate(ZrSiO4),oneofthetoughestmaterialsinnature.Individualzircongrains,typicallysmallerthantheperiodattheendofthis

sentence,firstformedasaminoraccessorymineralinigneousrocks.Imaginebasaltsolidifyingoutofameltthatholdsonlyatraceoftheelementzirconium.Mostofthechemicalelements,whetherrareorcommon,easilyenterthecrystalstructuresofpyroxene,olivine,andfeldspar.Butzirconiumhasnohomein

Page 89: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

commonminerals.Rather,itseeksitsownkindandthusformsisolated,tinyzirconcrystals.Severalfactorsacttogethertomaketheseeasilyoverlookedzirconcrystalsa

uniquesourceofinsightabouttheearliestEarth.First,zirconscanlastalmostforever(atleastforallofEarthhistory).Asinglecrystalofzirconcanerodefromonerock(perhapstheigneoushostwhereitfirstcrystallized),thenbecomepartofasedimentarysandstonerock,andthenerodeagainandagainandagainforbillionsofyears.Thesameindividualzircongraincanberecycledthroughadozendifferentsedimentaryrockformations.Second,zirconcrystalstelltimebecausetheyreadilyincorporatetheelement

uranium,whichcanmakeup1percentormoreoftheiratoms.Radioactiveuranium,withahalf-lifeofabout4.5billionyears,isnature’sultimatestopwatch.Onceazirconcrystalforms,itsuraniumatomsarelockedin,andtheybegintodecayatasteadyrate;halfofthemdecayonaverageevery4.5billionyears,eachoneultimatelytransformingintoastableatomoflead.Theratioofdwindlingparentaluraniumatomstogrowingdaughterleadatomsprovidesanaccurateestimateofthezirconcrystal’sage.Finally,twoofeverythreeatomsinzirconareoxygen,whichprovidesclues

aboutthetemperatureofformation.RecallthatonelineofevidenceregardingtheMoon’sformationwasthedistinctiveratioofoxygen’sstableisotopes:EarthandtheMoonhaveidenticalratiosofoxygen-16tooxygen-18,whichimpliesthattheyformedatasimilardistancefromtheSun.Inasimilarlineofreasoning,theratioofoxygen-16tooxygen-18inazirconcrystalpointstothetemperatureatwhichitgrew:heavieroxygen-18-enrichedsamplespointtoacoolertemperatureofformation.Forigneousrocks,thistemperaturecanbeasensitiveindicatorofthewatercontentofthemagmainwhichzirconcrystalsgrew,becausewaterlowersthetemperatureatwhichcrystalsgrow.What’smore,isotoperatiosfromwaternearEarth’ssurfacetendtobeevenmoreenrichedinheavyoxygen,sozirconcrystalswithextremelyhighoxygen-18contentshavebeeninterpretedashavinginteractedwithsurfacewater.Inthisway,zirconcrystalsfromEarth’searliestrockscansurvivemany

cyclesoferosionanddeposition,whiletheypreservedetailsoftheage,temperature,andwatercontentoftheiroriginalenvironment.Allthatinformationgleanedfromcrystalsbarelylargeenoughtoseewithoutamicroscope!ThebottomlineisthatmanyindividualzirconcrystalsfromtheJackHillsof

Australiaaremorethan4billionyearsold,withoneaged,ancientsandgrainclockinginataremarkable4.4billionyears.Thatoldestzirconcrystal—indeed,

Page 90: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

theoldestknownsurvivingsolidfragmentofEarth—hasasurprisinglyheavyoxygenisotopecomposition.Somescientistsconcludethat4.4billionyearsago,whenEarthwasonlyabout150millionyearsold,thesurfacewasrelativelycoolandwet:hencetherewereoceans.Otherexpertsaren’tsosure.Theypointoutthatzirconcrystalscanbe

incrediblycomplicated:that4.4-billion-year-oldgrain,aswellasvirtuallyallitsslightlyyoungercompanionsfromtheJackHills,hasanancientcrystalcore.Butdetailedmappingofeachindividualcrystalrevealsconcentriclayersofyoungerzircongrownaroundoldlayers.It’snotuncommonforasinglegraintodisplayabillion-yearrangeofagesfromcoretorim,withcorrespondinglycomplexvariationsinoxygenisotopes.Iftheoldercorewasalteredduringmorerecentpulsesofcrystalgrowth,thenthetruecharacterofEarth’sancientsurfacemightbeobscured.Whatevertheeventualoutcomeofthezirconstory,mostexpertsagreethatnot

muchmorethanonehundredmillionyearsaftertheBigThwack,Earthhadbecomeabrilliantbluewaterworldwithamile-deepencirclingocean.Fromspaceitwouldhaveappearedasanultramarinemarble,swirledwithwhitewispsofcloudstobesure,butpredominantlyabreathtakingblue.(Theocean’scolorarisesfromsimplephysics.Thesunlightthatbathesthesurfacecomprisesallthecolorsoftherainbow—reds,yellows,greens,andblues—butwaterabsorbstheredendofthespectrummoreeasily,sooureyesperceivethepredominanceofthescatteredbluewavelengthsoflight.)Andwhatoftheland?TodaythecontinentsoccupyalmostathirdofEarth’s

surface,butatthedawntimeofourplanet,duringthehellishHadeanEon,continentshadnotyetformed.Theprimordialblueoceanwasbrokenonlybyisolatedsteamingvolcanicislandsthatpokedabovethewaves.Theircone-shapedcontoursandnarrow,rubblyblackbeaches,randomlydottingtheglobefromthepolestotheEquator,weretheonlyfeaturestobreakthewaterymonotony.AswethinkbacktoEarth’searliest,globe-spanningocean,wewonderwhatit

waslike.Wasithot?Probablyatfirst,giventhestill-coolingglobalmagmaoceanbeneath.Wasitfreshorsalty?Saltisperhapsthemostdistinctivepropertyofmodernoceanwater,butitmightseemreasonabletoassumethatEarth’sfirstoceanstartedoutfresh,withfewdissolvedchemicals,andonlygraduallyachievedthesaltinesswefindtoday.Onthecontrary,recentevidencesuggeststhatthehotearlyoceanquicklybecamefarsaltierthantoday.Commontablesalt,sodiumchloride(NaCl),readilydissolvesinhotwater.TodayabouthalfofEarth’ssaltistiedupinlandlockedsaltdomesandotherevaporitedeposits

Page 91: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

relatedtodried-upbodiesofsaltwater.Mostofthissaltissequesteredinthicklayersdeepunderground,butduringEarth’sfirsthalf-billionyears,therewerenocontinentsonwhichtoharborsalt.Consequently,thesalinityofthefirstoceanmayhavebeenasmuchastwicethatofthemodernworld.Moreover,otherelementsdissolvedinthewarmoceanwater—primarilyiron,magnesium,andcalciumthatdominatebasalt—wouldhavebeenpresentinhigherconcentrationsaswell.ScientistsalsowonderiftheHadeanoceanwasacidicorbasic.Themost

criticalsinglefactorcontrollingtheocean’spHandsalinityisatmosphericcarbondioxide.Bymostaccounts,theCO2contentoftheearlyatmospherewasthousandsoftimeshigherthantoday’svalueofabitlessthanfourhundredpartspermillion(thoughyearbyyearwearerapidlyapproachingandsoonwillsurpassthatlevel).AlotmoreCO2intheHadeanairmeantalotmoreCO2inthewateraswell,andthatmusthavehadsignificantconsequencesforbothpHandsalinity.Carbondioxidecombineswithrainwatertoformcarbonicacid,H2CO3.Intheocean,thiscarbonatepartlydissociatestohydrogenions,whichformhydroniumions(theH3O+ofacids)plusbicarbonate(orHCO3−).ThatnetadditionofH+turnstheoceansmoreacidic,perhapstoapHaslowas5.5.Suchacidicoceanconditionsinturnprobablyacceleratedtheweatheringofbasaltandotherrocks,addingevenmoresolutestoanalreadysaltyocean.

TheFaintSunParadox

Asifthedetailed,sometimesconflictingstoriesofEarth’sfirstoceanweren’tcontroversialenough,there’soneadditionalbigwrinkletocontendwith:accordingtoincreasinglysensitiveastronomicalobservationsandastrophysicalcalculations,starslikeourSunundergoaslow,inexorablebrighteningovertheirlifetimes.Bytheseestimates,theyouthfulSunof4.4billionyearsagowas25to30percentlessbrightthanitistoday.What’smore,theSunwouldhaveremaineduncomfortablyfaintforatleastanother1.5billionyears.Iftoday’sSunweresuddenlytodimbythatextremeamount,Earthwouldquicklyenteradevastatingiceboxphase;theoceanswouldfreezesolidfromthepolestotheEquator,andmostlifeonEarthwoulddie.Onlythehardiestorganisms,deep-subsurfacemicrobiallifeandanimalslivinginprotectedhydrothermalzonesassociatedwithvolcanoes,couldsurvivesuchacatastrophicclimatechange.GivensuchacoolerearlySun,Earthmustsurelyhavequicklyfrozenover.

Andyetgeologicalevidenceforabundantsurfacewateratleastasfarbackas

Page 92: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

fourbillionyearsisunambiguous.Sedimentsfrombothshallow-anddeep-waterenvironmentsarecommon.Lifebeganandthrivedduringthatinterval.How,then,couldtheearlyoceanhavebeenliquid?CertainlysomeoftheheatdeficiencycausedbythemuchfainterSunwas

compensatedforbyamuchhotterEarth.Followingthecrustingoveroftheprimordialmagmaocean,therewasstillalotofhotmoltenrockandvolcanicactivitytowarmthesurface.Anoceanonsuchaplanetwouldhavebeencontinuouslyheatedfrombelow,astheblackcrustslowlythickenedandcooled.TheleadinghypothesistoexplainthefaintSunparadoxpointstoan

exaggeratedgreenhousewarmingeffectcausedbyextremelyhighatmosphericconcentrationsofcarbondioxide—perhapsmorethantentimesthepressureofourpresentatmosphere(thesamehighCO2concentrationsthatmayhaveacidifiedtheoceanandincreaseditssalinity).AsecondcleverscenariopositsthatEarth,initsearlyblack,thenblue,phases,

absorbedafarhigherpercentageoftheSun’senergythanthesurfacedoestoday.Todaytheoceansabsorbmoresunlightthantheland—aneffectpossiblyexaggeratedlongagobythehighconcentrationsofironintheearliestoceans.Thatincreasedsolarabsorptionwascoupledwithaprobabledearthoflight-scatteringclouds;today,plant-generatedparticlesandchemicalsplayamajorroleinnucleatingclouds,butbillionsofyearsagotherewerenoplantstotriggercloudformation.Yetanotherhypothesisplacesalargeamountofthepotentgreenhousegas

methaneintheearlyatmosphere.Acuriousconsequenceofamethane-richatmospherewouldhavebeenchemicalreactionshighintheatmosphere,whereultravioletradiationwouldhavetriggeredthesynthesisofarichvarietyoforganicmolecules,includingpossiblebuildingblocksoflife.Suchorganicmoleculesmighthavecausedathick,smoglikehaze,transformingtheblueEarthintoadistinctlyorangeworld,notunlikeSaturn’sbigmoonTitan.Andsowhilewedon’tyetknowtheexactcombinationoffactors,wehavemorethanenoughexplanationsastohowEarthkeptwellabovethefreezingpoint.Whatwecansaywithconfidenceisthat,onceformed,thisglobalocean

shapedtheplanet’soutermostlayers—insculptingtheland,intheevolutionoftheincreasinglydiversemineralkingdom,andintheoriginofthebiosphere.Waterstillworksitsmagicineveryfacetofourlives,astheconcentratorofmineralwealth,astheprincipalagentforsurfacechange,andasthemediumforalllife.

*ThoughoftenattributedtoDonaldRumsfeld’s2002speeches,thosequotesfirst

Page 93: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

appearedseveralyearsearlierintheprefacetomy1997bookwithMaxineSinger,WhyAren’tBlackHolesBlack?

Page 94: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet
Page 95: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Chapter5

Page 96: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

GrayEarth

TheFirstGraniteCrustEarth’sAge:200to500millionyears

Earthtodayisaworldofcontrasts—one-thirdland,two-thirdswater;seenfromspace,amélangeofblue,brown,green,andswirlingwhite.Notso4.4billionyearsago,whenwidelyscattered,symmetricalvolcanicconesofblackbasaltweretheonlymeagerparcelsofdrylandtopokeabovethebluemonotonyoftheshallowseas.Allthatwasabouttochangewiththeinventionofgranite—theruggedfoundationstoneofthecontinents.Earth’sstoryisasagaofdifferentiation—oftheseparationandconcentration

ofelementsintonewrocksandminerals,intocontinentsandseas,andultimatelyintolife.Timeandtimeagainthisthemehasplayedout.Theinnerrockyplanets—Mercury,Venus,Earth,andMars—formedwhenintensepulsesofsolarwindseparatedhydrogenandheliumfromtheheavierbigsixelements,sweepingthelightergaseouselementsoutwardtothedomainofthegiantplanetsJupiter,Saturn,Uranus,andNeptune.OnEarth,densemoltenironsettledtothecenter,asthemetalcoreseparatedfromtheperidotite-richmantle.Partialmeltingofperidotiteproducedbasalt,arockrichinsilicon,calcium,andaluminum,whichseparatedfromperidotitetoformEarth’sfirstthin,blackcrust.Asbasalteruptedexplosivelyontothesurface,waterandothervolatilesseparatedfromthebasalticmagmatoformthefirstoceansandatmosphere.Eachheat-drivenstepseparatedandconcentratedelements;eachstepledtoanincreasinglylayered,differentiatedplanet.Theriseofcontinentswasyetanotherimportantstepinthedifferentiationof

Earth.Astheoutercrustallayersofbasaltcooledandhardened,theyformedalidlike,heat-trappingcovertotheroilingmantlebeneath.Basalt,reheatedfrombelow,begantomeltatrelativelylowtemperatures,especiallyinthepresenceofwater—aschillyas1,200degreesFahrenheit.Asthetemperatureincreased,sodidthepercentofbasaltmelting—first5percent,then10percent,eventuallyupto25percentmelt.Inanechoofperidotitemelting,theresultingmagmawassharplydifferentincompositionfromitshostbasalticrock.Mostnotably,thisnewmeltwasmuchricherinsilicon,withasignificantlyenhancedcomponent

Page 97: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

ofsodiumandpotassiumaswell.Water,too,concentratedinthishotfluid,asdiddozensofraretraceelements—beryllium,lithium,uranium,zircon,tantalum,andmanymore.Thisnewsilicon-richmagmawasmuchlessdensethanitsparentbasalt,soitinevitablypusheditswaytowardthesurface,formingthefirstgranite.Mostgraniteshostasimplemineralogyoffourdifferentspecies.Clear,

colorlesscrystalsofquartz—puresiliconoxide—aboundingranite;theirtoughgrainswoulderodetoproduceEarth’sfirstwhitesandybeaches.Twokindsoffeldspar,onerichinpotassiumandtheotherinsodium,gaveEarth’searliestgranitestheirmonotonousgrayish-whitecolor.Andsprinkledineverygraniteisafourth,darker,iron-bearingmineral—sometimesblockypyroxene,sometimessheetlikemica,sometimeselongateamphibole.Thenexttimeyouseeapolishedgranitecountertoporbathroomfixture,takealookforthissimplesuiteoffourminerals.Thepresenceofrarerelementsoftenleadstoscatteredtiniergrainsof

additionalminerals,suchaszircon,forexample,whichconcentrateszirconium.Recallfromthelastchapterthatminute,gemmyredzirconcrystalsextractedfromtheremoteJackHillsofAustraliaprovidehintsofanearlyocean4.4billionyearsago.Thosesamecrystals,whichappeartohaveformedunderrelativelycool,wetconditions,mayalsopointtothebeginningsofgraniteformationatthatearlystage.NotonlydotheJackHillszirconsbearthedistinctiveheavyoxygenisotopesignatureofacoolandwetorigin,butafew4-billion-year-oldcrystalsalsoholdinclusionsofquartz—amineralrarelyproducedbeforetheadventofgranite.Someexpertssuggestthattheseold,cool,quartz-bearingzirconcrystalsarethelastsurvivingremnantsoftheearliestgranitecrust.Withtheoriginofgranite,weseeforthefirsttimeasignificantdivergenceof

Earth’smineralevolutionfromthatofsomeofitsplanetaryneighbors.Graniteformationrequiresabundantbasaltneartheplanetarysurfaceaswellasintenseinternalheattoremeltit.ThesmallerplanetsMarsandMercury,aswellasEarth’sMoon,aregirdledbythenecessarybasalticveneer,buttheyaretoosmalltomakemuchgranite.Theylackthenecessaryinternalheat.Smallvolumesofgranitewereundoubtedlygeneratedontheseworlds,butnothinglikethedeeplyrootedgranitecontinentsofEarth.

Buoyancy

Earth’sprimordialcrustofblackbasalt,softenedbyheatfrombelowandwitha

Page 98: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

uniformdensityaboutthreetimesthatofwater,nevercouldsupportmuchtopography.Afewvolcanicedificesmayhavesoaredamileortwoabovethemean,enoughforscatteredblackislandstoriseabovethesea,buttherewerenogreatmountainranges,noranydeepoceanbasinsbeforetheriseofcontinents.Granite,withasignificantlyloweraveragedensity(about2.7timesthatofwater),changedthatdynamic.Graniteinevitablyfloatsonbasaltandperidotite;itpilesupingreatmounds,risingmilesabovethesurfacelikeanicebergfloatingonwater.Ice,whichisabout10percentlessdensethanwater,providesafamiliar

analogue.Becauseofthisdensitydifference,about10percentofaniceberg’svolumesticksoutofthewater.Ajaggedtwo-hundred-foot-tallicebergwilltypicallyexposethirtyormorefeetabovethesurface;hence“thetipoftheiceberg.”Bythesametoken,graniteis10percentlessdensethanthebasaltonwhichitfloats.AstheEarth’spartiallymeltedbasaltcrustgeneratedlayeruponlayerofgranite,iceberglikeprotrusionsbegantoform.Amile-thickgranitebodymighthaveproducedasmallmoundthatprojectedalmostathousandfeetabovetheaveragelevelofbasalticcrust.Butovertime,accumulatingmassesofgranitecrustreachedthicknessesofmanymiles;accordingly,deeplyrootedcontinentallandmassesrosehigherandhigherabovetheoceans,withsomemountainrangessoaringmilesabovethewater’ssurface.Today’sRockyMountainchainintheAmericanWest,withgraniterootsasmuchasfortymilesdeep,boastsnumerouspeaksoverfourteenthousandfeet.ThisgrandspineoftheNorthAmericancontinentstandstallastestimonytothebuoyancyofgranite.In1970,whenItookmyfirstgeologycourseatMIT,thepowerofbuoyancy

indrivinggeologicalchangewasstilltextbookorthodoxy.(Weusedthe1965editionofBritishgeologistArthurHolmes’srichlyillustratedclassic,PrinciplesofPhysicalGeology.)“Isostasy,”itwascalled.Thedrivingforceof“verticaltectonics”was“isostaticreadjustment.”Aneatwoodcut,virtuallyunchangedfromnineteenth-centurygeologytexts,showedalineofrectangularwoodenblocksofdifferentheightsfloatinginwater.Tallerblocksprojectedhigheroutofthewater,justlikeamountain.Welearnedhowoceanbasinshadfilledwiththicklayersofsediments,andhowthosesedimentshadmeltedtoformmoregranitebodies.Welearnedhowmountainssubsequentlyrosefromthosebuoyantgraniticcores.Itallmadeperfectsenseatthetime,andit’sstilltheleadinghypothesisforhowEarth’searliestcrustformedmorethanfourbillionyearsago.EarlyinEarth’shistory,perhapsevenwithinthefirsttwohundredmillion

years,modestlandmassesofbuoyantgraygranitemusthavebeguntoform

Page 99: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

abovehotspots,asdeepaccumulationsofbasaltwerepartiallymelted.Inthoseearlytimesverticaltectonicsandisostasymusthaveprevailed,justasArthurHolmestaught.Thosefirstisolatedcontinentalbitsofgranitewereutterlybarrenandwindsweptandbatteredbyintensewaves.Erodedrockfragmentsofquartzslowlyaccumulatedtoformmeagersandybeaches,whilefeldsparsweatheredtothinlayersofclay-richsoils.Thefirstgraniteislandswereisolated,modestinsize,andlowinprofile;theygavenohinttothescaleofthecontinentstocome.

ImpactRedux?

SohowdidearlyEarthshiftfromavolcano-dottedbasalticworldtoaplanetwithwide,graygraniticcontinents?Howdidthefirstfewlonelygraniteislandsexpandtothehemisphere-spanninglandmassesweseetoday?Earthscientistshaveneverbeenshyindevisinghypotheses.Oneofthemoreintriguingideaspositsacontinent-formingsequencetriggeredbythatfamiliaragentofchance:thecareeningasteroid.ForabillionyearsafterTheia’sobliterationandtheMoon’sformation,huge

impactsoccurredfromtimetotime.Thisisindisputable.Expertsestimatethatdozensoflargeasteroidsuptoahundredmilesacross—wanderingremnantsoftheoriginalplanet-formingera—musthavecollidedwithEarthduringitsformativeaeons.Imagineascenariofourbillionyearsago,asahotplumeofmagmaascendsbeneathayoungoceancrust.Manydozens,ifnothundreds,ofsuchplumesmusthaverisenfromEarth’sdeepinteriortotransferinnerheatbytheefficientprocessofconvection.Greatvolcanoesspewingbasalticlavashaveeruptedaboveeachplume,evenasremeltingofbasaltcrustgeneratedagraniticcomponentthatthickenedtheland.Thencomescatastrophe:athirty-mile-diameterasteroidslamsintothe

volcaniccluster,eradicatingeverytraceoflandwithinathree-hundred-mileradius.Theimpactproducesagiant,bowl-shapedmagmalakewhileshoweringtheadjacentsurfacewithblobsofstickymoltenlavaandshatteredrock.Thiscosmicinsultblocksthemantleplume,whichhastofindanewpathtothesurface.Accordingtothiscleverscenario,thepostimpactplumechangespathtopoke

upunderneathaminicontinent,withbasalticrootsandagrowinggraniteveneer.Onceitispositionedbelowsuchathick,heat-trappinglidofbasalt,thenewheatsourceproducesnewpulsesofgraniteinabundance,thusexpandingandthickeningtheland.ThisuntestablestoryisprobablypartofEarth’searliestcontinent-forming

Page 100: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

narrative.Abillionyearsofverticaltectonicsenhancedbyasteroidcollisionswouldhavegeneratedanever-increasinginventoryofvolcanicoceanislandswithintermixedbasaltandgranitecores.Graduallylandarosefromthesea.Byfourbillionyearsago,largeislands,distributedatrandomacrosstheglobe,mayhaveoccupiedamodestpercentageofEarth’ssurface.Butthenalongcameplatetectonics,andEarth’snear-surfaceevolutionshifted

intohighgear.

DriftingContinents

ThediscoveryofplatetectonicsasEarth’sdominantgeologicalprocessisitselfastoryspanningmostofmodernscience.Thoughanticipatedbyatleastfourcenturiesofobservations,theideathatentirecontinentscouldsomehowmigrateacrossEarth’ssurfacewasdimandhereticalatfirst,comingintosharpfocusandwidespreadacceptanceonlyinafuriousinternationalrushofdiscoveriesinthe1960s.Butoncethefloodofevidencebegantopileup,theEarthsciencesexperiencedoneofthemostrapidparadigmshiftsinthehistoryofscience.Indeed,withinfiveyearsofmyundergraduatetenureatMIT,bythemid-1970s,everygeologytextbookhadtobecompletelyrewrittenastheoldorthodoxyofverticaltectonicswasallbutexpunged.Inretrospect,someoftheevidenceagainstverticaltectonicsshouldhavebeen

obvious.AstallastheRockyMountainsstandtoday,theyaredwarfedbytheseven-mileheightofMountEverestandthemightyHimalayanrange.Likewise,incontrasttothetwo-mileaveragedepthoftheoceans,Earth’sdeepestoceantrench,locatedofftheMarianaIslandsintheSouthPacific,plungestoanastonishingsevenmiles.Suchtopographicextremescouldnotpossiblybesustainedinanisostaticworld.Verticaltectonicscouldn’tbethewholestory.Subtlehintsoflateraltectonics—theroleofsidewaysmotionsinEarth’s

geologicalevolution—camewiththefirstaccuratemapsoftheNewWorld’scoastline.Bytheearly1600s,thestrikingconformitybetweentheeasterncoastlineoftheAmericasandthewesternshoresofEuropeandAfricawasplaintosee.Thesamesinuousshape,thesameembaymentsandbumps,theroundedcontoursofextremesouthwesternAfricaandthematchingsuggestiveeastwardcurlofSouthAmerica’stip—allpointedtosomeancientjigsaw-puzzle-likefit.Severalbizarrehypothesesattemptedtoexplainthetantalizingtransatlantic

continentalmatch.AstronomerWilliamHenryPickeringofHarvardUniversity,whosupportedGeorgeDarwin’stheoryoffissionoriginoftheMoon(asamoltenblobhurledintospacefromarapidlyspinningEarth),positedthat

Page 101: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

simultaneouslyastheMoonwasrippedfromthePacificOcean,ontheoppositesideofEarththeAtlanticOceanopenedwide.OtherssawthehandofGodinthegreatAtlanticS.PerhapstheAtlanticcoastlinesweretheshoresofNoah’smightyflood,whichhadbeenunleashedafewthousandyearsagotocreatethegreatoceanand“dividethelands.”Systematicgeologicalsurveysmighthavehelpedresolvethequestion,but

fourhundredyearsagogeologyhadnotevenbeennamed,muchlesspursuedinanysystematicway.Miningandagriculture,thedrivingeconomicforcesbehindtheearliestgeologicalsurveysofthelateeighteenthcentury,werestrictlystateandnationalaffairs.Littleeffortwasmadetomatchupgeologicalformationsacrosspoliticalboundaries;norweretherichesofoneprincipalityseenaslinkedinanycoherentwaytothoseofanyother.Goldwasquiteliterallywhereyoufoundit.Insuchanationalisticmappingmilieu,matchingupgeologicalfeaturesacrossthegreatexpanseoftheAtlanticOceanwashardlyapriority.Thefirstdetailedtransatlanticgeologicalcomparisonswereundertakenbyan

unlikelyscholar,meteorologistAlfredWegener,whospentmuchofhiscareerintheArctic.(HediedatagefiftyduringaheroicwinterrescuemissiononthefrigidGreenlandicesheet.)Thoughhisprofessionallifewasdevotedprimarilytostudyingtheoriginsofweather,hismostmemorableandlastingworkrelatedtowhathecalled“continentaldrift,”anearlyandmuchdisparagedcontributiontolateraltectonics.TheinspirationforthisoddgeologicaldigressioncameduringWorldWarI,whenheservedasareservelieutenantintheGermanarmy.ShotthroughtheneckduringtheBelgiancampaign,Wegenerwasrelievedoffrontlinedutyandpermittedtodevotehisconvalescencetostudy.Wegener,likemanyofhispredecessors,wasstruckbytheapparentfitof

continentsacrosstheAtlanticOcean,thoughmanyscientistshaddismissedthematchascoincidence.WegenercastawiderfieldofviewandrealizedthatsimilarfitscouldbeseeninthevariedcoastlinesofEastAfrica,Antarctica,India,andAustralia.Indeed,allofEarth’scontinentscouldbeelegantlyclusteredtogethertomakeonesupercontinent,whichhedubbedPangaea(fromtheGreekfor“alllands”).Wegenerandahandfuloflike-mindedsupportersalsocitedevidencefromrecentlypublishedgeologicalsurveysofcoastalregionsofEurope,Africa,andtheAmericas—treatisesthatrevealedtantalizingcorrelationsacrossthewideexpanseoftheAtlantic.Greatminingdistricts,suchastheextensivegoldanddiamondreservesofBrazilandSouthAfrica,appearasasinglelargedepositwhenthecontinentsarejuxtaposed.Similarly,rocklayersbearingthedistinctivefossilfernGlossopterisandtheextinctreptileMesosauruslineupalmostexactly.Suchdetailedgeologicalandpaleontologicalcorrelations

Page 102: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

couldnotbesimplecoincidence,heargued.Wegener’scontinentaldrifthypothesisfirstappearedinprintin1915.Three

subsequentGermaneditions,eachmoredetailedthanthelast,aswellasa1924EnglishtranslationentitledTheOriginsoftheContinentsandOceansandmanyothereditions,followed.Newdatapouredintosupporttheideathatcontinentshadoncebeenjoinedtogether.In1917acommitteeofpaleontologistscatalogedmorethanadozeninstancesofdistinctivefossil-bearingstratamatchingupacrosstheoceans—datatheyinterpretedasrequiringsomesortofancientlandbridges.SouthAfricangeologistJamesDuToit,whowasespeciallyenamoredofWegener’sideas,obtainedagrantfromtheCarnegieInstitutiontovisiteasternSouthAmerica.Herecordedmoreexamplesoftransoceanicmatchups:strikinginstancesofidenticalminerals,rocks,andfossils.Yetdespitetheaccumulatingdataforcontinentalalignment,theEarthscience

communitywasunmoved.Lackingaplausiblemechanismforcontinental-scalewanderings,manygeologistswereopenlycontemptuousofWegener’sconjectures.TheywerebolsteredinthesecriticismsbyNewton’sfirstlawofmotion,whichstatesthatnothinghappenswithoutaforce.Untilanepicforceofglobalscalecouldbeinvoked,continentaldriftwouldbeviewedaslittlemorethanacrackpotideabyageologicalamateur.CambridgephysicistHaroldJeffreyssummeduptheBritishviewpointin1923:“ThephysicalcausesthatWegeneroffersareridiculouslyinadequate.”GeologistsinAmericawereequallyunconvinced.RollinT.ChamberlinoftheUniversityofChicago’sgeologydepartmentblastedcontinentaldriftata1926symposium:“Wegener’shypothesisingeneralisofthefoot-loosetype,inthatittakesconsiderablelibertywithourglobe,andislessboundbyrestrictionsortieddownbyuglyfactsthanmostofitsrivaltheories.…IfwearetobelieveWegener’shypothesiswemustforgeteverythingthathasbeenlearnedinthelast70yearsandstartallover.”Evenso,afewEarthscientistsweresufficientlyintriguedbythefindingsof

Wegenerandhissupporterstodevisenovelmechanismsforcontinentalshifts.OneschoolofthoughtpositedthatEarthisshrinking,perhapsbycoolingorbycollapseofgas-filledvoidsinthedeepinterior,andthusportionsofthesurfacemustgraduallyfallinwardlikeabrokenarchway.Inthisuntenablemodel,thecontinentsonceboastedacontinuousexpanseoflandfromthewesterncoastsoftheAmericasallthewaytotheeasterncoastsofAfricaandAsia.Today’sAtlanticOceanwasviewedasagiantarchwayoflandthathascollapsedintothemantle.BasicEuclidiangeometryfoiledthisshrinkingEarthmodel:asimplearchwaycancollapse,buttransferthatideaontoasphereandthere’snowaya

Page 103: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

continentalvolumecoveringtheareaoftheAtlanticOceancouldcollapseintoanything.AnothergroupproposedtheantitheticalviewthatEarthhasbeenexpanding,

inflatinglikeaballoonovergeologicaltime.Onceuponatime,therewasonlycontinentalcrust,whichhascrackedandsplitapartastheplanetinflated(bysomeaccountsfromthegenerationofdeep,hotexpandinggases).Indeed,ifyouplayanimaginaryvideotapeofasupposedlyexpandingEarthbackward,youcanarriveatastatewhereallthecontinentsslideneatlytogethertocoveraspherethatisaboutthree-fifthsthediameterofthemodernEarth.LackinganyotherwidelyacceptedformationmechanismfortheAtlantic,thishypothesispersistedinsomegeologicalcirclesfromthe1920stoaslateasthe1960s,whenacompellingnewideatookitsplace.

TheHiddenMountains

Fast-forwardtothepost–WorldWarIIyears,atimeoftremendoustechnologicalinnovationandoptimisminscience.Twodevelopmentsinantisubmarinewarfare,bothdeclassifiedandadoptedbyoceanographersinthe1950s,ledtotransformativediscoveriesaboutthedynamicEarth.Sonar,whichusessoundwavestomeasuredistanceanddirection,isa

century-oldtechnologyfamiliartoanyonewhohaswatchedHollywoodsubmarinemovies.YouhearaPING,whichisansweredashortwhilelaterbyasofter,echoingping.Asoundwavehasbouncedoffthesolidhullofasubmarine.(Theeffectontheviewerdependsonwhetherthemovie’spointofviewisthehunterorthehunted.)“PING......ping,”“PING....ping,”“PING..ping”:theechoescomefasterasthesubmarine’slocationispinpointed.Thetensemusicbuilds;depthchargesarereleased.Theexactsametechnologycanbeputtoscientificusetostudyoceandepth

andthusocean-floortopography.Eventhedeepestoceanvalleysandtrenchescanbeplumbedwithsoundwaves.Asearlyasthe1870s,Britishscientistsemployedcrudedeep-watersoundingsaboardHMSChallengerandreportedhintsofgreatmountainsonthefloorofthemid-Atlantic—atantalizingresultthatsomecontemporaryromanticsassociatedwiththelostcontinentofAtlantis.Primitiveechosoundingtechnology,firstdevelopedforicebergdetectionafterthe1912Titanticdisaster,enjoyedrapidimprovementduringWorldWarI,asGermansubmarinesbegantoprowl.The1920ssawthefirstsystematicapplicationofsonartomappingtheoceanfloorandtherapidrealizationthatgreatmountainrangeslayhiddenbeneathalltheEarth’soceans.However,the

Page 104: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

geologicalimplicationsofthesepioneeringoceansurveyswerelittlenoted,andoceanographiceffortswerelargelycurtailedbytheGreatDepressionandtheloomingSecondWorldWar.Followingthewar,oceanographerswerearmedwithanewgenerationof

high-sensitivitysonardetectorsthatcouldnotonlymapthetopographyoftheentireoceanfloorbutalsodetectreflectedsoundwavesfromdeeperrocklayers.GeneralfeaturesoftheAtlanticOceanfloorwereeasilyconfirmed.Forexample,continentalshelvesdeepengraduallyasyoumoveawayfrommostAtlanticcoastlines,fordistancesuptohundredsofmiles.Theedgesofthesecontinentalshelvesaremarkedbyasuddendrop-offtoanabyssalplaintwomilesdeepandathousandmilesacross—afeaturemuchwiderandflatterthananyondryland.Andtheoceanisbisectedbyanextensivemountainrange,theMid-AtlanticRidge.Allthatwasinaccordwithearlierdiscoveries,butthethicknessoftheocean

crustcameasahugesurprise.Geologistshadpredictedthattheoceanswouldbelessdeeplyrootedthanland,withoceancrustgraduallythinningawayfromshore.Whattheyfound,insteadofthisgradualtransition,wasaremarkablyabruptcontrastfromthicktothin.Unlikethetensofmilesofcrustalrocksbeneaththecontinents,oceancrustwasonlyaboutfiveorsixmilesthick:thesharptransitionoccurredrightatthedrop-offattheedgeofthecontinentalshelf.Suchanarrowdemarcationbetweencontinentsandoceanswasatoddswithisostaticmodels.Yearafteryear,backandforthacrossthewideoceanthescientistssailed,

hundredsoftimes.Eachandeverycrossingyieldedthesameresult.Avastmountainchainmorethantwentythousandmileslong,thelargestonEarth,laybeneaththewaves,preciselybisectingtheAtlantic.ThesamesweepingcurvesofthecontinentalshorelinesweremimickedinthehiddenMid-AtlanticRidgecrest.What’smore,iftheedgeofthecontinentswastakenasthesharpunderwaterdrop-offtotheabyssalplain(asopposedtotheshiftingsandyshoreline),thenthematchbetweencontinentswasuncanny,asifabrokenchinaplatewerefitneatlybacktogether.Nolongercouldsciencedismisstheconformityofcoastlinesasmerecoincidence.AsscientistscompletedmoretraversesoftheAtlanticandcomparedmore

details,newpatternsemerged.TheMid-AtlanticRidgewasnoordinarymountainrange.Onland,mostmountainchainshavealineofthehighestpeaksdowntheiraxis,butattheverycenterlineoftheMid-AtlanticRidgewasawidetroughabouttwentymileswideandmorethanamiledeeperthantheadjacentpeakstotheeastorwest—afeaturewenowcallariftvalley.What’smore,the

Page 105: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

ridgeanditsriftvalleydidn’tfollowasmoothandcontinuouscurvefromnorthtosouth.Rather,theriftvalleywasrepeatedlyoffset,ahundredmilesormoretotheeastortothewest,bysharplydefinedtransformfaults,placeswherethecrustwasbrokenanddisplaced,givingtheentireridgeajaggedandbrokenappearance.Whatwasgoingon?Suchsuggestivefindingscouldhaveeasilybeenburiedintheavalancheof

brilliantpostwarscientificdiscoveries.Inonesense,theywerejustmoredata.Buttheleadinvestigatorsontheocean-floorprojectwerenoordinarypublicists.BruceHeezenandMarieTharp,marinegeophysicistsatColumbiaUniversity’sLamontGeologicalObservatory,devisedanew,dramatictopographicmapofEarth’ssurface.Asonothertopographicmaps,theyrepresentedcontinentalelevationswithcolors—higherelevationsgradingfromgreensandyellowstobrownsandultimatelywhiteatthehighest,snowcapped-mountainelevations.Greatmountainranges—theHimalayas,theAndes,theAlps—stoodoutclearly.HeezenandTharp’sartisticinnovationwastohighlighttheimmensesubsurfacemountainrangesinexactlythesameway,albeitinvaryingshadesandhuesofblue—atechniquethatmadetheMid-AtlanticRidgeandotherdeep-seafeaturesstandoutasmonumentalonaglobalscale.AndbycenteringtheirexquisitemapontheAtlantic,theyhighlightedtheidenticalshapesofthecoastlinesandtheridgeinanunmistakableway.Bythe1960s,HeezenandTharp’smaphadachievediconicstatus.Whateverthecauseofthisparallelism,thefactthattherewassomegeneticlinkwasobvioustoall.(ThisstoryofBruceHeezen—pronounced“HAY-zen”—andhiswidely

laudedcontributionhasspecialmeaningtomeandmycareer,forwhenIarrivedatMITinthefallof1966,Iwassurprisedtofindthateventhemostseniorgeologyfacultymemberswerequiterespectfulandeagertoshakemyhand.Distinguishedpedigrees—evenoferroneoushomonymousvariety—arenotwithoutsomeadvantageinscience.)

TheExpandingSea

WiththerevelationoftheMid-AtlanticRidge,andthediscoveryofsimilarsubsurfacevolcanicridgesintheEastPacificandIndianoceans,scientiststackledthepossibilityoflateralcontinentalmotionswithrenewedintensity.Tobesure,continentsaren’tdriftingaimlessly,asWegener’scoinagemightsuggest,sogeologistslookedforsomehiddenforcethatcoulddramaticallyrearrangeEarth’ssurface.Discoveryfolloweddiscovery,asnewdatakeptarrivingtoconfoundthe

Page 106: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

experts.In1956HeezenandhisLamontboss,seismologistMauriceEwing,documentedaremarkableassociationbetweenthepositionofthecentralriftvalleyoftheMid-AtlanticRidgeanda34,000-mile-longpatternofmoderateocean-floorearthquakesextendingaroundtheglobe.Somehowtheriftvalleysandearthquakesarerelated,soridgesmustbedynamic,changeablefeatures.Oceanfloorrocksalsosurprisedmanygeologists,whohadpredictedthatthe

Mid-AtlanticRidgewasatypicalmountainrangecappedbyresistantmarinelimestone,justliketheCanadianRockies.Butextensivedredgingalongtheridge,coupledwithobservationsoftheAtlantic’smanyislands,producednothingbutbasalt,andrelativelyyoungbasaltatthat.Itturnsoutthat,otherthanaveneerofsoftsediments,theocean’scrustismadealmostentirelyofvolcanicbasalt.Fromeasttowest,spanningmorethantwenty-fivehundredmilesofoceanfloor,basaltformsthepavement.What’smore,carefuldatingbasedonthesteadydecayratesofradioactive

elementsrevealsasimplepatternintheagesoftheserocks.BasaltcollectedfromtheriftvalleyrightatthecenteroftheMid-AtlanticRidgeisnewlyminted,lessthanamillionyearsold.Thefartheryougetfromtheriftvalley,eastorwest,theolderthebasaltis,untiltherocksnearthecontinentalmarginsaremorethanonehundredmillionyearsold.Whyshouldrocksatthecenteroftheoceanbeyoung,whilethoseontheoutskirtsaresomucholder?OnelogicalconclusionisthattheMid-AtlanticRidgeisalineofvolcanoesthatarespewingoutnewbasalticcrust.Butwheredidthemucholderrocksattheedgesoftheoceanbasincomefrom?Keydata,thesmokinggunofplatetectonics,camefromasecondsubmarine-

huntingtechnologycalledthemagnetometer.WorldWarIIsubmarinesarebighunksofiron-richalloys,sotheyaremagnetic.Thankstothedevelopmentofmagnetometers,submarine-huntingairplanescouldflyovertheoceansurfaceandpickupthemagneticanomalyofanearbyenemysubmarine.Followingthegreatconflict,geophysicistsinventednewtypesofmagnetometerswithgreatlyincreasedsensitivitytosmallchangesinthemagneticfield.Theyadaptedtheseinstrumentstobetowedbehindresearchships,justabovetheseabottom.Theirtargetwasocean-floorbasalt,whichcarriesaweakmagneticsignalin

theformofminutecrystalsoftheironmineralmagnetite.Earth’smagneticfieldisknowntovaryslightlyfromyeartoyear,inwhatiscalledsecularvariation.Asbasaltmagmacools,thesecrystalsfreezeinthedirectionofEarth’smagneticfieldliketinycompassneedles.OceanfloorbasaltthuspreservestheorientationofEarth’smagneticfieldontheexactdatewhentherockhardened.Thethrivingfieldofpaleomagnetismstudiestheseinvisiblemagneticforcefieldsthatare

Page 107: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

lockedintobasaltandotherrocks.(Ondryland,ahodgepodgeofmagneticsignals,theconsequenceoffolding,faulting,andothergeologicalcontortionsofcontinentalcrustovertime,confusessuchpatterns.)Startingintheearly1950s,oceanographersdeployedmagnetometerscloseto

theseafloor,sweepingthemonlongtransectsacrossoceanridges.Theyhopedthattheirpaleomagneticmeasurementsmightyieldabetterpictureofsecularvariationontheoceanfloor.Whattheyfoundinsteadwasabizarremagneticpatternthatwasastonishinglyregularandintricate.ClosetothecentralriftvalleyinboththeAtlanticandthePacific,basaltdisplayedthenormalmagneticorientation,faithfullypointinginthedirectionofthemodernnorthmagneticpole.Butseveralmileseastorwestoftheriftvalley,themagneticsignalflipsafull180degrees:thenorthmagneticpoleisalmostexactlyoppositeitspresentposition,wherethesouthpoleissupposedtobe,andviceversa.Sailseveralmoremilesineitherdirection,andthemagneticfieldflips180degreesagaintothecorrectorientation.Overandover,dozensoftimes,themagneticfieldfrozenintherocksonanygiventransectisobservedtoflip.Additionalanalysisrevealedthreekeyfacts.First,therockswithreversed

magneticfieldformlong,narrownorth-southtrendingbandsthatexactlyparalleltheridgesinboththeAtlanticandthePacificoceans.Wherethecentralriftvalleyisbroken,offsetbytransformfaults,sotooarethemagneticbands.Second,thepatternofthesemagneticstripesissymmetricalabouttheridgeaxes:saileastorwestfromthecenter,andtheexactsamesequenceofnormalandreversestripes,somewiderandsomenarrower,occurs.Andthird,radiometricdatingofthesebasaltsfromridgesystemsaroundtheworldconfirmsthateachreversaloccurredsimultaneouslyoveranarrowandpreciselydefinedage.Magneticreversalsthusserveasakindofocean-floortimeline.Twological,ifmind-bending,conclusionsfollowed.First,Earth’smagnetic

fieldiswildlyvariable:itflips180degreesonaverageeveryhalf-millionyears,andithasbeendoingsoforatleastthepast150millionyears.Thereasonsforthisficklefieldarenowunderstoodinsomedetail.Ourplanetisagiantelectromagnet;itsmagneticfieldarisesfromswirlingelectricalcurrentsinEarth’sconvectingfluidoutercore.Heatdrivesthisconvection;densehotliquidattheinnercoreboundaryexpandsandrises,tobereplacedbycooler,denserliquidthatsinksfromabove.GeophysicistsemploysophisticatedcomputermodelstoshowthatEarth’srotationaddscomplicated,chaotictwiststotheconvection—motionsthatresultinaflipinthemagneticfieldeveryhalf-millionyearsorso.Earth’srotationalsoconstrainsthemagneticpolestospendmostoftheirtimealignedclosetothestablerotationaxis,butduringperiodsofcore

Page 108: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

instability,themagneticfieldcanwanderwidelyandflip,perhapsinthespanofacenturyorless.Thesecondconclusionisthatmidoceanridgesproducenewbasalticcrustat

therateofaninchormoreeveryyear.Olderbasaltmovessideways,botheastwardandwestward,awayfromtheridge,asnewlavatakesitsplace.Theridgesystemsarethusgrandtwo-directionalconveyorbelts,spewingoutnewoceanfloor.FreshbasaltgeneratedattheMid-AtlanticRidgeisexpandingtheAtlantic,whichgrowsasmuchastwoincheswidereveryyear—roughlythirtythousandyearspermileofnewoceanflooronaverage.Playthetapebackward150millionyears,andtheAtlanticdidn’texist.Priortothattime,theAmericasmusthavebeenjoinedtoEuropeandAfrica,justasAlfredWegenerproposed.Oneofthemostinfluentialpresentationsofthisremarkablediscovery

appearedin1961intheGeologicalSocietyofAmericaBulletin.BritishgeophysicistRonaldMasonandAmericanelectronicsexpertArthurRaffoftheScrippsInstitutionofOceanographyinCaliforniahadcollaboratedforalmostadecade,compilingexhaustivemagneticsurveysoftheoceanfloorofftheWestCoastofNorthAmerica.ThecenterpieceoftheirpublicationwasadetailedmagneticmapoftheJuandeFucaRidge,aprominentridgefeatureonthePacificseafloorjustashortday’ssailfromportsinOregon,WashingtonState,andBritishColumbia.ThestarkblackandwhitemapofMasonandRaff—whiteandblackbands

representingnormalandreversedmagneticfields,respectively—displaysdozensofnorth-southtrendingstripes.Uniformityprevailswithinlargeblocksofoceancrust,eachhundredsofmileswide,eachwithasymmetricalpatternofstripesaboutacentralriftvalley.Butbetweenadjacentblocksthepatternisbroken,offsetbytransformfaultlinesandskewedlikeacubistpainting.Analysisofoffsetsalongoneofthesefaults,theMendocinoFractureZone,revealsaremarkablelateraldisplacementofsevenhundredmiles.EpicinternalprocessesmustbeatworktosodisruptEarth’scrust.Withsimilarevidencepilingupfromridgesystemsaroundtheglobe,

geologists,geophysicists,andoceanographersbegantotalktooneanotherinanewlyintegratedeffort.Correlationsofocean-floortopography,seismology,magnetism,androckagesallpointedtothesameconclusions.Oceancrustisbeingcreatedaroundtheworldatridgesystems,whicharedynamiczonesofvolcanicactivity.Therateofseafloorspreadingisrecordedinthesymmetricalpatternsofmagneticstripesandtheagesofbasalts.Afloodofinfluentialpaperstransformedthecollectivegeologicalmind-set,

andbythemid-1960salmosteveryonewasconvincedofwhathadoncebeen

Page 109: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

heresy:thecontinentsaremoving.TheAtlanticOceanhasbeengrowingwidereveryyearformorethanonehundredmillionyears.

TheCaseoftheDisappearingCrust

Theearlyyearsoftheplatetectonicsrevolutionwereatimeofrapiddiscovery,changingparadigms,andequallypuzzlingnewquestions.Oneunansweredquestionstoodoutfromtherest:Howcouldamile-wideswathofnewbasalticcrustbeaddedeverythirtythousandyearsalongmorethanthirtythousandmilesofmidoceanridgesintheAtlantic,Pacific,andIndianoceans?Howdidallthatnewcrustfit?UnlessEarthwasgrowinglarger—andforabriefinterludeinthe1950sandearly1960s,asmallbutvocalgroupofgeologists,includingBruceHeezen,didadvocatetheuntenableexpanding-Earthscenario—theoldcrusthadtogosomewhere.Seismologistsfoundthesolution.Inthecoldwarclimateofthe1960s,nuclear

weaponsbecamethecentralfocus(andprimarysourceoffunding)ofseismology.Followingthe1962Cubanmissilecrisis,theUnitedStatesandtheSovietUnionagreedtoaLimitedTestBanTreaty,whichrestrictednuclearweaponstestingtoundergrounddetonations.Verificationofthetreatyreliedoncontinuousseismicmonitoringusinganextensive(read:expensive)arrayofvibration-sensitiveinstrumentsdeployedtothefarreachesoftheglobe.TheresultingWorld-WideStandardizedSeismographNetwork(WWSSN)linked120stationstoacentralcomputer-processingcenterinGolden,Colorado,homeofonebranchoftheUnitedStatesGeologicalSurvey.Forthefirsttimeever,itwaspossibletopinpointtheexactlocations,depths,magnitudes,andmotionsofsmallearthquakes(andbigexplosions)anywhereonEarth.ThefringebenefitsforEarthscienceweretremendous.Armedwiththeirnew

tools,geophysicistscouldsensethousandsofpreviouslyundetectableEarthmovementsandthusdocumentpreviouslyunrecognizedplanetwidepatternsofearthquakes.TheyfoundthatalmostallofEarth’ssuddencrustalmotionsoccuralongnarrowlinesofintenseseismicactivity—placeslikethemidoceanridges.Manyotherquakesoccurclosetochainsofvolcanoesnearthecontinentalmargins—forexample,aroundthePacificOcean’snotorious“ringoffire.”Theseviolence-proneregionsofthePacificrim,includingthePhilippines,Japan,Alaska,Chile,andotherdangerzones,formedacommonpattern.Ithadlongbeenknownthatrelativelyshallowearthquakes(thosefromdepths

ofafewmilesorless)originatejustoffshoreinthevicinityofdeeptrenchesontheoceanfloor,whiledeeperanddeeperearthquakes,someoriginatingmore

Page 110: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

thanahundredmilesdown,occurfartherandfartherinlandfromthecoast.ThedeepestknownearthquakescommonlytakeplacebeneathchainsofdangerousexplosivevolcanoeslikeMountSt.HelensandMountRainierinWashingtonState—volcanoestypicallylocatedatconsiderabledistanceinland.Bythelate1960s,newdatafromWWSSNclarifiedthedetailsofthe

relationshipamongdeepoceantrenches,earthquakes,andvolcanoes.Thedistinctivepatternofquakedepthsincreasinginlandfromthetrenchespaintedapictureofhugeslabsofoceancrustplungingdownintothemantle,underneaththecontinents,alongwhatwerecalledsubductionzones.Oldbasalticcrust,whichismuchcolderandthusdenserthanthehotmantle,isliterallyswallowedupbyEarth.Assubductingbasaltsnagsandbucklestheadjacentcrustdownward,thedeepoceantrenchesform.Foreverysquaremileofnewcrustgeneratedatoceanridges,asquaremileofoldcrustdisappearsatasubductionzone.Thenewexactlybalancestheold.Asifaveilhadbeenlifted,thenewscienceofplatetectonicscameintosharp

focus.Oceanridgesandsubductionzonesdefinetheboundariesofaboutadozenshiftingplates,eachofwhichiscold(comparedwiththedeepermantle),brittle(hencesubjecttoearthquakefracturing),andonlyafewtensofmilesthickbuthundredstothousandsofmileswide.Theserigidplatessimplyslideacrosshotter,softermantlerocks.ThePacificOcean’sringoffiredefinesonelargeplate,Antarcticaanditssurroundingseasanother.TheNorthandSouthAmericanPlatesextendwestwardfromtheMid-AtlanticRidgeallthewaytothePacificcoastoftheAmericas,whiletheEurasianPlateextendseastwardfromtheMid-AtlanticRidgetothePacificcoastofEastAsia.TheAfricanPlate,stretchingfromtheMid-AtlanticRidgeonthewesttothemiddleoftheIndianOceanontheeast,displaysanintriguingaspectofEarth’sdynamicsurface:theAfricancontinentisbeginningtosplitapartasanewriftvalleyforms,markedbyastringoflakesandactivevolcanoes,aswellashighaltitudesthatregularlyproducethefastestdistancerunnersintheworld.SomedayAfricawillbecometwoplates,withanewexpandingoceaninbetween.Asoceanridgesproducenewplatematerialandsubductionzonesswallowup

theold,thescenarioisonceagaincomplicatedbyEuclid:Earthisasphere.Thegeometryofplategrowthandsubductiononasphererequiresthatsomeplatesscrapeagainsteachotheralongjaggedtransformfaultlines—hencetheoffsetbandsinMasonandRaff’sfamousmagneticmapoftheJuandeFucaRidge.TheviolentSanAndreasFault,whichhastriggeredmanymemorableCaliforniaearthquakes,isanothersuchsuture.Everydaymorestressbuildsalongthefault,asthemightyNorthAmericanPlatemovesinasoutheasterlydirectionrelative

Page 111: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

tothemightyPacificPlate.EverydaytheseinexorableplatemotionsbringresidentsofLosAngelesandSanFranciscoclosertothenext“bigone.”Somuchforthesimplegeometryofplatetectonics.Whatoftheepicforces

thatmustpowerplatemotions?Whatcouldcauseentirecontinentstoshift,scrape,andcollideoverhundredsofmillionsofyears?TheanswerliesinEarth’sinnerheat.Earthishot,whilespaceiscold.Thesecondlawofthermodynamics,asweepingcoreconceptofthecosmos,statesthatheatalwaysflowsfromhottertocoolerobjects—heatmustgraduallydisperse,mustsomehowfindawaytoevenout.Recallthethreefamiliarmechanismsthatfacilitatethetransferofthermal

energy.Everywarmobjecttransfersitsheattothesurroundingsintheformofinfraredradiation;heatalsomoves,albeitmuchlessefficiently,bydirectcontactorconduction,andbyconvection,whenafluidmassflowsbetweenhotterandcoolerregions.Earthmustobeythesecondlawofthermodynamics.Buthowcanheatmoveefficientlyfromsearingcoretocoolcrust?Rockandmagmaimpedeinfraredradiation,whilesluggishconductionisnotmuchmoreefficient.Soconvectionofsoftened,taffylikehotmantlerocksisthekey.RocksatEarth’ssurfacearehard,brittlematerials,butdeepinsidethe

superheatedpressurecookerthatisthemantle,rockssoftenlikebutter.Overmillionsofyears,underthestressesofthedeepinterior,rocksdeform,ooze,andflow.Hotter,morebuoyantrocksgraduallyrisetowardthesurface,whilecooler,denserrockssinkintothedepths.Greatconvectioncells,eachthousandsofmilesacrossandhundredsofmilesdeep,overturnEarth’smantleinamajesticcyclehiddenfromview.Thepaceoftheseplanetaryshufflingsisequallyvast—itmaytakeahundredmillionyearsormoreforasinglerevolutionoftheconvectioncelltocompleteitself.Atfirst,perhapsformorethanabillionyears,mantleconvectionbeneath

Earth’suniformbasaltcrustmusthavebeenachaotic,swirlinghodgepodge.Hereandthere,hottermeltsoflower-densitygraniteroseindisorganizedpulsesandplumestowardthesurface,wheretheyaccumulated,disruptingthecolder,denserbasalt.Isolateddensechunksofthatcoldercrustslowlysankintotheinterior,inaglobal-scaleexchangeofheat.Overthenexthalf-billionyears,mantlechurningbecamemoreorganized.

Dozensofsmallerconvectioncells,eachwithrisingplumesandsheetsofmagmaanddescendingblocksofcrust,consolidatedintoahandfulofmajesticcycles,eachhundredsofmilesdeepandthousandsofmilesacross.New,hotbasalticcrustformedwheretheseconvectioncellsroseupwardalonggrowingseafloorridges,whileold,coldbasalticcrustplungedintothemantleatasteep

Page 112: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

angle—subductionzones,inanEarthincreasinglydominatedbythenew,transformativeprocessesofplatetectonics.Incrosssection,Earth’sturbulentouterlayersmighthavelookedlikeacollectionofsidewayswhirlpools,eachrotationlastingahundredmillionyearsormore.Thenasnow,Earth’sevolvingsurfacereflectedtheepicprocessesoccurring

farbelow.Greatridgesofbasalticvolcanoesgrewaboveconvectionzonesofrisingmagma.Gashliketrenchesformedwhereoldsubductedcrustplungeddownwardintothemantle,bendingandbucklingtheadjacentoceanfloor.Subductionalsoacceleratedtheall-importantproductionofgranite.Ascold,wet,subductedbasaltcrustplungeddeeper,swallowedbackintoEarth,itheatedupandbegantomelt—notcompletely,butperhaps20or30percent.Thosegrowingvolumesofgraniticmagmarosetothesurface,producingchainsofgrayvolcanicislandshundredsofmileslong.Thestagewassettobuildthecontinents.

Revolution

Granitefloats,basaltsinks:that’sthekeytotheoriginsofcontinents.Magmasofgraniticcompositionaremuchlessdensethantheirparentbasalticrock,sothesefreshmeltsslowly,inevitablyrisetocrystallizeasnear-surfacerockmassesortoeruptfromvolcanoesthatspewlayersofcindersandashontothesurface.OverbillionsofyearsofEarthhistory,countlessgraniteislandshaveformedbythiscontinuousprocess.Platetectonicsnotonlyproducedthesegranite-rootedislandchains;italso

assembledthemintocontinents.Thekeyliesinthesimplefactthatgranitecannotsubduct.Thedensebasaltonwhichitfloatseasilysinksintothemantle,butgraniteislikeabuoyantcork.Onceformed,itremainsatthesurface,conserved.Assubductionproducesmoreislands,thetotalareaofgraniteirreversiblyincreases.Imagineasubductingplateofoceancrust,dottedwithunsinkablegranite

islands.Thebasaltsubducts,buttheislandsdon’t.Theymustremainatthesurface,toformastripoflandrightabovethesubductionzone.Astensofmillionsofyearspass,moreandmoregraniteislandspileuptoformawiderandwiderstrip,evenasnewvolumesofgranitemeltrisefromthesubductingslabtothickenandexpandthegrowingcontinent.Islandsaccretetoformproto-continents,whichaccretetoformcontinents,justasourSolarSystem’schondritesonceaccretedtoformplanetesimals,planetesimalstoformplanets.Theepiccycleofplatetectonicstransformsourworld.Earth’sthin,cold,

Page 113: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

brittlesurfacecracksandshiftslikescumonapotofboilingsoup.Newbasalticcrustpoursoutofvolcanicridgesthatrevealwheredeepconvectioncellsrise.Oldcrustisswallowedupatsubductionzonesthatrevealwhereconvectioncellsdescend.Earth’smostviolentsurfacedisruptions—themostintenseearthquakes,themightiestvolcanoes—arebuttrivial,incidentalblipscomparedwiththevastlymoreenergeticglobal-scalemovementsofthedeepinterior.PlatetectonicsalsorevolutionizedtheEarthsciences.Inthepriordarkagesof

verticaltectonics,eachgeologicaldisciplinewasseparate,seeminglyunrelatedtoanyother.Beforetherevolution,paleontologistshadnoneedtotalktooceanographers;thestudyofvolcanoeshadlittletodowithoregeology;geophysicistswereunconcernedwithlife’soriginsandevolution;andtherocksofonenationwereofnoobviousrelevancetorocksofanother,muchlesstorocksonthedistantoceanfloor.PlatetectonicsunifiedeverythingaboutEarth.Nowlocationsofrarefossil

organismscanbematchedpreciselyacrossthevastspreadingoceans.Extinctvolcanicterrainsleadminerstovaluableoredepositshiddenintheircorrespondingsubductionzones,longsincesolidifiedintocontinentalrock.Geophysicalstudiesofshiftingcontinentspointtokeyinfluencesontheevolutionofplantsandanimals.PlatetectonicsrevealsEarthasanintegratedplanetarysystem,fromcrusttocore,atscalesfromnanotoglobal,withasingleunifyingprinciplethroughspaceandtime.Ittooktimefortheproductionofgranitetoshiftfromthedisorderly,vertical

tectonicpatchworkofplume-drivenislandstothecoordinatedassemblyofsubduction-drivencontinents.ButbythetimeEarthwas1.5billionyearsold,theconvectingmantle—theeighteen-hundred-mile-thickzonethatholdsmostofEarth’smassandheatenergy—hadirrevocablytransformedthesurfaceofourplanet.Unlikeblackbasalt,thegrowing,barrengranitelandmassesappearedwhitishgray,thetypicalblendedcolorofquartzandfeldspar.Andsoifyouwereatimetravelertothatancientworldthreebillionyearspast,youwouldfindsomefamiliarfeatures.Youcouldstandonproto-continentsdevoidofvegetation,withjaggedhillsandsteep-walledvalleys,notunlikesomeruggedcoastlinesofthehigharctic.Youwouldexperienceperiodsofviolentweather,punctuatedbydaysofsunnyblueskiesandpuffywhiteclouds.Youwouldfindtheoceansaturatedwithdissolvedminerals,includingcalciumandmagnesiumcarbonates,whichwereoccasionallydepositedascrystallayeringsonthebasaltseafloor.Youcouldliebythatcool,blueoceanonthefirstwhitesandybeaches,richinresistantquartzgrainserodedfromthegraygranite.Butyouwouldquicklysuffocateintheheavyatmosphere,richinnitrogenandcarbondioxide

Page 114: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

butlackingtheslightestwhiffoflife-givingoxygen.

Theinventionofcontinents—landmassesconstructedofsturdygranitecrust—wasbutasideshowinEarth’sgrandevolutionarypageant.Graniteterrains,formedbydeepheatingandpartialmeltingoftheubiquitousnear-surfacebasalt,werelikegrowinggrayscabsontheotherwisepristine,submergedblackskinofourplanet.Gradually,thethickeningraftsofgranite,floatingastheydidontopofthedenserbasalticbasement,wereabletoriseaboveoceanlevelandthusprovidedtherootsofallthegreatcontinents—whatweperceivetodayinouranthropocentricviewasthesolidEarth.

Page 115: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet
Page 116: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Chapter6

Page 117: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

LivingEarth

TheOriginsofLifeEarth’sAge:500millionto1billionyears

InfantEarthatagefivehundredmillionyearsgavelittlehintastohowveryprecociousitwouldsoonbecome.Earthboasteddramaticvolcanism,tobesure,butsodidseveralotherplanetsandmoonsinourSolarSystem.Earthwasgracedbyglobe-spanningoceans,butsowasMarsinthoseearlydays,whileJupiter’sgiantmoonsEuropaandCallistowereenvelopedbyice-coveredoceansmorethanfiftymilesdeep,thusholdingfargreaterproportionsofthepreciousliquidatthesurface.Platetectonicshelpedtotransformourplanet,butinthoseearlyyears,VenusandpossiblyMarshadtheirownversionsofconvection-driventectonics.NordidchemistrysetEarthapart.Basaltandgranitewerethefoundation

stonesforalltherockyplanets.Oxygen,silicon,aluminum,magnesium,calcium,andirondominatedtheircompositions.Earthhaditsshareofcarbonandnitrogenandsulfur,butotherworldsinourSolarSystemwereequallyendowedwiththosevitalelements.Byalmosteverymeasure,Earthfourbillionyearsagoappearedtobearatherordinaryplanet.ButEarthwassoontobecomeuniqueamongknownworlds.Admittedly,it

wasalreadyuniqueinthatatfivehundredmillionyears,nootherknownplanetormoonhadenduredsuchsweepingepisodesofchange;nootherplanethadaltereditsoutwardappearancesothoroughlyandsooften.Butthesemetamorphosesweredifferentonlyinscale,notinkind.Themostdynamicengineofplanetarychange—whatsetsEarthapart—wasyettoemerge.OnlyEarthbecamealive.TheoriginandevolutionofthebiospheredistinguishesEarthfromallotherknownplanetsandmoons.

WhatIsLife?

Whatdoesitmeantobealive?WhatisthisphenomenonthatmakesEarthsodifferentfromtherestoftheknowncosmos?Wemightwelltrytodescribelife

Page 118: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

asasetofdistinctiveintertwinedtraits—acomplexstructure,coupledwiththeabilitytomove,togrow,toadapt,andtoreproduce.WemightpointtosuchdistinctivecellularattributesasamembraneorlongstrandsofthegeneticmoleculeDNA.Butnomatterhowlongthelistofdiagnostictraits,therealwaysseemtobeexceptions.Lichensdon’tmove.Mulesdon’treproduce.Chemistryprovidesafirmerfoundationfordefininglife,foralllivingthings

areorganizedmolecularsystemsthatundergochemicalreactionsofastonishingintricacyandcoordination.Everylife-formconsistsofdiscreteassemblagesofmolecules(cells)separatedbyamolecularbarrierfromtheoutside(theenvironment).Theseclevercollectionsofchemicalshaveevolvedtwointerdependentmodesofself-preservation—metabolismandgenetics—thattogetherunambiguouslydistinguishthelivingfromthenonliving.Metabolismisthevariedsuiteofchemicalreactionsthatalllife-formsuseto

convertatomsandenergyfromtheirsurroundingsintomorecellstuff.Liketinychemicalfactories,cellstakeinmolecularrawmaterialsandfuelandusethosehard-wonresourcestofacilitatemovement,repair,growth,and,fromtimetotime,reproduction.Andlikechemicalfactories,asopposedtoragingforestfiresorthenuclearchainreactionsofthefirstelement-generatingstar,cellsexquisitelycontrolandregulatethesereactionsbypositiveandnegativefeedbacks.Metabolismaloneisn’tenoughtodefinelife.Unliketheirnonliving

environment,cellscarryinformationintheformofDNAmolecules,andtheycancopyandpassthatmolecularinformationfromonegenerationtothenext.What’smore,theinformationcanmutate;moleculesareoftencopiedwitherrors,whichprovidegeneticvariations.Mutationsthuspromotechemicalnovelty—innovationsthatenablethepopulationofcellstocompeteagainstotherlessefficientpopulations,tosurviveduringtimesofenvironmentalchange,ortoexpandtheirfootholdintonewenvironmentalniches.Thusmetabolismandgeneticsmusttogethercharacterizelivingmatter.But

surprisingly,biologistshavefailedtodeviseasingle,universallyaccepteddefinitionoflife.NASA’sExobiologyProgram,taskedwithinvestigatingtheoriginsoflifeandthepossibilityofitonotherworlds,hasperhapscometheclosest.A1994NASApanelchairedbyGeraldJoyceoftheScrippsResearchInstituteagreedonastreamlinedsentence:“Lifeisaself-sustainingchemicalsystemcapableofundergoingDarwinianevolution.”Joyce,whoisaleaderinattemptstomakelifeinthelab(afuturisticfield

calledsyntheticbiology),recentlyachievedthisbenchmark—aremarkablebreakthrough,tobesure.Hedevisedatest-tube-boundcollectionofthousands

Page 119: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

ofdiverseinteractingmoleculesthatisbothself-sustainingandevolving.Enclosedinglass,thisintricateprocessresultsinevolvingproportions,albeitexactcopies,ofthediversemoleculesthatwerealreadypresentfromthestartoftheexperiment.Joycerealizedthatachemicalsystemthatsimplychurnsoutmolecularduplicatesadnauseam,eveniftherelativeproportionofthosemoleculesevolvesovertime,islittlemorethanamolecularXeroxmachine.Naturallivingsystems,bycontrast,havetheabilitytomutateandthuspotentiallydocompletelynewthings—toexplorenewenvironmentalterritory,tosurviveunexpectedenvironmentalchanges,toperformnewtasks,tooutcompeteneighborsforresources.SoJoycehasrevisedhisdefinitiontoincludethecharacteristicofnovelty:“Lifeisaself-sustainingchemicalsystemcapableofincorporatingnoveltyandundergoingDarwinianevolution.”WhatisperhapsmostremarkableaboutthisdevelopmentisthatJerryJoyce,realizingthesubtletyoflife,modestlyamendedNASA’sdefinitionratherthanstakingaclaimtothehistoric,ifFrankensteinian,distinctionofbeingthefirsttocreatelifeinthelab.

RawMaterials

HowdidnonlivingplanetEarthinventtheintertwinedtraitsofmetabolismandgenetics?Mostofusintheorigins-of-lifebusinesssuspectthattheemergenceofthefirstcellwasaninevitablegeochemicalprocess.Earthpossessedalltheessentialrawmaterials.Oceans,atmosphere,rocks,andmineralswererichinthenecessaryelements:carbon,oxygen,hydrogen,nitrogen,sulfur,andphosphorus.Energy,too,wasabundant:solarradiationandEarth’sinnerheatprovidedthemostreliablesources,butlightning,radioactivity,meteorimpacts,andmanyotherformsofenergymighthavecontributed.(Andthereare,consequently,atleastasmanytheoriesoflife’soriginsastherearesourcesofelementsandenergy.)Ononepointjustabouteveryoneagrees:carbon,themostversatileelementof

theperiodictable,playedthestarringrole.Nootherelementhassuchrichmoleculardesignsorsuchdiversemolecularfunctions.Carbonatomspossessanunmatchedabilitytobondtoothercarbonatomsaswellastomyriadotherelements—notablyhydrogen,oxygen,nitrogen,andsulfur—withuptofourbondsatonce.Carboncanformlongchainsofatoms,orinterlockedrings,orcomplexbranchingarrangements,oralmostanyotherimaginableshape.Itthusformsthebackboneofproteinsandcarbohydrates,offatsandoils,ofDNAandRNA.Onlyversatilecarbon-basedmoleculesappeartosharethetwindefining

Page 120: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

characteristicsoflife:theabilitytoreplicateandtheabilitytoevolve.Everymorseloffoodweeat,everymedicationwetake,everystructureofour

bodiesandthebodiesofeveryotherlivingthing,isloadedwithcarbon.Carbon-basedchemicalsareeverywhere:inpaints,glues,dyes,andplastics,inthefibersofyourclothesandthesolesofyourshoes,inthepagesandbindingandinkofthisbook,andinenergy-richfuelsfromcoalandoiltonaturalgasandgasoline.And,aswe’llseeinChapter11,ourgrowingrelianceoncarbon-basedfuelsandotherchemicalsisimplicatedintroublingshiftsinEarth’snear-surfaceenvironment—changesthatareoccurringatapaceperhapsunmatchedinmillionsofyears.Still,carboncannothaveundergonetheremarkableprogressionfrom

geochemistrytobiochemistrybyitself.AllofEarth’sgreattransformativepowers—water,heat,lightning,andthechemicalenergyofrocks—werebroughttobearinlife’sgenesis.

Step1:BricksandMortar

Nooneyetknowsexactlyhow(orwhen)theancienttransitionfromalifelesstoalivingworldtookplace,butbasicprinciplesareemergingfromfocusedresearchatdozensoflaboratoriesaroundtheworld.Biogenesismusthaveoccurredasasequenceofsteps,eachofwhichaddedchemicalcomplexitytotheevolvingworld.Firstthemolecularbuildingblockshadtocomeintoexistence.Thenthosesmallmoleculeshadtobeselected,concentrated,andorganizedintolife’sessentialstructures—membranes,polymers,andotherfunctionalcomponentsofacell.Atsomepoint,thecollectionofmoleculeshadtomakecopiesofitself,whiledevisingameanstopassgeneticinformationfromonegenerationtothenext.AndthenevolutionbyDarwiniannaturalselectiontookover;lifeemerged.Thefirstandbest-understoodstepinbiogenesiswastherampantproduction

oflife’smolecularbuildingblocks:sugars,aminoacids,lipids,andmore.Theseessentialchemicals,allbasedontheversatileelementcarbon,emergeanywherethatenergyinteractswithsimplemoleculeslikecarbondioxideandwater.Life’srawmaterialsformedwherelightningpiercedtheatmosphere,wherevolcanicheatboiledthedeepocean,evenwhereultravioletradiationbathedmolecularcloudsindeepspacebeforeEarthwasborn.TheseasofancientEarthbecameincreasinglyconcentratedinthestuffoflife,asbiomoleculesrainedfromtheskiesandrosefromthedepths.Modernorigins-of-liferesearchbeganin1953,withwhatremainstothisday

Page 121: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

themostfamousexperimentinbiogenesis.ChemistHaroldUrey,aNobelPrize–winningprofessorattheUniversityofChicago,andhisresolutegraduatestudentStanleyMillerdesignedasimpleandeleganttabletopglassapparatustosimulateearlyEarth.GentlyboilingwaterproxiedforthehotHadeanocean,andamixtureofsimplegasesmimickedEarth’sprimitiveatmosphere,whileelectricsparkssimulatedlightning.Afterafewdays,theconfined,colorlesswaterturnedpinkish,thenbrown,withacomplexmixoforganicmolecules.Thetransparentglassbecamesmearedwithstickyblackorganicsludge.Miller’sroutinechemicalanalysesrevealedanabundanceofaminoacidsand

otherbio-buildingblocks.His1953paperinScience,announcingtheresults,generatedsensationalisticheadlinesaroundtheworld.Chemistssoonflockedtothestudyofprebioticchemistry.AndwhiletheexactcombinationofatmosphericgasesintheMiller-Ureyexperimentwascalledintoquestion,thousandsofsubsequentexperimentalvariationsonthethemeestablishedbeyondanydoubtthatearlyEarthmusthaveaboundedinlife’sessentialmolecules.Indeed,the1953sparkexperimentanditsprogenyweresosuccessfulthatmanyinthefieldthoughttheoriginsmysteryhadbeenlargelysolved.Thisinitialenthusiasmandsubsequentfocusmayhavecomeataprice.

Miller’smasterfulexperimentplacedorigins-of-liferesearchsquarelyinthecampoforganicchemistsandestablishedtheparadigmoflifeemergingfromaprebioticsoup—perhapsfroma“warmlittlepond”(echoingCharlesDarwin’sprivatespeculationsfromalmostacenturybefore).Fewexperimentalistsofthe1950sconsideredthestaggeringcomplexitiesofnaturalgeochemicalenvironments,alteredastheyarebydailycyclesofnight/day,hot/cold,wet/dry,andmore.Nordidtheyconsidertherangeofnaturalgradients—intemperature,forexample,asvolcanicmagmacontactscoldoceanwater;orinsalinity,asafreshstreamentersthesaltyocean.AndnoneofMiller’sexperimentsincorporatedrocksandminerals,chemicallydiversewithdozensofmajorandminorelements,andtheirreactiveenergeticcrystallinefaces.Earth’ssunlitsurface,theyassumed,waswherealltheactionmusthaveoccurred.Miller’sinfluencewasstrong,andheandhisfollowersdominatedtheorigins-

of-lifecommunityformorethanthreedecades.Afloodofpublicationsensued,newjournalsarose,andhonorsandawardswerebestowed,whilegovernmentfundingflowedtothe“Millerites.”Theninthelate1980s,thediscoveryofdeep-seablacksmokerecosystemsgaverisetoaviablealternativeto“primordialsoup.”Inthosedeepdarkzones,farfromthesunlitoceansurface,mineral-richfluidsinteractwithhotvolcaniccrusttogenerateocean-floorgeyserlikevents.

Page 122: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Jetsofscaldingwatercontactthefrigiddeepoceantocreateaconstantprecipitationofminerals(themicroscopicparticlesthatproducetheblack“smoke”).Lifeaboundsinthoseastoundinghiddenplaces,fueledbythechemicalenergyattheinterfacebetweencrustandocean.Thebattleoveroriginsparadigmsrevealsalotaboutthesociologyofscience.

Ontheonehand,theMiller-Ureyprocessproducedasuiteofbiomoleculesstunninglysimilartowhatlifeactuallyuses.Themixofaminoacids,carbohydrates,lipids,andbasesalmostlookslikeawell-balanceddiet.AsHaroldUreyquipped,“IfGoddidnotdoitthisway,thenHemissedagoodbet.”ButthetruebelieversoftheMillercampdidmorethanjustsupportthelightning-seededprimordialsoupidea;withavengeance,theypubliclyrejectedanyandallcompetingideas.TheeffectivenessoftheLaJollacabal’sobstructionismbegantodeclinewith

thestartlingdiscoveryofthoselivingblacksmokersdescribedabove,coupledwiththepowerfulinfluenceandfar-reachingambitionsofNASA.Theexistenceofblacksmokersatunderseaventsunderscoredagrowingawarenessthatlifeaboundsinextremeenvironments—inplaceswhereapreviousgenerationofbiologistswouldnothavelooked.Wenowknowthatmicrobesthriveinacidicstreamsflowingfromminewasteandboilingpoolsabovevolcaniczones.TheyekeoutalivinginsidefrozenAntarcticrocks,andtheypersistonstratosphericdustparticlesmilesaboveEarth’ssurface.VastmicrobialecosystemsmilesbelowEarth’ssolidsurface,wherecellsliveinthenarrowestofcracksandfissuresandsubsistonthemeagerchemicalenergyofminerals,maywellaccountforhalfofEarth’sbiomass—asmuchasallthetreesandelephantsandantsandpeoplecombined.Ifsuchextremophilelifecanthrive—ifasignificantfractionofEarth’slifesurvivesindeepenvironmentsprotectedfromtheviolentinsultsofasteroidsandcomets—whycouldn’tlifehaveoriginatedthere?NASA,whosesciencefundingistiedcloselytotheprospectofgreat

discoveries,jumpedatthispossibility.IflifeisconstrainedtoariseinaMiller-Ureyscenario,atthesun-drenchedsurfaceofawateryworld,thenEarthandpossiblyMars(initsearlieststages,itsfirstfivehundredmillionyears)aretheonlyplausiblelivingworldswithinourreach.Butiflifecanemergefromtheblack,hotdepthsofasubsurfacevolcaniczone,thenmanyadditionalcelestialbodiesbecometemptingtargetsforexploration.Marstodaymusthavedeephydrothermalzones;perhapsendureslivesthereevennow.SeveralofJupiter’smoonsarealsoripeforbiologicalinvestigation,asisSaturn’sorganic-rich,Earth-sizemoonTitan.Evensomeofthelargerasteroidsmayhavedeep,life-producing,hotwetzones.IflifearosedeeponEarth,thenNASA’ssearch(and

Page 123: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

funding)forexobiologywillsurelylastformanydecades.MyCarnegieInstitutioncolleaguesandIarerelativelatecomerstotheorigins

game.Ourlab’sfirstNASA-sponsoredexperimentsin1996werespecificallydesignedtotestorganicsynthesisinblacksmokerregimes,wherehightemperaturesandpressuresprevail.LikeMiller,wesubjectedmixturesofsimplegasestoenergeticconditions—inourcase,heatandchemicallyreactivemineralsurfaces,justasyou’dfindinadeepvolcaniczone.LikeMiller,weproducedaminoacids,lipids,andotherbio-buildingblocks.Ourresults,nowduplicatedandexpandedinnumerouslabs,showbeyondadoubtthatasuiteoflife’smoleculescanbesynthesizedeasilyinthepressure-cookerconditionsoftheshallowcrust.Volcanicgasescontainingcarbonandnitrogenreadilyreactwithcommonrocksandseawatertomakevirtuallyalloflife’sbasicbuildingblocks.What’smore,thesesynthesisprocessesaregovernedbyrelativelygentle

chemicalreactionscalledreductionandoxidationreactions,orredoxreactions,suchasthefamiliarrustingofironorcaramelizingofsugar.Thesearethesamekindsofchemicalreactionsthatlifeusesinmetabolism,insharpcontrasttotheviolentionizingeffectsoflightningorultravioletradiation.Indeed,whileharshlightningboltsmayfacilitatetheproductionofsmallbiomolecules,theyjustaseasilyripthosebuildingblockstomolecularshreds.Tomanyofusintheoriginsgame,itmakesalotmoresenseforEarthtohavemadeitsprebioticmoleculeswithlessenergeticchemicalreactions,inmoreorlessthesamewaythatcellsdoittoday.StanleyMillerandhisfollowersdidwhattheycouldtosquelchour

conclusionsandabortourresearchprogram.Inaflurryofcriticalpublications,theyarguedthatthehightemperaturesofthevolcanicventswouldquicklydestroyanyusefulbiomolecules.“Theventhypothesisisarealloser,”Millercomplainedina1998interview.“Idon’tunderstandwhyweevenhavetodiscussit.”Theybasedtheirargumentsonmeticulousexperimentsinwhichbiomoleculesdegradeinboilingwater.ButthesesimplisticstudiesfailedtomimicthecomplexityofprimordialEarth;missingwerethedeepocean’sextremegradientsoftemperatureandcomposition,theturbulentflowandcyclingofvolcanicvents,thechemicalcomplexityofmineral-richseawater,ortheprotectivesurfacesofrocksonwhichbiomoleculesarenowknowntobind.Nonetheless,theoriginsfieldhasnowmovedbeyondtheMiller-Ureyscenario,andformanyexperts,Earth’sdeepdarkzonesaretodaytheprimaryfocusinthebiogenesisgame.AsImentionedearlier,everyancientenvironmentwithsourcesofenergyand

smallcarbon-bearingmoleculesprobablyproduceditsshareofaminoacids,

Page 124: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

sugars,lipids,andothermolecularbuildingblocksoflife.Anatmospherelacedwithlightningorexposedtoharshradiationremainsintherunningasatheoryofbiogenesis;sodoblacksmokersandotherdeep,hotenvironments.Biomoleculesformduringasteroidimpacts,onsun-drencheddustparticleshighintheatmosphere,andindeep-spacemolecularcloudsexposedtocosmicrays.Everyyeartonsoforganic-richdustraindownonEarth’ssurfacefromouterspace,asithasformorethan4.5billionyears.Wenowknowthatlife’sbuildingblockslitterthecosmos.

Step2:Selection

Ahalf-centuryago,thegreatestchallengeinoriginsresearchwassynthesizingtherawmaterials:themolecularbricksandmortaroflife.Bythedawnofthetwenty-firstcentury,thatproblemhadlargelybeensolved;scientistsrealizedthatEarthmusthavebeengirdledbyadiluteconsomméoflife’svitalingredients.Muchofthefocushasnowshiftedtotheselection,concentration,andassemblyofbiobitsintomacromolecules—tothemembranesthatenclosethecell,theenzymesthatpromoteitschemicalreactions,andthegeneticpolymersthatpassinformationfromonegenerationtothenext.Twocomplementaryprocesseslikelyplayedarole.Oneisself-assembly,in

whichagroupofelongatedmolecules—lipids—clumpedtogetherspontaneouslytoformthemembranesthatencapsulatedthefirstcells.Lipidsfeatureskinnybackbonesofadozenormorecarbonatoms.Undercertainconditions,theytendtoself-assembleintomicroscopichollowballs;theelongatedmoleculeslineupsidetoside,likeseedsonadandelionhead.Inoneofthemostinfluentialoriginspublicationsinhistory,CaliforniabiochemistDavidDeamerdescribedhowheextractedasuiteoftheseversatileorganicmoleculesfromthecarbon-richMurchisonmeteorite(aconglomerationofchemicalsformedindeepspacelongbeforeEarth)andfoundthattheyrapidlyorganizedthemselvesintotinycell-likesphereswithaninsideandanoutside,notunliketinyoildropsinwater.AfewyearsagoDeamerandIfoundthatcarbon-richmoleculesformingunderhot,pressurizedblacksmokerconditionsbehaveinmuchthesameway.Theseandotherexperimentsrevealthatmembrane-boundvesiclesareaninevitablefeatureoftheprebioticworld;lipidself-assemblymusthaveplayedakeyroleinlife’sorigins.Mostotherbio-buildingblocksdon’tself-organize,buttheycanbecome

concentratedandarrayedonthesafe,protectivesurfacesofrocksandmineralsinwhat’sknownastemplate-directedsynthesis,thesecondofthetwoselection

Page 125: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

processes.Ourexperiments,conductedattheCarnegieInstitutionoverthepastdecade,revealthatmanyoflife’smostvitalmolecularbuildingblockssticktovirtuallyanynaturalmineralsurface.Aminoacids,sugars,andthecomponentsofDNAandRNAadsorbontoallofEarth’smostcommonrock-formingmineralsinbasaltandgranite:feldspar,pyroxene,quartz,andothers.What’smore,whenseveralmoleculescompeteforthesamepieceofcrystalrealestate,theyoftencooperateandyieldcomplexsurfacestructuresoftheirownthatmaypromoteevenmoreadsorptionandmoreorganization.Weconcludedthatwherevertheprebioticoceancontactedminerals,highlyconcentratedarrangementsoflife’smoleculesarelikelytohaveemergedfromtheformlessbroth.HereIshouldissueacaveat.Inorigins-of-liferesearch(andprobablyinmost

otherdisciplinesaswell),scientistsgravitatetomodelsthathighlighttheirpersonalscientificspecialty.OrganicchemistStanleyMillerandhiscohortssawlife’soriginsasessentiallyaprobleminorganicchemistry.Geochemists,bycontrast,havetendedtofocusonmoreintricateoriginsscenariosinvolvingsuchvariablesastemperatureandpressureandchemicallycomplexrocks.Expertsinmembrane-forminglipidmoleculespromotethe“lipidworld,”whilemolecularbiologistswhostudyDNAandRNAviewthe“RNAworld”asthemodeltobeat.Specialistswhostudyviruses,ormetabolism,orclays,orthedeepbiospherehavetheiridiosyncraticprejudicesaswell.Wealldoit;weallfocusonwhatweknowbest,andweseetheworldthroughthatlens.I’mtrainedinmineralogy,soyoucaneasilyguesswheremyorigins

preferenceslie.Meaculpa.Manyotheroriginsresearchershavealsosettledonsuchaconclusion—indeed,morethanafewprominentbiologistshavealsogravitatedtominerals,becauseorigins-of-lifescenariosthatinvolveonlyoceansandatmospherefaceinsurmountableproblemsinaccountingforefficientmechanismsofmolecularselectionandconcentration.Solidmineralshaveanunmatchedpotentialtoselect,concentrate,andorganizemolecules.Somineralsmusthaveplayedacentralroleinlife’sorigins.

RightandLeft

Biochemistryiscomplex,withinterwovencyclesandnetworksofmolecularreactions.Fortheseintricatelylayeredprocessestowork,moleculeshavetohavejusttherightsizesandshapes.Molecularselectionisthetaskoffindingthebestmoleculeforeachbiochemicaljob,andtemplate-directedselectiononmineralsurfacesisnowtheleadingcandidateforhownaturedidit.

Page 126: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Perhapsthemostdauntingchallengeinmolecularselectionischirality,thepervasive“handedness”oflife.Manyoflife’smoleculescomeinmirror-imagepairs—left-andright-handedvariantslikeyourtwohands.Chiralpairsofmoleculesareidenticalinmanyrespects:theyhavethesamechemicalcompositions,thesamemeltingandboilingpoints,thesamecoloranddensity,andthesameelectricalconductivity.Butleft-andright-handedmoleculeshavedifferent,incompatibleshapes—afamiliarcharacteristicifyou’veevertriedtoputaleft-handedgloveonyourrighthand.Itturnsoutthatlifeisincrediblypicky:cellsalmostexclusivelyemployleft-handedaminoacidsandright-handedsugars.Chiralitymatters.Inthecuriouscaseoftheartificialfragrancelimonene,the

right-handedformsmellslikeanorange,whereastheleft-handedversionofthissimplering-shapedmoleculesmellslikealemon.Thesmellreceptorsinyournosearesensitivetochirality,soright-andleft-limonenetransmitslightlydifferentsignalstoyourbrain.Tastebudsarelesssensitivetothedifferencesbetweenright-andleft-handedsugars.Theybothtastesweet,butourbody’sfine-tuneddigestivesystemcanprocessonlytheright-handedforms.Theartificialsweetenertagatose,azero-calorieleft-handedsugarsubstitute,exploitstheseproperties.Thetragicstoryofthalidomidealsorestsonhandedness.Theright-handedversionofthisdrugalleviatedmorningsicknessinpregnantwomen,buttheleft-handedvariantthatinevitablytaggedalongcausedbirthdefects.TodaytheFDAimposesstrictrequirementsforchirallypuredrugs—regulationsthatsavelivesbutcostconsumersanestimated$200billionperyearinaddedmanufacturingcosts.Mostexperimentsthatsynthesizebiomolecules(includingMiller-Ureyand

hydrothermalexperiments)produceequalamountsofleft-andright-handedmolecules,andmostnaturalprocessestreatleft-andright-handedmoleculesexactlythesame.Indeed,thenonlivingnaturalworldisforthemostpartindifferenttothedistinctionbetweenleftandright.Butlifeabsolutelyrequiresthecorrectshape:left-handedaminoacidsandright-handedsugarsareessential.Theopposite-handedmoleculessimplywillnotdo.Soourresearchteamtackledthequestionofhowlifeselectedleft-handedaminoacidsalmostexclusivelyoverright,andright-handedsugarsoverleft.Ourrecentexperimentshaveexploredthepossibilitythatchiralmineral

surfacesplayedthestarringroleinselectinghandedmolecules,andperhapsintheoriginsoflifeaswell.In2000mycolleaguesandIrealizedwhatwasthensurprisingbutisnowobvious:chiralmineralsurfacesareeverywhereinnature.Thecommonestmineralsineveryrockandeverysoilaboundwithsurfaces

Page 127: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

whereatomsformmolecular-scale“handholds,”someleftandsomeright.Inthenaturalworld,theseleft-andright-handedmineralsurfacesoccurinstatisticallyequalproportions,soEarthonaglobalscaledoesn’tappeartobebiasedforeitherleftorright.Buteachindividualmoleculedoescarewhereitwindsup.Ourexperimentsshowedthatcertainleft-handedmoleculescanaggregateononesetofcrystalsurfaces,whilethemirror-image,right-handedcounterpartmoleculesaggregatejustaseasilyonothersetsofmineralsurfaces.Ashandedmoleculesareseparatedandconcentrated,eachsurfacebecomesatinyexperimentinmolecularselectionandorganization.Onitsown,nosuchnaturalexperimentwithmineralsandmoleculesislikely

tohavegeneratedlife.Buttakecountlesstrillionsoftrillionsoftrillionsofmineralsurfaces,eachbathedinmolecule-richorganicbroth,andrepeatthosetinynaturalexperimentsoverandoverforhundredsofmillionsofyears.Earthmusthaveeventuallytestedvirtuallyeverycombinationofsmallmoleculessomewhere,sometime.Thetinyfractionofallthosemolecularcombinationsthatwoundupdisplayingeasierself-assembly,ordevelopedastrongerbindingtomineralsurfaces,orenjoyedgreaterstabilityunderthehightemperaturesandpressures,survived,possiblytogrow,possiblytolearnnewtricks.Wedon’tyetknowexactlywhichofthosemyriadpossiblecombinationsof

moleculesandmineralsledtolifelikeorganization,buttheprinciplesofmolecularselectionandorganizationarenowemerging.Biomoleculesweresynthesizedinabundance,andsomeofthosemoleculeswentontoformlargerandlargerclusters.Ourexperimentssuggestthatelectricchargeplayedabigrole.Somemoleculeshaveaslightpositivecharge;othershaveaslightnegativecharge;andstillothers(likewater)arepolarwithslightlypositiveandnegativeendstothesamemolecule.Minerals,too,havechargedsurfaces,somepositiveandsomenegative.Addallthesechargedpiecestogether,andtheyspontaneouslyorganize,withpositiveelectricchargealwaysattractedtonegativeelectriccharge.Andsovariedmolecularassembliesoccurredinvirtuallyeverywet,mineral-richenvironmentonprebioticEarth.

Step3:Replication

Arraysofchemicals,nomatterhowintricatelypatterned,arenotaliveunlesstheycanmakecopiesofthemselves.Life’smostdistinctivehallmarkisreproduction:oneconsortiumofmoleculesbecomestwo,twobecomefour,andonandoningeometricexpansion.Thegreatestenigmainthebiogenesisstoryremainstheemergenceofthatfirstsystemofself-replicatingmolecules.Clever

Page 128: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

experimentsreplicateportionsofplausiblereproductivecycles,thoughwehaveyettomimiccompletelythatelusivebiochemicaltrickinthelab.Nevertheless,atsomepointinspaceandtime,anorganizedcollectionofmoleculesbegantoduplicateitselfattheexpenseofothermolecules(thatis,“food”).ImagineEarthatagefivehundredmillionyears—roughlyfourbillionyears

ago.Ithadabrothoforganicmolecules,ithadtrillionsupontrillionsofreactivemineralsurfaces,andithadhundredsofmillionsofyearstoplaywith.Mostofthemolecularmilieudidnothingofinterestanddisplayednousefulfunctions.Butasmallfractionoftheorganicmoleculesarrayedonmineralsurfacesproducedsomekindofstructurewithenhancedfunction—perhapsastrongersurfaceattachment,ormaybethemeanstoattractmoremoleculestothecommunity,orthetendencytocatalyzethedestructionofcompetingmolecularspecies,oreventheabilitytomakecopiesofitself.Thenaturalworldamplyrewardssuchinnovation,andonceestablished,lifequicklyinfestedeveryhabitablenookandcrannyoftheglobe.Butlet’stakeastepback.Whywouldacollectionofmoleculesspontaneously

startcopyingitself?Theanswerliesinthetwinevolutionarypillarsofvariationandselection.Systemsevolvefortworeasons.First,theydisplayvastnumbersofdifferentpossibleconfigurations—that’svariation.Second,someofthoseconfigurationsaremuchmorelikelytosurvivethanothers—that’sselection.Imagineaprebioticcollectionofhundredsofthousandsofdifferentmolecules,allmadeofcarbon,hydrogen,oxygen,andnitrogen,maybewithsomesulfurorphosphorusthrownin.Prebioticsynthesis(àlaStanleyMiller)andnaturalsamples(forexample,DavidDeamer’smeteorite)displaythisdegreeofmolecularvariation.Butnotallmoleculeswerecreatedequal.Somemoleculeswererelativelyunstableanddecomposed—theywerequicklyeliminatedfromthecompetition.Othersclumpedtogetherinuselesstarlikemassesandfloatedawayorsanktotheoceanfloor,wheretheycouldplaynofurtherrole.Butsomemoleculesprovedtobeespeciallystable,perhapsevenmoresowhentheycouldbindtoothersoftheirkindortoaparticularlytemptingmineralsurface.Thesemoleculessurvived,asthemolecularbrothwasrelievedoftheleastfit.Molecularinteractionsfurtherrefinedtheprebioticmix.Somegroupsof

moleculescooperativelystucktomineralsurfaces,thusenhancingsurvivaloftheclique.Othersmallmoleculesactedascatalysts,enhancingsomechemicalspeciesbypromotingformationofchemicalbonds,orspeedingthedestructionofotherchemicalspeciesbybreakingchemicalbonds.Themolecularbrothwasswiftlywinnowed,butultimatesecurityinsuchaworldwasnottobefoundineliminatingthecompetitionorjusthangingon.Theultimateprizeofsurvival

Page 129: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

wouldgotothecollectionofmoleculesthatlearnedtomakecopiesofitself.Threecompetingmodelsattempttodescribethefirstself-replicating,quasi-

livingsystemofmolecules.Thesimplestofthesemodels(andthereforetheonemanyofusprefer)pointstoawell-knowncycleofafewsmallmolecules—theubiquitouscitricacidcycle.Itstartswithaceticacid,whichcontainsonlytwocarbonatoms.AceticacidreactswithCO2toformpyruvicacid(withthreecarbonatoms),whichinturnreactswithmoreCO2tomakethefour-carbonoxaloaceticacid.Otherreactionsproduceprogressivelylargermolecules,uptocitricacid,withitssixcarbonatoms.Thecyclebecomesself-replicatingwhencitricacidspontaneouslysplitsintotwosmallermolecules,aceticacid(twocarbonatoms)plusoxaloaceticacid(fourcarbonatoms),whicharealsopartofthemolecularloop.Onecycleofmoleculesthusbecomestwo,twobecomefour,andsoon.What’smore,manyoflife’sessentialbuildingblocks,includingaminoacidsandsugars,arereadilysynthesizedbysimplereactionswiththecoremoleculesofthecitricacidcycle.Justaddammoniatopyruvicacid,forexample,andyougettheessentialaminoacidalanine.EverylivingcellonEarthincorporatesthecitricacidcycle,soitmaywellbeaprimordialcharacteristic—achemicalfossildescendedfromtheveryfirstlife-form.Suchacycle,byitself,isnotalive.Butitdoeshavethepotentialtoreplicatetheinnercircleofmoleculesattheexpenseoflessfecundchemicals.Attheoppositeextremeofchemicalcomplexityistheself-replicating

autocatalyticnetwork,amodelchampionedbyStuartKauffman,whoconductedpioneeringtheoreticalstudiesatthefamedSantaFeInstitute.Theprebioticbrothmayhaveinitiallyincorporatedhundredsofthousandsofdifferentkindsofsmall,carbon-basedmoleculesfromvariedsources.Wenowknowthatsomeofthosechemicalscatalyzedreactionsthatmadenewmolecules,whileotherreactionsacceleratedthebreakdownoftheirneighbors.Anautocatalyticnetworkconsistsofacollectionofmolecules—perhapsthousandsofdifferentspeciesworkinginconcert—thatspeeduptheproductionofthemselves,whiledestroyinganymoleculenotinthenetwork.It’sthemolecularequivalentof“therichgetricher.”Again,aswiththecitricacidcycle,suchamolecularnetworkwouldnotbeconsideredtobealive,butinawayitdoespromotethecopyingofitself,anditisfarmorecomplexthanmostnonlivingchemicalsystems.Athirdscenario,theoneprobablyfavoredbythemajorityofbiologically

trainedoriginsresearchers,istheRNAworld—amodelbasedonahypotheticalmoleculeofRNAthatmakescopiesofitself.Tounderstandwhythisscenarioappeals,weneedtotakeanotherstepback,tothinkaboutlife’stwomostcriticalfunctions:metabolism(makingstuff)andgenetics(transferringinformationon

Page 130: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

howtomakestufffromonegenerationtothenext).ModerncellsusetheladderlikemoleculeDNAtostoreandcopytheinformationneededtomakemoreproteins,buttheyusecomplexlyfoldedproteinmoleculestomaketheDNA.Sowhichcamefirst,DNAorproteins?Itturnsoutthatathirdkindofmolecule,RNA,playsthecentralroleinbothprocesses.RNAisanelegantpolymer—along,single-strandedmoleculeassembledfrom

smallerindividualmolecules(callednucleotides)likebeadsonastringorlettersinasentence.Fourdifferentmolecular“letters,”designatedA,C,G,andU,canlineupinanyimaginablesequence,likeacodedmessage.Indeed,theseRNAlettersholdgeneticinformation(justlikeDNA).Atthesametime,RNAcanfoldupintocomplexshapesthathavetheabilitytocatalyzekeybiologicalreactions(justlikeproteins).Infact,RNAmoleculesfacilitatethesynthesisofallproteins,bothbycarryinggeneticinformationandbycatalyzingproteinformation.Soofalllife’svariedmolecules,RNAistheonlyonethatseemsto“doitall.”TheRNAworldmodelrestsontheassumptionthatsomeasyetpoorly

understoodchemicalmechanismproducedvastnumbersofdifferentstrandsofRNA,orperhapsaninformation-richmoleculeverysimilartoit.Almostallthosevariedstrandsdidabsolutelynothing;theysimplysurvivedorgraduallydegraded.However,aselectfewstrandspossessedsomekindofself-beneficialfunction;theyfoldeduptobecomemorestable,ortheylatchedontoasecuremineralsurface,orperhapstheydestroyedtheirrivals—justanotherexampleofmolecularcompetitioninthebroth.ThekeyassumptionoftheRNAworldhypothesisisthatoneofthesemyriad

strandslearnedtheremarkabletrickofhowtomakecopiesofitself:itbecameaself-replicatingmolecule.Thisideaisn’tsofar-fetched.Afterall,RNAisalotlikeDNA,whichisabletomakecopiesofitself.What’smore,RNAiseasilymutated.Sothefirstself-replicatingRNAmolecule,howeverinefficientorsloppy,wouldsoonhavefounditselfcompetingwithlotsofslightvariantsofitself,someofwhichpulledoffthecopyingtrickalittlefaster,orwithalittlelessenergyexpenditure,orperhapsinslightlydifferentenvironments.SuchaprecociousRNAmoleculewouldseemtofulfillalltherequirementsforlife:itisaself-sustainingchemicalsystemcapableofincorporatingnoveltyandundergoingDarwinianevolution—inthiscase,molecularevolution.Perhapsittookalongtimeforthatfirstfunctional,crudelyself-replicating

molecularsystemtoemerge,whetheritwasacitricacidcycle,oranautocatalyticnetwork,orself-replicatingRNA.Butunimaginablenumbersofmolecularcombinationswerebeingtriedontrillionsoftrillionsofmineralsurfaces,acrossalmosttwohundredmillionsquaremilesofEarth’ssurface,for

Page 131: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

manymillionsofyears.Andoneofthoseinconceivablyimmensenumbersofmolecularcombinations,someplace,sometime,worked.Itlearnedtoself-replicateandtoevolve.Andthatinventionchangedeverything.ExperimentsintheBoston-basedlaboratoryofHarvardbiologistJackSzostak

demonstratethepowerofselectioninmolecularevolution.Inmanyoftheirexperiments,Szostak’steamstartswithamixtureofonehundredtrilliondifferentRNAsequences,eachofwhichconsistsofarandomhundred-letterstringofA,C,G,andU.ThatimmensecollectionofdiverseRNAstrands,eachofwhichfoldsupdifferently,isthenconfrontedwithatask:forexample,bondingtightlytoanotherdistinctivelyshapedmolecule.Szostak’steampoursasolutionwithallhundredtrillionstrandsintoabeakerwithlittleglassbeads,eachofwhichhasbeencoatedwiththatdistinctivelyshapedtargetmolecule.ThesetargetmoleculesdangleoutintotheRNA-richsolutionlikelittlehooks.ThevastmajorityofRNAmoleculesdon’trespond;theyhavethewrongshapestointeract.ButatinyfractionoffoldedRNAslatchontothetargetsandsticktight.That’swherethefunbegins,becauseSzostak’scoworkerspourouttheold

solution(alongwithalmostonehundredtrilliondifferentnonfunctionalRNAstrands)andrecoverthefewstrandsthatbyvirtueoftheirfortuitousshapeshappentosticktothecoatedglassbeads.Then,usingstandardtricksofgenetictechnologythatmimicplausibleprebioticprocesses,theyprepareanewbatchofonehundredtrillionRNAstrands,butthistimeallthestrandsaresloppycopies—eachamutantofoneofthosefeworiginalfunctionalstrands.RepeatingtheabovestepsproducesanewpopulationoffunctionalRNAstrands,butsomeofthesesecond-generationvariantsbindmuchbetterthananyofthefirstgeneration.Someofthemutantdaughterstrandssignificantlyoutperformtheirparents.Repeatthewholeprocessafewmoretimes,andtheresultantRNAstrandsgetbetterandbetteratbinding,untilthebestmutantsareperfectlyfunctional:theylockontotheirtargetswiththehighestpossiblebindingenergy.Thewholeexperimenttakesafewdays—lessthanaweekfromrandom

strandstoaperfectbindingmolecule.Butifyouweretoaskateamoftheworld’smostbrilliantchemiststodesignsuchafunctionalRNAstrandfromscratch,theywouldfindthetasktobevirtuallyimpossiblewithanyknowncomputationalmethod.NocurrentmethodcanpredictexactlyhowalongRNAstrandwillfoldup,orhowitmightattachtoothercomplexlyshapedmolecules.Molecularevolution,notintelligentdesign,isbyfarthefastestandmostreliablepathtoachievingfunction.(That’swhywesayifGodcreatedlife,she’ssmartenoughtouseevolution.)

Page 132: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Life’sExplosion

Intheprebioticbroth,acollectionofmoleculeswitheventheslightestusefulfunctionhadanadvantage.ButthesemoleculargamesofwarpaledbesidetheadvantageconferredupontheRNAstrandthathadausefulfunctionandcouldmakecopiesofitself.Suchaself-replicatingmoleculeensureditsownsurvivalbyproducingmoreorlessidenticaldaughters.What’smore,themolecularcopyingprocesswasinevitablymessy,sosomeofthoseRNAcopiesweremutants.Andwhilemostmutationswerelethalorconferrednosignificantadvantage,afewfortuitousindividualsoutshonetheirparents,andthusthesystemevolved.Simplybychancecopyingerrors,theoriginalself-replicatingmoleculemusthaveproducedoffspringthattoleratedmoreextremeconditionsofpressureorheatorsalt,orreplicatedfaster,orfoundnewsourcesoffood,ordestroyedtheirlessfitneighbors.EvengreateradvantageswereenjoyedbythoseRNAstrandsthatfoundprotectiononamineralsurfaceorrefugewithinasafe,encapsulatingmembrane.Withoutcompetition,thefirstself-replicatingmoleculesengulfedEarth’s

nutrient-richzonesinageologicalinstant.It’sperhapscounterintuitivetothinkofamicroscopicobjecttakingover,butsay,justforargument,thatthefirstrelativelyinefficientself-replicatingmoleculetookaweektoduplicateonce.(Manymodernmicrobes,bycontrast,canreplicateinamatterofminutes.)Weekbyweek,twostrandsbecamefour,fourbecameeight,andsoforth.Atthatrate,itwouldhavetakenabouthalfayeartoformaclumpofonehundredmillionself-replicatingmolecules—anobjectjustlargeenoughtoseewiththenakedeye.Inanothertwentyweeks,themassofRNAwouldhaveexpandedtofillathimble.Andatthisrate,itwouldtakeyetanothertwentyweeksforalloflife’searliestmanifestationtofillagood-sizebathtub.Butcontinueddoublingeveryweekwouldhavequicklyproduceda

remarkabletransformation.TwentymoreweekswouldhaveseenmilesofRNA-infestedwaters,perhapsalongthecoastorinaninlandlakeoradeep-seaenvironment.Andwithintwoyears,assumingthatasingleinitialRNAstranddoubledeveryweek,Earthcouldboastasmuchasamillioncubickilometersoflivingstuff—enoughtoclogtheentireMediterraneanSea.Primitivesingle-celledorganismsthatfedonthechemicalenergyofrocks

couldn’thavehadmucheffectonEarth’sgeology—itsnear-surfacedistributionofrocks,forexample,orthediversityofminerals.Livingorno,fourbillionyearsagotheancientlandremainedbarrenblackandgray,surfaceweatheringwasslow,andtheearliestlifewouldhavecontributedalmostnothingtoaltertheglobe-spanningblueoceans.

Page 133: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Becausethefirstscrappymicrobeswouldhavemadelittlemark,wecan’ttellforsurewhenlifebegan.AfewofEarth’smostancientsedimentaryrocks,thoselaiddowninshallowoceanenvironmentsabout3.5billionyearsago,holdunmistakablemicrobialfossils.Domelikerockystromatolites,afewinchestoafewfeetacross,formedwherecoloniesofcellsprecipitatedthinlayeruponlayerofmineralsinshallowsettings.Microbialmatscoveredwideswathsofshoreline,consolidatingandpatterningsandintidalzones.Evenafewcarbon-richsphereswithdistinctivecell-likewalls—possiblemicrobialbodyfossils—havesurvivedtheaeons.Butnoolderincontrovertiblefossilshavebeenfound.Geochemicaltracesofcarbonandotherbioelementsfromintenselyalteredrocks3.85billionyearsoldaretantalizing,butbynomeanshavetheyconvincedthegeologicalcommunity.Sowhendidlifearise?Ifyourhunchisthatlifeemergesearlyandoftenon

anyviableplanetormoon,thenperhapsyou’dadvocateastablebiosphereby4.4billionyearsago—withinEarth’sfirst150millionyears.Alltheingredientswerethere:oceansandair,mineralsandenergy.GiantimpactsofasteroidsandcometswouldhavechallengedthesurvivalofthisHadeanlife,perhapsfavoringthosehardycellsthatlearnedtolivehotanddeepinprotectedrockyhomesbeneaththeoceanfloor.Perhapslifecameintobeingmorethanonce,perhapsmanytimes,beforeEarthsettledintoitscalmerpostadolescence.Ifso,thenthe3.5-billion-year-oldfossilswouldrepresentanecosystemalmostabillionyearsinthemaking.If,ontheotherhand,yoususpectthatlife’soriginsaredifficultandrareinthe

cosmos,thenadatecloserto3.5billionyearsagomayseemmorelikely.Perhapslifeissoimprobablethatabillionyearsofmineral-moleculeinteractionsthroughouthundredsofmillionsofcubicmilesofoceancrustwerenecessary.Perhapsthoseprecious,sparsefossilremainsoftheso-calledArcheanEonmarkthetruebeginningsofthebiosphere.

LivingEarth

Wheneverfirstlifeemerged,whetherbefore4.4billionyearsorafter3.8billionyearsago,thefactremains:itlittlealteredEarth’sancientsurface.ThoseearliestmicrobessimplylearnedchemicaltricksthatEarthalreadyknew.Fromourplanet’searliestdays,chemicalreactionshavetakenplaceatornearitssolidsurface.Thereasonboilsdowntothedistributionofelectrons:Earth’smantlehasonaveragemoreelectronsperatomthanthecrust.Themantleismore“reduced”andthesurfacemore“oxidized,”inthejargonofchemistry.When

Page 134: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

reducedandoxidizedchemicalsmeet—forexample,whenreducedmagmaandgasesfromthemantlebreachthemoreoxidizedsurfaceinavolcaniceruption—theyoftenundergoanenergy-liberatingchemicalreaction.Intheprocess,electronstransferfromtheformertothelatter.Rusting,inwhichironreactswithoxygen,isafamiliarexampleofsucha

reaction.Ironmetalispackedfullofelectrons—somanyelectrons,you’llrecall,thatsomeofthemarefreetowanderthroughtheshinymetalandconductelectricity.Ironisthusanelectrondonor.Oxygengas,ontheotherhand,issostarvedforelectronsthatpairsofoxygenatomsmustpooltheirresourcestomakeanO2molecule,inwhichthemeagersupplyofelectronsissharedbybothatomslikerationsonadesertisland.Oxygenistheidealelectronacceptor.Sowhenironmetalmeetsmoleculesofoxygen,arapidexchangeofelectronsoccurs.Eachironatomgivesuptwoorthreeelectrons,whileeachoxygenatomtakesuptwoelectrons.Theresultofthisexchangeisanewchemicalcompound,ironoxide,plusalittlejoltofenergy.Inadditiontoiron,thecommonelectronsatedmetalelementsnickel,

manganese,andcopperweresubjecttooxidation.So,too,weremanyofthesimplecarbon-basedmoleculesthathadbeensynthesizedinprebioticprocesses,includingmethane(naturalgas),propane,andbutane.OxygengaswasscarceinEarth’searliestatmosphere,butotherelectron-hungrycollectionsofatoms,includingsulfate(SO4),nitrate(NO3),carbonate(CO3),andphosphate(PO4),werereadilyavailabletofillthatrole.Beforelife’semergence,redoxreactionsproceededatarelativelyleisurely

pace.Butthefirstmicrobeslearnedtoshuffleelectronsatanacceleratedrate.Inmanyplaces—primitivecoastlines,near-surfacewaters,ocean-floorsediments—livingcellsbecamethemediatorsofthesereactions.Communitiesofmicrobesmadetheirlivelihoodsbyspeedingupreactionratesoftherocks,usingtheresultantenergytoliveandgrowandreproduce.Earthhadmadeironoxidesfromthestart,tobesure,butthefirstmicrobesmadethemfaster.Intheprocess,lifebegan,eversoslowly,toalterEarth’ssurfaceenvironment.Microbesexploitedtheabundantenergyavailable,intheformofthereducedirondissolvedintheHadeanandArcheanoceans;theyoxidizedirontoformtherustyredmineralhematite—achemicaltransformationthatcanreleaseenoughenergytosupportanentireecosystem.MassiveArcheanbandedironformationsfoundinAustralia,SouthAmerica,andotherancientterrainsmaythusrepresenttheleavingsofanepicmicrobialbuffetthatlastedtensofmillionsofyears.Andsobegantheastonishingcoevolutionofthegeosphereandbiosphere.Evolutionbynaturalselectioncontinuedtodrivealltheseprocesses.A

Page 135: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

microbialspeciesthatlearnedtouseitsironfoodsourcemoreefficiently,ortotoleratemoreextremeconditions,ortoexploitnewredoxreactions,hadadistinctadvantageandensureditsownsurvival.Consequently,mutatingpopulationsofmicrobesinventednewcatalyststhatpromotedtheseenergy-producingreactionsmoreefficientlythanthenonlivingenvironment.Theresults,hereandthere,werelittlemoundsoflimestoneandmodestdepositsofironoxides,alongwithagradualincreaseintheprocessingofnear-surfacecarbon,sulfur,nitrogen,andphosphorus.Nevertheless,theseearliestlife-formsdidlittlemorethanmimicthechemistrythathadalreadybegun(albeitmoreslowly)onthepreviouslynonlivingworld.

Light

Mostoriginsresearcherssuspectthattheearliestlife-formsreliedexclusivelyonthechemicalenergyofrocks—anabundantsource,tobesure,butonethatgreatlyrestrictedwherelifecouldthrive.Atsomepoint,afewmicrobesmovedbeyondtheirroleasmediatorsofchemicalreactionsintrinsictotheirenvironment.Theylearnedtocollectsolarradiation,whichwouldproveanabundant,cheapenergysourceforanysurfacedweller,anywhereontheplanet.Initsmostbasicform,photosynthesisusessunlighttomakebiomolecules

fromsuchubiquitousrawmaterialsascarbondioxide,nitrogen,andwater.Giventherightchemicalscaffolding,alloflife’sessentialbuildingblocks—aminoacids,sugars,lipids,andthecomponentsofDNAandRNA—canbemadefromatmosphericgasesandtheSun’sradiation.Unlikemoderngreenalgae,thosefirstmicrobialphotosynthesizersgeneratednooxygen.Indeed,modernanaloguesoftheseprimitiveorganismstendtoformabrownishorpurplishscumonstagnantponds.SomebiologistshaveevensuggestedthatimmensefloatingraftsofphotosyntheticmicrobesdiscoloredtheblueArcheanoceanswithunsightlybrownish-purplesplotches.Howwouldweknow?Suchmicrobeshavenohardpartstopreserveas

fossils;nordofloatingalgalmatsaltertherockrecordinanyobviousway.However,theremaybeawaytoteaseoutevidenceofthemostancientlight-lovingmicrobes.Photosyntheticcellsrelyinpartonhopanes—distinctivemoleculeswithfiveinterlockingcarbonrings(aconfigurationcloselyrelatedtothatofthesteroidssomuchinthesportingnewsthesedays).Aftermicrobesdieanddecay,theirtelltalemultiringhopanebackbonescansurviveforbillionsofyearsasamolecularresidueinfine-grainedoceansediments.Meticulouschemicalprocessingisrequiredtoextractandanalyzethesegeohopanesfrom

Page 136: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

thebulkrock.Tentativeinterpretationsmustincorporatealitanyoftrickyassumptionsaboutpossiblesourcesofcontamination,bothancientandrecent.Thepaleontologicalcommunitygreetseveryreportofmoleculessurvivingforseveralbillionsofyearswithcaution,ifnotoutrightskepticism.Nevertheless,thechemicaltracesarethereandmaybethebestwindowontothistenuousancientbiosphere.(Moreonhowinchapter7.)

Byourplanet’sone-billionthbirthday,lifehadestablishedafirm,ifrelativelyinconsequential,footholdonitssurface.Foranotherbillionyears,Earth’smicrobiallifewouldgentlynudgenear-surfaceenvironments,firstbyspeedingalongredoxreactionsandthenthroughphotosynthesis.Asnearaswecantell,evenattwobillionyearsold,Earthwouldnothavedisplayedanysignificantlife-imposedmineralogicalnoveltyatornearitssurface.Cellswouldsimplymakemoreironoxides,morelimestone,moresulfatesandphosphatesthanmightotherwisehaveformed.Theywouldbuildlayereddepositsofiron-richmineralsinthedeeperoceanandcraftprotectiverockymoundsincoastalshallows—allphenomenathathadtranspiredonEarthbeforethedawnoflife,andonotherplanetsandmoonsintheSolarSystem.ButEarthanditsprimitivemicrobialpopulationwerepoisedtomakethemost

dramatictransformationintheplanet’shistory.Overthenext1.5billionyears,photosynthesizingmicrobeswouldlearnanewchemicaltrick—toexhalethehighlyreactive,dangerouslycorrosivegascalledoxygen.

Page 137: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet
Page 138: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Chapter7

Page 139: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

RedEarth

PhotosynthesisandtheGreatOxidationEventEarth’sAge:1.0to2.7billionyears

Fast-forwardtothepresentday,andit’sclearthatlifehasirrevocablytransformedEarth’snear-surfaceenvironment—mostconspicuouslytheoceansandatmospherebuttherocksandmineralsaswell.Itwouldtakemorethanabillionyears,aftertheinnovationofthefirstlivingcell,forsuchatransformationtobegin.Inthatperiod,newvarietiesofmicrobesmayhavecreatedabrownishorpurplishscuminsomecoastalregions.Theremayevenhavebeenpatchesofgreenishslimedecoratingequatorialshoresandpopulatingshallowponds,asafewclevercellsexperimentedwithnewwaystoharnesstheSun’sradiantenergy.Butthecontinentswerestillbarren:noplantsclungtotherockylandscape,norwereanyanimalspresenttoeatthem.Youstillwouldhavediedquickly,inagony,ifyouwerestrandedinthisanoxicworld.Earth’ssurfacechangedfromdullgraytobrickred,inageologicalafternoon,

withtheinnovationofoxygen-producingphotosynthesisandtheconsequentriseofanoxidizingatmosphere.It’sdifficulttodocumentexactlywhenandhowquicklyslimygreenalgaeevolvedtotriggerthistransformation,calledtheGreatOxidationEvent.Ourbestguesscomesfromsubtlechangesintherockrecord,whichsuggestapulseofphotosynthesisshortlyafterEarth’stwo-billionthbirthday—about2.5billionyearsago.Afterthatmodeststart,thingshappenedrelativelyquickly:by2.2billionyearsago,atmosphericoxygenhadrisenfromzerotomorethan1percentofitsmodernlevel,foreverchangingEarth’ssurface.TheintriguingstoryofEarth’sinitialoxygenationisonlynowcominginto

focus,asunexpectednewclueshaveemergedandpromisingnewlinesofevidencehavebeenpursuedinearnest.Thepasthalfcenturyofpaleo-atmosphereresearchhasseenmanycompeting,sometimesdiametricallyopposedideas,butthescientificmethodisagreatwinnoweroftheuntenableandthefalse.Wedon’tyethavethewholenarrative,butwearegettingmuchcloser,andthepicturethatisemergingis(literally)breathtaking.

Page 140: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

TestimonyoftheRocks

EvidencefortheGreatOxidationEventcomesfromagrowingcatalogofobservationsonrocksandmineralsthatdatefromavastchunkofEarth’shistory—roughly3.5to2.0billionyearsago.Ontheonehand,manyrocksolderthan2.5billionyearscontainmineralsthatareeasilydestroyedbythecorrosiveeffectsofoxygen,suggestinganoxygen-freeenvironmentpriortothattime.Geologistsfindunweatheredandroundedpebblesofpyrite(theironsulfidealsoknownasfool’sgold)anduraninite(thecommonesturaniummineral)inancientstreambeds—placeswheresuchmineralswouldquicklycorrodeandbreakdownintoday’soxygen-richsurfaceenvironment.Suchancientsandylayersalsohaveatelltalechemistry—unusuallyconcentratedinoxygen-avoidingelementslikecerium,whilestrikinglydeficientinotherslikeironcomparedwithtoday’ssoils.Thesechemicalquirksfurtherevinceanatmospheredevoidofoxygen.Bycontrast,rocksyoungerthan2.5billionyearscontainmanyunambiguous

signsofoxygen.Between2.5and1.8billionyearsago,massivedepositsofironoxidescalledbandedironformationsweredepositedinstaggeringabundance.Thesedistinctive,denseaccumulationsofalternatingblackandrustyredlayershold90percentoftheworld’sknownironorereserves.Manganeseoxidesalsosuddenlyappear,asthicklystratifieddepositsthatnowprovidetheworld’schiefrepositoriesofmanganeseores.Hundredsofothernewminerals—oxidizedoresofcopper,nickel,uranium,andmore—alsoappearintherockrecordforthefirsttimeaftertheGreatOxidationEvent.Yetinspiteofthisexpandedmineralogicalrepertoire,somescientistsremainedunconvincedthattheGreatOxidationEventwasreallyaneventatall.Perhapstherewasjustaslowandsteadyincreaseinatmosphericoxygen.Perhapsthespotty,erodedrockrecordisincompleteandmisleading.ThesmokinggunoftheGreatOxidationEventcamefromanunexpected

source—remarkablerecentdataontheisotopesofthecommonelementsulfur.The1990ssawdramaticincreasesintheresolvingpowerandsensitivityofmassspectrometers,whicharetheworkhorseanalyticalinstrumentsoftheisotopeworld.Thenewgenerationofmassspectrometersallowedscientiststoanalyzesmallerandsmallersamples,evenmicroscopicmineralgrainsorindividuallivingcells,withhigherandhigherprecision.Sulfur,oneoflife’sessentialelements,provedaparticularlytemptingtargetforstudy,astherearefourstablesulfurisotopesinnature:sulfur-32,-33,-34,and-36.Alloftheseisotopeshavesulfur’srequisitesixteenprotonsinthenucleus,butthenumberofneutronsvariesfromsixteentotwenty.Thedistributionofsulfurisotopesisusuallypredictableonthesimplebasisof

Page 141: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

mass.Allatomswiggle,butlessmassiveisotopeswigglemore.Consequently,inanychemicalreactionlightisotopesaremorelikelytojumpaboutthanheavyones.Thisselectiveprocess,calledisotopefractionation,occursanytimeacollectionofsulfuratomsexperiencesachemicalreaction,whetherinasolidrockoralivingcell.Inthecaseofsulfur,anisotopeofmass32willtypicallyfractionatemorethananisotopeofmass34or36.What’smore,thefractionationratioisusuallydirectlyrelatedtothemassratiooftheisotopes:thefractionationofsulfur-36tosulfur-32isalmostalwaystwicethefractionationofsulfur-34tosulfur-32.ThisbasicphysicsfollowsdirectlyfromNewton’slaws:forceequalsmasstimesacceleration.Smallermassmeansabiggeracceleration,sounderagivenforce,sulfur-32wigglesmorethansulfur-34,whichwigglesmorethansulfur-36.AdecadeagogeochemistJamesFarquhar,workingatthescenic,oceanside

SanDiegocampusoftheUniversityofCalifornia,foundaprofoundandunexpectedchangeinthedistributionsofsulfurisotopesinrocksolderthanabout2.4billionyears.Morerecentrocksandmineralsalmostalwaysdisplaythemass-dependenttrendonewouldexpect;theirratiosofsulfurisotopesdependalmostexclusivelyontheratiosofmass.ButFarquharandhiscolleaguessawaradicallydifferentfractionationofsulfurisotopesinmanyrocksolderthan2.4billionyears—insomesamples,wilddeviationsofseveraltenthsofapercent(whichisalotinthiscase).Whatcouldhavecausedsuchamass-independentdeviationfromtheunassailableNewtonianlawsofmotion?Clevertheorists,backedbyexperimentalproofs,werequicktopointtoa

solutioninthenuancesofquantummechanics.Undertheinfluenceofultravioletradiation,isotopebehaviorcandeviatefromtheNewtonianideal.Itturnsoutthatisotopeswithanoddmassnumber,suchassulfur-33,canbeselectivelyaffectedbyultraviolet(UV)radiation.Ifamoleculeofsulfurdioxideorhydrogensulfidehappenstoincorporatesulfur-33,andifthatmoleculeencountersanultravioletray(mostlikelyhighintheatmosphere),itmayreactmorereadily.Thesulfur-33experiencesa“mass-independentfractionation”thatskewstheisotoperatios.ButwhythesuddenchangeonEarth2.4billionyearsago?Theanswerliesin

theUV-absorbingpropertiesofozone,amoleculeofthreeoxygenatomsthathasbeenmuchinthenewsthesepasttwodecades.TodayozonehighintheatmosphereprovidesanessentialbarriertotheSun’spotentiallylethalultravioletrays.Measurementstakenoverthepasttwodecadesrevealthatthishigh-altitudeozonelayerhasbeensignificantlydepleted,mostlikelybydestructivereactionswithhuman-producedchemicalscalledchlorofluorocarbons,orCFCs.(Freon,

Page 142: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

onceusedinairconditioners,isthebest-knownexample.)Suchan“ozonehole”allowsmorecancer-causingUVradiationtoreachEarth’ssurface.ThegoodnewsisthataworldwidebanonCFCproductionseemstoberesultinginarapidrestorationoftheozonelayer.Beforetheriseofoxygengasandtheconsequentcosmicsun-blockingability

oftheozonelayer,sulfurcompoundshighintheatmosphereweresubjectedtoanonstopbathofultravioletradiation.Undersuchharshconditions,compoundswithsulfur-33experiencedmass-independentfractionation.AftertheGreatOxidationEvent,aprotectiveozonelayeraccumulatedtoabsorbmuchoftheSun’sUVradiationandthuseffectivelyshutdownthisoddisotopeeffect.AslabafterlabaroundtheworldverifiedandamplifiedFarquhar’sfindings,

thegreatmajorityofEarthscientistsacceptedtherealityoftheGreatOxidationEvent.Unlessscientistsdiscoverawayotherthanozonetoblockultravioletrays,thesulfurisotopedatapegthebeginningoftheGreatOxidationEventatabout2.4billionyearsago.

MakingOxygen

Sowheredidalltheoxygencomefrom?Thesedaysoneofthefirsttopicsinanyintroductorybiologyclassisphotosynthesis—theremarkableabilityofplantstocombinewater,carbondioxide,andsunlighttomaketheirtissues,whileproducingoxygenasaby-product.Wenowtakeitforgrantedthatplantsplaythiscentralroleinmakingourworldahabitableplace,butthediscoveryofphotosynthesiswasoneofthegreatestadvancesinscience.Andlikesomanyofscience’spivotaldiscoveries,itcameinpiecemealfashion.Thediscoveryofwater’srolecamefirst.Detailedmechanismsofplantgrowth

wereamysterytoscientistsoftheseventeenthcentury,butacommonassumptionheldthataplant’stissuesmustcomefromthemineral-richsoil,whichmustthereforebeconsumedasplantsgrow.FlemishphysicianJanBaptistaVanHelmont(1579–1644)putthisassumptiontothetestbyconductingasimpleexperimentinthe1640s.Inhisownwords:

ItookanEarthenVessel,inwhichIput200poundsofEarththathadbeendriedinaFurnace,whichImoystenedwithRain-water,andIimplantedthereintheTrunkorStemofaWillowTree,weighingfivepounds;andatlength,fiveyearsbeingfinished,theTreesprungfromthence,didweigh169pounds,andaboutthreeounces:ButImoystenedtheEarthenVesselwithRain-waterordistilledwater(alwayeswhentherewasneed)…At

Page 143: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

length,IagaindriedtheEarthoftheVessel,andtherewerefoundthesame200pounds,wantingabouttwoounces.Therefore164poundsofWood,Barks,andRoots,aroseoutofwateronely.

VanHelmont’sdiscoverywasamajoradvance,thoughwater(aswenowknow)wasonlypartofthestory.AcenturylatertheEnglishclergymanandnaturalistStephenHalesfirst

suggestedthatplantsrelyonsomecomponentoftheairaswellaswater—traceatmosphericcarbondioxide.Wenowrecognizethatbothwaterinthesoilandcarbondioxideintheairareprincipalingredientsforphotosyntheticorganisms.(Ironically,itwasVanHelmonthimselfwhodiscoveredcarbondioxidegas,buthedidnotrealizeitscentralroleinplantgrowth.)Evenso,theroleofsunlightwasenigmatic,andittookanotherthreehundred

yearsforthedetailstoemerge.Advancesinnuclearphysicspavedtheway,asanewgenerationofparticleacceleratorscalledcyclotronsprovidedthefirststeadysupplyofthehighlyradioactiveisotopecarbon-11—asensitiveprobeofbiologicalreactions.Inthelate1930s,SamuelRubenandMartinKamenattheUniversityofCaliforniaatBerkeleyexposedplantstocarbondioxidewithacarbon-11“label.”Inthisway,theycouldusethetelltaleradioactivitytofollowcarbondioxideasitwastakenintoplanttissues,thoughthefleetingtwenty-one-minutehalf-lifeofcarbon-11madetheseexperimentsexceedinglydifficult.RubenandKamen’s1940discoveryofawaytomanufacturecarbon-14,a

muchmoresuitabletracerisotopewithaleisurelyhalf-lifeof5,730years,revolutionizedbiophysicalresearchandledtoarapidunderstandingofhowplantstakeadvantageofwater,carbondioxide,andsunlight.Inbrief,aclever(andveryancient)proteincalledrubisco—achemicalfoundinthetypeofpioneeringcyanobacteriathoughttodatebackthreebillionyearsormore—concentratescarbondioxideandwater,absorbstheSun’senergy,andassemblestherawmaterialsintoessentialbio-buildingblocks.Inthephotosynthesisreactionthatyieldstheoxygenwebreathe,algaeorplantsconsumesixmoleculesofcarbondioxideplussixmoleculesofwatertomakeonemoleculeofthesugarglucose,withsixmoleculesofoxygenasaby-product.Thischemicaltransformationisanotherexampleofouroldfriend,theredoxreaction(likerustingiron).Inthiscase,thecarbonatomsincarbondioxidegainelectronsandarethusreduced,whilewaterorsomeotherelectrondonorisoxidized.Inphotosynthesis,theSun’sraysprovidetheenergeticboosttoshiftelectrons.Asstraightforwardasthebare-boneschemicalreactionmightsound—carbon

dioxidepluswater(orsomeotherchemicalthatcancontributeelectrons)makes

Page 144: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

sugarsandotherbiomolecules—thedetailsofphotosynthesisareimmenselycomplicatedandarestillbeingworkedout.Foronething,microbeshavefiguredoutquiteafewdifferentwaystoharvestsunlightandothersourcesofenergy.Mostoxygen-producingplantsandalgaetodayusethebrightgreenpigmentchlorophylltoabsorblightinredandvioletwavelengths.ButthroughoutEarth’shistory,avarietyofcellshaveemployedotherphotosyntheticpathwaysthatproducednooxygenatall.Alternatelight-absorbingpigmentshaveevolvedtodecorateredandbrownalgae,purplebacteria,andstrikinglybeautifuldiatomsandlichensinawiderangeofcolors.Afewinventivemicrobesevenpowertheirphotosyntheticreactionswithinfraredradiation—wavelengthsthatareutterlyinvisibletooureyesbutthatourbareskinsensesasheatenergy.Thecomplexoriginsofphotosynthesisarethesubjectoftheresearchof

biochemistRobertBlankenship,whoholdschairedpositionsinboththechemistryandbiologydepartmentsatWashingtonUniversityinSt.Louis.Blankenshipandhiscoworkers,includingformercolleaguesfromtheinfluentialastrobiologyteamatArizonaStateUniversity,searchforsignsofearlylife,bothonEarthandonotherworlds.Theirstrategyistoexaminethevariedphotosyntheticpathwaysofmanydifferentkindsoflivingmicrobes—purple,brown,yellow,andgreen—scrutinizingtheirgenomesforsimilaritiesanddifferences.Datacomefrommultipleaspectsoftheintricatephotosyntheticapparatus:thevariednatureofphotosyntheticpigments,theexactmolecularsequencesofprotein“reactioncenters”thatshiftelectronsfromonemoleculetoanother,themanywaysthosetransferredelectronsarethenusedtomakethecell’sbuildingblocks,andeventhemyriadstructuresof“antennasystems.”(Remarkably,cellshaveevolvedclustersofmoleculesthatoperateastinylight-collectingantennas.)Blankenshipfindsthatlifehasdevisedabewilderingdiversityof

photosyntheticstrategies.Life,itseems,exploitsanyaccessibleenergysource.Overandoveragainmicrobeshavefiguredoutnewwaystocollectlightforgrowthandreproduction—atleastfiveseparatepathways,extendingdeepintoEarth’sevolutionaryhistory.Manydetailsofthathistoryareobscure,butthemostancientandprimitiveoftheseenergy-gatheringchemicalreactions,possiblydatingtomorethan3.5billionyearsago,clearlyproducednooxygenatall.Ancestorsofthoseearlycellssurvivetodayandillustratethatthemostdeeplyrootedbiochemistrieswereanaerobic,neitherrequiringnoreventoleratingoxygen.TheresearchofBlankenshipandhiscoworkersnotonlyrevealsthewide

rangeofthesediversechemicalstrategiesbutalsopointstoatendencyfor

Page 145: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

microbestoshuffleandswaptheirlight-collectinggenes,co-optingtheirrivals’photosyntheticpathwayslikeindustrialtradesecrets.Indeed,themodernschemeofphotosynthesisusedbyvirtuallyallplantsappearstobeacombinationoftwomoreprimitiveschemes(prosaicallynamedPhotosystemIandPhotosystemII).ContemporaryorganismscanthuspiggybackcomplexbiosynthesisreactionsandcollectandusesunlightfarmoreefficientlythanthoseinearlierstagesoflifeonEarth.

MoreOxygen

Evenwithoutphotosynthesis,Earth’ssurfacewouldhaveexperiencedaleisurely(andcorrespondinglytrivial)oxidationthroughtheslowlossofhydrogenmoleculesintospace.Highintheatmosphere,H2Omoleculesarevulnerabletothedestructivepowersofultravioletradiationandcosmicrays,whichcanfragmentwaterintohydrogenplusoxygen.Water’satomsrearrangeintoothersimplemolecules,mostlyH2andO2,aswellastracesofozone,O3.Theresultingswift-movinghydrogenH2molecules,unlikethemuchheavierlumberingO2andO3moleculesofoxygen,areabletoescapetheincessantpullofEarth’sgravityandflyoutintothevoidofspace.ThroughoutEarth’shistory,smallamountsofhydrogenhavebeenlostinthisway,leavingbehindagradualaccumulationofexcessoxygen.Eventodaytheprocesscontinues,asaquantityofhydrogenroughlyequaltotheatomsinafewOlympic-sizeswimmingpoolsescapestospaceeveryyear.Bythesameprocess,smallerMars,withmuchlessgravitytoholditshydrogen,hasshedmuchofitswater.Over4.5billionyears,mostofMars’snear-surfacehydrogenhasthusescapedtospace,whileironmineralsnearthesurfacehaverustedtogivetheplanetitspresentredcolor.Evenso,thetotalamountofoxygeninMars’sthinatmosphereistrivial:wereitalltocondenseontothesurface,thelayerofliquidoxygenwouldbelessthanathousandthofaninchthick.InexorableoxygenproductionbyhydrogenlossmighthaveturnedEarth’s

surfacerustyredoverasimilarmultibillion-yearperiod,butitcan’thavehadmucheffectonEarth’searlyenvironment.Evenwiththemostextremeestimates,lessthanoneatmosphericmoleculeinatrillionwasO2beforetheGreatOxidationEvent.(Todayit’soneinfive.)Thattrivialamountofoxygenwouldhavebeensnappedup,asfastasitcouldbegenerated,atEarth’ssurfacebyhugequantitiesofironatomsjustwaitingtobeoxidizedintheoceansandinthesoils.EvenifEarthhadremainedlifelessandeventuallysportedreddish

Page 146: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

weatheredzonesinolder,stablepartsofthecontinents,suchasuperficialcoatingofrougewouldhavebeenpurelycosmetic.Life,too,mayhavecontributedasmallinventoryofoxygenpriorto

photosynthesis.Infact,cellshavelearnedatleastfourdifferentwaystomakeoxygenfromtheirsurroundings.Oxygenicphotosynthesisisthebigonetoday,butotherbiochemicalpathwaysmayhaveplayedsmallrolesinancienttimes.Lifescavengesenergyfromitsenvironmentanywayitcan.Theeasiestway

togainenergywhilereleasingoxygenistostartwithamoleculethatisalreadyoxygenrichandhighlyreactive.Thusanumberofmicrobeshavelearnedtoexploitmoleculesofperoxide(H2O2,producedbyreactionshighintheatmosphere)togenerateO2plusenergy.Admittedly,suchmolecularspecieswouldhavebeenscarcebeforetheriseofatmosphericoxygen,andsuchmicrobialmechanismscan’thaveplayedmuchofaroleinmodifyingEarth’searlyenvironment.AteamofmicrobiologistsinHollandrecentlyreportedamorerelevant

oxygen-producingscenario:theydiscoveredremarkablemicrobesthatgainenergybydecomposingnitrogenoxides.EarlyinEarth’shistory,theseso-calledNOXchemicalswereproducedinsmallamountsthroughreactionsofnitrogengaswithminerals—duringlightningstorms,forexample.Today,owingtowidespreaduseofnitrogen-richfertilizers,manylakes,rivers,andestuariesareheavilypollutedwithNOXcompounds,whichpromotelargemicrobialblooms.Thenewlydiscoveredmicrobesareabletodecomposenitrogenoxidesintonitrogenplusoxygen,thenusetheoxygento“burn”naturalgas,ormethane,andthusenjoyajoltofenergy.Suchacleverchemicalstrategymightproveespeciallyusefulonanitrogen-rich,oxygen-starvedworldlikeMars.

FossilEvidence

Ofalltheoxygen-producingmechanisms,photosynthesisistheundisputedchampion,buthowearlydidphotosynthesisandtheproductionofoxygenbegin?Paleontologists,whoscrutinizethefragmentarytangibleremainsofancientlivingworlds,seetheconnectionsbetweenlifepastandlifepresentmorevividlythananyotherscientists.Perhapsit’snotsurprising,therefore,thattheywereamongthefirsttofindevidenceforanoxygenatedEarthmorethantwobillionyearsago.Intheirsearchfortheearliestphotosynthesis,thefossilhuntersnaturallyfocusonEarth’soldestrocks.Fossilevidenceforancientphotosyntheticcellsisspottyatbest.Preciousfew

Page 147: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

microbialremainsmakeitthroughbillionsofyearsofburial,heating,squeezing,andchemicalalteration.Whatdoessurviveiscookedandcrushed,ofteninwaysthatnecessitateacolorfulimaginationtoachieveanybiologicalinterpretation.Coloniesoffossilmicrobesoftenappearaslittlemorethanscatteringsofsmallblacksmudges,soit’snotsurprisingthateveryreportofmicrobesmorethantwobillionyearsoldhasbeenmetwithcautiousskepticism,ifnotoutrightridicule.Formuchofthepastfourdecades,oneofthemostardentdefendersof

paleontologicalrigorhasbeenJ.William(Bill)Schopf,professorofpaleontologyattheUniversityofCalifornia’sLosAngelescampus.Basedonhisstudiesofincreasinglyancientmicrobialfossils,Schopfhasdevelopedachecklistoftraitsnecessaryandsufficienttoconfirmtheclaimoflife.Byfirstfocusingonmorerecent,well-preserved,andunambiguousspecimens,Schopfisthescientistwhomostconvincinglypushedthefossilrecordfurtherandfurtherback,morethanthreebillionyearsintotheremoteArcheanEon.Schopf’scriteriaarestraightforwardandreasonable:fossilmicrobesmust

comefromproperlydatedsedimentarylayerslaiddowninenvironmentswheremicrobescouldhaveoncelived.Fossilsmustshowuniformityofsizeandshape—consistentspheresorrodsorchains,unlikethekindofshapelessblackblobsandstreaksthatarefoundinmanyoldrocks.SchopfandhisstudentsalsoemployedstatisticstoremovesomeofthesubjectivityinherentinobservationsofEarth’soldestsedimentaryrocks.Thisquantitativecatalogofessentialtraitsforanysuiteofmicrobialfossils

servedSchopfwell.Hewasabletopublishunassailabledescriptionsofnewfossilfinds,whileraisingdoubtsaboutsomeofthemorequestionableclaimsofancientlifebycompetingresearchers.Hismostnotablechallengecamein1996,whenNASAscientistsannouncedthatmicrobialremainshadbeenfoundinaMartianmeteorite.AtadramaticNASA-hostedpressconferenceinAugustofthatyear,Schopfwasthelonedissentingvoice.Withthinlyveiledcontempt,hepointedoutthattheMartian“fossils”weremuchtoosmall,lackedsupportingchemicalandmineralogicalevidence,andwereinthewrongkindofrocktoboot.(InspiteofSchopf’spersuasivearguments,PresidentClintonlaudedthediscovery,whichmayhaveledtoasignificantbumpinNASAfundingforastrobiology—moneythatwoundupsupportingmanyofusintheoriginsgame,includingSchopf.)Ironically,Schopfwouldsoonmeetthesamekindofwitheringcriticismfor

anearlierclaimhe’dmadein1993,whenheannouncedhisdiscoveryofEarth’soldestmicrobialfossilsfromtheApexchert,arockformationalmost3.5billionyearsoldinnorthwesternAustralia.Photographsofsuggestiveelongatedblack

Page 148: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

structureswithcell-likesegmentationseemedcompellingenough.Thestory,publishedinahigh-profileSciencepaper,supplementedthefossilphotoswithartisticlinedrawings(to“aidtheeye”),whichwereplacedsidebysidewithphotosofcyanobacteria,similar-lookingmodernphotosyntheticmicrobes.Schopfevenclaimedthathisfossilswereprobablyoxygenproducers.Withinafewyears,hismostconvincingphotoshadbecomeamongthemostreproducedpaleontologicalimagesofalltime,adorningnumeroustextbookswithcaptionsthatrepeatedthe“earliestfossil”claims,oftenwiththesuggestionthatthemicrobeswerephotosynthetic.It’saruleinsciencethatextraordinaryclaimsrequireextraordinaryevidence.

It’salsotruethatextraordinaryclaimsusuallyreceiveextraordinaryscrutiny.AllofSchopf’sfossilspecimensresideattheBritishMuseuminLondon,preservedascarefullycataloged,thintransparentsectionsofrockmountedonglassslides.In2000OxfordpaleontologistMartinBrasierbeganadetailedreexaminationoftheApexchertmaterialandcametoaverydifferentconclusion.Schopf’s“thinsections”ofApexchertactuallyturnedouttoberatherthick,at

leastcomparedwiththesizeofamicrobe.BrasierandhiscolleagueswereeventuallyabletolocatemostofthetinyobjectsthatSchopfhadphotographedandpublished,buttheyweresurprisedtorealizethatmanyofthephotographswereatbestmisleading.EachofSchopf’snow-classicphotosrepresentsasinglemicroscopicfocalplane—athintwo-dimensionalslicethroughhissmudgythree-dimensionalblackobjects.Brasierandhisteamemployedanewerphotographictechniquethatcreatedathree-dimensionalmontageofimagesandthusrevealedamuchmorecomplexstory.OnlyiftheysetthemicroscopefocustotheexactdepthofSchopf’sphotographscouldtheyreproducethenow-classicimagesofApex“fossils.”Butraiseorlowerthefocusslightly,andwhatappearedatfirsttobeaconvincing,elongatedstringofmicrobialcellsmorphedintoawavysheetorirregularblob,sometimeswithfolds,branchings,orsquiggles.AccordingtoBrasier’sobservations,the“chainsofmicrobes”aremisleadinglychosencrosssectionsthroughcomplexthree-dimensionalstructuresthatbearlittleresemblancetoanythingbiological.TheembarrassingchallengebyBrasierandcolleagues,“QuestioningtheEvidenceforEarth’sOldestFossils,”appearedintheMarch7,2002,issueoftheprominentperiodicalNature.Schopffoughtbackwithhisownarticle,“Laser-RamanImageryofEarth’s

EarliestFossils,”publishedback-to-backwithBrasier’sinthesameissue.SchopfandhiscolleaguespresentednewanalysesoftheApexchert’scarbon-richblackblobsandshowedthemtohaveisotopiccompositionsandatomic

Page 149: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

structuresconsistentwithbiology.Heboldlyrepeatedthe“oldestfossil”rhetoric,thoughheseemedtobackoffhisinterpretationthatthemicrobeswerephotosynthetic.Nevertheless,theseedsofdoubthadbeensownonSchopf’sclaims,andthebarhadbeenraisedinthehuntfortheearliestsignsoflife.(Inalate-breakingsequel,MartinBrasierandhiscoworkersfromAustralia

nowclaimthattheyhavefoundthe“oldestfossils”—microbialremnantsfromthe3.4-billion-year-oldStrelleyPoolformation,discoveredonlytwentymilesfromSchopf’sslightlyolder,butstilldisputed,smudges.Fewobserversexpectthisdevelopmenttobethelastwordinthedebate.)

TheSmallestFossils

Imaginewhathappenswhenacolonyofmicrobesdies.Almostalwaysthetinybagofchemicalsthatoncewasalivingcellfragmentsanddisperses;bigbiomoleculesbreakdownintosmallermolecularpieces,mostlywaterandCO2.Othermicrobesmayeatthetastiestbits,whileindigestiblemoleculesdissolveintheoceans,orevaporateintotheair,orbecometrappedinrock.Usuallyafterafewyears,nothingisleft,fortimeisnotkindtosuchfragilemolecularremains.Underextraordinarycircumstances—ifdeadcellsarequicklyburied,ifthere’s

nocorrosiveoxygenaround,ifthehostrocknevergetstoohot—afewofthehardiestbiomoleculescansurvive,albeitinaratheralteredform.Mostlikelytopersistaremoleculeswitharuggedbackboneofuptoabouttwentycarbonatoms,sometimesarrangedinasimplelongchain(perhapswithafewcarbonatomsstickingofftothesidehereandthere),sometimesinagroupofinterlockingrings(notunliketheOlympiclogo).Thesediagnosticbiobitsarelikeultrasmallskeletons.Theyrepresentwhat’sleftofmuchlargercollectionsoffunctioningmoleculesthathavebeendegradedandstrippedofeverythingbutthemostresilientcore.Ifyoucanfindsuchamolecularskeletoninanancientsedimentaryrock,and

ifyoucanbesurethatit’snotcontaminationfromnearbyyoungerstrataortheubiquitousleavingsofmorerecentlydeceasedcells(frommodernsubsurfacemicrobes,forexample,orevendeadskinfromyourthumb),thenyoumightbeabletoclaimdiscoveryofachemicalfossil—theactualatomsofaonce-livingmicrobe.HencethefascinationwithSchopf’sblackblobsintheApexchert.Manymodernmolecularpaleontologistsleadafascinatingdoublelife.Onthe

onehand,theymaychoosetoenduretherigorsofthefieldgeologist,hikingmilesacrossarduousterrain,schleppinghundredsofpoundsofpromisingrock

Page 150: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

fromremoteoutcropsinbakeddeserts,frozentundra,andhighmountains.EveryyearsmallteamssetoutforWesternAustralia,SouthAfrica,Greenland,andcentralCanadainsearchofnewspecimens.Otherslaboratdrillingrigsinthehopesofsecuringdrillcoresofpristineancientrock,uncontaminatedbyweatherandvegetation.Suchexpeditionscanmeanmonthsofhardship,danger,anddeprivation.Theseadventurescontrastwithmonthsoftediousanalysisconductedin

ultracleanlabs,wheretheslightestbreathorthumbprintcanirrevocablycontaminateapreciousthree-billion-year-oldrocksample.Ittakestimeandpatience,exquisitecare,andanarsenalofsophisticatedanalyticalapparatustoextractindividualmoleculesfromarock.Oneleadingpractitionerofthistwenty-first-centuryartisAustralianpaleontologistRogerSummons,whohassetupshopatMIT’sdepartmentofEarthandplanetarysciences.ThereheheadstheSummonsLab,acrackteamofadozenmolecularfossilhunterswhostudyEarth’soldestrocks.Adozenyearsago,whileworkingatAustralianNationalUniversity,

Summonsledagroupofscientistswhomadeheadlineswhentheystudiedpromisingsedimentsfromthe2.7-billion-year-oldPilbaracratoninWesternAustralia.Summonsandhiscolleagueshadaccesstoauniquedrillcore,asequencealmosthalfamilelongthatincludedatantalizingsectionofblack,carbon-richshale—thekindofsedimentaryrockmostlikelytoholdmolecularfossils.ThesePilbararockswereofspecialinterestbecausetheyappearedtobeessentiallyunalteredbyheatanduncontaminatedbysurfacelifeorgroundwater.Ifevertherewasarockwhereoldbiomoleculesmightsurvive,thatwasit.TheAustralianresearchersfocusedonhopanes,theelegantclassofhardy

biomoleculesmentionedinchapter6.Hopanesplayimportantrolesinstabilizingprotectivecellmembranesand,becauseoftheirrarityoutsideoflivingcells,areperhapsthemostconvincingofallthemolecularbiomarkers.Eachhopanehasadistinctivebackboneoffiveinterlockingrings—fourlittlehexagons(eachdefinedbysixcarbonatoms)andafifthpentagon(withfivecarbonatoms)ontheend.Eachringsharestwocarbonatomswithitsneighbors,foratotaloftwenty-onebackbonecarbonatomsinall.MeticulousstudiesatSummons’sAustralianlabledtotwohigh-profile

papers,bothpublishedinAugust1999.ThefirstoneinScience,withSummons’sPh.D.studentJochenBrocksasfirstauthor,describedthediscoveryofhopanesinthe2.7-billion-year-oldPilbararocks—whatwouldhavebeentheoldestknownmolecularfossils,breakingthepreviousrecordbyabillionyears.Discoveriesofhopanescanrevealalotaboutancientecosystems,fordifferent

Page 151: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

speciesuseanumberofdifferentkindsofhopaneswithextracarbonatomsstuckonatvariousplacesaroundtherings.BrocksandhiscolleaguessuggestedthatthePilbarahopaneswerediagnosticofratheradvancedcellscalledeukaryotes—cellsthatcontainanucleusthathousesDNA.Atthetimeofpublication,theoldestknowneukaryotefossilcellswereonlyaboutonebillionyearsold,whereasprimitivemicrobesofthetypethoughttoexistbeforeabouttwobillionyearsagodon’thaveanucleus,sothisinterpretationwasmetwithsurprise,ifnotdownrightdisbelief.Ifthediscoveryistrue,thenonlytwoconclusionsarepossible.Eithereukaryotesappearedmuch,muchearlierthananyonehadthought(andlife’sevolutionwascorrespondinglyaccelerated),orelsehopanesevolvedmuchearlierthaneukaryotes.Ineithercase,ourunderstandingoflife’shistorywouldhavetoberevised.Thesecondarticle,publishedinNaturewithSummonsasleadauthor,made

theequallystartlingclaimthatnearby2.5-billion-year-oldblackshalesfromMountMcRae,amodest3,300-footpeakinWesternAustralia,containavariantofthehopanefive-ringmoleculewithanextracarbonatomstickingoffthesideofthefirstring.These2-methylhopanoidmoleculesareknownonlyfromphotosyntheticcyanobacteria,whichareEarth’sprincipaloxygenproducers.SummonsconcludedthatphotosynthesiswaswellunderwayonEarthby2.5billionyearsago.Suchachronologywasconsistentwiththeknownriseofoxygenataboutthattime,butthesuggestionthattheoriginofphotosynthesiscouldbesoughtinpreservedmolecularfragmentsopenedexcitingnewdoorstopaleontology.Noteveryonewaspersuaded.LikeBillSchopf’searlierclaimsof“Earth’s

oldestfossils,”RogerSummons’sextraordinaryhopanefindingshavebeenmetwithsomeopposition,includinggravedoubtsnowraisedbyJochenBrocksabouthisowndoctoralwork,aswellasallotherstudiesofpurportedbiomarkersmorethantwobillionyearsold.Younghopanesareeverywhere,theskepticssay.Thedeepsubsurfaceisteemingwithmicrobeslivingintherocks,socontaminationduringmorethantwobillionyearsofEarthhistoryisunavoidable.Thehopanesandotherbiomoleculesarenodoubtthere,butwhocansaywhenorhowtheygotthere.Staytuned:suchdebatesarefuntowatch,andtheyalmostalwaysleadtonewdiscoveries.

SandFlatsofTime

Whereelseisapaleontologisttolook?Ofthemanycluesinthefossilrecordrelatedtothehistoryofphotosynthesis,microbialmatsmaybeatoncethemost

Page 152: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

obviousandthemostoverlooked.Todaytheyform,theworldover,inshallowcoastalwatersandalongthebanksofslow-movingriversandstreams,wherealgaecanintertwinefilamentsinthick,tangledlayers.Thesetough,clothlikematsensurethatthealgaehaveaccesstoawet,sunlitenvironment,whilebeingprotectedfromtheinevitableerodingactionoffloodsandwaves.Inspiteoftheirwidespreaddistribution,thepaleontologicalcommunityallbutoverlookedfossilmicrobialmatsbeforeNoraNoffke’sdiscoveries.Formorethanadecade,I’vehadtheopportunitytoassistNoraNoffke,a

professorofgeobiologyatOldDominionUniversityinNorfolk,Virginia,andtheworld’sleadingauthorityonancientmicrobialmats.Armedwithakeeneye,auniqueperspective,andsteelydetermination,shehaschosensomeofthemostforbiddingareasintheworldtoconductherfieldwork.VenturingintoremoteandhostileplacesinSouthAfrica,WesternAustralia,Namibia,thescorchingMiddleEast,andfrigidGreenland,shehasunearthedpaleontologicalwondersforwhichnoonehadpreviouslythoughttolook.OverandoveragainNorahasrecognizedevidencethatmicrobialmatsgrewonmanyofEarth’smostancientsandyshores.Thereasonmicrobialmatfossilsaresosignificantisthattheymustarisefrom

somekindofphotosynthesis.Themicrobesthatlefttheirfragmentaryremainsinblackchertsandblackshalescouldhavecomefromdeepzones,farfromsunlight.Astrongcasecanbemadethattheshallow-waterstromatolitesfrom3.5billionyearsagosupportedaphotosyntheticlifestyle,thoughthesemineralizedmoundscouldalsosimplyhavebeenprotectivehigh-risesinanotherwiseharsh,wave-sweptenvironment.Butmicrobialmatsmusthavebeenphotosynthetic.Whywouldacolonyofmicrobesgotoallthetroubleoffixingitselfinarough,shallowtidalzoneifitwasn’tafterthesunlight?ToplaceNoraNoffke’scontributionsincontext,considerotherreallyold

fossils.Formuchofthepasthalfcentury,paleontologistslookingforEarth’soldestlifehavefocusedonthreekindsofrockformations.Firstaretheblackcherts,likeBillSchopf’scontroversial3.5-billion-year-oldApexchert.Blackchertsfirstmadepaleontologicalheadlinesintheearly1960s,whenHarvardpaleobotanistElsoBarghoornrecognizedancientmicrobialfossilsinthe1.9-billion-year-oldGunflintchertfromnorthernMinnesotaandwesternOntario.Barghoornscrutinizedthin,transparentsectionsofthefine-grained,silica-richrockandrealizedhewasseeingancientmicrobialbodyfossilsinexquisitedetail.WithgeologistStanleyTyler,whohadfirstobservedenigmaticspherelikeobjectsintheGunflintadecadeearlier,Barghoorndescribedastonishingsuitesofunambiguouscells—amicroscopicecosystemofspheres,rods,andfilaments,

Page 153: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

someintheprocessofdividing.Indeed,inspiteofdecadesofsubsequentclaimsforolderfossils,somepaleontologistsstillpointtotheGunflintchertasholdingtheoldestabsolutelyunambiguousfossilsofphotosyntheticcellsonEarth.Carbon-richblackshales,asecondrocktype,ofthekindstudiedbyRoger

Summonsandhiscolleagues,areperhapsthebestsourceofancientmolecularfossils.Blackshalesaredeep-wateraccumulationsofmudandorganicdebris,sowecanbeconfidentthattheyentombtheremainsofancientmicrobes.Asaconsequence,thicksequencesofblackshalesfromAustralia,SouthAfrica,andotherlocalitiesbillionsofyearsoldarereceivingpainstakingchemicalscrutiny,layerbymicroscopiclayer.Asnewer,moresensitiveanalyticaltoolscomeonline,somecapableofdetectingsinglemolecules,importantdiscoveriesaresuretofollow.Thethirdintensivelystudiedtypeofancientfossil-bearingformationisthe

stromatolites,thoselayereddomelikestructuresofmineralsdepositedbyearlylife.Paleontologistsmighthavebeenstumpedbytheoriginofthesemounds,usuallypreservedinlimestone,wereitnotformodernlivingstromatolitereefsinshallowseas,mostfamouslyinthescenicandremoteWorldHeritageSiteofWesternAustralia’sSharkBay.Theseoddsedimentaryfeaturesarisewhenaslimysurfacecoatingofmicrobes—photosyntheticmicrobes,inthecaseoftoday’slivingreefs—produceslayeruponlayerofminerals.Hundredsoffossilstromatolitelocalitieshavebeenidentifiedaroundtheworld,someinrocksolderthanthreebillionyears.Blackchert,blackshale,andstromatolites.TothisshortlistofEarth’soldest

fossiliferousformations,NoraNoffkehasaddedafourthrocktype:sandstone.It’sunderstandablewhysandstoneswereoverlooked.Mostfossilsarepreservedinfine-grainedrockslikechertorshale,orinlimestonereefs—hencethefocusonblackchert,blackshale,andstromatolites.Sand,bycontrast,isrelativelycoarse,withmineralgrainsmuchlargerthanmostmicrobes.What’smore,sandtendstoconcentrateatthebeach,intheturbulenttidalzone,wheremostsignsoflifearequicklyerased—eroded,washedaway,anddispersed.ButNoffkehasspenttwodecadesstudyingmoderntidalflatsandtheirrichecosystemsandfoundthattough,fibrousmicrobialmatsimposedistinctivestructuresonshallow,sandyshorelines.Theyimprintacrinklytexturetothesandsurface,notunlikeawrinkledtablecloth;theybindandtrapsedimentgrainsinathick,resilientmassofalgalstrands;theyalterthepatternofripplemarksinthesand;andtheyfragmentinstorms,tearingintodistinctivegeometricchunksandrollinguplikelittlePersiancarpets.Mostsandstoneoutcroppingsappearsmoothorgentlyrippled,devoidof

Page 154: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

anythingobviouslybiological.ButonceNoffkelearnedtospotthedistinctivewrinkledandcrackedsurfacescharacteristicoffossilizedmicrobialmatsinancientrocks,shespiedsubtlefeaturesalmosteverywhereshelooked.In1998sheidentifiedthediagnosticcrinklytexturesonthesurfacesof480-million-year-oldrocksoftheMontagneNoireintheFrenchAlps.In2000,aftermovingtoHarvardUniversityforpostdoctoralwork,shepushedtherecordevenfurtherback,identifyingsimilarpatternsin550-million-year-oldrocksofNamibia.Thefactthatmicrobialmatsexistedahalf-billionyearsagowasnotparticularlynewsworthy;allpaleontologistswouldhaveagreedthatmicrobialmatsmusthavebeenaroundtodecoratecoastalregionsmuchearlierthanthat.ButnoonebeforeNoffkehadtakenthetimetoscrutinizemodernmatsystems,thenrecognizethesimilartracespreservedasunambiguousfossilsinancientrocks.In2001Noffkemadethefirstofaseriesofgroundbreakingmicrobialmat

discoveriesinformationsmorethanthreebillionyearsoldfromSouthAfricaandAustralia—atimelongbeforethepresumedGreatOxidationEvent.SuchfeaturesaredifficulttospotintheoverheadglareofthemiddaySun,butlateintheafternoonattheendoflongandoftenfruitlessdaysofsearching,asthesunlightrakesacrossbarrenrock,thetelltalewrinkledsandstonesurfacesstandinstarkrelief.“Thestructuresseemedtopopouteverywhere,”sherecallsofonethrillingdiscovery,consummatedatthefinalhourofthefinaldayofonearduousAfricanfieldexcursion.Norafirstcametomein2000atthesuggestionofherHarvardmentor,

paleontologistAndyKnoll.AndyandIhadbeenfriendssincegraduatestudentdaysinthe1970s;foratime,ourcareershadtakenusindifferentscientificdirections,butourmutualinterestinastrobiologyhadrenewedourconversations.KnollrealizedthatNoffke’scaseforancientmatswasbasedalmostentirelyonsurfacefeaturesthat,whilesuggestive,attimesrequiredaspeculativeimagination.Theaveragepaleontologist,lackingNoffke’sextensiveexperiencewithmodernmats,couldeasilyoverlookordismissoddripplemarksorwrinkledrocksurfaces.SoKnollencouragedhertobolsterhercaseformatsbyaddinganalyticaldataontheminerals,biomolecules,andisotopespreservedinherdistinctivelycrenulatedlayers.Maybetracesofancientcarbonorconcentrationsofcharacteristicmineralscouldprovideasmokinggunforsomeoftheoldest,yetambiguous,matlikefeatures.IhadworkedwithotherKnollstudents,soIgotthecall.TheveryfirstspecimensthatNoffkesentprovedtobeanobjectlessoninwhy

suchanalysesareimportant.Shehadfoundthinwigglyblacklayersinasandysedimentthreebillionyearsold—whatwouldhavebeentherecordoldest

Page 155: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

microbialmatatthetime.Sheneededconfirmationthattheblackfeatureswerecarbon-richwithlife’srequisiteisotopicsignature,withabout3percentlessoftheheaviercarbon-13isotopecomparedtotheaveragecrust.ShehadalreadywrittenapaperforScience,readytosubmit,awaitingonlythatsingleconfirmatoryvalue.TherocksampleswererushedfromCambridge,Massachusetts,totheGeophysicalLaboratorybyFedExunderthehighestpriority.Iwasunderthegun.FortunatelymycolleagueMarilynFogel,whoisthecarbonisotopeexpertat

theCarnegieInstitution’sGeophysicalLab,waswillingtohelp.Marilynlookedatthesampleandtoldmewhattodo:crushtherockandgrindittoafinepowder,putafewmicrogramsofpowderintoeachofseveraltinycupsofpuretinfoil,weighthesamples,andfoldeachfoilcupintoatinyballthesizeofaBB.Thesesamplesandcarbonisotopestandardswerethenfed,onebyone,intoafurnacethatvaporizesanycarbon-containingcompoundstocarbondioxidegas.Thegasflowsintoasensitivemassspectrometerthatseparatesandmeasurescarbon-12andcarbon-13.Itonlytookafewhourstoobtainthetelltaleratio.Norawashopingforsomethinginthe−25to−35range,typicalofother

microbialmats.Butthemachinespatoutadifferentstory.Theisotopicratiowascloseto0,avaluethathadnothingtodowithbiology.Rather,itwascharacteristicofinorganiccarbon,thekindthatrisesfromthemantleinfluidsandisdepositedasthinveinletsofblackgraphite.Bottomline:theblackfeaturesinNoffke’ssampleswerecarbon-rich,buttheywereunambiguouslynotbiological.Withthatobjectlessoninmind,weproceededquicklytoanalyzethin,

blackenedfeaturesinmanyotherpromisingancientsedimentsthatNorahadaccumulatedfromhervariedfieldareas—fromSouthAfrica,fromAustralia,fromGreenland.Timeandagainwemeasuredcarbonisotopesinthe−30rangebefittingmicrobialmatsandfoundotherconvincingevidencethatmicrobeshadflourishedalongthesandyshorelinesofancientEarthmorethanthreebillionyearsago.Andunliketinyblacksmudgesortracesofbiomolecules,youcouldseeNoffke’sevidenceinthefield,atthescaleofanoutcrop.Herevidence,youcouldholdinyourhand.Butacorequestionremains:didthematmicrobesproduceoxygen,ordid

theyusesunlightforsimplerphotochemistry?Microbesevolvedavarietyofsun-harvestingstrategies,notallofwhichproduceoxygen.Sothedetailsofhowthosethree-billion-year-oldmat-formingorganismsmadetheirlivingswillremainahottopicforsometimetocome.

Page 156: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

TheMineralogicalExplosion

ThegrandarcofthestoryofEarth’soxygenationiswidelyaccepted.Priorto2.5billionyearsago,Earth’satmospherewasessentiallylackinginO2.Theriseofphotosyntheticmicrobescauseddramaticcumulativechangesbetweenabout2.4and2.2billionyearsago,whenatmosphericoxygenrosetogreaterthan1percentoftoday’sconcentration.ThisirreversiblechangetransformedEarth’snear-surfaceenvironmentandpavedthewayforevenmoredramaticchanges.Asthepreviousaccountsdemonstrate,thedetailsofthistransitionhave

becomethefocalpointsofmanyscientists’careers.Inrecentyears,mylongtimecolleagueDimitriSverjenskyandIhavejumpedintothefraywithastrikingandsomewhatcounterintuitiveclaim:mostkindsofmineralsonEartharetheconsequenceoflife.Forcenturies,thetacitassumptionhasbeenthatthemineralkingdomoperatesindependentlyoflife.Ournew“mineralevolution”approach,bycontrast,stressesthecoevolutionofthegeosphereandbiosphere.Wesuggestthatfullytwo-thirdsoftheapproximatelyforty-fivehundredknownmineralspeciescouldnothaveformedpriortotheGreatOxidationEvent,andthatmostofEarth’srichmineraldiversityprobablycouldnotoccuronanonlivingworld.Inthisview,suchmineralfavoritesassemipreciousturquoise,deepblueazurite,andbrilliantgreenmalachiteareunambiguoussignsoflife.Thereasonsforthismineralogicaldependenceonthelivingworldaresimple.

Thesebeautifulminerals,alongwiththousandsofotherspecies,areformedintheshallowcrustbytheinteractionsofoxygen-richwatersandpreexistingminerals.Subsurfacewatersdissolve,transport,chemicallyalter,andotherwisemodifytheupperfewthousandfeetofrock.Intheprocess,newchemicalreactionsoccurforthefirsttime,producingnewsuitesofminerals.SverjenskyandIhavecatalogedlonglistsofthemineralsthataregeneratedthisway,derivingfromcopper,uranium,iron,manganese,nickel,mercury,molybdenum,andmanyotherelements.Priortotheriseofoxygen,suchmineral-formingreactionssimplycouldnothaveoccurred.“WhatoftheredplanetMars?”ourcolleaguesask.Isn’ttherustedsurfaceof

ourplanetaryneighborevidencethatMarshasbeenoxidizedandcouldpossessadeepmineraldiversitysimilartoEarth’s?No,weargue.ThecrucialdifferenceisthatMars,andpresumablyothersmallplanetslikeit,didn’texperiencethedynamiccirculationofoxygen-richsubsurfacewatersthatproducesEarth’sastoundingmineraldiversity.TheremaybestoresofgroundwateronMars,asrecentdatahavetantalizinglysuggested,butthatwaterisfrozen.TheonlyreasonMarsisredisthatithaslostmostofitsnear-surfacehydrogen(andthus

Page 157: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

mostofitswater).Thelittlebitofoxygenproducedbyhydrogenlossmakesthesurfacered,likeathincoatingofpaintafractionofaninchthick,butthatoxygencan’tpenetrateverydeeplyintotheMartiancrust.OurnewframingofEarth’smineralogicalpastchallengedsomepriorviews.

Ina2007Sciencearticle,provocativelytitled“AWhiffofOxygenBeforetheGreatOxidationEvent?,”geochemistArielAnbarandhiscoworkersmeticulouslydocumentedtraceelementsthatoccurinasequenceof2.5-billion-year-oldblackshalesfromMountMcRaeinWesternAustralia.Thesefinelylayeredsediments,depositedintheoffshoreenvironmentofanancientocean,appearmonotonoustotheeyebutcontainchemicalsurpriseswhensubjectedtoclosescrutiny.Mostnotably,athirty-foot-thicksectionnearthetopoftheshaleissignificantlyenrichedinmolybdenumandrhenium—chemicalelementsthatdon’tgenerallyappearinsedimentaryrocksunlesstheyareoxidized.Intheirmoreoxidizedforms,molybdenumandrheniumdissolveeasilyfromigneoushostrock,flowingdownriversandintotheocean,wheretheycanbeincorporatedintoblackshaleontheoceanfloor.Everyoneagreesthattheseenrichmentsofmolybdenumandrheniumare

tellingussomethingabouterosion2.5billionyearsago.Molybdenite,thecommonestmineralofmolybdenum(andonethatoftenincorporatesrhenium,aswell),isexceptionallysoftandeasilyabraded.Perhapsmolybdenite-bearinggranitewasexposedonanancientmountainslope.Perhapsmechanicalweatheringproducedmicroscopicbitsofmolybdenitethatwerecarriedtotheseaandsettledtotheblackmuddybottom—sedimentsthatwouldbecomeburiedandsolidifiedtoformtheMountMcRaeShale.Anbarandhisteamreachedadifferentconclusion;theyproposedthata

“whiffofoxygen”fromearlyphotosyntheticcellswastheagentthatdidthetrick.Perhapsalocalconcentrationofslimygreencellscreatedamicroenvironmentwithenoughoxygentomobilizemolybdenumandrhenium.Afterall,wehaveunambiguousevidencefortheglobalriseofoxygen2.4billionyearsago,sowhynotlocally100millionyearsearlier?SverjenskyandIcounterthatthereareplentyofwaysbesidesoxygentomove

molybdenum,rhenium,andotherelements.Commonatmosphericmoleculescontainingsulfurornitrogenorcarboncouldhavedonetheelectron-acceptingtrickjustaswellintheabsenceofanyO2.Suchisthenatureofscientificdebateasnewideasandargumentsaremetwithalternateclaimsandcounterarguments.

Whatevertheexacttimingoftheriseofoxygen,byEarth’stwo-and-a-half-billionthbirthday,itssurfacehadchangedonceagain.Thefirstdramaticchanges

Page 158: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

occurredonland,asEarthrusted.Oxygen-drivensurfaceweatheringbegantobreakdowniron-bearinggraniteandbasaltintobrick-redsoils.Asthelandaged,itsubtlyshiftedhuefrompredominantlygrayandblacktotheruddycolorofrust.Fromspace,Earth’scontinentstwobillionyearsago—thoughstillsignificantlysmallerthantoday’slandmasses—mighthaveappearedsomethinglikethemodernredplanetMars,butwithblueoceansandswirlingwhitecloudsthatprovideddramaticallycolorfulcontrasts.Rustwasonlythemostobviousofmanyprofoundmineralogicalchanges.Our

recentchemicalmodelingsuggeststhattheGreatOxidationEventpavedthewayforasmanyasthreethousandminerals,allofthemspeciespreviouslyunknowninourSolarSystem.Hundredsofnewchemicalcompoundsofuranium,nickel,copper,manganese,andmercuryaroseonlyafterlifelearneditsoxygen-producingtrick.Manyofthemostbeautifulcrystalspecimensinmuseums—blue-greencopperminerals,purplecobaltspecies,yellow-orangeuraniumores,andothers—speakpowerfullyofavibrantlivingworld.Thesenewlymintedmineralsareunlikelytoforminananoxicenvironment,solifeappearstoberesponsible,directlyorindirectly,formostofEarth’sforty-fivehundredknownmineralspecies.Remarkably,someofthesenewmineralsprovidedevolvinglifewithnewenvironmentalnichesandnewsourcesofchemicalenergy,solifehascontinuouslycoevolvedwiththerocksandminerals.Oxygen,amagicallytransformativeelement,playsthestarringroleinthis

drawn-outhistory.Hungryforelectrons,oxygenatomsreactvigorouslywithallmannerofminerals,thusweatheringawayrocksandformingnutrient-richsoilsintheprocess.Whenconcentrationsofatmosphericoxygenfirstrosetosignificantlevelsmorethantwobillionyearsago,allphotosyntheticlife-formslivedintheoceans.Thelandswereabsolutelybarrenoflife.Butoxygenpavedthewayforlife’seventualexpansionacrosstheglobe.Todayweexperienceoxygeninthemostintimateexchange.Withevery

breathwetake,atinyportionoftheairbecomesapartofus,evenasatinypartofusbecomestheair.Asdayspass,ourbodiesmeltawayandformagaininmoment-by-momentchemicalreactionswithoxygen.Ourtissuesarereplacedoverandoveragainthroughoutourlives,Earth’sfinitestoreofatomsrecyclingamongair,sea,land,andallitslivingforms.Mostoftheatomsthatformedyourinfantbodyatbirtharenowdispersed,asyourpresentatomswillbeagain,ifyouhavethegoodfortunetoliveafewmoreyearsonthisoxygen-richplanetaryhome.

Page 159: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet
Page 160: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Chapter8

Page 161: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

The“Boring”Billion

TheMineralRevolutionEarth’sAge:2.7to3.7billionyears

AustraliangeologistRogerBuick,adynamic,wiryfirebrandoftheearly-Earthsciencecommunity,oncesummeduptheperiodsandwichedbetweenthePaleoproterozoicEra(punctuatedbytheGreatOxidationEvent)andtheNeoproterozoicEra(whichwouldseeglobe-spanningglaciersdominatethesurfaceandlifebegintoevolveininterestingways)withthesestarkwords:“ThedullesttimeinEarth’shistoryseemstohavebeentheMesoproterozoic.”Thatsupposedlyuneventfultime,thebillionyearsbetween1.85billionand

850millionyearsago,isthesubjectofthischapter.Thisvastinterval,dubbedtheintermediateocean(ormoresardonically,theboringbillion,bysomescientificwits),appearstohavebeenatimeofrelativebiologicalandgeologicalstasis.Noobviousdramatictransformativeeventstookplace.Atfirstblush,therockrecordrevealsnoepic,game-changingimpactsorsuddenclimateperturbations.Theinterfacebetweentheocean’smoreoxidizednear-surfacelayerandtheanoxicoceandepthsmayhavegraduallygottendeeperanddeeper,butnofundamentallynewlife-formsseemtohaveemerged;norisitgenerallythoughtthatmanynewrocktypesormineralspeciesarose.Atleastthat’stheconventionalwisdom.Butboringisariskyterm.Ioncemadethemistakeofcallinglipids,therich

andvariedclassoflife’smoleculesthatincludesfatsandoilsandwaxes,boring.Thisremark,madeduringapubliclectureandinignoranceofthenuancesoflipidchemistry,wasamistakeontwocounts.First,lipidsare,infact,amazinglydiverse.Theyplayallsortsofinterestingrolesinregulatinglife’schemicalreactionsandcraftingitsintricatenanoscalestructures.Lipidsdividetheinsidesfromtheoutsidesofmostlivingthings.Withoutthem,lifeasweknowitwouldnotbepossible.ThesecondreasonmyremarkwasamistakewasthatImadeitunwittinglyinthepresenceofanattentive,humorlesschemistwhohadspentherentireresearchcareerstudyinglipids.Sherightlytookmetotaskandsentmelotsofhighlytechnicalliteraturetosettherecordstraight.Mypenancewastoreadthesedetailed(andsomewhatboring)tomes.

Page 162: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Thepointisthatboringmayspeakmoretoourprofoundstateofignorancethantoanyintrinsicdullness.Earth’sboringbillionmay,infact,beanalogoustohumancivilization’sso-calledDarkAges—thatdynamicintervalofgreatinnovationandexperimentation,inexorableandirreversiblechange,thegatewaytothemodernlivingworld,yetoncelargelyignoredbyscholars.Ourself-inflictedignorancemaybeself-reinforcingaswell.Ambitiousstudents,whoseektoestablishtheiracademicreputationsinthebrieftemporalwindowofgraduateschoolandpostdoctoralfellowships,areunlikelytofocusonageologicalerawhennothingmuchisthoughttohavehappened.Butthegeologicalstrataofthatenigmaticagemustcontainsurprisesforthe

astutescholar.Hintsofdramatictransformationsmustliehiddeninrockswhosestoryislargelyunread.SomeofEarth’smostvaluableorereserves—vastdepositsofleadandzincandsilverfromZambiaandBotswanainAfrica,fromNevadaandBritishColumbiainNorthAmerica,andfromtheCzechRepublicandsouthernAustralia—seemtoclusterinrocksofthatage.Otherlocalitiesrichinexoticmineralsofberyllium,boron,anduraniumalsoappeartohaveflourishedataboutthattime.EmergingevidencesuggeststhatEarth’scontinentsmayhaveclumpedtogetherintoasinglegiganticsupercontinentduringtheboringbillion,thenbrokenapart,thenclumpedtogetheragainintheplanet’smostmajesticsurfacecycle.Andthroughoutthatbillion-yearinterval,abundantmicroorganisms—beautifullypreservedtodayasfossils—crowdedcoastalshallowsandoffshoreenvironments.SurelywehavemuchtolearnaboutEarth’sdarkages.

AHistoryofChange

DramaticchangehasbeentheoneconstantinoursagaofEarth’sevolutionuptonow,acouplehundredmillionyearsafteritstwo-and-a-half-billionthbirthday.Thesolarnebulacoalesced,andtheSunformed.Thedustarounditmeltedintochondrules.Chondrulesclumpedintoplanetesimals,andplanetesimalsintotheproto-Earthandotherterrestrialbodiesthousandsofmilesindiameter.TheimpactofTheia,thesubsequentformationoftheMoon,theincandescentmagmaoceanhardeningtoablackenedbasalticcrustpockmarkedbythousandsofexplosivevolcanoes,thehotseathatsooncoveredalmostallthesolidsurfacesothatonlythetopsofthetallestvolcanicconesweredry—allthesedramaticeventstranspiredwithinahalf-billionyears.EveninthelesstumultuoustwobillionyearsthatfollowedtheaccrualofEarth’suniqueocean,ourplanet’ssurfacewasconstantlyinflux,asgraniteemergedfrombasaltmeltsandproto-

Page 163: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

continentsgrewontheconvectioncellsthatdroveplatetectonics.Itwasonsuchadynamic,variableworldthatlifeemerged,evolved,and

eventuallylearnedtomakeoxygen.ConstantchangewasEarth’shallmark.Likeaprecociousartist,ourplanethadreinventeditselfoverandoveragain,ateverystagetryingsomethingnew.How,then,couldourdynamicplanethavefounditselfmiredinanaeonof

stasis?ThesimpleansweristhatEarthwasn’tstaticeventhen.Changewas

incessant,thoughperhapsnotasdramaticasaMoon-formingimpactortheGreatOxidationEvent.Theboringbillionsawtheinventionofdistinctiveprocessesthatformednewtypesofrocksandvaluableoredeposits,aswellasthefirstappearanceofmanynewmineralspecies.Andmostcritically,geologicalevidencefromaroundtheworldisrevealingthatitwasatimeofcoordinatedglobalplatemovementthatwouldestablishnewpatternsstillinplacetoday.

TheSupercontinentCycle

Earth’sfamiliargeographyofoceansandcontinentsisephemeral,geologicallyspeaking.TheAmericas,Europe,andAfricaframingthemightyAtlanticOcean;thegreateastwardsweepoftheAsiancontinent;theexpansivePacificOceanwithitsplethoraofsouthernislandsandthecontinentofAustralia;andthepolarworldofAntarcticaarebutamomentaryconfiguration.Thestatelyprocessofplatetectonicsnotonlyformsthecontinentsbutalsoceaselesslyshuttlesthemacrosstheglobe.Landandwaterhavebeensubjecttoextrememakeoverstimeandtimeagain.Anelitebandofgeoscientistshaslearnedtoteaseoutourworld’sancient,

aliencartographyandhasproducedremarkable,ifapproximate,mapsoftheonceandfutureEarth.Theyhavemanycluestoworkwith.First,weknowhowthecontinentsaremovingtoday—howfastandinwhatdirections.YearbyyeartheAtlanticopenswider,Africasplitsintwo,andaswewatchamazed,IndiasmashesintoChina,crumplingtheimpactzoneintothejaggedHimalayanMountains.Itallhappensinslowmotion,ofcourse,butsteadily,aninchortwoayear;overthespanofahundredmillionyears,evenasnail’spacecanproducemonumentalchanges.WeplaytheimaginaryvideotapeofEarth’sgeographybackwardandforward,andcanguessthefeaturesofourplanet’scapriciousface.Evenasfarbackasahalf-billionyearsago,therichfossilrecordofanimalsandplantscanhelpscientistssketchapicture,especiallywhenthefloraandfaunaof

Page 164: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

widelyseparatedcontinentsfollowdivergentevolutionarypathways.ThevariedmarsupialsofAustralia,forexample,andthelargeflightlessbirdsofNewZealandtellacompellingstoryofzoologicalisolation.Pushingbackmorethanfivehundredmillionyears,thepicturebeginstofade;

wemustseekotherkindsofclues.Ofspecialimportisthefossilmagnetismlockedintovolcanicrocks.Wetendtothinkofourplanet’smagneticfieldintermsofanorth-southorientation,familiarfromthealignmentofacompassneedle,butitismorecomplexthanthat.MagneticfieldlinesintersectEarth’ssurfaceatanangle,calledthedip.AtEarth’sEquator,thedipisclosetozero—nearlyhorizontal—butathigherlatitudes,thedipbecomessteeperandsteeperuntilatthepolesitisalmostvertical.Exactingmeasurementsoftheancientmagneticfieldfrozenintoavolcanicrockthuscanrevealboththenorth-southorientationandthelatitudeofthecontinentwhenthoserockssolidified.Remarkably,suchsubtleevidenceshowsthatsomerocksnowattheEquatorwereonceclosetoEarth’spolesandviceversa.FossilevidenceofformertropicallagoonsinAntarcticaandfrozentundrainequatorialAfricareinforcessuchfindings.Thesedimentaryrockrecordaddsvitaldata.Differentkindsofsedimentsaccumulateindifferentenvironments:shallowseas,continentalshelves,tundra,glaciallakes,tidallagoons,andswampseachhostadistinctrocktype.Bolsteredwiththeseclues,expertsinpaleogeographyhavemanagedtocrafta

coherentanddefensiblepictureofEarthbackatleast1.6billionyears,wellintotheboringbillion,withinformedspeculationsextendingtoevendeepertime,totheformationofthefirstcontinents.Ittookalongtimeforplatetectonicstomaketheoriginalcontinents.Atthetippingpointofsubduction,attheveryfaultlinewheredenseslabsofEarth’searliestbasalticcrustplungeddownintothemantledepths,unsinkablebitsoflow-densitygraniteislandspileduponeafterthenexttomakelargerandlargerstable,long-lastinglandmasses.Theseancientchunksofwhatarenowthecontinentsgobythenamecraton,atermderivedfromtheGreekwordfor“strength.”Cratonsarestrong;onceformed,theylastalongtime.Earthtodaypreserves

perhapsthreedozenmoreorlessintactcratons,someasoldas3.8billionyearsandranginginsizefromahundredtomorethanathousandmilesacross.Thesediversepieces,eachevocativelynamed—SlaveandSuperiorinNorthAmerica,KaapvaalandZimbabweinAfrica,PilbaraandYilgarninAustralia—haveexperiencedbillionsofyearsofmigrationacrosstheglobe.Jumbledtogetherandrippedapart,alongwithlotsofsmallerancientfragments,theysurviveasthecontinents’foundationstones.ThreesuchcratonsformmostofGreenland,

Page 165: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

whilemuchofcentralCanadaandthenorthernpartsofMichiganandMinnesotacompriseaclusterofahalf-dozenothers.LargeportionsofBrazilandArgentinaareunderlainbyseveralcratons,asarebigchunksofnorthern,western,andsouthernAustralia,Siberia,Scandinavia,alargepieceofAntarctica,separateregionsofeasternandsouthernChina,mostofIndia,andseveralswathsofwestern,southern,andcentralAfrica.Allofthesecratonsbegantoformmorethanthreebillionyearsago—atimebeforemodern-styleplatetectonics,whenonlyatinyportionofEarth’ssurfacewasdryland.Consequently,allcratonscarryaprecious,ifsomewhatwarpedandscrambled,recordofEarth’svibrantadolescence.Cratonsarethekeys—theRosettastonesofearly-Earthhistory.Theoceans

can’thelpusdecipherearlyEarth.Thankstotheincessantconveyorbeltofplatetectonics,whichproducesnewbasalticcrustattheoceanridgesandswallowsitupagainatconvergentboundaries,theoldestoceancrustisnotmuchmorethantwohundredmillionyearsold.Anythingolderthanthatmustbepreservedonthecontinentsornotatall.Theperipateticcratonshaveanastonishinglycomplexhistory.Propelledby

themotionsoftectonicplates,theyhavebeenshuttledabout,collidingwithoneanothertoformcompositecratonsandsupercratons,whichinturnoccasionallyclumpedintosinglegiantlandmasses—continentsorsupercontinents.Eachcollisionproducedanewmountainrangealongthesuturezone;eachrangeprovidescompellingevidencefortheancientassemblyoflargerlandmasses.Thesupercontinents,inturn,riftedapartandfragmentedintoseparate,ocean-

boundedislandcontinents.Eachtimeacontinentrifted,awideningoceanformedbetweenthedivergingpiecesandatelltalesuiteofsedimentswaslaiddown:shallow-watersandstoneandlimestoneatfirst,thendeeperwatermudandblackshale.Suchsedimentarysequencespointtoepisodesofcontinentalfragmentation.Overandover,supercontinentshavebeenforgedandthenrippedasunder.It’sanimmensejigsawpuzzlewithanunknownpicture,wherepiecesconstantlychangetheirpositionsandtheirshapes.

Whatdoesallthishavetodowiththeboringbillion?Everything.Foraperioddevoidofflashysignsofactivity—athwack-free,treelesstimebeforeelaboratefloraandfaunaarrivedinthegeologicalrecord—wemustturntopaleogeographerstocomprehendwhatitlookedlike.Todecipherthedetailsofthecratons’multibillion-yeardanceacrosstheglobe,thesegeologiststrektothemostremoteplacesonEarth,maptherocks,collectsamples,andsubjectthemtoabatteryoflaboratorytests.

Page 166: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Atthecoreofeverycratonarereallyoldrocks,typicallythreebillionyearsoldormore.ThesefragmentaryparcelsofEarth’smostancientcrustrepresent,intotal,onlyasmallproportionoftheplanet’scontinentalmass.Theyhaveinvariablybeenbakedbyheatandpressure,alteredbythedissolvingpowersofsubsurfacewaters,andcontortedbycrustalstresses.Evenso,thenatureoftheoriginalrocks,whethergranitelikeintrusionsorsedimentarylayerings,canoftenbededuced.Moreover,it’sfortunatethatcratonsaren’tstatic.Throughouttheirhistories,newpulsesofmagmapenetratetheold,formingigneousrockbodiesinveinsandpods.Newsedimentarydepositsforminlandinlakesandrivers,aswellasalongshallow,sandycoastlines.Distinctiverocktypesandcharacteristicstructuresalsoformwhenevercratonssmacktogetherorripapart—eventsthatsuggesttherelativemotionsoftwolandmasses.Carefulstudiesofthesevariedyoungerformationscandiscernasuiteofrocktypesthatspanstheentirehistoryofacraton.Thenthefunbegins.Theyoungerrocksprovidehintsaboutthechronologyofcratonmovements.

Igneousrocksholdtinymagneticmineralsthat,whentheysolidify,lockintheorientationofEarth’smagneticfield.Carefulpaleomagneticstudiescanidentifynotonlytheorientationoftheformernorthandsouthpolesbutalsotherocks’approximatelatitudewhentheycooled.Thosedata,whilenotexactlyGPScoordinates,dorecordtherelativepositionsofcratonsthroughtime.Sedimentaryrockscomplementthesedata,fortheycanhosttelltalecluesaboutclimateandecology.Sedimentsdepositedinrapidlyweatheringtropicalzonesdiffermarkedlyfromthoseintemperatelakesortheglacialdepositsofhigherlatitudes.Somesedimentaryrocksalsoincorporatetinygrainsofmagneticmineralsthatholdcluestopolarpositions.TogarnerevenavaguesenseofEarth’schangingface,everyoneofthethree

dozencratonsisbeingscrutinizedbyarmiesofgeologists.Decadesofmeticulousfieldworkandlabstudiesarebeingundertaken.Datafromeverypartoftheplanetarebeingintegrated.Thenallthecratonswillhavetobejuxtaposedlikebumpercarsonaglobe—andtheimaginarymovieoftheirwanderings,startingfromtheknowngeographyofthemodernworld,willbeplayedslowlybackward.Inevitably,thatmoviebecomesfuzzierandmorespeculativethefurtherbackwego.Nevertheless,thepicturethatisslowlyemergingisextraordinary.Accordingtothelatestinterpretations,Earthhasexperiencedarepeatedcycleofatleastfivesupercontinentassembliesandbreakups,extendingbackperhapsthreebillionyears.ThestoryofEarth’searliestlandmassesisstillemerging,andmorethanafew

controversiesswirlaroundthetopic.Noonehashadthenervetodrawmore

Page 167: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

thanasketchmapofEarth’ssurface3billionyearsago,atleastnotyet,butonewell-vettedideahasnamedthefirstcontinent-sizelandmassUr,formedabout3.1billionyearsagofromearlierscatteredcratonicbitsofwhatarenowSouthAfrica,Australia,India,andMadagascar.(Anevenearlierpostulatedlargelandmass,Vaalbara,mayhaveexistedabout3.3billionyearsago,butevidenceisslim.)AccordingtocomparisonsofpaleomagneticdatafromalltheseUr-formingregions,whatarenowseparatecratonsweresuturedtogetherformostofEarthhistory—theirglobalperambulationsappeartohavebeenvirtuallyparallelandthusprobablylinked.Indeed,magneticdatasuggestthatthecontinentofUrpersistedforalmost3billionyearsandbegantosplitapartonlyabout200millionyearsago.Theearliesttruesupercontinent,dubbedKenorlandorSuperia(after

associatedrocklocalitiesinNorthAmerica),isthoughttohaveformedabout2.7billionyearsagofromUrandlotsofothersmallerpieces.Eachtimeonecratoncollidedwithanother,asuturezonewasformed,whileepiccompressionalforcespushedupanewmountainrange.Aplethoraofsuchfeaturescanbedeterminedfromrocks2.7to2.5billionyearsold,suggestingasequentialgrowthofthesupercontinent.PaleomagneticdatarevealthatKenorlandwasatlowlatitude,probablystraddlingtheEquator,formostofitsrelativelybriefexistence.WiththoseearlytractsoflandcameEarth’sfirstepisodesoflarge-scale

erosionandthefirstgreatpulsesofsedimentsintotheshallowoceanmargins.Mostearly-Earthmodelerspositanancientatmospherequitedifferentfromthatoftoday.Oxygenwastotallyabsent,whilecarbondioxidelevelsmayhavebeenhundredsorthousandsoftimesgreaterthaninourtime.Rainwouldhavefallenasdropsofcarbonicacidthatateawayatthelandandtransformedhardrocktosoftclays.Riverscarriedtheirmuddycargointotheshallowcoastalslopesoftheencirclingoceans,wherethickdeltalikewedgesofsoftsedimentsaccumulated.Byabout2.4billionyearsago,aboutthesametimethatoxygenbeganto

accumulateintheatmosphere,Kenorlandexperiencedtheflipsideofsupercontinentformation.GeomagneticdatarevealthedivergenceofUrfromothercratonsasKenorlandbeganitsprotractedfragmentation.ThosecratonicpuzzlepiecesscatteredfromtheEquatortothepoles.Newlyopenedshallowseasbetweenthedivergingpiecesledtothickdepositsofshallowmarinesediments.Thesupercontinentcyclehadbegun.

HailColumbia

Page 168: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Theadditionofthesupercontinentcycletotheannalsofgeologyhasmadetheboringbillionalotlessboring.Thenextsupercontinentepisode,onemoresharplyinfocusthanKenorland,thankstoyoungerandmuchbetterpreservedsuitesofrocks,beganabouttwobillionyearsago,atatimewhenEarthboastedatleastfiveseparatecontinent-sizelandmasses.LargestamongthesewastheLaurentiansupercraton,aconglomerationofatleastahalf-dozencratonsthousandsofmilesacrossthatencompassesmuchofwhatisnowcentralandeasternNorthAmerica.(SpecialistsinancientlandmassessometimesrefertothisclusteringofcratonsastheUnitedPlatesofAmerica.)TheoriginalcontinentUrsoldieredonasthesecond-largestlandmass,separatedfromLaurentiabyasubstantialocean.ThemuchsmallerBalticaandUkrainiancratons,whichformthecoreofwhatisnoweasternEurope,andcratonsrepresentingpartsofwhatarenowSouthAmerica,China,andAfricawerealsolargeislandsapproachingcontinentsize.BythetimeEarthwas1.9billionyearsold,thesevariedlandshadcollidedatconvergentplateboundaries,raisingnewmountainbeltsandformingasupercontinentvariouslynamedColumbia,Nena,Nuna,orHudsonland.(ThenameColumbia,basedonpersuasivegeologicalevidencefromthevicinityoftheColumbiaRiver,alongtheWashington-Oregonborder,seemstobeusedmostoften.)Thisvastbarrenland,roughlyestimatedtohavebeeneightthousandmileslongfromnorthtosouthandthreethousandmileswide,incorporatedalmostallofEarth’scontinentalcrust.Thecomplexitiesofretroactivelyarrangingthirty-pluscratonicfragmentsinto

oneextinctsupercontinentaredaunting.Notsurprisingly,morethanonemodelusuallyviesforacceptance.InthecaseofColumbia,tworatherdifferentstoriesemergedalmostsimultaneouslyin2002.Ontheonehand,geochemistJohnRogersoftheUniversityofNorthCarolinaandhiscolleague,IndiangeologistSantoshMadhavaWarrier(basedatKochiUniversityinJapan),proposedthatLaurentia,whatisnowmostofNorthAmerica,formedthecoreofColumbia.AccordingtoRogersandSantosh,thecontinentofUrwassuturedtothewestcoastofLaurentia;portionsofSiberia,Greenland,andBalticawerepositionedtothenorth;andpartsofwhatarenowBrazilandWestAfricalaytothesoutheast.Inthesameyear,GuochunZhaooftheUniversityofHongKongandseveralcolleaguesdevisedasomewhatdifferentconfiguration,inwhichBalticaissuturedtotheeastcoastofLaurentia,whileeasternAntarcticaandChinaareattachedonthewest.GiventhegreatageofColumbiaandthepreliminarynatureofthesereconstructions,theagreementbetweenthetwoscienceteamsisremarkablygood.Nevertheless,wecananticipatemanydebates,aspostulatedcratonlocationsareshuffledandtweakedfordecadestocome.

Page 169: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Inanycase,theassemblyofColumbia,commencing1.9billionyearsago,setthestagefortheboringbillion.WhatevertheconfigurationaldetailsoftheColumbiansupercontinentactuallywere,wecanbefairlyconfidentthatmuchofitsinteriorwashot,desiccatedterrain,withabsolutelynovegetationandgreatexpansesofrustydesert.Seenfromspace,Earthwouldhaveappearedasastrangelylopsidedworld,withitsonegreatenreddenedlandmasssurroundedbyanevenmoreexpansive(andasyetunnamed)bluesuperocean.WithallthecontinentsconcentratedtogetherneartheEquator,onlymodestamountsoficewouldhavedecoratedthepoles.Oceanlevelswouldhavebeencorrespondinglyhigh,perhapshighenoughtoinvadesomecoastalregionswithshallowinlandseas.TheequatorialColumbiansupercontinentisthesupposedstartingpointforthe

dullesttimeinEarthhistory,butwhatmakesitsodull?Whatdoesstasisreallymean—whatparameterswerestable?Wasitglobalclimateandrainfall?Wasitthenatureanddistributionoflife?Wasitthecompositionoftheoceanoratmosphere?Whatmeasurementshavebeenmadetoestablishthisallegedstasis?Conversely,whatuncertaintiesremainunaddressed?

Stasis

Mostgeologygraduatestudentssimplyignorerockformationsbornbetween1.85billionand850millionyearsago.Fouryears,whileworkingtowardaPh.D.,tryingtomakeasplashandlandatenure-trackjob,istooshortatimetospendonageologicalerawithsuchaquestionablerap.ButLindaKahwasnotlikemostgraduatestudents.HerundergraduatementoratMITwasJohnGrotzinger,aleaderinthestudyofEarth’soldestrocksfrombefore2billionyearsago.HerPh.D.adviseratHarvardwasAndyKnoll—therenownedpaleontologistwhoencouragedNoraNoffkeinhermicrobialmatresearch.Kahcouldn’thelpbutnoticethatEartholderthan1.8billionyears(describedbyGrotzinger)wasstrikinglydifferentfromEarthyoungerthan0.8billionyears(describedbyKnoll).Somethinginterestingmusthavehappenedduringtheboringbillion,andKahwasdeterminedtofindoutwhat.AndsoshehasdevotedherselftounderstandingtheMesoproterozoicEra—theimmensespanofEarthhistoryfrom1.6to1.0billionyearsago—atimeencompassingmostoftheboringbillion.EveniftheMesoproterozoicwasinfactatimeofstasis,abillionyearsof

equilibriumwouldberemarkable.ChangeisthecentralthemeofEarth’sstory.Theoceansandatmosphere,thesurfaceanddeepinterior,thegeosphereand

Page 170: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

biosphere—allaspectsofourplanethavechangedincessantlyovertheaeons.HowcouldEarthhaveexperiencedabillionyearswithoutanydramaticevents,withnosignificanttransitionsinthenear-surfaceenvironments,withnogreatnoveltyinthelivingornonlivingworld?Wastherereallyabillion-yearperiodwhenallthefeedbacksofclimateandlifewereinsuchperfectharmoniousbalance?Howcouldsuchathinghavehappened?AtaleisurelybreakfastmeetingneartheUniversityofTennesseecampus,

LindaKahpatientlyexplainsEarth’sdramaticandrepeatedtransformations(and,consequently,whytheMesoproterozoicwasn’tboringatall).Shecomespreparedwithastackofblanksheetsof8½-by-11-inchwhitepaper;whileshetalks,shedrawsneatillustrativediagramsincontrastingblueandredink.“Ihadtheseideasadecadeago,”shesays,describingthefruitsofhergrueling

fieldworkinthehostileMesoproterozoicterrainsoftheMauritaniandesertinnorthwesternAfrica.She’dlovetogobacknow,butariseinbanditryandkidnappingmakessuchafieldexcursionproblematic,foolhardy.InsteadshewillbeamemberofthenextMarsroverscienceteam,asaferchoice.Kah’sscientificstoryisdevotedtoplatetectonicsandthemesstheymakeof

Earth’spast—theconstantshuffling,colliding,splitting,andsuturingoflandmassesthatcauseourglobetolookradicallydifferenteveryhundredmillionyears.Evenduringthethree-hundred-million-yearintervalthatintroducedtheboringbillion—whenthesupercontinentColumbiapersistedmoreorlessintact—platetectonicsdidn’tstop.Anotablefeatureofsupercontinentsisthattheycontinuetogrowgraduallyattheedges,asoceanplatesplungeundertheirmarginsandnewvolcanoesrisenearthecoasts.Themodern-dayexpansionofthePacificNorthwestcoast,wheresuchmajesticvolcanoesasMountRainier,MountHood,andMountOlympiaarestillactive,isbutonerecentexampleofthisage-oldphenomenon.SoitwaswiththeexpandingmarginsofColumbia.EvenmorecontinentalcrustwasaddedtoEarth’sinventorywhenColumbia

experiencedepisodicriftingandbreakupintosmallercontinentsandislands.About1.6billionyearsago—thebeginningoftheMesoproterozoic—thesplittingoffofthecontinentUrtothewestfromLaurentiaandtherestofColumbiatotheeastledtoamajorintercratonicseaandthedepositionofamassivesedimentarysequencereachingthicknessesofmorethantenmiles.Thisheroicdeposit,calledtheBelt-Purcellsupergroup,todayformsprominentoutcropsovermuchofwesternCanadaandthenorthwesternUnitedStates.Thus,evenassupercontinentssplitapartanderoded,newcontinentalrockswerebeingproducedfromtheold.ThisriftingofColumbiaintotwodiverginglandmasseshadother

Page 171: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

consequences.Laurentia,Ur,andtheothercontinentswerestillallcenteredmoreorlessabouttheEquator,whichmeansthattherewerestillnocontinentsatthepoles,whichmeansthattherewasstillnothickicebuildupatthepoles,whichmeansthatoceanlevelswerestillrelativelyhigh.Indeed,shallowseasembayedvastswathsofLaurentia’snewwestcoast;likelylessthanaquarterofEarth’ssurfacewasdry.Foratimeperhapsexceedingtwohundredmillionyears,Earth’stotallandareawasdramaticallyreduced,whilethicksedimentarydepositswereaccumulatinginshallowwatersaroundtheglobe—depositsnowpreservedasatelltalesedimentaryrecord.Noicealsomeansnoglaciers.Theintervalfrom1.6to1.4billionyearsagoholdsnoneofthecharacteristicglacialremains—pilesofice-roundedcobblesandboulders,sandandgravel—thatarefoundinmostothergeologicalages.SothedullMesoproterozoicsawagreatdealofchange,evenifthosechangesweregeological“businessasusual.”

SupercontinentReprise:TheAssemblyofRodinia

Theboringbillionsawtheformationofnotonebuttwosupercontinents.ThescatteredfragmentsofColumbiadriftedapartforperhaps200millionyears,butacontinentcandivergeonaglobeonlyforsolongbeforeitstartsconvergingonceagain.About1.2billionyearsagoUr,Laurentia,andotherMesoproterozoiccontinentsbegantoreassembleintoanewlandmasscalledRodinia(aftertheRussianwordfor“motherland”or“birthplace”).Therockrecordoffar-flunglocalitiesinEurope,Asia,andNorthAmericapreservesanassociatedworldwidepulseofmountain-buildingeventsbetween1.2and1.0billionyearsago;eachnewmountainrangeelevatedasconvergingcratonscollidedandcrumpled.TheexactgeographyofRodiniaisstillamatterofdebate,butgeologicaland

paleomagneticdata,coupledwiththearrangementofcratonsontoday’sglobe,placesignificantconstraints.MostmodelssituatetheentiresupercontinentneartheEquator,withLaurentia—whatisnowmostofNorthAmerica—atthecenter,andlargepiecesofalltheothercontinentsstuckontothenorth,south,east,andwest.Accordingtoseveralreconstructions,BalticaandchunksofwhatarenowBrazilandWestAfricalaytothesoutheast,withotherpiecesofSouthAmericatothesouthandfragmentsofAfricatothesouthwest,thoughdetailsoftherelativepositionsofAustralia,Antarctica,Siberia,andChinaareasyetunsettled.ThedistinguishingcharacteristicofRodiniaisitsabsenceofcertainkindsof

rocks.Unlikeanyotherintervalofthepast3billionyears,fewifany

Page 172: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

sedimentarydepositshavebeenpreservedfromtheperiodbetweenabout1.1billionand850millionyearsago.Thishiatusmeanstherewereprobablynoshallowseasbetweencontinentsofthetypethathostedthe1.6-billion-year-oldBelt-Purcellsupergroup.Theconclusion:allthecontinentsmusthavefitneatlytogether.Nordoesitappearthattherewereanylargeinlandseas,ofthekindthatoncefloodedallofcentralNorthAmericaandlaidthesedimentaryfoundationsfortheGreatPlainssome100millionyearsago.Bythismodel,equatorialRodiniahadahot,dry,desertlikeinterior,muchlikeAustraliatoday.Foralmost250millionyears,thesedimentaryrockcycleseemstohaveallbutshutdown.LindaKahmakesherpointsmethodically,butit’sclearthatsheispassionate

aboutherchosengeologicalinterval.Inspiteofthemeagerrockrecordnearitsend,thegreattimeintervalfrom1.85billionto850millionyearsagowitnessedmanynotablechangesasaconsequenceofthecratonicdance.Twosupercontinentswereassembledduringtheboringbillion,eachproducingadozenmountainrangesbycratoniccollisions.Inbetweenthosetwogatheringsofthelands,astheColumbiansupercontinentriftedapart,someofEarth’smostimpressivesedimentarysequenceswerelaiddown.MuchofEarth’slandwassubmergedandthenbecamedryagain.Theratesofsedimentationvariedbyordersofmagnitude.Icecapsdisappearedandreappeared.That’salotofchangefora“boring”aeon.Butthere’sanothersidetothestory.

TheIntermediateOcean

Whatevertheexactgeometryoftheglobe,everyoneagreesthattheRodiniasupercontinentmusthavebeensurroundedbyanevenlargersuperocean,abodythathasbeennamedMirovia(aftertheRussianwordfor“global”).GeochemistswhostudyEarth’spasthavereachedtheconclusionthatiftheMesoproterozoicErawasboring,thenMiroviaistheprincipalreasonwhy.TheGreatOxidationEvent,whichsetsthedynamicperiodfrom2.4to1.8

billionyearsagoapartfromallothersinEarthhistory,wasprimarilyatimeofchangesinatmosphericchemistry.Earth’satmospheretransformedfromhavingessentiallynooxygentohavingapercentortwo.That’samonumentalchangeasfarasthenear-surfaceenvironmentgoes,buttoEarth’soceans,suchachangewasinsignificant.Thekeyliesinrelativemasses.Theoceanscontainmorethan250timesthe

massoftheatmosphere.Anysmallchangeinatmosphericchemistry,evena1percentincreaseinoxygen,takesaverylongtimetobereflectedintheoceans—perhapsaboutabillionyears.

Page 173: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Geochemistswhowanttounderstandthehistoryoftheoceansscrutinizeahostofchemicalelementsandtheirisotopes.Priorto2.4billionyearsagotheoceanswererichindissolvediron,astatethatcouldbemaintainedonlyifthewatercolumnwasutterlydevoidofoxidants(whichwouldhavecausedironoxidestoprecipitate)andalsolowinsulfur(whichwouldquicklyleadtotheformationofpyriteandotherironsulfideminerals).WiththeatmosphericchangesoftheGreatOxidationEvent,someofthatironwasremovedasironoxidesinshallowwater,eitherdirectlybyoxygenorindirectlybyreactionwithoxidizedweatheringproductsfromtheland.Oxygenintheatmospherealsoledtotherapidweatheringanderosionofsulfur-bearingminerals,whichflowedintotheoceansandconsumedmoreiron.Thesechemicalchangestriggeredamassivedepositionofbandedironformations,orBIFs—thethickocean-floorsedimentswithlayeruponcolorfullayerofironmineralsthatnowconstitutemostoftheworld’sironorereserves.TheBIF-makingprocesswasgradual,andtheoceansheldalotofiron,soBIFdepositioncontinuedforanothersixhundredmillionyears.Bythetimeoftheboringbillion,theoceanswerestillanoxic,buttheyhadlostmostoftheirdissolvediron.Fast-forwardabillionyears:photosyntheticalgaecontinuedtoproduce

oxygen,whichbegantotakeovertheoceans;bysixhundredmillionyearsago,mostofEarth’soceanswereoxygenrich,toptobottom.Whathappenedinbetween,thecruxoftheboringbillion,isknownastheintermediateocean.In1998geologistDonaldCanfieldoftheUniversityofSouthernDenmark

proposedthatsulfur,notoxygen,playedthemajorroleinEarth’sintermediateocean.(Manyscientistsnowrefertoasulfur-dominatedMesoproterozoicoceanastheCanfieldOcean.)Hisprovocativethesis,entitled“ANewModelforProterozoicOceanChemistry,”appearedintheDecember3issueofNature(afteralmostayear’sdelaybyinitiallyreluctantreviewers)andsoontransformedthewaymanyofusthinkabouttheoceanthroughdeeptime.Thecoreideaissimple.TheGreatOxidationEventproducedenoughoxygen

toinfluencethedistributionofmany“redoxsensitive”elements,includingiron,butnotnearlyenoughtooxygenatetheoceans.Ontheotherhand,enhancedweatheringandoxidationofthelandintroducedlotsofsulfateintotheoceans.Hencetheintermediateoceanbecameenrichedinsulfur,whileitwaspoorinoxygenandiron,asteadystatethatpersistedforabillionyears.

HangingOn

Thefossilrecordreinforcestheviewofaneversoslowlychangingintermediate

Page 174: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

ocean.Somerocksdepositedbetween2and1billionyearsagopreservemicroscopicfossilsofunprecedentedquality.The1.9-billion-year-oldGunflintchertofNorthAmerica,the1.4-to1.5-billion-year-oldGaoyuzhuangformationofnorthernChina,andthe1.2-billion-year-oldAvzyanformationfromtheUralMountainsinRussiacontainminutefossilmicrobessosharpandclear,someintheintimateactofdividing,thattheylookjustliketheirmodernlivingcounterparts.Yetsuchstrikingimprovementinthequalityofsomefossilsonlyreflectstheirlessalteredhistory,notanythingintrinsicallynovelaboutthattimeinEarthhistory.Theprotractedanoxic,sulfidicintermediateoceanwasbothgoodnewsand

badnewsforlife.Ontheplusside,theinfluxofsulfateprovidedanexcellentenergysourceforsomemicrobes—theymadetheirlivingbyreducingthesulfatetosulfide.Hintsfromthefossilrecord,includingdistinctivemolecularbiomarkers,sulfurisotopedata,andevensomewell-preservedmicrobesinchert,allpointtoathrivingMesoproterozoiccoastalpopulationofgreenandpurplesulfurbacteria.Thesesulfur-eatingmicrobes,whichpersisttodayinsomeanoxicenvironments,produceorganicsulfurcompoundsthatsmelljustawful—likeatragicallyfailedsepticsystem.LindaKahjokes,“TheMesoproterozoicwasthesmelliesttimeonEarth,”ina

riffonRogerBuick’s“dullest”line.“Whenwasitsmelly?”Iask.“Ithinkitwassmellythewholetime,”shereplies.Thebadnewsforlifewasitsrelianceonnitrogen.Nitrogengas(N2)is

abundant,constituting80percentoftoday’satmosphere.Theproblemisthatlife’sbiochemistrycan’tusenitrogengas;instead,liferequiresnitrogeninitsreducedform,calledammonia(NH3).Consequently,lifehasevolvedacleverprotein,anenzymecallednitrogenase,thatconvertsnitrogentoammonia.Butthere’sacatch.Thenitrogenaseenzymereliesonaclusterofatomscontainingsulfurplusametal,eitherironormolybdenum,butneithermetalwaspresentintheintermediateocean.TheironhadbeenremovedduringtheformationofBIFs,sothatwasn’tanoption.Molybdenum,ontheotherhand,issolubleonlyinoxygen-richwater,asintoday’soceans.Duringtheanoxictimeoftheintermediateocean,molybdenumwastobefoundonlynearweatheringcoastlinesinrelativelyshallowwater—environmentswherethosesulfurbacteriaaresuspectedtohavethrived.SoitwasthatCanfield’sseminalpaperwasfollowedbyastreamof

publicationslinkingMesoproterozoicgeochemistryandpaleontology—twodisciplineswhosepractitionersseldomspoketooneanothertwentyyearsago.

Page 175: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Theconclusion:theintermediateoceanharboredmicrobiallife,butsuchlifecouldthriveonlynearthecoasts.Sulfur-reducingbacteriacoexistedwithoxygen-producingalgae.Forabillionyears,lifehungon,buttherewerefewbiologicalinnovations.

TheMineralExplosion

Entermineralogy,anotherfieldthathaslongbeentaughtinamannerstrangelydivorcedfromthegrandstoryofEarth—asseparatefromgeochemistryandpaleontologyasthosefieldshadbeenfromeachother.It’saninexplicablebias,foreverythingweknowofEarth’sdistantpastcomesfromevidencelockedinminerals.Yetthemajorityofmineralogistsrarelytalkabouttheagesorevolutionoftheirsamples.Rather,formorethantwocenturies,mineralogicalresearchhasfocusedontheirstaticphysicalandchemicalproperties.Investigationsofhardnessandcolor,chemicalelementsandisotopes,crystalstructureandexternalformhavedominatedtheliteratureofmylivelihood.I,too,wasoncefirmlycommittedtothistwo-hundred-yeartradition.Forthe

firsttwodecadesofmyresearchcareer,Iisolatedperfecttinycrystalsofcommonrock-formingminerals,squeezedthemtounimaginablepressuresbetweentwobrilliant-cutdiamondanvils,zappedthecompressedsampleswithX-rays,andmeasuredsubtlechangesintheiratomicarrangements.MycolleaguesandIignoredgeologicaltimeandgeographicalplace,aswecaredlittleabouttheageorlocationofourmicroscopicsamples.Wecalledourselvesmineralphysicistsandalliedourselveswiththenonhistoricalsciencesofchemistryandphysics.Hadweboughtintothesubtleprejudiceagainstmeregeological“storytelling”?Thismind-setreflectsmineralogy’soriginsinminingandchemistry,colored

perhapsbyasubliminalbeliefthatthefieldsofphysicsandchemistryaremorerigorousthanthecreative,qualitativeyarnsofthegeologists.(EarthscientistsoftenwonderifthatbiasmighthaveanythingtodowithwhythereareNobelPrizesinphysicsandchemistrybutnotingeology.)Consequently,fewmineralogistshavethoughtabouttheastonishingchangesinEarth’snear-surfacemineralogythroughtime.WhenIjoinedwithsevencolleaguestopublishourarticle“Mineral

Evolution”in2008,ourobjectivewasinlargeparttochallengethistraditionalperspective—toreframemineralogyasahistoricalscience.OurventureintothemineralogicalhistoryofEarth,aswellasthatofotherplanetsinourSolarSystemandbeyond,positsthatEarth’smineralogyhasevolvedthrougha

Page 176: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

sequenceofstages,eachofwhichsawchangesinthediversityanddistributionofminerals.Hencethenarrativearcofthisbook,inwhichplanetsprogressfrommineralogicalsimplicitytocomplexity,fromonlyaboutadozenmineralsinthedustandgasthatmadeourSolarSystemtomorethanforty-fivehundredknownmineralspeciesonEarthtoday—two-thirdsofwhichcouldnotexistinanonlivingworld.Itwasahighlytechnicalarticle,publishedinthespecialtyjournalAmerican

Mineralogist,usuallyreadonlybyhard-coreprofessionals.Buttheinternationalmediaquicklypickedupthepropositionthatlifeandmineralscoevolved.TheEconomistandDerSpiegel,ScienceandNature,andahandfulofpopularsciencemagazinesallseizedonoureducatedguessesaboutaplanet’schangingmineraldiversity.TheNewScientistevenpublishedaclevercartoonshowingfour“stages”ofmineralevolution,fromaswimmingcrystalwithfinstoan“evolved”crystalwithawalkingstick.Whatnoneofthemacknowledgedwasthattheseprovocativeguesseswereallspeculative.IsMarsreallylimitedtofivehundredmineralspecies?Arenonlivingworldsreallyunlikelytoexceedfifteenhundredspecies?Isittruethatittookaliving,oxygenatedworldtotripleEarth’smineralogicaldiversity?Wehadpresentedthesestatementsashypotheses;thequesttotestthemhadyettobegin.Andwhocouldhavepredictedthatthemostfruitfulplacetolookwouldbe

therocksoftheboringbillion?

Toputquantitativefleshonthebonesofthemineralevolutionhypothesis,onemustexamineindividualgroupsofminerals.Fortunatelytheworldboastsexpertsinmanydifferentmineralgroups.That’swhyIcontactedEdGrew,aresearchprofessorinEarthsciencesattheUniversityofMaine.Edisawiry,intensescientistwhohasdevotedhislifetothemeticulousstudyofthemineralsthatincorporateberylliumandboron—rareelementsthatoccasionallyconcentrateinbig,beautifulcrystals.Heknowsall108officiallyapprovedberylliummineralslikeoldfriends.Eachhasacharacter;eachplaysageologicalrole.SoIaskedhimtothinkabouttheirstoriesthroughtime.Whendidtheyfirstappear?Whatprocessesledtotheirdiversification?Haveanyberylliummineralsbecome“extinct”?Noonehadevertriedtoanswersuchquestions.It’shardenoughtocatalogeverymineralofagivenelement,buttoteaseoutwheneachspeciesfirstappearedordisappearedisamonumentaltask.Forberyl,thecommonestberylliummineral(mostprizedinitsdeepgreenvariety,emerald),therearethousandsoflocalities.It’sadauntingchallengetotrackdowntheoldestberyl.Afterayearoftoil,EdGrewproducedalandmarkgraphshowingthe

Page 177: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

cumulativenumberofberylliummineralsthroughtimebasedonthousandsofreportedoccurrences.Asexpected,ittookaverylongtimeforthefirstberyltoappear—almost1.5billionyears.TheelementberylliumispresentatonlyabouttwopartspermillioninEarth’scrust,soittakestimeforhotfluidstoselectandconcentratethattraceberylliumintoanenrichedfluidthatcanprecipitateberylcrystals.Foranotherbillionyears,onlyabouttwentydifferentberylliummineralsappeared.Byourfledglingtheory,abigpulseofnewmineralsshouldhaveoccurredduringtheGreatOxidationEvent,between2.4and2.0billionyearsago,butthat’snotwhatEdfound.Instead,thebiggestincreaseoccurredabitlater,morethandoublingthenumberofknownspeciesbetweenabout1.7and1.8billionyearsago.Thatspan,rightatthebeginningoftheboringbillion,wasatimeofassemblyfortheColumbiansupercontinent.Perhapsberylliumwasconcentratedintonewmineralsduringtheintensemountain-formingeventsassociatedwithcontinentalcollisions.EdGrewfollowedupwithanevenmoreimpressivesurveyofthe263known

boronminerals.Tourmaline,mostprizedinitsgorgeoussemipreciousred-greenvariant,isfoundinsomeofEarth’soldestrocks,butthatwasitfornearlyhalfabillionyears.Insamplesfrom2.5billionyearsago,ameaslytwentyorsodifferentboronspecies—lessthan10percentofthemoderntotal—arerecognized.Aswithberylliumminerals,Edobservedadoublingofthenumberofboronspeciesinrocksoftheboringbillionera,thistimeinanintervalbetweenabout2.1and1.7billionyearsago—anintervalthatbracketstheformationoftheColumbiansupercontinent.Again,thisrapidincreaseinmineraldiversityraisesalotofquestions—aboutwhenthepostoxidationdiversificationactuallytookoff,abouttheassemblyofsupercontinents,andabouttheriseofmineralogicalnoveltyduringtheboringbillion.Forournextforayintomineralevolution,wetookontheninetyknown

mineralsofthescarceelementmercury—astudythatfurthercomplicatesthepicture.Likethemuchmoreabundantelementiron,mercurycanoccurinthreechemicalstates—asanelectron-richmetal(thefamiliarsilveryliquidofoldthermometers),aswellasintwodifferentoxidizedforms.Accordingly,weanticipatedasharpincreaseinmercurymineraldiversityfollowingtheGreatOxidationEvent,butthepicturethatemergedisratherdifferent.Aswiththehistoryofberylliumandboronminerals,theearliestmercurymineral—itscommonestore,thebrilliantredmineralcinnabar—tookmorethanabillionyearstoappear.Additionalspeciesfollowedinpulses:adozennewmineralsduringtheassemblyofKenorland;morethanahalf-billionyearsofstasis;anotherhalf-dozenduringtheassemblyofColumbia.Evidently,ascontinents

Page 178: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

collide,theresultingmountain-formingepisodesunleashafloodofmineralizingfluids—processesthatgeneratenewminerals.However,thediscoverythatsuchmineralizationwasrestrictedtointervalsofsupercontinentformationwasabigsurprise.Andthenanevenbiggersurprise:foranepicintervalfrom1.8billionto600

millionyearsago—agapexceedingeventhespanoftheboringbillion—nothing.NotevenduringthetimeofRodinia’sassemblyabillionyearsagodidanewmercurymineralappear.Wenowsuspectthatthesulfide-ladenintermediateoceanistoblame.Cinnabar,mercurysulfide,isamongtheleastsolubleofallores.Anymercuryatomsthatwashedintotheancientsulfidicseaswouldhaveimmediatelyreactedwithsulfurtoformsubmicroscopicparticlesofcinnabar,toslowlysettletothebottom,tothwartfurthermercurymineralization.Onlyinthelast600millionyears,astheoceansbecameoxygenrich,asthelandsbecamecoveredwithlife,didthepopulationofmercurymineralsexplode.

Mysteries

So,wastheexplosionofnewmineralsaconsequenceofthesupercontinentcycle,oneoftheboringbillion’ssignaturephenomena?Orwasitsimplyadelayedreactiontotheriseofoxygen?Andwhatoftheelementmercury:isthesulfur-richoceanthewholestory?Andwhatnewandunexpectedresultswillstudiesoftheotherfiftyorsomineral-formingelementsreveal?What’sclearisthatthere’salotmoretolearn,forwe’veonlyjustrecentlyhadourheadsturnedbytherichsubtletiesofthatbillion-yearspan.Thispoorlydocumentedinterval,from1.85billionto850millionyearsago,

sharestheinexorableprocessesofchangethathavecharacterizedeverystageofourplanet’sevolution.By850millionyearsago,Earth’snear-surfaceenvironmenthadchangedirreversibly.Theincreasinglyoxygenatedoceanmarginsteemedwithalgaeandothermicroorganisms,includingthestinkysulfurbacteria,whilethelandswerepoisedtoburstwithnewlife.Ifnothingelse,themysterious,not-so-boringbillionteachesusthatEarthhas

thepotentialtosettleintostasis,abenignbalanceofitsmanycompetingforces.Gravityandheatflow,sulfurandoxygen,waterandlifecanfindandmaintainastableequilibriumforhundredsofmillionsofyears.Butthere’salwaysabut.Giveanyoneoftheseforcesanudge,andEarthcanbecomeunbalanced,reachingatippingpointwithconsequencesdifficulttoanticipate—rapidchangesthatmaydisruptthenear-surfaceenvironmentinamatterofyears.Andthatiswhathappenednext.

Page 179: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet
Page 180: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Chapter9

Page 181: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

WhiteEarth

TheSnowball-HothouseCycleEarth’sAge:3.7to4.0billionyears

TheProterozoicEon,spanningalmosthalfofEarth’shistoryfrom2.5billionto542millionyearsago,wasalongperiodofsharpcontrasts.Itsnewsworthyfirst500millionorsoyearswitnessedthegreatflourishingofphotosyntheticalgaeandtheconsequentriseofatmosphericoxygen,thetransformationofonceiron-richoceansbythedepositionofmassivebandedironformations,andthebiologicalinnovationofeukaryotecellswiththeirDNAsequesteredinanucleus—cellsthatweretheprecursorsofallplantsandanimals.ThemiddlebillionyearsoftheProterozoic—theso-calledboringbillion—

wereamuchmoreplodding,steadilychangingtimethatwasalsoverysmelly.Bycontrast,thefinalthreehundredmillionyearswereperhapsmostdynamic

ofall,withcontinentalbreakupandassembly,radicalclimateswings,epicshiftsinoceanandatmosphericchemistry,andtheriseofanimallife.IhopeI’veestablishedthatEarthsystemsarecomplexlyinterconnected.Air,

water,andlandappeartousasseparatespheres,whichchangeoververydifferentscalesoftime.Weathervariesdaily;oceanschangeovermillennia;rockscycleovermillionsofyears;supercontinentstakehundredsofmillionsofyearstoassembleandbreakapart.YeteveryEarthsystemaffectseveryotherinwaysbothobviousandhiddenfromview.Ahouseservesasauseful,ifimperfect,metaphorforourhomeplanet.When

youareconsideringbuyingahouse,youwanttoknowmanythings—whenitwasbuilt,forexample,aswellastheageandgeometryofitsvariousadditionsandrenovations.Youwantdetailsaboutyourhouse’sbuildingmaterialsandtheirinstallation,fromthefoundationtotheroof.Youneedtolearnabouttheplumbingsystemanditssourceofwater,aswellastheairhandlingsystem—thefurnaceandairconditionerandtheirsourcesofenergy.Thesmarthomebuyeralsoasksaboutpotentialrisks:fromfireandcarbonmonoxide,termitesandcarpenterants,radonandasbestos,leaksandmold.Geologists,likewise,studyEarth’soriginsandmajortransitions,thenatureofrocksandminerals,the

Page 182: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

movementofwaterandair,thesourcesofenergy,andtheriskfromgeologicalhazards.AhousealsomimicssomeofEarth’scomplexbehaviors,asdifferentsystems

areinterconnectedinsometimessurprisingandunexpectedwaysthroughnegativeandpositivefeedbackloops.Onacoldwinterday,asthetemperatureinsidethehousedropsbelowyourcomfortlevel,thethermostatrespondsbyturningonthefurnace,andthetemperaturerises.Oncethehousewarmsup,thefurnaceshutsoff.Onhotsummerdays,theairconditionermirrorsthatresponsebytrippingoniftheinsidetemperaturerisestoohigh.Earth,too,operatesthroughmanysimilarnegativefeedbackloopsthathelptheplanetmaintainitsmoreorlesssteadyconditionsoftemperature,humidity,andcompositionatandnearthesurface.So,forexample,warmingoceansresultinmoreclouds,whichreflectsunlightbackintospaceandcooltheoceans.Likewise,risingconcentrationsofatmosphericcarbondioxidecauseglobalwarming,whichacceleratesrockweathering—aprocessthatgraduallyconsumesexcesscarbondioxideandleadsinturntocooling.Housesalsooccasionallydisplayreinforcingor“positive”feedback,

sometimeswithbadconsequences.Ifyourheatingsystemfailsonacoldwinterday,thepipescanfreezeandburst,causingcoldwatertofloodyourhome,makingthehouseevencolderandlesslivable.ManyoftheuncertaintiesregardingEarth’schangingclimatetodayfocusonpotentialpositivefeedbackloopsandtheirtippingpoints.Risingsealevelswillleadtocoastalflooding,whichmightresultinmoreevaporationandrainfall,whichcausesmorecoastalflooding.Awarmingoceanmightcausethewidespreadmeltingofmethane-richiceatandbeneaththeoceanfloor,whichcouldaddthegreenhousegasmethanetotheatmosphereandcauseevenmorewarming,whichcouldreleaseevenmoremethane.WehaveonlytolookattherunawaygreenhouseeffectofoursisterplanetVenus,withitsthickcarbondioxideatmosphereand900-degreeFahrenheitsurfacetemperatures,toseethepotentiallycatastrophiceffectsofuncheckedpositivefeedback.Theboringbillion,totheextentthatitreallywasboring,wasaconsequence

ofmanyefficientnegativefeedbacksthatheldchangeincheck.Inspiteoftheglobe-spanningmigrationsoflandmassesandtherepeatedassemblyandbreakupofsupercontinentsduringthatlengthyinterval,Earth’sclimateseemstohavebeenfairlystable.Therewerenogreaticeages.Thechemistryoftheanoxic,sulfur-richoceandidn’tchangemuch;nordidlifeevolveinanystrikingnewways.Somenewmineralvarietiesappeared,butnomajortippingpointsalteredtheair,land,orsea.

Page 183: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

AllthatwasabouttochangewiththebreakupofRodinia.

Breakup

InsharpcontrasttoEarth’senigmaticquietintervalfrom1.85billionto850millionyearsago,thenextfewhundredmillionyearsexperiencedsomeofthemostremarkablyrapidandextremenear-surfacefluctuationsinourplanet’shistory.About850millionyearsago,mostofEarth’smanycontinentalmasseswerestillclumpedtogetherneartheEquatorinthedryandutterlylifelessRodiniasupercontinent.TheimmenseoceanofMirovia,perhapspunctuatedbyonlyafewisolatedarcsofvolcanicislands,surroundedthisdenuded,rusty-redmegacontinent.Theinhospitableatmospherecontainedonlyasmallfractionoftoday’soxygenbudget,toolittletoformmuchofanultravioletprotectiveozonelayer.Atimetravelerwithareliablesupplyofoxygenandsunblockmighthavesurvivedalongthecoastonablanddietofalgae,butlifewouldhavebeennopicniconthatdesolateNeoproterozoicworld.Rodinia’sunbalancedjuxtapositionoflandandseawasnotdestinedtolast.

FormostofEarth’shistory,climatehadbeenmoderatedbynegativefeedbacks.IthadvariedthroughoutEarthhistory,tobesure,butthefluctuationsseldomreachedlife-threateningextremes.Beginningabout850millionyearsago,however,severalchangesdisruptedtheformerequilibriumandpushedEarthtoaclimatictippingpoint.ThemostimportantwasthegradualbreakupofequatorialRodinia.Thefirstrift850millionyearsagowasmodest,astheCongoandKalaharicratons(whatarenowpartsofsouthernAfrica)begantoseparatetothesouthwestoftheotherwiseintactsupercontinent.About800millionyearsago,asecondsmallriftzoneisolatedtheWestAfricancraton,whichmovedsouthfromthemainlandmass.Rodinia’sfragmentationwasinfullswingby750millionyearsago,atimewhenextensivechainsofvolcanoesandbasalticlavaflowsrevealmajorcracksinthecrust.Thesupercontinentsplitinhalf,asagreatnorth-southriftzoneseparatedUrtothewestandacontinentalclusterofLaurentia,Baltica,Amazonia,andothersmallercratonstotheeast.Withriftingcamethousandsofmilesofnewcoastlineandassociatedpulsesof

rapidcoastalerosion.DynamicsedimentarybasinsformedintheintercratonicseasandmarkedanendtothelonghiatusinEarth’srockrecord—thatvirtualcessationofsedimentaryrockdepositionthathadbegunintheMesoproterozoicEraandlastedforalmostaquarterofabillionyears.Microbiallifeflourishedinthisshifting,fragmentingworld.Erodedlandscontributedmineralnutrientstophotosyntheticalgae,whichhadlongbeenlimitedbytheocean’smeagerstore

Page 184: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

ofphosphate,molybdenum,manganese,andotheressentialelements.Paleontologistsimagineatimeofshallow,sandytidalzoneswiththickmatsofslimygreenfilamentsandoffshorewaterschokedwithsmellyalgalrafts.TectoniceventsfurtherconspiredtoalterEarth’soceans,atmosphere,and

climate.Atmosphericoxygenroseinpartbecauseoftheprofligatecoastalalgalblooms,butalsobecauseincreasedproductionofalgalbiomassledtotherapidburialoforganiccarbon.ThroughoutEarth’shistory,carbon-richbiomasshasbeenamajorconsumerofoxygen.Themorebiomassthatdecays,thefasteroxygenisconsumed.(Forestfiresrepresentanunusuallyrapidenactmentofthisongoingoxygen-depletingphenomenon.)Bythesametoken,thefastercarbon-richbiomassisburied,thefasteroxygenlevelsrise.Buthowcanweknowifbiomasswasburied?Itturnsoutthatlimestone,whichprecipitatescarbon-richminerallayersontheshallowoceanfloor,preservesasubtletelltalerecord.Carbonisotopesinlimestonepointtochangesintheproductionrateofalgae.

Life’sessentialchemicalreactions—theconversionofwaterandcarbondioxidetosugarinphotosynthesis,forexample—alwaysconcentratelightercarbon-12relativetocarbon-13.Consequently,thecarboninbiomass(thatis,algae,deadoralive)isalways“isotopicallylight”comparedwithinorganiccarboninlimestone.Duringnormaltimes,whenmicrobiallifeflourishesandlightcarbonisdepletedfromtheoceans,limestonedisplaysacorrespondinglyheavyisotopicsignature.Andattimesofunusuallyrapidbiomassburial,asevenmoreofthelightercarbonisotopeissystematicallyremovedfromtheoceans,theleftovercarbonthatmakeslimestoneisevenheavieronaverage.Sureenough,limestonedepositedalongtheshoresofRodinia790to740millionyearsagoisunusuallyheavy.Duringthatinterval,algaemusthavespreadandbeenburiedatanunprecedentedrate.ThisprofligatebloomingoflifemayhavehadasignificanteffectonEarth’s

climate.Microbiallifeconsumesthegreenhousegascarbondioxide,whichisconstantlypumpedintotheatmospherebyvolcanoes.Innormaltimes,CO2inputsandoutputsarebalanced,soatmosphericconcentrationsremainrelativelyconstant,butduringtheNeoproterozoicpulsesofrapidalgalgrowth,carbondioxidelevelsmayhavedropped,thusreducinggreenhousewarming.AnotherratherconvolutedfeedbacklooprelatedtoCO2mayhavealso

enhancedEarth’scooling.TheriftingofRodiniaresultedinthousandsofmilesofnewseafloorvolcanoes,whichmanufacturedhot,lower-densityoceancrust.Suchhot,buoyantcrusttendedtosupportshalloweroceansthanbefore,soaveragesealevelsrose.Itfollowsthattheperiodafter750millionyearsagowasprobablyoneofmanyinlandseas.Inlandseasmeanmoreevaporationand

Page 185: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

increasedrainfall,whichleadstomorerapidweatheringofexposedrock.Butrockweatheringrapidlyconsumesthegreenhousegascarbondioxide,andlowerCO2levelscaninturnleadtoglobalcooling.Thedistinctivepositionsofcontinentsandoceansjustpriortoandduring

Rodinia’sbreakupmayhaveplayedanadditionalroleinalteringtheglobalclimate.Oceansandlandcontrastsharplyinalbedo—theabilitytoreflectorabsorbsunlight.Thedarkeroceanshaveacorrespondinglylowalbedo;theysoakupmostoftheSun’senergyandgrowwarmerintheprocess.Drybarrenland,bycontrast,ismuchmorereflective.Adesiccated,desolatesupercontinentlikeRodiniawouldhavebouncedmuchoftheincidentsunlightbackintospace.Suchajuxtapositionofpolaroceansandequatorialcontinentswouldhaveexaggeratedanyglobalcoolingevent,sincetheEquatorreceivesmuchmoresolarenergythanthepoles.Detailsofsuchglobal-scaleprocessesandcomplexfeedbackloopsarestill

beingresolved,butit’sclearthattheNeoproterozoicEarth,afteritslongperiodofrelativestability,waspoisedforbigchanges.

SnowballEarth–HothouseEarth

Three-quartersofabillionyearsago,Earthenteredaperiodofclimateinstabilitythelikesofwhichhavenotbeenseenbeforeorsince.Itallbeganwithabrutaliceage.Glaciersleaveanunambiguoussuiteofsedimentaryfeatures.Foremostare

thick,irregularlayersofdiagnosticrockscalledtillites,whichpreservechaoticjumblesofsand,gravel,angularrockfragments,andfinerockflour.Glaciersalsoleavebehindroundedoutcropsofbedrockthathavebeenscratchedandpolishedbytheslowlyadvancingicesheets.Erraticbouldersandmoundlikemorainesaddtotheevidence,asdofinelylayeredvarvedsediments,representingseasonalrunoffintoglaciallakes.Fieldgeologistsaroundtheworldhavediscoveredtheseglacialfeaturesin

rocksbetween740and580millionyearsoldjustabouteverywherethey’velooked.Indeed,evidenceforanabruptanddrasticclimatechangeabout740millionyearsagohadbeenaccumulatingfordecadeswhengeologistPaulHoffmanandthreecolleaguesatHarvardandtheUniversityofMarylandpublishedtheirshort,electrifyingpaper“ANeoproterozoicSnowballEarth”intheAugust28,1998,issueofScience.Hoffmanandhiscoworkersmadetheextraordinaryleapthatatleasttwiceduringthatinterval,Earthhadnotjust

Page 186: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

experiencedaniceagebuthadcompletelyfrozenover,frompolestoEquator.TheybasedtheirclaiminpartonmeticulousfieldobservationsofasequenceofrocksfromtheSkeletonCoastofNamibia:thickglacialtillitedeposits,sidebysidewithpaleomagneticsignalsthattheglacierswereclosetotheEquator,atabout12degreeslatitude.Andtheseweren’talpineglaciersfromhighmountainseither;thetilliteswereclearlydepositedinshallowcoastalwaters,atsealevel.TheclimatemusthavebeencorrespondinglyfrigidneartheEquator.Bycontrast,duringEarth’smostrecenticeage,advancingglaciersnevergotfarthersouththanabout45degreeslatitude,andfossilevidencepointstoarelativelywarmtropicalzoneevenduringthemaximumextentofice.TheHarvardteamhadunassailableevidenceforNeoproterozoiciceaccumulationsatsealevel,closetotheEquator.HencethesnowballEarth.FormanyscientistsreadingHoffman’sarticlein1998,carbonisotopes

providedthesmoking-gunevidenceforsuchasuddenandcatastrophicchange.DuringthemillionsofyearspriortothefirstpresumedsnowballEarthepisode—beforeabout740millionyearsago—therapidgrowthofalgalbiomasshadconcentratedisotopicallylightcarbon.ContemporaneouslimestonesdepositedincoastalwatersaroundthefragmentingRodiniasupercontinentarecorrespondinglyheavy.Ontheflipside,ifmicrobialproductivityslowsorstops,thecarbonisotopesinlimestonemustbecomeonaveragemuchlighter.That’sexactlywhatHoffmanandhiscolleaguesfound—ahugedecreaseofmorethan1percentinheavycarbon,justbeforeandjustaftertheappearanceofglacialdepositsaboutsevenhundredmillionyearsago.Themodelthatemergedreliesonnestedpositivefeedbackloops,eachof

whichdroveEarthtoacolderandcolderstate.Onefeedbackdependedoncontinentalweathering—aprocessthatacceleratedinhotandhumidtropicalzonesasitpulledmoreandmorecarbondioxidefromtheair.AnotherfeedbackclickedinasmassivebloomsofphotosyntheticalgaescavengedevenmoreCO2outoftheair.Meanwhile,asEarth’satmosphericgreenhouseweakenedanditsclimatecooled,icecapsbegantoformandgrowatthepoles.Thisfreshwhiteiceandsnowreflectedmoresunlightintospace,apositivefeedbackthatcooledEarthmorerapidlythanbefore.Andevenastheicesheetsspreadtolowerandlowerlatitudes,thestill-warmequatorialcontinentandthefecundalgalecosystemcontinuedtopullmoreandmoreCO2fromtheskies.Earth’sclimate,temporarilyskewedoutofbalance,reachedatippingpointaswhiteicefrombothpolesextendedtowardtheEquatorandeventuallymayhaveencircledtheglobe.Intheextreme“hardsnowball”versionofthisscenario,theonepromotedbyPaulHoffmanandhiscolleagues,averageEarthtemperaturesplungedto–50

Page 187: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

degreesFahrenheit,asanicemantleuptoamilethicksurroundedtheglobe.Formanymillionsofyears,Earthwasencasedinice(oratleastslush).The

white“snowball”Earth,unabletosoakupsolarradiation,seemedforeverlockedinitsicycocoon,astemperaturesneverroseabovefreezing.Theglobaliceageshutdownalmosteveryecosystem.Earth’sformerlyabundantmicrobiallifewasallbutwipedout.Afewhardymicrobespersisted,astheyhaveforbillionsofyears,intheperpetualdarknessofocean-floorhydrothermalvents.Othersparsesurvivingpopulationsofphotosyntheticalgaemusthavefoundtheirhomesinsunlitzonesofcrackedthiniceorshallowopenwaternearthewarmflanksofvolcanoes.

HowcouldEarthhavepossiblyrecoveredfromsuchalong,coldglobalwinter?Theanswerliesinourplanet’smuchdeeper,inexorablechurnings.Thewhiteveneeroficeandsnowcouldnotstopplatetectonics;norcoulditslowtheincessantexhalationofvolcanicgasesfromhundredsofblackconesthatpokedthroughtheice.Carbondioxide,thedominantvolcanicgas,onceagainbegantobuildupintheatmosphere.Withthelandjacketedinice,timelyremovalofCO2byrockweatheringandphotosynthesisallbutceased.Carbondioxideconcentrationsgraduallyrosetolevelsnotseeninmorethanabillionyears,eventuallytoperhapsseveralhundredsoftimesmodernlevels,triggeringanewpositivefeedback—arunawaygreenhouseeffect.Sunlightstillscatteredoffthewhitelandscape,butcarbondioxideintheatmospherebouncedthatradiantenergyrightbacktothesurface,inevitablywarmingtheplanet.Astheatmospherewarmed,smallpatchesofequatorialicemeltedforthefirst

timeinmanymillionsofyears.Asdarklandbecameexposed,moresunlightwasabsorbedandthewarmingaccelerated.Theoceans,too,begantoclearoftheirwhitecoveringsaspositivefeedbacksbetweentheSunandthesurfacecausedEarthtobecomewarmerandwarmer.

ACaseofGas

Manyscientistsnowsuspectthatanotherpositivefeedback—amechanismthatisalsoofsignificantconcerntoourmoderntimes—mayhaveexacerbatedtherapidglobalwarming.Methane(CH4),thesimplesthydrocarbonfuelandwhatweburninourhomesas“naturalgas,”isalsoagreenhousegas,butonethatis,moleculeformolecule,muchmoreeffectivethancarbondioxideintrappingtheSun’senergy.Forbillionsofyears,methanehasaccumulatedinocean-floorsediments,probablybytwocontrastingmechanisms.Thefirst,whichismuch

Page 188: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

betterdocumentedandthusalotlesscontroversial,involvesmicrobesthatreleasemethaneaspartoftheirnormalmetaboliccycle.Thesemethanogensthriveinanoxicoceansedimentsnearmanyknownmethanereserves,solargenaturalgasdepositsarethoughttohaveformedbythesustainedactionofthesemicroorganisms.Recentexperimentspointtoapossiblesecond,muchdeepersourceof

methane—asourcethatdoesn’trelyonbiologyatall.Somescientistssuggestthatinthedeepcrustanduppermantle,atdepthstomorethanahundredmileswhereextremetemperaturesandpressuresprevail,waterandcarbondioxidecanreactwithcommoniron-bearingmineralstoproducemethane.Experimentsathightemperaturesandpressuresattempttomimicthesesuspecteddeep-Earthreactions.Inanoft-cited2004studyattheGeophysicalLaboratory,postdoctoralfellowHenryScottmixedtwocommoncrustalingredients,calcite(calciumcarbonate—thecommoncarbon-containingmineraloflimestone)andironoxide,withwater.Scottsealedtheseingredientsintoadiamondanvilcellandlaser-heatedthesampletomorethanathousanddegrees—thesameextremeconditionsfoundintheuppermantle.Remember,theneatestthingaboutthediamondanvilcellisthatdiamondsaretransparent,soyoucanseethesampleasitreactsandchanges.HenryScottwatchedastinybubblesofmethaneformedinthesamplechamber.Thehydrogenofwaterhadreactedwiththecarbonofcalcitetoformnaturalgas.OtherexperimentsinRussia,Japan,andCanadahavefoundsimilarsynthesisofhydrocarbonsunderarangeofsupposeddeep-Earthconditions.TheseexperimentsarepotentiallyimportantforunderstandingNeoproterozoic

globalwarming,formethanemayhavecontributedtoaparticularlystrongpositivefeedback.Muchofthemethanestoredneartheoceanflooristrappedinafascinatingcompoundcalledmethaneclathrate—anicelikecrystallinemixtureofwaterandgasthatformsoutcropsonthecontinentalslopes.(Thisfreezing-coldmethaneiceactuallyburnswithabrightflame—checkoutthevideosonYouTube.)Vastquantitiesofmethane—severaltimesallotherknownmethanereservescombined,bysomeestimates—arelockedintothesemethaneices,whichformwhengasrisingfrombelowreactswithcoldseawater.SignificantadditionalmethaneiceislockedinArcticpermafrost—soilsinSiberia,northernCanada,andotherregionsthathavebeenfrozenforthousandsofyears.Anextremepositiveclimatefeedbackmightoccurwhenoceanwaterswarm

evenslightly,whichcausestheshallowestclathratedepositstomeltandreleasecopiousamountsofmethanegasintotheatmosphere.Thismethaneaddssignificantlytothegreenhouseeffect,whichcausestheoceanstowarmeven

Page 189: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

more.SomescientistsnowpointtoapossiblecatastrophicNeoproterozoicreleaseofocean-floormethaneasawaytoaccelerateglobalwarming,perhapsflippingEarthfromcoldtohotinamatterofdecades.ThisNeoproterozoicscenariodependsstronglyonthesourcesofmethane.If

microbesproducemostoftheocean’snaturalgas,thenclathrateproductionprobablyslowedduringsnowballepisodes,andmethanereleasemaynothaveplayedsuchamajorroleinwarming.If,ontheotherhand,asignificantamountofmethanerisesfromthehotpressurizedmantle,thenstoresofmethaneclathrateswouldhavebuiltupcontinuouslythroughoutanyglobalcoolingspellindependentofmicrobiallife,triggeringamuchgreaterfeedback.Sowhatprocessproducesthemethane—deeprocks,shallowmicrobes,oracombinationofthetwo?Thequestionofdeepversusshalloworiginsofmethanemayseem

straightforward,butit’saproblemcoloredbyalong-standing,sometimesheatedinternationalcontroversyintheoilandgasbusiness.Petroleumisformedprimarilyofhydrocarbonmolecules,ofwhichmethaneisthesimplestandmostabundant.It’swidelyassumedthatwhatevernaturalprocessesformmethanealsoplayaroleintheformationofoil.OnonesideofthedebateistheRussian-Ukrainianschool,fatheredinthe

mid-nineteenthcenturybythefamedRussianchemistDimitriMendeleev,bestknownforhisubiquitousperiodictableoftheelements.Mendeleevproposedanabiogenicoriginforpetroleumlongbeforetherewereexperimentstobolsterhisclaims.“Thecapitalfacttonote,”hewrote,“isthatpetroleumwasborninthedepthsoftheEarth,anditisonlytherethatwemustseekitsorigin.”Mendeleev’sideasenjoyedresurgenceinRussiaandUkraineinthesecondhalfofthetwentiethcentury,andtheyinformRussia’sthrivingoilandnaturalgasindustry.SomeRussiangeochemistsstilladvocatethatvirtuallyallpetroleumandnaturalgasderivesfromdeepabiogenicsources.Intheirview,someproductiveoilfieldsarerenewableresources,continuouslyfillingfromvastmantlereservoirsbelow.SuchthinkingisscientificheresytomostAmericanpetroleumgeologists,

whocitealitanyofevidenceforanexclusivelybiologicaloriginforpetroleum:oilisonlyfoundinsedimentaryhorizonswherelifeoncethrived;oilisloadedwithdistinctivemolecularbiomarkers;theisotopiccompositionofoilisuniquelylifelike;thetraceelementsalsopointtoalivingsource.FormanyNorthAmericanpetroleumgeologists,thecaseissettled:virtuallyallpetroleumandnaturalgasisbiogenic.Thedebate,polarizedbydecadesofRussian-Americanrivalry,wasrekindled

Page 190: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

inNorthAmericabythebrilliant,pugnacious,far-reachingAustrianastrophysicistThomas(Tommy)Gold,whotaughtatCornellUniversitybeforehisuntimelydeathin2004.Gold’schiefclaimtoscientificfame,atleastwithinhischosenspecialtyofastrophysics,washisrealizationthatmetronomicradiopulsesfromdeepspace,theso-calledpulsars,areinfactrapidlyrotatingneutronstars.(Foratime,someastronomersthoughttheseradiosignalsmustoriginatefromdistantalientechnologies,hencetheastronomicaldesignationforallpulsarsisLGM—shortfor“LittleGreenMen.”)ThoughGoldventuredintomanyotherspheresofscience—fromthe

physiologyofhearingtotheconsistencyofthepowderylunarsurface—hismostnotablecontributionoutsideastrophysicswastochampiontheabioticoriginsofpetroleumandnaturalgas.Petroleumlooksbiological,heargued,simplybecauseathrivingcommunityofmicrobes—the“deephotbiosphere”—usestheabiotichydrocarbonsasfood.Microbesthusoverprintabiotichydrocarbonswiththeirdistinctivebiochemicalmarkers—hopanes,lipids,andmore.Basedonthishypothesis,Goldadvocatedhydrocarbonexplorationinunconventionalplaceslikeigneousandmetamorphicrocks.HeevenpersuadedaSwedishcompanytodrillanexploratorywellintosuchhardrocks—aprojectthatyieldedintriguing,ifambiguousresults(andlostalotofunhappyinvestorsalotofmoney).Ifyoulistencloselytobothsidesofthisargument,it’sclearthattheanswerto

thequestionofhydrocarbonoriginsisnotyetresolved.TommyGoldwasendlesslyinquisitiveandeagerforanswers.Shortlybeforehisunexpecteddeath,hecametomylabtolectureonthedeephotbiosphereandtodiscussapossiblecollaboration—experimentsthatmighthavehelpedtoresolvethematter.Thecriticalquestionofmethane’soriginsremainsunanswered,butitisnotunanswerable.Whatweneedisanew,internationalefforttounderstanddeepcarbon.

TheDeepCarbonObservatory

CarbonisarguablyEarth’smostimportantelement.CarbonisthekeytounderstandingEarth’svariableclimateandenvironment.Carbonhaslongbeen,andcontinuestobe,thecentralelementinourquestforenergy.Carbonisalsothecrucialelementoflifeand,byextension,thecoreelementinthedesignofnewdrugsandmyriadotherproducts.Weneedtounderstandcarbon,notjustinitswell-studiedsurfacecyclesofoceans,atmosphere,rocks,andlife,butfromcrusttocore.Soitwasthatinthesummerof2009,theAlfredP.SloanFoundationandthe

Page 191: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

GeophysicalLaboratorylaunchedtheDeepCarbonObservatory(DCO),anambitiousten-yearprogramtostudycarboninourplanet,especiallyitschemicalandbiologicalrolesinEarth’sdeepinterior.Whereisthecarbon?Howmuchisdownthere?Howdoesitmove,especiallytoandfromthesurface?Howextensiveisthedeepbiosphere?Thisinterdisciplinary,internationalefforthasalreadyattractedhundredsofresearchersfromdozensofcountries.Wehavemanyobjectives,fromcompletingaglobalcensusofdeepmicrobiallifetomonitoringthecarbondioxideemissionsfromeveryactivevolcanoonEarth.ButdiscoveringtheoriginsofEarth’shydrocarbons,frommethanetopetroleum,isacenterpieceoftheDCO’smission.GeochemistEdYoungandhiscolleagueEdwinSchauble,bothattheUniversityofCaliforniainLosAngeles,thinkisotopeswillbethekeytodeterminingwhetheraseepofmethaneontheoceanfloorwasproducedbyarockoramicrobe.Buttheirtheoreticalcalculationscan’tbetestedwithanyordinarymeasurementofheavyversuslightisotopes.EdYoungwantstomeasure“isotopologs.”Isotopologsarechemicallyidenticalmoleculesthatdifferinthearrangement

oftheirisotopes.Methane,withonecarbonatomandfourhydrogenatoms,comesinavarietyofisotopologs.About99.8percentofallcarbonatomsarethelightercarbon-12variety,whileoneineveryfivehundredatomsistheheaviercarbon-13isotope.Bythesametoken,hydrogencomesinalighterversion(technically“hydrogen-1,”butalwaysreferredtosimplyashydrogen)aswellastheheavierhydrogen-2isotope,whichisalwayscalleddeuterium.OnEarth,thetypicalhydrogen-to-deuteriumratioisaboutathousandtoone.Theseratiosmeanthataboutoneineveryfivehundredmethanemoleculesholdsacarbon-13isotope,whileaboutfourineverythousandmethanemoleculescontainadeuterium.Traceamountsofeitherofthesetwoheavyisotopesarehardenoughto

measure,butthat’snotwhatEdYoungandhiscolleaguesareafter.Theywanttomeasuretheelusivedoublysubstitutedmethaneisotopologs—theroughlyone-in-a-millionmoleculeofmethanethatholdsbothacarbon-13andadeuterium(denoted13CH3D)orelsetwodeuteriums(12CH2D2).AccordingtoEdwinSchauble’scalculations,theratioofthosetworareisotopologsinanygivensampleofmethaneshouldprovideasensitiveindicatorofthetemperatureatwhichthemethaneformed.Temperatureisthekey:ifabatchofmethaneformedattemperaturesbelow200degrees,thenitmustbemicrobial;ifitformedattemperaturesabove1,000degrees,thenitismostlikelyabiotic.Theidealooksgreatonpaper.Thetroubleis,there’snotaninstrumentinthe

worldthatcanteaseouttheratioof13CH3Dto12CH2D2.Conventionalisotope

Page 192: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

analysisisbasedonmassspectrometry,theprocessofseparatingmoleculesaccordingtotheirmasses.Thesetwoisotopologsdifferbylessthanahundredthof1percentinmass,posingsignificantproblemsinresolvingonetypefromtheother.What’smore,theisotopologsarepresentatextremelylowconcentrationsthatchallengeconventionalanalysis.EdYoungandhiscolleaguesneedanewinstrumentthatenhancesbothmassresolutionandmolecularsensitivity.That’swhyoneofthefirstactionsoftheDeepCarbonObservatorywastohelpfunda$2millionprototypeinstrumentdesignedspecificallytomeasuretheisotopologratiosofmethane.(Inasatisfyingdisplayofcooperation,theU.S.NationalScienceFoundation,theU.S.DepartmentofEnergy,ShellOilCorporation,andtheCarnegieInstitutionofWashingtonarealsosupportingtheeffort.)It’sariskyendeavor.Itwilltakeyearstobuildtheinstrument,yearsmorebeforeweknowifitworks.Butadefinitiveanswertothequestionofthesourcesofdeepmethane,andtheresultinginsightsintoamethane-drivenfeedbackloopthatmaydrasticallyalterEarth’sclimate,iswellworththechance.

CyclesofChange

BackonNeoproterozoicplanetEarth,atthetailendofthefirstsnowballepisodesevenhundredmillionyearsago,thetippingpointofclimatechangehadbeenreached.Theinevitableriseincarbondioxideplayedabigrole;thesuddenreleaseofmethanefromclathratesmayhavecontributedaswell.Inageologicalblinkofaneye—perhapsmuchlessthanathousandyears—theclimatelurched.ThesnowballEarthtransformedtothehothouseEarthastemperaturessoaredtorecordlevels.Foralongtime,perhapsthirtymillionyears,awarmclimateprevailed,but

thehothouseensureditsowndemise.Theelevatedatmosphericconcentrationsofcarbondioxidegraduallyfellfromtheirextremes.Someofthegreenhousegaswasremovedbyreactionswithrocks.Thedenudedland,exposedtorainfalllacedwithcorrosivecarbonicacid(aconsequenceofhighatmosphericCO2),weatheredrapidly.Theinfluxofmineralnutrients,coupledwiththeresurgenceofsunshine,ledtoexplosivealgaebloomsthatdevouredthegreenhousegas.Alloftheseeventsaredulypreservedinthecarbonisotoperecord.Andsoforthenext150millionyears,Earthcycledbetweentheseextremes.

Notonce,nottwice,butatleastthreetimestheicegatheredandretreated,theglobalclimateswingingdrunkenlyfromarctictotropicalandbackagain.Thefirstepisode,calledtheSturtianglaciation,reachedamaximumabout720millionyearsago.TheMarinoanglaciationfollowedat650millionyears,and

Page 193: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

thelesssevereGaskiersglaciationoccurredat580millionyears.Thickaccumulationsofrockinadozencountriesrevealdetailsofthisdramaticcycle.Asiceretreated,theglaciersleftbehindhugepilesofplucked-upbouldersandground-uprock,lumpytillitesandpolishedroundedbedrock.Soonthereafterthickcrystallinedepositsofcarbonatemineralscoveredthetillitelayers—anothertelltalesignofwarmingoceans.ThecarbonatesformedsorapidlyintheCO2-supersaturatedseasthatgiantcrystalsseveralfeetlongblanketedtheshallowoceanfloor.ThesehastydroppingsspeakofatimewhenEarth’storturedsurfacehadlostitschemicalequilibrium—foreverabandoningitsboringbillionstasis.ForatimefollowingPaulHoffman’s1998publicationaboutsnowballEarth,

geologistsembracedthefrozen-planetscenario,butthebloomisnowfallingofftherose.ClimatemodelershavefounditdifficulttoencaseallofEarthinice,fortheircalculationssuggestthatevenattimesofsignificantcooling,theEquatorshouldremaintemperate.Fieldgeologistsnowfindevidenceofmovingice,surfacewaves,andoceancurrentsduringthemaximumfreeze—signsofatleastsomeopenwater.Formostgeologists,thehardsnowballhasbeenreplacedbyamorebenign“slushball”scenario,thenewmodeltobeat.Hoffmancountersthattheslushcouldrepresentconditionsjustbeforeorjustaftertheglacialmaximum.Howmightwetellthedifference?Oneintriguinglineofevidencesupporting

ahardsnowballisastriking,short-livedpulseofbandedironformationslaiddownaboutthesametimeasiceisthoughttohavecoveredtheglobe.It’shardtoexplainsuchdeposits,fortheoceanshadbeenstrippedoftheirironmorethanabillionyearsearlier,beforethestartoftheboringbillion.How,then,couldtheoceansbecomerechargedbyiron?Onemodelsuggeststhatthesnowballepisodesealedtheocean,cuttingoffalloxygentotheoceanwatercolumn.Meanwhileseafloorhydrothermalventscontinuedtopumpfreshironfromthemantleintothedeepocean.Graduallyironconcentrationsrose,onlytoberapidlydepositedasnewbandedironformationswhentheglacialepisodesended.Snowballversusslushball:suchcontroversiesarenothingnewinscience,and

thisonehasremainedlow-key,friendlierthanmost.PaulHoffmanhasretired,andanewgenerationhastakenupthechallenge,fortheanswersstillliehiddenintherocks.

TheMysteryoftheIce

Page 194: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Agreatermysteryremains.Thesnowball/slushballEarthepisodeswerebynomeansthefirstperiodsofglaciationonEarth,norwouldtheybethelast,butthethreemajorNeoproterozoicintervalsstandoutagainsttherest.Tothebestofourknowledge,neverbeforeandneversincehassuchanextremecoldsnapoccurredonEarth.Whyshouldthatbe?HowcanonebriefperiodofEarthhistoryhavebeensodifferentfromanyother?Twoearlierperiodsofglaciation,bothwellpreservedintherockrecord,were

evidentlyalotlesssevere.Theearliestknowniceadvance,arelativelybriefeventrevealedbytillitedepositsonancientSouthAfricancratons,occurredabout2.9billionyearsago,inthemiddleoftheArcheanEon.ThatitshouldhavetakensolongforEarth’sicecapstoexpandfromthepolesisinitselfsomethingofamystery.EarlierinEarthhistorytheSunwasmuchfainter—only70percentofitspresentradianceinthefirstfewhundredmillionyears,andnotmorethanabout80percentduringthemid-Archeanglaciation.WithsomuchlessenergycomingfromtheSun,otherwarmingmechanismsmusthavebeenatplay.Manyscientistspointtomuchhigherlevelsofgreenhousegases—carbondioxide,methane,andanorangehydrocarbonhaze—aschiefamongthesuspectedmoderatinginfluences.HigherheatflowsfromEarth’sturbulentdeepinterior,andgreatervolcanicoutputsalsomusthaveplayedaroleinmoderatingclimate.Ironically,Earth’sfirstglacialepisodemayhaveresultedinpartfromtoo

muchgreenhousegas.Iftheatmosphere’smethanecontentrose,thenreactionshighinthestratospherewouldhaveproducedmoreandmoreofthebighydrocarbonmoleculesthatmayhavegivenearlyEarthahazyorangesky.Ifthathazebecametoothick,thensomeoftheSun’senergywouldhavebeenblockedandEarthwouldhavecooled.Asecond,longercoolingepisode,markedbyextensiveglacialdeposits

betweenabout2.4and2.2billionyearsago,followedthebreakupoftheequatorialKenorlandsupercontinent.Atmosphericmodelingsuggeststhatincreasedweatheringandsedimentdepositionalongnewlyformedcoastlinesgobbledupmuchofthecarbondioxidepresentatthetime.Contemporaneously,theriseofoxygenspelledthedemiseofatmosphericmethane,theotherimportantgreenhousegas.ThefaintSun(perhaps85percentofmodernlevels)wasinsufficienttomaintainaseffectiveagreenhouse,soaprotractedcoldperiodensued.Forthenext1.4billionyears—almostathirdofEarthhistory,includingthe

boringbillion—notraceofaniceagehasbeenfound.Earth’sclimateseemstohaveremainedinremarkablebalance,nottoohotandnottoocold.Toexplain

Page 195: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

suchalongtimewhenchangesweresorestrained,wecaninvokealitanyofpossiblenegativefeedbacks,allofwhichmayhavecontributedtostasis,butit’shardtopinpointthecausewhenthere’snoobviouseffect.WhatwecansayforsureisthatEarthreachedatippingpointroughly740millionyearsago,andthesnowball-hothousecycleensued.

TheSecondGreatOxidationEvent

Thelivingworldwasnotinsensitivetosuchextremeglobalchanges;foratleastthelast3.5billionyears,changesinthegeospherehaveprofoundlyaffectedthebiosphere.AsEarthvacillatedbetweenitshotandcoldextremes,exposedandweatheredcontinentalshorescontributedpulsesofessentialnutrientstocoastalecosystems.Manganese,requiredforphotosynthesis,wasonesuchvitalmineral.Molybdenum(usedforprocessingnitrogen)andiron(employedinvariedmetabolicroles)werealsosuppliedinabundance.Butofallthechemicalelements,phosphorusmayhavebeenthemostimportantintheNeoproterozoicseas.Phosphorusisessentialforalllife.IthelpstoformthebackboneofthegeneticmoleculesDNAandRNA,itstabilizesmanycellmembranes,anditplaysakeyroleinstoringandtransferringchemicalenergyineverycell.ThestoryofphosphorusfascinatesDominicPapineau,mycolleaguewhodid

hispostdocworkattheGeophysicalLab.Papineau’sFrenchCanadianrootsarequicklyrevealedbyhisgentleaccent;hispassionforEarth’soldestformationsisevidentineverycornerofhisrock-strewnofficeatBostonCollege.Polishedchunksofstromatolitesandbandedironformationstestifytohismanyfieldareasinremotelands.Papineaurealizedthatinsomeecosystems,theextentofmicrobialgrowthis

directlytiedtotheamountofavailablephosphorus.HeenvisionsatimewhentherewasanunprecedentedamountofthenutrientflowingintotheshallowcoastalseasoftheNeoproterozoic.Someoftheworld’slargestphosphoritedeposits—sedimentslaiddownasphosphorus-richcellsthatdiedandsettledtothebottom—areconcentratedinthesametimeintervalsasthesnowball-hothousecycles.Hehastraveledtheglobeinsearchoftheseancientphosphoritestrata—northernCanada,Finland,Africa,andIndia—tostudytheirdistinctivegeologicalsettingsandfascinatingchemistries.Thephosphorus-drivenalgalbloomspumpedatmosphericoxygentonew

levels,perhapsbreathableconcentrationsof15percent.Butparadoxically,rottingclumpsofalgaesettlingtotheoceanfloorwouldhavereactedrapidlywithoxygeninthewatercolumn,returningthedeepoceanstoadeadlyanoxic

Page 196: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

state.ThustheresurgenceoflifefollowingthesnowballEarthmaywellhaveledtoastratifiedoceanwithanoxygen-richlayernearthesurface,anoxicwatersbelow.DominicPapineaualsoseesstrongparallelstotoday’scoastalareas,wherelargefluxesofphosphatefromfertilizerrunoffmaystimulatesimilaralgalbloomsanddeep-wateranoxicdeadzones.Whichreturnsustooneofthecentraltenetsofmineralevolution:the

coevolutionofthegeosphereandbiosphere.Mineralschangelife,evenaslifechangesminerals.WhenIbeganmygraduatestudiesinEarthsciencefourdecadesago,biologyseemedallbutirrelevanttogeology.Thegrandrockcyclewasviewedasseparatefromthecyclesoflife.WhenIaskedmythesisadviserwhetherIshouldtakeabiologycourseasmyfinalelective,hepersuadedmetotakequantummechanicsinstead.“You’llneverusebiology,”heassuredme.Dubiousadvice,consideringthatateveryphaseofEarth’sevolution,fromthe

originsoflifeonward,lifehasinfluencedgeologyandgeologyhasinfluencedlife.In2006geochemistMartinKennedyoftheUniversityofCalifornia’sRiversidecampusandfourcoauthorsproposedaparticularlynovel,ifspeculative,exampleofthiscodependence.Theirarticle,“TheInceptionoftheClayMineralFactory,”appearedintheMarch10issueofScience.Accordingtotheircleverthesis,theriseofatmosphericoxygenfromafewpercenttoitspresentlevelwasacceleratedbypositivefeedbacksbetweenmicrobesandclayminerals.Clayconsistsprimarilyofultra-fine-grainedmicroscopicmineralbitsthat

soakupwaterandformsticky,gooeymasses.Ifyou’veevergottenyourfootoryourcarstuckindeep,wetclay,youwon’tsoonforget.Aprincipalmodeofclaymineralformationisweathering,especiallyweatheringbychemicalalterationunderthewet,acidicconditionsofthelateNeoproterozoic.Kennedyandhiscoworkerssuggestthattherapidpostglacialweatheringofcontinentsproducedsignificantlymoreclaymineralsthanbeforethethreegreatsnowball-hothousecycles.What’smore,thereisgrowingevidencethatmicrobialcoloniesbegantocolonizethecoastallandscapeaboutthistime,andmicrobescanbeespeciallyefficientatturninghardrockintosoftclay.Oneofthemoststrikingpropertiesofclaymineralsistheirabilitytobindto

organicbiomolecules.Anincreasedproductionofclaymineralswouldhavesequesteredcarbon-richbiomass,andastheclaymineralswashedintotheoceans,theywouldhavesequesteredthatcarboninthickpilesoffine-grainedsediments.AccordingtotheKennedyscenario,burialofcarbonledtotheriseofoxygen,whichfurtheracceleratedthechemicalproductionofclaymineralsonland,whichledtoevenmorecarbonburial.Hence,the“claymineralfactory”

Page 197: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

mayhavecontributeddirectlytotheriseofatmosphericoxygenandtheevolutionofthemodernlivingworld.

TheInventionofAnimals

Hothousealgalblooms,aidedbyphosphorusandothernutrients,undoubtedlycontributedtothesharpspikesinatmosphericoxygen.Theclaymineralfactorymayhaveamplifiedtheeffect.Andsobyabout650millionyearsago,atmosphericoxygenhadrisentonear-modernlevels.Elevatedoxygen,inturn,hasbeenimplicatedintheriseofcomplexmulticellularlife,foronlywithsuchhighlevelsofoxygencouldorganismsadopttheactive,energy-demandinglifestylesofjellyfishandworms.Indeed,theearliestknownmulticellularorganismsappearinthefossilrecordabout630millionyearsago,justafterthesecondglobalsnowballglaciation.TounderstandtheriseofanimallifeintheNeoproterozoicEra,wemustfirst

lookfurtherback,morethanabillionyearsback,tojustbeforetheboringbillion.Thesparsefossilevidencepointstotheriseofawhollynewkindofsingle-celledlifeabouttwobillionyearsago.Priortothattime,allcellsseemtohaveledphysicallyseparate,ifcodependent,lives.Butabouttwobillionyearsago,accordingtoarevolutionaryideafirstexpoundedbybiologistLynnMargulisattheAmherstcampusoftheUniversityofMassachusetts,onecellswallowedanotherwhole.Ratherthandigesttheengorgedcell,thebiggercellco-optedthesmalleroneinasymbioticrelationshipthatforevertransformedlifeonEarth.Margulisisacreativepowerhouseandanintellectualomnivore.Herscientific

careerhasbeendevotedtounderstandinghowgroupsoforganismsinteractandcoevolve;sheseessymbioticrelationshipsandthesharingofbiologicalinventionsasapervasivethemeinlife’shistory.Herideashaveruffledmorethanafewfeathers,inpartbecausetheydeviatefromthemoreorthodoxDarwinianviewofevolutionprimarilybymutationandselection.Inspiteofthecontroversies,Margulis’stheoryofendosymbiosisiscompellingandalmostuniversallyacceptedtoday.Modernplants,animals,andfungiconsistofcellswithmanyinternalstructures—mitochondriathatactliketinypowerplants,chloroplaststhatharnesstheSun’senergyinphotosyntheticorganisms,thecellnucleusthatholdsthegeneticmoleculeDNA.Theseandother“organelles”incomplexcellshavetheirowncellmembranesand,insomecases,theirownDNAaswell.Margulisproposedthateachoftheseorganellesevolvedfromearlier,simplercellsthatwereengulfedandultimatelyco-optedtoperform

Page 198: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

specificbiochemicaltasks.Accordingtoourbestguess,thattransitionbegantooccurabouttwobillionyearsagoandsetthestageformuchmorecomplex,multicellularlife.Marguliscontinuestoseelife’sevolutionasdrivenbysymbiosisandthe

sharingoftraitsamongdisparateorganisms—aviewthatshehastakenwellbeyondendosymbiosis(andthatattimesplacesheroutsidethemainstream).Oneofherrecentcrusades,beautifullyoutlinedinalectureatameetingofgeologistsinDenver,Colorado,isinsupportofacontroversialideabyBritishbiologistDonaldWilliamson.In2009Williamsonproposedthatbutterfliesrepresentthemergingofthegeneticmaterialoftwoverydifferentanimals—thewormlikecaterpillarandthewingedbutterfly.ThecontroversyintensifiedwhenMargulisusedherprivilegeasamemberoftheNationalAcademyofSciencestoshortcutthepeer-reviewprocessandsponsorWilliamson’spublicationintheAcademy’sprestigiousjournal,Proceedings.Somememberswereincensed,callingthehypothesis“nonsense,”moresuitedtotheNationalEnquirerthanascientificperiodical.MarguliscounteredthatWilliamson’sarticleisworthyofseriousscrutinyanddebate.“Wedon’taskanyonetoacceptWilliamson’sideas,”shesaid,“onlytoevaluatethemonthebasisofscienceandscholarship,notknee-jerkprejudice.”Whatevertheeventualoutcomeofthatdebate,Margulis’stheoryof

endosymbiosisisnowconventionalthought.BytheNeoproterozoicEra,complexcellswithnucleiandotherinternalstructureswerewellestablishedandwerepoisedtocrossanewsymbioticthreshold.Morethansixhundredmillionyearsago,single-celledorganismslearnedhowtocooperate,tocongregate,tospecialize,andtogrowandmoveinacollective.Theylearnedtobecomeanimals.Theearliestfossilevidenceforananimal-dominatedecosystemcomesfrom

theso-calledEdiacaranPeriod,whichbeganabout635millionyearsago,shortlyafterthesecondofthethreegreatsnowballEarthevents.Thefirstdistinctlypatternedfossilswererecognizedfrom580-million-year-oldrocksfromEdiacarainsouthernAustralia(hencethename).Thesesoft-bodiedanimals,possiblerelativesofjellyfishandworms,leftpleasinglysymmetricalimpressions,likeornatelylinedpancakesorfancifullystriatedleavesuptotwofeetacross.Similarfossilshavesubsequentlybeenfoundallovertheworldinrocksbetweenabout610and545millionyearsold.Mostremarkably,the633-million-year-oldphosphate-richDoushantuoformationofsouthernChinaholdsclumpsofmicroscopiccellsinterpretedasanimaleggsandembryos.Thesestructures,whichgrewinshallowseasjustaftertheMarinoanglaciation,appear

Page 199: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

identicalineveryrespecttomodernanimalembryos.

Soitappearsthattheseveresnowball-hothousecycleultimatelyplayedacentralroleintheevolutionofthemodernworld.ItwouldevenbefairtosaythatwemulticelledorganismsoweourexistencetothatmomenteighthundredmillionyearsagowhenEarthreachedaclimatictippingpointaftermorethanabillionyearsinwhichsteadysunlightandheat-trappingCO2hadkeptitwarm.Whenthatcarbondioxidewasrapidlyconsumedbytheweatheringofnewequatorialcontinents,andreflectiveicespreadfrombothpolestotheEquator,Earth’stemperaturesplungedformillionsofyears—untilsteadyCO2buildup,perhapsamplifiedbytherapidreleaseofmethanefromtheoceanfloors,triggeredanequallyrapidrunawaygreenhouseeffect.PerhapsmorethananyothereventsinEarth’shistory,thesewildlyerratic

snowball-hothousecyclesrevealaplanetknockedoutofkilter.Theflip-floppingNeoproterozoicclimateleddirectlytoanunprecedentedriseinatmosphericoxygen,atransitionthatpavedthewayforthefirstanimalsandplantsandthecolonizationofthecontinents.Withsuchbiologicalinnovation,evolvingEarthsoonbecameinfestedwithnovelties—swimming,burrowing,crawling,andflyingcreaturesboastingevermoreextremehabitatsandbehaviors.Indeed,withtheadventofanoxygen-richatmosphere650millionyearsago,fortheveryfirsttimeinEarth’slonghistoryyouthetimetravelercouldhavestoodontheancientalienlandscapeandbreatheddeeplywithoutdyinginagony.Forthefirsttime,youmighthavegatheredameagermealofgreenslime,whileavoidingafataldoseofultravioletradiation.Todayweareonceagainenteringaperiodofdramaticclimatechange,and

positivefeedbacksappeartobetakinghold.Reflectiveglacialiceismeltingatanacceleratingrate,exposingmoreandmoreoceanandlandtoabsorbmoreoftheSun’senergy.Treesarebeingcutandburned,thuspumpingmorecarbondioxideintotheatmospherewhiledecreasingthesizeofthecriticalCO2-consumingforest.Andperhapsmostcritically,theacceleratingreleaseofmethanefrompermafrostanddeepoceanicesmayraiseglobaltemperaturesevenmore,triggeringthereleaseofevenmoremethane,tippingthebalance.IfEarth’spastholdsanylessonsforourtime,theNeoproterozoic’sstoryofsuddenclimatechangeshouldappearatthetopofthelist.Forevenasitssnowball-hothouseshiftsopenedupnewopportunitiesforevolvinglife,witheachepisodeofclimatereversal,almosteverylivingthingdied.

Page 200: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet
Page 201: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Chapter10

Page 202: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

GreenEarth

TheRiseoftheTerrestrialBiosphereEarth’sAge:4.0to4.5billionyears(thelast542millionyears)

PlatetectonicssavedEarthfromitself.Slowly,relentlessly,Earth’sconvectinginteriorpropelledthebreakupofthesprawlingequatorialRodiniansupercontinentintomoremanageablechunks.Continentalmassesshiftedpoleward,liberatingtheEquatorfromice-accumulatinglands,moderatingtheextremesnowball-hothousecycle.Abundantnewphotosyntheticalgallifealsohelpedbufferthewildfluctuationsofcarbondioxide,whileraisingoxygenconcentrationsclosetomodernlevels.EarthhasnotsinceenduredsuchexcessesofglobaltemperatureasthosethatprecededthePhanerozoicEon.AtleastfivekindsofchangeshavebeenatworkonEarthduringtheselast

542millionyears.Continentshavecontinuedtoshift,firstclosingoneoceantoformyetanothergreatsupercontinent,thenbreakinguptoformthestill-wideningAtlanticOcean.Climatehasfluctuatedfromhottocoldandbackagainmanytimes,thoughnottothesnowball-hothouseextremesoftheNeoproterozoic.Oxygenhasenjoyedathirdgreatenrichmentevent,onlytoseeatmosphericconcentrationsdropinhalfandreboundagain.Sealevelshavealsochangedrepeatedly,dramaticallyreshapingEarth’scoastlines;therockrecordrevealscountlessrisesandfalls,oftenbyseveralhundredfeet.Butmostspectacularofall,lifehaschangedandevolvedradicallyandirreversibly.Andthroughoutallthesetransformations,lifeandrockshavecoevolved.Earthhasalwaysbeenaplanetofchange,butthestoryofthePhanerozoic

Eonismuchmoresharplyinfocusandseemscorrespondinglymoreelaborateandnuancedinitsvariations,thankstoamoreextensiveandlessalteredrockrecord.Thekeytothisrichstoryisawealthofexquisitelypreservedfossils,theconsequenceoflife’snewfoundabilitytomakedurablehardparts:teeth,shells,bones,andwood.AnimalsandplantsturnouttobeparticularlysensitivetochangesinEarth’snear-surfaceenvironment,andsotheirfossilizedremainsrecordepisodeafterepisodeofadaptation.Microbescanweatheralmostanystorm;thatresilience,coupledwiththeirunhelpfulsimpleshapesandsparsenessinthefossilrecord,meansthatnoobviousmassextinctioncanberecognizedin

Page 203: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

rocksofthePrecambrian,whenmicrobesruled.ButthePhanerozoicEonisanaltogetherdifferentstory.Thus,overthelast542millionyears,weseeEarthinanewlight.Notaplanet

changingleisurelyovertensorhundredsofmillionsofyears,butarapidlyevolvingworld—everyhundredthousandyearswasvisiblydifferentfromthelast.Partofthereasonisthatwehaveamoredetailedrecord,butit’salsothenatureoflife.Animalsandplants,especiallycreaturesthatcolonizethelands,respondtoEarth’scyclesquickly—theyevolvefastortheydie.Asoldspeciesdieout,newspeciestaketheirplaces.

AlltheWorld’saStage

Shiftingcontinentsofthepast550millionyearscontinuedtoprovideachangeablestagefortheevolutionofEarthanditsincreasinglydiversebiota.Thestoryiswellunderstoodinitsbasicoutlines—arathersimpleplayinthreeacts.ActOne:ThebeginningoftheCambrianPeriod,542millionyearsago,found

theProterozoicsupercontinentofRodiniabrokenintoseverallargeandscatteredpieces.Thelargestexpanse,stretchingfromthesouthpoletobeyondtheEquator,wasthesprawlingcontinentofGondwana,namedforageologicallyrevealingregionofIndia.Alloftoday’ssoutherncontinentsplusabigswathofAsiawerejumbledtogetherinthisonegiantlandmassmeasuringmorethaneightthousandmilesfromnorthtosouth.Otherpost-Rodiniacontinents,allofwhichwerelocatedinthesouthernhemisphere,includedthecoreofLaurentia(whatistodayNorthAmericaandGreenland)andseveralotherbigislands(includingmuchofEurope).Aglobalocean,allbutdevoidofland,dominatedthenorthernhemisphere.Overthenext250millionyears,platesmovedallthecontinentsnorthward.Laurentiamorethandoubleditssize,bymergingfirstwithwhatwouldbecomeEurope,thenwithasignificantpartofSiberia.ActTwo:Aboutthreehundredmillionyearsago,northward-tracking

GondwanacollidedwithLaurentiatoformthemostrecentsupercontinent,Pangaea.OneofthemostspectaculargeologicalconsequencesofthismergingofGondwanaandLaurentiawastheclosingoftheancientseabetweenNorthAmericaandAfrica,acollisionthatbirthedtheAppalachianMountains.TodaytheAppalachians,stretchingfromMainetoGeorgia,seemarelativelybenign,well-roundedsortofmountainrange.Suchgentlyrollingtopographyspeakstothepoweroferosion,forthreehundredmillionyearsagotheirjaggedstill-risingpeakssoaredsixorsevenmileshigh,rivalingtoday’sHimalayasassomeofthe

Page 204: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

mightiestmountainsinthehistoryoftheworld.LopsidedPangaeaconcentratedalmostallofEarth’sdrylandononesideoftheplanet,three-quartersofitlocatedinthesouthernhemisphere.ForonehundredmillionyearstheappropriatelynamedsuperoceanPanthalassa(Greekfor“allsea”)surroundedPangaea.ActThree:TheopeningoftheAtlanticOceancommenced175millionyears

ago,whenthegreatPangaeanlandmassbegantofragmentintosevenmajorpieces.FirstLaurentiaandGondwanafractured,formingtheincipientNorthAtlantic,whilethegrowingcontinentalsplitstretchedeverfarthertothenorthwestandsoutheast.AntarcticaandAustraliasplitoffGondwanaandmovedsouth,formingtheirownislandcontinents.AriftbetweenSouthAmericaandthewestcoastofAfricaopenedtheSouthAtlantic,whileIndiabrokeofftheeastcoastofAfricaandbeganits50-million-yearjourneynorthward,ultimatelytosmashintoAsiaandcrumpleuptheHimalayanMountains.Throughoutthisprotractedhistory,eachofthevariouscontinentalplayers

scurriedhereandthere,formingpartnershipsandthenbreakingup,notunlikeahumandrama.Ithelpstoseethisglobalplayunfold:justGoogle“Pangaeaanimations.”Asyouwatch,rememberthattheshiftingcontinentsimposedotherchangesonEarth.Greaterstretchesofcoastlinepromotedmorelifeinshallowwaters.Polarlandmassespromotedthickicesheets,whichinturnloweredsealevel.Lifeevolvedinharshcompetitiononlargerlandmasses,butevolutionproceededindependentlyonisolatedcontinentsorinwidelyseparatedseas.Thelocationsofmountainrangesandoceansalteredclimate.Throughouthistory,astoday,eachofEarth’sgreatcycleshasaffectedeveryotherone.

TheAnimalExplosion!

Forbillionsofyears,theextentofEarth’smicrobiallifehadebbedandflowedinresponsetoclimate,nutrients,sunlight,andmore.Newevidencefromshallow-watersedimentssuggeststhatthegreatalgalbloomsattheendoftheNeoproterozoicweremorethanjustafewtemporaryblips.Forthefirsttime,greenphotosyntheticalgaeevolvednewstrategiestoachieveafirmfootingonswampyland—thecontinentswerefinallylookinggreenattheedges,ratherthanMartianorangeagainstablueocean.Asatmosphericoxygensoaredinconcentration,sotoodidthestratosphericozonelayer—theradiationbarrierthateffectivelyshieldsEarth’ssolidsurfacefromtheSun’slethalultravioletrays.Suchaprotectiveblanketwasanessentialpreludetotheriseofaviableterrestrialbiosphereoffirmlyrootedplantsandfreelyroaminganimals.

Page 205: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Strangely,ittookanimallifeanotherhundredmillionyearstocrawlfullyontoland.Foraverylongtime,mostbiologicalinnovationtookplaceintheshallowsunlitseas.Forfortymillionyears,multicellularjellyfishandwormsappeartohavedominatedthepostglacialoceans.Myriadsoft-bodiedanimals,rarelypreservedinthefossilrecord,fedonseafloordetritusandhidintherecessesofmineralslaiddownbytheirmicrobialforebears.Fortensofmillionsofyears,anecologicalstatusquoseemstohaveprevailed.Thatstatusquowaspermanentlydisruptedroughly530millionyearsagobya

strikingevolutionarytrick:manytypesofanimalslearnedtobuildtheirownprotectiveshellsoutofhardminerals.Nooneisquitesurehowthisevolutionarydevelopmentoccurred,thoughlifehadalreadybeendepositingminerallayersinreeflikestromatolitesforbillionsofyears.Somehow,somewhere,followingtheGaskiersglaciation580millionyearsago,anunknownanimalevolvedtheexquisitetrickofgrowingitsownprotectivehardpartsoutofcommonplaceminerals—mostoftencalciumcarbonateorsilica.Suchaninnovationmeantalotinthestruggleforsurvival,forpredatorswouldrathereatasoft-bodiedmorselthanwasteenergybreakingatoughmineralizedexoskeleton.Soonitwasmakeyourownshellordie.Theresultingfossilrecordisamazinglyrich,markingatimewhensedimentarylayersbecamepackedwithlifelikeremains—atimethathasbeencalledtheCambrian“explosion.”Explosionisamisleadingmoniker.Thiswasnosuddentransformation;ittook

manymillionsofyearsfor“biomineralization”tocatchon.Afewspongeswithhardenedspines,preservedinthefossil-richDoushantuoformationofsouthernChina’sGuizhouprovince,mayhavelearnedthetrickasfarbackas580millionyears.Byabout550millionyearsago,atthetailendoftheEdiacaranPeriod,avarietyofwormlikecreatureshadlearnedtocraftcarbonatemineralsintotube-shapedprotectivehomesontheoceanfloor.Thefirstrecognizableshellyfauna,thoughsmallandfragile,appearedaround

theworldinrocksabout535millionyearsold.(IrecallaspecialundergraduatefieldtriptoNahant,ontheMassachusettscoastjustnorthofBoston,tocollecttheserarefossils.Thebriskseaair,thewavesbreakingonthepicturesquerockyshore,thegorgeouswhitepuffyclouds,andtheblueoceanwereallmemorable—thescrappyweatheredfossils,barelyvisibletothenakedeye,notsomuch.)Thereal“explosion”occurredafewmillionyearslater,roughly530million

yearsago,whenallmannerofshelledanimalsrathersuddenlycameonthescene.Anevolutionaryarmsraceensued.Armoredpredatorsandarmoredpreyassumedlargerandlargerdimensions.Teethandclawsarose,asdidbonyprotectiveplatingandsharpdefensivespines.Eyesbecamemandatoryinthe

Page 206: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

cutthroatworldoftheteemingPaleozoicoceans.Ascountlessgenerationsofshelledcreatureslivedanddied,theircarbonatebioskeletonscontributedtomassive,resistantlimestonelayers,whichnoblydecoratethelasthalf-billionyearsofEarthhistory.Stupendousfossil-packedcarbonatecliffsandridgesdottheglobe,dominatingthelandscapeindozensofcountries,formingthetallestpeaksoftheCanadianRockiesandthechina-whitecliffsofDover,evencappingthesummitofMountEverest.OfalltheCambrianevolutionaryinnovations,wide-eyedseacreaturescalled

trilobitesarethemostprized,themostphotogenic.Atthispoint,adisclaimerisrequired.Ilovetrilobites.IunearthedmyfirstnearlycompletespecimennotfarfrommyboyhoodhomeinCleveland,Ohio,attheageofsevenoreight,andI’vebeencollectingthemeversince.Mycachenowholdsmorethantwothousandpieces,allofwhicharebeingdonatedtotheSmithsonian.(YoucanseesomeofthebestspecimensintheSantOceanHallattheNationalMuseumofNaturalHistory.)SoI’mbiased.Thoughtheinitialriseofbiomineralizationwasgradual,at530millionyears

agolifewithhardpartsseemssuddenlytohavebeeneverywhere.Allmannerofleggytrilobitesandstriatedclams,nutlikebrachiopodshellsanddelicatefanlikebryozoa,porousspongesandhorn-shapedcoralsarepreservedinlayerafterlayerofsedimentaryrocksacrosstheglobe.InrocksequencesfromMontanatoMorocco,youcanlayyourhandontheexactlayer—theexactsliverofhistory—whenthisstartlinginventionofbioarmorreallytookoff.Oneofthemostimpressivespotstostudytheabruptshiftfromsoft-bodiedto

shelledanimalsisnearthehistoricoasisvillageofTiout,nestledinthescenicfoothillsoftheAnti-AtlasMountainsinwesternMorocco.Manythousandsoffeetofcarbonatesediments,standingalmostverticallyonendandexposedinthesteep-walledvalleyoftheSoussRiver,provideacontinuousrecordoftheendoftheEdiacaranandthebeginningoftheCambrian.Layeruponlayerofthethin,reddish-brownlimestoneisutterlydevoidoffamiliarfossils.Youcanwalkamilealongtheriver’sgravel-strewnbed,whichisdrymostoftheyear,andseelittlemorethantheoccasionalsuggestionofawormburrow.Thensuddenly,inalayeroflimestoneonahillsideabovethevillage—a

horizonthat,whenviewedfromadistance,seemsnodifferentfromthoseaboveorbelow—thefossilsappear.TheancientEofallotaspis,perhapstheearliestofalltrilobites,markstheverybeginningoftheCambrianexplosion.Inlayersashortdistanceabove(thatis,youngerthan)thosehistoricstrata,newspeciesarefound:thedistinctive,ellipticaltwo-inch-longformsofChoubertellaandDaguinaspis.Thelatterspeciesisbyfarthemostcommon,butoneofthemost

Page 207: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

productiveandaccessibleoutcropsliessmackinthemiddleofasaint’sgravesite,aholyMuslimshrine.Thesmall,round-domed,whitestructureissurroundedbyalowrockwallthat’sfulloftrilobites.Itwouldn’tdoforvisitinggeologiststobreakouthammerandchisel,todisturbthequietplace.Localchildrenseemexempt,however,andtheysellthe“Tioutbugs”totourists,tappingonyourcarwindow,holdinguptheirfreshlyexhumedwares.“Heymister,onehundreddirhams!”Abouttwelvedollars.Idon’thaggle.Ibuythemall.

FaciesChange

Formanyyears,myfossilcollectingwasfocusedonthebugs.It’shardtooverstatethethrillofcrackingopenarockandfindingacompletetrilobiteinside.Fishermenmustgetasimilarbuzzwhentheyhookabigfish,andpokerplayerswhentheydrawafullhouse;forme,it’sfindinganexquisiteanimalthat’sbeenhiddenforfivehundredmillionyears.Foryears,thehuntwasenough.Thenasaseniorundergraduateinthespring

of1970,ItookmyfirstrealpaleontologycoursefromthevenerableRobertShrock.Foralmostfourdecades,BobShrocktaughtatMIT,andforalmosttwentyyearsfollowingWorldWarII,hechairedtheMITdepartmentofgeologyandgeophysics.Hewasagiantinthefield,withnumerousclassicpublications,perhapsmostnotablyIndexFossilsofNorthAmerica,amassivephotographiccompendiumofcharacteristicspeciesfromeverygeologicaltimesincetheCambrianexplosion.RobertShrockwasagiftedteacherwithagentlesmile,anaturalwhoimbued

hisclasseswithhumorandanunabashedpassionforhisprofession.Hetaughtinanavuncularstylebytellingvividstoriesofpasttimes.HetoldofthechancehorsebackdiscoveryacenturyagooftheBurgessShaleinBritishColumbia,a505-million-year-oldsitewhoseunparalleledsoft-bodiedfossilsweremadefamousinStephenJayGould’sWonderfulLife.Hedescribedhowcutefossilsoflittlefrogswerepreservedinfine-grainedsiltin300-million-year-oldtreestumpsatJoggins,onNovaScotia’swesterncoast(thelittlefrogsjumpedintothehollowed-outstumpsbutcouldn’tjumpout).Hepaintedvividpicturesof90millionyearsago,whenavastinlandseacoveredwhatisnowtheGreatPlainsoftheAmericanMidwest—aseawheremonsterreptilesandsquidlikeammonitesviedforsupremacy.Byastrangetwist,mywife,Margee(thenasenioratWellesleyCollege),and

Page 208: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

IwoundupbeingBobShrock’slasttwostudents.Inthespringof1970,studentprotestsagainsttheVietnamWarturnedangry;classesweredisruptedandpropertydestroyed.Giventhepervasivedistractions,MIT’sadministrationgavestudentstheoptiontotakecoursespass-failandthusskipfinalexams.MargeeandIweretheonlytwostudentstooptforagradeinpaleontology.Ourexhaustingfinalexam,administeredpiecemealoverthespaceofaweek,wastoidentifyeveryunknownspecimeninatrayofahundredfossilsandthendrawthespecimenbyhand.Drawingfromnatureisadmittedlyagreatwaytohoneobservationalskills,butIwasnoartist.Eachpencilsketchwasamini-nightmare;ittookforeverandconsumedmoreerasersthanIcanrecall.ThatwasBobShrock’slastpaleontologyclass.Thearrivaloftheeminent

seismologistFrankPressasthenewdepartmentchairmanin1965hadmarkedachangingoftheguardandaswiftshifttoamorequantitativeandphysics-basedapproachtoEarthscience.Hand-drawnfossilshadnoplaceinthatmodernworld,whereplatetectonicsshiftedcurriculaassurelyasitdidcontinents.Inspiredbythatfinalclass,MargeeandIspentmanyweekendscampingat

nearbyfossil-richlocalities.Overthenextfewyears,wecollectedfossilfernsinsouthernMassachusetts,coralsinnortheasternPennsylvania,brachiopodsineasternNewYork,andtrilobitesinnorthwesternVermont.Shrock’scoursehadtaughtustoseethesefossilsinanewcontext.Eachtypeofrockandeachsuiteoffossilstoldastoryofdiverseancientecosystems.Welearnedthatatanygiventime,severaldifferenttypesofrocks—different

facies—arebeingformed,eachatadifferentplaceanddepthofwater.Sandstonesformnearestthebeachinrough,shallowtidalzones.Theyfeaturepopulationsofrobustfossilclamsandsnailswiththickshellsthatcouldwithstandthebatteringsurf.Limestone,bycontrast,representsancientcoralreefsandthushostsaricharrayofanimallife—stalkedcrinoids,starfish,snails,brachiopods,andothergroupsthatthriveinaprotectedsunlitlagoon.Themanyeleganttrilobitesfromreefecosystemstendtohavelargeeyesthatcouldscanthefull360degreesoftheirenvironment.Fartheroffshore,blackshalesaccumulateslowlyindeepdarkwater;theirfaunacommonlyincludefilterfeedersandblindtrilobites—animalsquitedifferentfromthoseofshallowerphoticzones.Ifeachoutcroppaintsapictureofatimeandplace,thenasequenceofrock

layerspiledoneatopthenexttellsarichstoryofchange.Particularlydramaticsequencesoflayeredrocktypesoftenoccurinassociationwitheconomicallyvaluable(andcorrespondinglywell-studied)coaldeposits.Coal,whichformedabundantlyinswampycoastalzonesthreehundredmillionyearsago,commonly

Page 209: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

occurssandwichedbetweenlayersofsandstone,whichareinturnboundedbyshale.Suchasequence—shale,sandstone,coal,sandstone,shalerepeatedoverandover—impliessignificantshiftsinsealevelasitdrops,thenrises,thendropsagain,perhapsinresponsetotheretreatandadvanceofpolariceandglaciers.Aninescapableconclusionisthatforhundredsofmillionsofyears,oceandepthshaverepeatedlyvariedbyhundredsoffeet.Tomodernhumans,withourimmensecoastalcitiesandvastseaside

infrastructure,theheightoftheoceans(atleastwithintheebbandflowoftides)seemstobeafixedaspectoftheglobe.It’shardtoimagineachangeofeven10feet,muchlesshundredsoffeet.Buttherecentsedimentaryrecordisunambiguousonthispoint.Withinthelastfewtensofthousandsofyears,theoceanshavebeenatlevelsmorethan150feethigherandmorethan300feetlowerthantoday.Withoutanypossibledoubt,suchchangeswillcomeagaintoradicallyaltertheshapesofcontinentalcoastlines.Suchisthestorytoldbytherocksandtheirfossilecosystems.

LifeonLand

ThemostdramaticterrestrialtransformationinEarthhistoryhadtoawaittheriseoflandplants—aninnovationrecordedasdistinctive,sturdymicroscopicfossilsporesinrocksasoldas475millionyears.Thoughnobodyfossilsofthedelicate,easilydecayedvegetationfromthattimehaveyetbeenfound,thosefirsttrueplantswereprobablynotunlikemodernliverworts—rootless,ground-huggingdescendantsofgreenalgaethatcouldsurviveonlyinlow,wetplaces.Foraspanofmorethan40millionyears,interrestrialrockformationsaroundtheworld,decay-resistantsporesaretheonlyphysicalevidenceforlandplants.Evolutionofthesehardygreenpioneersseemstohavebeensteadybutslow.About430millionyearsago,asignificantchangeintheglobaldiversityof

sporefossilspointstoamarkedshiftinthedistributionoflandplants.Overthenext30millionyears,theliverwortlikesporesbecamelessabundant,whilethosesimilartomodernmossesandsimplevascularplantsassumeddominance.RocksofthisintervalfromScotland,Bolivia,China,andAustraliaalsoholdtheoldestknownunambiguousfossilsoftheplantsthemselves—fragmentaryremainsofclubmossesandothersuspectedrelativesofmodernvascularplants(thosewithaninternalplumbingsystemofwater-filledtubes).Lackingextensiverootsystems,theseshort,stubbyplantswouldhavebeenrestrictedtolowlying,wetareas.Thefossilrecordimproveswithtime,asearlyplantsbecamemorewidespread

Page 210: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

androbust.Byfourhundredmillionyearsago,primitivevascularplantshadbeguntocolonizeonce-barrenlandsacrosstheglobe.Theyappearedasspindly,leafless,miniatureshrubswithgreenish,sun-seekingphotosyntheticstemsandbranchesthatrosejustafewinchesabovetheground.Theirrootsefficientlypenetratedtherockygroundandprovidedasturdyanchor,whilecapillaryactiondistributedwaterupward.Inspiteoftheirobviousimportancetolife’scolonizationoftheland,

fossilizedplantshavelongplayedsecondfiddletotrilobitesanddinosaurs.Animalshavemoredynamiclifestylesaspredatorsandprey,andtheyseemmorevariedinformandbehavior—morelikeus.What’smore,fossilplantstendtobefragmentary—typicallyanisolatedleaforstem,apieceofbarkordiagnosticallypatternedwood.PlantslackwhatUniversityofChicagopaleobotanistKevinBoycecalls“thesatisfyingcompletenessofclams,”buttheytellamazingstoriesnonetheless.IfirstmetKevinin2000,whenhewasanenthusiasticandcreativegraduate

studentatHarvard,workingwithAndyKnollandthinkingaboutnewwaystoteaseoutthosestoriesfromsomeofEarth’soldestfossilplants.Avoraciousreaderandgiftedwriter,Kevinhasaknackfortellingstories—he’sthekindofscientistwhocanmakethehistoryofplantscaptivating.ButtotellnewstoriesaboutEarth’soldestplants,Kevinneedednewkindsofdataaboutplantfossils.AndysentKevintotheGeophysicalLaboratorytolearnaboutmicroanalyticaltechniquesforelements,isotopes,andmolecules—techniquesneverbeforeappliedsystematicallytofossilizedplants.Ourfirstjointresearchventurefocusedonremarkablypreservedplantfossils

fromthefour-hundred-million-year-oldRhyniechertofAberdeenshire,Scotland.ThefortunateRhynievegetationwassavedfromrottingwhenhotspringssurroundedtheirtissueswithmineral-richwaters,hermeticallysealingandpartiallyreplacingburiedplantmatterwithfine-grainedsilica.AcenturyagogeologistsdiscoveredbouldersofthechertinastonefenceinthesmallvillageofRhynie.Onlyafterconsiderableexcavationwasasmalltractofactualbedrockfoundandquarried.Rhyniechertspecimensremainpreciousandquitedifficulttocomeby,butKevinBoycehadaccesstoanoldHarvardcollectionoffist-sizespecimensandthin,glass-mounted,two-by-three-inchtransparentpolishedrocksectionsinwhichplantanatomydowntocellulardetailscanbestudiedinamicroscope.Thesefossilsrevealfragmentsofabizarrelandscape,atoncefamiliarandprofoundlyalien,coveredinstalklikebranchingplants,eachwithgreenphotosyntheticstemsbutnoleaves.DecadesagotheefforttoextractinformationfromtheRhynieplantfossils

Page 211: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

wasnothinglessthanheroic.Itrequiredthepreparationofhundredsofthinslices,eachprovidingatwo-dimensionalviewofacomplexthree-dimensionalobject.Imaginetakingyourfavoriteflower,embeddingitinhardopaqueepoxy,andthentryingtoreproducetheflower’sshapebycuttingtheepoxyintoflatslicesandreassemblingthewhole.That’swhatthepioneeringRhyniepaleobotanistshadtodo.Whattheyfoundwasaminiaturesuiteofodd,spindlyleaflessplants—theancestorsofourgreenworld.KevinBoycedecidedtorevisittheRhyniechert,toteaseoutnewinformation

aboutEarth’sancientflora.HisstrategywastoanalyzenewlycutandpolishedsectionsofRhyniefossils,roughlythesizeandshapeofaquarter.Weemployedanelectronmicroprobe,amachinethatmapsoutthedistributionofchemicalelementsacrossapolishedrocksurfacelikeourglass-mountedsectionsofchert—amachinefamiliartomineralogistsbutrarelyusedbypaleontologists.Wehopedtoseeifanyoftheoriginalplantmaterialhadbeenpreserved.Thetrickwastotunethemicroprobetocarbon,anelementmorecommoninlifethaninhardrocks.WeweredelightedtofindthatRhyniechertfossilsareloadedwithcarbon—andisotopicallylightcarbon,toboot,acompellingsignofitsbiologicalorigin.Thecarbondistributionbeautifullyhighlightsthedistinctivetubularstructuresoftheseearlyvascularplants.Ourfirstpaperoncellular-scalemappingofavarietyofancientplantfossils,includingoddstemsandplantsporesfromRhynie,appearedintheProceedingsoftheNationalAcademyofSciencesin2001.Kevin’snextstepwastoseeifhecouldpullanybiomolecularinformation

fromthefossils.Couldwefindactualmolecularbitsfromtheoriginalplanttissues?KevinBoycefocusedonamysterioustwenty-five-foot-talltreelikeorganismcalledPrototaxites,whichhadbeenthelargestknownlivingthingonlandfourhundredmillionyearsago.Thefossilsofthisorganismareenigmaticbecausetheyseemtolackthesamecellularstructuresofmuchsmallercoexistingplants.Rather,their“trunks”appeartobecomposedofintricatelyinterwoventubelikestructures.WorkingwithmyGeophysicalLabcolleaguesMarilynFogelandGeorgeCody,BoycewasabletoextractandanalyzeunambiguousmolecularfragmentsfromseveralPrototaxitesspecimens—fragmentsquitedifferentfromthoseoftheadjacentplantfossils.Hisremarkableconclusion:Prototaxiteswasagiantfungus,perhapsthelargesttoadstoolinEarth’shistory.KevinBoyce’sresearchreinforcestheconclusionsofthepaleobotany

community.Earth’slandscapefourhundredmillionyearsagowasatlastgreen,butinanutterlyalienway.Scrubby,stalklikeplantssharedthelandwith

Page 212: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

toweringtreelikefungiandafewsmallinsectsandspiderlikeanimals.

InventingLeaves

YoucouldhavesurvivedquitecomfortablyonEarthfourhundredmillionyearsago.Therewasplentyofoxygenandwater.Therewasfoodintheformofplantsandbugs.TherewasshelterunderthegiantstandsofPrototaxites.Butthelandscapewouldhaveseemedsostrange.Thereweregreenstemsandgreenbranchesbutabsolutelynoleaves.Indeed,theinventionofthefirsttinyenergy-trappingleavestooktensof

millionsofyearsmore—atransformativedevelopmentthatraisedthestakesintheplantkingdom’sevolutionarystruggleforsunlight.Thetallestplantwiththebiggestleavesenjoyedanadvantageandsofollowedtheevolutionoffanlikeferns,branchinglimbs,andsturdywoodytrunks.By360millionyearsago,forestshademergedasanutterlynewterrestrialecosystem.Forthefirsttimeinhistory,Earth’slandwasemeraldgreen.Inathemethathasbeenrepeatedoverandoveragain,rockscoevolvedwith

thisnewverdantlife.Theriseoffast-spreadinglandplants,someofwhichachievedgianttreelikestature,hadprofoundmineralogicalconsequences.Weatheringratesofmanysurfacerocks,includingbasalt,granite,andlimestone,increasedbyanorderofmagnitudeasaconsequenceofrootsandtheirrapidmodesofbiochemicalbreakdown.Theresultantsoils,richinclayminerals,organicmatter,andahostofmicroorganisms,becamedeeperandmorewidespreadandprovidedanever-expandinghabitatformoreandlargerplantsandfungi.Rootsystems,thoughhiddenfromview,evolvedinremarkablewaysaswell.

Mostimportantwerenewsymbioticrelationshipsbetweenplantrootsandvastnetworksoffungalfilamentscalledmycorrhiza.Thisastonishingevolutionarystrategyaffectsthegreatmajorityofplantsyouseetoday;indeed,manyplantstendtogrowpoorlyinsoilslackingfungalspores.Themycorrhizalfungiefficientlyextractphosphateandothernutrientsfromthesoilandpassthemtotheplant,whichinturnprovidesthefungiwithasteadydietofenergy-richglucoseandothercarbohydrates.It’shardtoimaginethatsubterraneangeometry,buttheextensivenetworkofatree’srootsandfungalfilamentsbelowgroundisquiteoftenfarlargerthanthetreeweseeaboveground.Animals,too,experiencedprofoundevolutionaryadvancesasedibleplants

expandedacrossthelandscape.Invertebrates—insects,spiders,worms,andothersmallcreatures—werethefirstterrestrialexplorers.Vertebrates,whichinitially

Page 213: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

appearedintheguiseofprimitivejawlessfishabout500millionyearsago,underwentmorethan100millionyearsofevolutionintheoceansbeforetheirfirsthaltingattemptstocolonizedryland.Vicious,alien-lookingarmoredfishwithbony-platedjawsarose420millionyearsago;muchmorefamiliarcartilaginoussharksandbonyfishappearedanddiversifiedoverthenext20millionyears.Butdrylandwasutterlydevoidofvertebrates.Therecentdiscoveryof395-million-year-oldfossilfishbonesinChina

providedtheearliestsignsoftheevolutionarytransitionfromfinstofour-footedlandanimals.Foratleast20millionyears,fishflirtedwiththeshallow,sometimesdrycoastalenvironment.Afewfishdevelopedprimitivelungsandventuredontolandforlongerandlongerstays,butmanymillionsofyearspassedbeforethefirstbonyanimalfeltfullyathomebreathingair.Theoldestknownfossilbonesofafour-leggedlandanimal,awalkingfishwithfinlikefeet,comefromrocksabout375millionyearsold.Thegradualtransitionfromfishtoamphibianhasincreasinglycomeinto

focusoverthepasttwodecades—ablossomingperiodofspectacularpaleontologicaldiscoveriesfromChinatoPennsylvania.Newfossilfindspointtoa30-million-yearintervalofintermediateforms,progressivelymoresuitedtolandbutstillretainingdistinctivelyfishlikeanatomicalfeatures.Thefirsttrueamphibiansappearedabout340millionyearsagointhemiddleoftheso-calledCarboniferousPeriod,atimewhenswampyforestswerethrivinginlowlyingareasaroundtheworld.Theseprimitivelandanimals,characterizedbybroad,flatskullsandequippedwithsplayedlegs,five-toedfeet,earssuitedforlisteninginair,andotherterrestrialadaptations,wereclearlydifferentfromtheirfishancestors.BytheCarboniferousPeriod,Earth’ssolidsurfacehadforthefirsttimeevolvedtoastrikinglymodernappearance,withdensegreenforestsoftallfernliketrees,dankswamps,andlushmeadowspopulatedwithanever-wideningcastofinsects,amphibians,andothercreatures.Andthankstotheprofoundinfluenceoflife,Earth’snear-surfacerocksandmineralshadalsoachievedsomethingakintotheirmodernstateofdiversityanddistribution.NotthatEarthhadachievedanythingclosetostasis,mindyou.Climates

waxedandwaned,droughtsandfloodsstressedtheland,andtheoddasteroidimpactandsupervolcanoeruptioncausedtraumastolifethelikesofwhichwemayhopenevertosee.ButEarthanditsbiotahaveprovenunfailinglyresilienttosuchinsults.Lifealwaysfindsawaytoadapttotherealityofnow—whenevernowis.

Page 214: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

TheThirdGreatOxidationEvent

By300millionyearsago,Earth’sforestswereflourishing.Indeed,somuchleafybiomasswasbeingproducedandburiedthatanewrocktype,carbon-richblackcoal(hencetheCarboniferousPeriod),begantoformbythepressure-cookingofthickmassesofdeadplants.Oneconsequenceofthisorganiccarbonsequestrationwasanewpulseofoxygenintotheatmosphere,justasinthepreviousNeoproterozoicoxidationevent.Theriseinoxygenwasgradual,fromroughly18percentoftheatmosphere380millionyearsago,to25percentabout350millionyearsago,toaremarkable30percentormore300millionyearsago.Indeed,bysomeestimatestheatmosphere’soxygencontentbrieflysoaredtomorethan35percent,wellabovemodernlevels.Andtheseextremefiguresaren’tsimplyguesses:beautifulspecimensofCarboniferous-ageamber,fossilizedtreesap,preserveancientatmosphericbubblesthatstillhold30percentormoreoxygen.Theriseinoxygenhadbeneficialconsequencesforanimallife.Moreoxygen

meantmoreenergyandincreasedratesofanimalmetabolism.Somecreaturestookadvantageoftheextraoomphbygrowinglarger—muchlarger.Mostdramaticwerethegiantinsects,exemplifiedbymonsterdragonflieswithtwo-footwingspans.Theincreasedoxygenalsoenhancedatmosphericdensityandmadeflyingandglidingthatmucheasier.Otheranimalsundoubtedlymigratedtopreviouslyuninhabitablehigherelevationswiththickeningairtheycouldnowbreathein.Foraspanoftensofmillionsofyears,lifeonthePangaeansupercontinent

flourished.Theclimatewasbenign,resourceswereplentiful,andlifeevolvedwithabandon.Butthenrathersuddenly,mysteriously,251millionyearsago,lifecollapsed,inthemostcalamitousextinctioneventinEarthhistory.

TheGreatDyingandOtherMassExtinctions

Forthepast540millionyears,thefossilrecordhaspiledup.Itspeaksofprofligatebiologicalinvention—hundredsofthousandsofknownfossilspeciesofcoralsandcrinoids,brachiopodsandbryozoa,clamsandsnails,nottomentionthevastnumberofdifferentmicroscopicanimals.Specialistsestimatediversityinexcessoftwentythousandknownspeciesoftrilobites,withdozensmoredescribedeveryyear.GiventhattrilobitesinhabitedEarthforonlyabout180millionyears(betweenabout430and250millionyearsago),that’sanaverageofanewtrilobitespecieseveryfewthousandyears.Takingalltherich

Page 215: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

diversityoffossillifeintoaccount,severalnewspeciesmusthaveappearedonaverageeverycenturyformorethan500millionyears.What’snotsoimmediatelyobviousfromthefossilrecordareafewstark

episodesofmassdeath,thesuddenextinctionofmillionsofspecies.It’srelativelyeasytospotsomethingnew,andpaleontologistsarenotimmunetothetemptationofdescribing“thefirst”or“theearliest”appearanceofasignificanttaxonortrait.Thefirstplant,thefirstamphibian,thefirstcockroach,andthefirstsnake(albeitwithtinyvestigialhindlegs)allhavemadethefossilnews.OnerecentpapereventrumpetedthediscoveryofEarth’soldestknownfossilpenis(fromafour-hundred-million-year-oldspider)—yetanotherremarkablefindfromtheRhyniechert.Lossishardertorecognizeinthefossilrecord.Extinctionsrequiremeticulous

teasingoutoffossildiversitylayerbylayer,timeintervalbytimeinterval,acrosstheglobe.Decadesofefforthavepaidoffinthedocumentationoffivegreatmassextinctions—fivehellishtimesoverthepast540millionyearswhenEarthhassufferedthelossofmorethanhalfitsspecies.Asmoredataaccumulate,itseemstheremayhavebeenasmanyasfifteenotherlessseveremassextinctionepisodesaswell.It’snoteasytodocumentthesuddenlossofspeciesfromthefossilrecord.

Giventhemanyadvancesandretreatsoftheoceans,theopeningandclosingofshallowseas,theslowingofsedimentationduringcoolperiods,andtheirreversiblelossesowingtoerosion,therockrecordisspottyandincomplete,likeanencyclopediawithmanyofitspagesrandomlyrippedout,withafewentirevolumeslost.It’salsooftendifficulttoobtainexactagesofstrataandtomatchupthetimingsofformationsonoppositesidesoftheglobe.Sothedisappearanceofanygroupofanimalsmightsimplyreflectalongishgapintherecord.Nevertheless,asfossildatabasesgrowandpaleontologistsaroundtheworldcomparenotes,thelargestextinctioneventstendtostandoutagainstthemorenormalbackgroundoflifeanddeath.TheendofthePaleozoicEra,251millionyearsago,witnessedthegreatest

massextinctionofall.Anestimated70percentoflandspeciesandawhopping96percentofmarinespeciesvanished—adisastrousglobaleventcalledtheGreatDying.NeverbeforeorsinceinEarthhistoryhavesomanycreatures(includingallthetrilobites)disappearedforever.Scientistsaren’tyetagreedonwhatcausedtheGreatDying.Itcertainly

wasn’tasimple,singlecauselikeagiantasteroidimpact;nordiditoccurallatonce.Indeed,multiplereinforcingstressfactorsmighthavecomeintoplay.Foronething,oxygenlevelshadbeguntodroprapidlyfromtheirCarboniferous

Page 216: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

highsof35percent;by251millionyearsago,theywerebacktoroughly20percent.That’senoughoxygentosupportcomplexanimallife,butthedropperhapsaddedstresstoanimalsthathadadaptedtomoreprofligate,demandinghigh-oxygenmetabolisms.TheendofthePaleozoicalsosawanepisodeofglobalcoolingandamodesticeage,withthickicecoveringthesouthpolarportionsofPangaea.Aconsequentlargedropinoceanlevelswouldhaveprovidedadditionalstressesbyexposingmostoftheworld’scontinentalshelves.Continentalshelvesaretheocean’smostproductivebiosphere,sothelossofalargefractionofthoseshallowcoastalzoneswouldhaverestrictedthegrowthofcoralreefsandotherdiverseshallowwaterecosystems,constrictingtheentireoceanfoodweb.Large-scalevolcanismattheendofthePaleozoicEra,almostexactly

coincidentwiththemassextinction251millionyearsago,representsyetanothermajordisruptionofEarth’sbiosphere—anotherinfluenceofthegeosphereonthebiosphere.ThatprotractedmegaeruptionofasmuchasamillioncubicmilesofbasaltinSiberia,oneofthelargestvolcaniceventsinEarthhistory,musthaveseverelycompromisedEarth’senvironment.Forhundredsofthousandsofyears,pulsesofvolcanicashanddustwouldhavereducedtheSun’sinputandexacerbatedanyiceage.Thereleaseofhugequantitiesoftoxicsulfurcompoundswouldhaveledtoacidrainandfurtherenvironmentaldeterioration.Asifalltheseenvironmentalinsultsweren’tenough,somescientistspointto

thecollapseoftheozonelayerasyetanotherpossiblestressfactorinEarth’sgreatestmassextinction.Mutantfossilsporesfromend-Paleozoicrocksaroundtheworld,fromAntarcticatoGreenland,provideintriguingevidence,ifnotasmokinggun.PerhapsvolcanicemissionsfromSiberiatriggeredchemicalreactionshighintheatmospherethatdepletedtheozonelayer,openingthewindowformutagenicultravioletradiation.Whateverthecauses,theGreatDyingleftastaggeringholeinEarth’s

biodiversity.Ittookthirtymillionyearstorecover,butrecoveritdid.And,inathemerepeatedaftereveryextinctionevent,lossledtoopportunity.Anewera,theMesozoic,sawnewfaunaandfloraevolvetofillthevacantniches.

Dinosaurs!

AsuccessfulpublisheronceadvisedmethatifIwantedtoselllotsofsciencebooks,Ishouldwriteaboutoneoftwopopulartopics:blackholesordinosaurs.(Thepublisherevenwentsofarastoinclude“blackholes”inthetitleofoneofmybooksthathadabsolutelynothingtodowithblackholes.)

Page 217: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Soheregoes.Dinosaurscameonthesceneabout230millionyearsagoasbeneficiariesoftheend-Paleozoicmassextinction.Thesefascinatingreptilesstartedslowandsmallbutdiversifiedandradiatedintoeveryecologicalnicheoveraspanofmorethan160millionyears.ForatimeaftertheGreatDying,dinosaurscompetedsidebysidewithlargeamphibians,butanothersignificantextinctionevent205millionyearsago,coincidentwithanothermegavolcanoepisode,wipedoutmostnondinosaurvertebrates.Adinosaurexplosionfollowed.DinosaursareonlythemostarrestingandcharismaticoftheMesozoicEra

fauna.Byfarthecommonestfossilsfromthetimearetheelegantlycoiledmarinecephalopodscalledammonites.IfIhadn’tgrownupinthevicinityoftrilobite-richPaleozoicrocks,ifIhadbeenraisedinsteadintheMesozoiclandsofSouthDakota,Iprobablywouldhavecollectedammonites.Theirshellsarestunninglybeautiful,withtheirspiralsymmetryandiridescentsurfaces.Thesesegmentedcephalopods,distantancestorsofthechamberednautilus,featureexquisiteshellornamentationscalledsuturesthatonceseparatedeachinteriorchamberfromthenext.Unliketrilobites,ammoniteshellscan’tprovidearealisticpictureofthecompleteanimals.Thebigprotrudinghead,withitslargeeyesandtensuckeredtentacles,haslongsincedecayed.Whatremainsisjusttheprotectivearmoredhomeofamuchmoreinterestingcreature.For160millionyears,ammonitesevolvedanddiversifiedintheMesozoicseas.TheMesozoicErasawmanyotherimportantbiologicaldevelopments.The

floweringplantsfirstappearedthen.Sodidthefirsttruemammals.AndaswitheveryothersignificantchunkofEarthhistory,thereweremanychangesingeographyandtopographytoaccompanythesedevelopmentsinthelivingworld.Pangaeabegantobreakup,andtheAtlanticOceanwasborn.Atmosphericoxygenlevelscontinueddroppingtoadangerouslylow15percent,onlytoreboundtoroughlythepresentvalueof21percent.Sealevelsfellandroseoverandoveragain,thoughthere’snoevidenceforanysignificantglaciationduringtheMesozoic—nothingtorivaleventheiceagethatendedthePaleozoic.Fast-forwardto65millionyearsagoandoneoftheworstdaysinEarth

history.AnasteroidestimatedtohavebeenaboutsixmilesindiametercollidedwithEarthnearwhatisnowtheYucatánPeninsula.Anepicmega-tsunamiswepttheglobe,followedbymassivefiresthatburnedacrossentirecontinents.Immensecloudsofvaporizedrockdarkenedtheskiesandallbutshutdownphotosynthesis.Thiscosmictraumaappearstohavedescendedonaworldalreadyatrisk.Inanechooftheend-Paleozoicextinctionevent,agreatseriesof

Page 218: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

volcaniceruptionsinIndiamayhavealreadybeenalteringEarth’satmosphereandweakeningitsecosystemsforhundredsofthousandsofyears.Inanotherecho,asignificantsealeveldropappearstohaveexposedmuchofthecontinentalshelfataboutthattime,upsettingtheocean’sfoodwebandkillingoffallbuteightknownammonitespeciesoutofthousands.Reasonsforsuchasealevelchangearenotatallobviousfortherewasnoiceageatthetime.Somescientistsspeculatethatmidoceanridgesbecamelessactive,causingacooling,contraction,andconsequentsinkingoftheentireoceanfloor.Whateverthecauses,individuallyorinconcert,allthedinosaursexceptfor

oneminorlineage—thebirds—wentextinct.Thelastoftheammonitesalsodiedout.Thewayforevolvingmammalswaspaved.Thesesmall,rodentlikevertebrateshadbecomewellestablishedinthecompanyoftheirlarger(andthereforedoomed)dinosaurbrethren,andtheirsurvivaloftheend-Mesozoicextinctiongavethemfootinginalmosteveryecologicalniche.WithintenmillionyearsoftheIndianmegavolcanoandcoincidentasteroidimpact,mammalshaddiversified;withinfifteenmillion,earlyancestorsofwhales,bats,horses,andelephantshadevolved.Soitwasthatmassextinctionsrepeatedlychallengedandwinnowedlifeon

Earth.Thelast540millionyearshaveseenthisebbandflowagainandagain.Butwhatofearliertimes?Weretherenomassextinctionspriorto540millionyearsago?Herepaleontologistsarestumped.PriortotheCambrianexplosion,therearealmostnodiagnosticfossilstorecord.Thestatisticsofextinctionrequiresignificantnumbersofdistinctiveorganismslikedinosaursandtrilobites;before540millionyearsago,theysimplydon’texist.Wecanbealmostpositivethatmicrobiallifewentthroughperiodsoftraumaandspeciesloss.TheremusthavebeengiantasteroidimpactsandepisodesofdestructivevolcanismthatsterilizedsignificantfractionsofEarth’ssurface.CertainlylifewasseverelychallengedduringthesnowballEarthepisodes,perhapsduringearlierglaciationsaswell.Therecouldhavebeenhundredsofmassextinctionsstretchingbacktotheverydawnoflife.Butwemayneverknowfromthespotty,microscopicPrecambrianfossilrecord.

TheHumanAge

Formorethan99.9percentofEarth’sexistence,therewerenohumans.Wearebutaneyeblinkinourplanet’shistory.TherecentriseofHomosapiensmaybetracedbacktotherodentlike

survivorsofthatrogueManhattan-sizeasteroidof65millionyearsago.Withina

Page 219: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

fewmillionyearsofthedinosaurs’demise,mammalshadradiatedintovacantecologicalniches,tofieldsandjungles,mountainsanddeserts,airandoceans.Evenso,thelast65millionyearshavenotbeeneasy.Manyofthesestrangeandwonderfulnewmammalsdiedinothermassextinctions56,37,and34millionyearsago,fromcausesasyetuncertain.Humansultimatelydescendedfromthesurvivorsofthelastofthose

catastrophes.Monkeys,thegreatapes,andus—weallpointtoacommonprimateancestorabout30millionyearsago.Thefirsthominids,theevolutionaryfamilythatincludesprimateswhowalkerect,aroseperhaps8millionyearsagoincentralAfrica.Meanwhile,aresurgenceofglaciationthatbeganaroundtwentymillionyears

agohasincreasedinintensityandfrequency.Perhapseightseparatetimesinthepastthreemillionyears,icehasspreadfromthepolestocovergreatswathsofthehighlatitudes,reachingasfarsouthastheupperMidwest.ThoughnotasextremeastheearliersnowballEarthepisodes,theserepeatediceageswereeachaccompaniedbydrasticdropsinsealevelbyhundredsoffeet.IcebridgeslinkedAsiaandNorthAmerica,allowingmigrationsofallmannerofmammals,includingmammoths,mastodons,andeventuallyhumanstotheNewWorld.Theseiceagesmayhaveledtoanothersurprisingevolutionarytwist.

Accordingtooneintriguingtheory,coldtemperaturesfavorthesurvivalofinfantswhostayclosetotheirmothersforlongerperiods,aswellasinfantswithbiggerheads(thelargerthehead,thelowertheheatloss).Bigheadsmeanbigbrains,whilemoretimewithmothermeansmoretimetolearn.Perhapsitisnotacoincidencethatthefirsthuman,Homohabilis,or“manthetoolmaker,”appearedshortlyafteroneofthesegreatglaciations,2.5millionyearsago.Throughouttheinterveningmillennia,ithasbeenthehumanlottoendureand

adapttorepeatedchange.Frigidiceadvancesfollowedbyunusuallywarm“interglacial”periods;droughtsfollowedbyfloods;greatretreatsoftheseasfollowedbyequallygreatadvances:suchcycleswereforthemostpartmercifullygradual,spanningmanygenerations,andnomadichumanshadplentyoftimetomoveandsurvive.SuchadaptationsareonlyamongthemostrecentexamplesofliferespondingtothechangeableEarth.Indeed,thelasthalf-billionyearsofEarthhistoryhaveseenthemost

astonishinginterplaybetweenlifeandrocks—acoevolutionthatcontinueswithavengeanceintheageoftechnologicalman.Aeonsagorocks,water,andairmadelife.Life,inturn,madetheatmospheresafetobreatheandmadethelandgreenandsafetoroam.Lifeturnedtherocksintosoilsthathave,inturn,nurturedmorelifeandbecomehometoanever-wideningarrayoffloraand

Page 220: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

fauna.

ThroughoutEarthhistory,theair,theseas,theland,andlifehavebeenshapedbyEarth’stransformativepowers:thepowerofsunlightandEarth’sinnerheat,themagicofwater,thechemicalpowerofcarbonandoxygen,andtheceaselessconvectionofthedeepinteriorandconsequentdisruptionsofthecrustthroughearthquakes,volcanoes,andtheincessantlyshiftingcontinentalplates.Inthemidstoftheseforces,ourspecieshasproventoberesilient,clever,andadaptable.Wehavelearnedtechnologicaltrickstoshapeourworldtoourwill:wemineandrefineitsmetals,fertilizeandcultivateitssoils,divertandexploititsrivers,extractandburnitsfossilfuels.Ouractionsarenotwithoutconsequences.Everyday,ifweareattunedtothedynamicprocessesofourplanetaryhome,wecanexperienceeveryfacetofitsintertwinedcreativeforces.Andwecanthenunderstandhowdevastatinglychangeabletheworldcanbe,andhowutterlyindifferentitistoourfleetingaspirations.

Page 221: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet
Page 222: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Chapter11

Page 223: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

TheFuture

ScenariosofaChangingPlanetEarth’sAge:Thenext5billionyears

Isthepastprologuetothefuture?ForEarth,theanswerisyes,andno.Asinthepast,Earthwillcontinuetobeaplanetofincessantflip-floppatterns

ofchange.Theclimatewillbecomewarmer,thencooler,overandoveragain.Iceageswillreturn,aswilltimesoftropicalextremes.Platetectonicswillpersist,shufflingcontinents,whileopeningandclosingoceans.Giantasteroidimpactsandmegavolcanoeswillonceagaindisruptlife.Butotherchangeswillbenew,andmanyofthemwillbeasirreversibleasthe

firstgranitecrust.Myriadlivingspecieswilldieout,nevertobeseenagain.Tigers,polarbears,humpbackwhales,pandas,gorillas—allaredoomed.It’sverypossiblethathumanswilldieout,too.ManydetailsofEarth’shistoryarelargelyunknown,perhapsunknowable.

Butourplanet’srichhistory,coupledwithnaturallaws,givesusasenseofwhatistocome.Let’sstartwiththelongviewandthenfocuscloserandcloseronmoderntimes.

Endgame:FiveBillionYearsfromNow

Earthisalmosthalfwaytoitsinescapabledemise.For4.5billionyears,theSunhasshonesteadily,gettingslightlybrighterthroughtimeasit“burns”throughitsvaststoreofhydrogenfuel.Foranotherfivebillionyears(moreorless)theSunwillcontinuetogeneratenuclearenergybyfusinghydrogenintohelium.That’swhatmoststarsdomostofthetime.Eventuallythehydrogenwillrunout.Somesmallerstarsreachingthisstage

justpeterout,shrinkinginsizewhilesendingoutmuchlessenergythanbefore.HadtheSunbeensucha“reddwarf”star,Earth’sultimatefatewouldbetofreezesolid.Life,ifitsurvivedatall,wouldbelimitedtoafewhardymicrobesdeepunderground,whereliquidwatercouldpersist.TheSunwon’tdieinthatpitifulway,though,foritismassiveenoughtohave

Page 224: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

anuclearbackupplan.Rememberthateverystarmustbalancetwoopposingforces.Ontheonehand,gravitypullsthestar’smassinwardtomakeassmallasphereaspossible.Ontheotherhand,nuclearreactions,likeacontinuoussequenceofinnerhydrogenbombexplosions,pushoutwardandtrytomakethestarbigger.TheSun,initspresentstatelyhydrogen-burningphase,hasachievedastablediameterofabout870,000miles—thesizethathaspersistedfor4.5billionyearsandwillcontinuetopersistforabout5billionmore.TheSunislargeenoughthatwhenthehydrogen-burningphaseisfinallyover,

anew,franticallyenergetichelium-burningphasewillbegin.Helium,theby-productofhydrogenfusionreactions,canfusetootherheliumatomstomaketheelementcarbon,butthisnewsolarstrategywillhavecatastrophicconsequencesfortheinnerplanets.Becauseofthemoreenergeticheliumreactions,theSunwillswelllargerandlarger,likeacrazysuperheatedballoon,intoapulsatingredgiantstar.ItwillswellpasttheorbitoflittleMercury,engulfingthetinyplanet.ItwillswellpasttheorbitofourneighborVenus,swallowingthatsisterworldaswell.Itwillswelltomorethanonehundredtimesitspresentdiameter—evenpasttheorbitofEarth.TheexactdetailsofEarth’sendgamearemurky.Accordingtosomebleak

scenarios,theredgiantSunwillsimplyoverwhelmEarth,whichwillvaporizeinthesolaratmosphereandbenomore.OthermodelshavetheSunsheddingmorethanathirdofitspresentmassinunimaginablesolarwinds(whichwouldceaselesslyblastEarth’sdeadsurface).AstheSunbecomeslessmassive,Earth’sorbitwillmoveoutward—perhapsjustenoughtoavoidbeingengulfed.ButifwearenotengorgedbytheexpandingSun,allthatwouldremainofouroncebeautifulblueworldwouldbeanutterlybarrenorbitingcinder.Sparsesubsurfacemicrobialecosystemsmaypersevereforanotherbillionyears,butneveragainwillthelandbelushandverdant.

DesertWorld:TwoBillionYearsfromNow

Eversoslowly,eveninitspresentcalmhydrogen-burningstate,theSunisgettinghotter.Inthebeginning,4.5billionyearsago,theSunshonewith70percentofitspresentlight.TheGreatOxidationEvent2.4billionyearsagofoundaSunshiningwithperhaps85percentoftoday’sintensity.Andabillionyearsfromnow,theSunwillbebrighterstill.Foratime,perhapsformanyhundredsofmillionsofyears,Earth’sfeedbacks

maymoderatethechange.Moreheatmeansmoreevaporation,whichproducesmoreclouds,whichreflectsmoresunlightbackintospace.Moreheatmeans

Page 225: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

fasterweatheringofrocks,whichconsumesmorecarbondioxide,whichlowerstheamountofgreenhousegases.AndsonegativefeedbackloopsmaykeepEarthhabitableforalongtime.Buttherewillcomeatippingpoint.SmallerMarsreachedthatcriticaltime

billionsofyearsago,asalmostallitssurfacewaterwaslost.Abillionyearsfromnow,Earth’soceanswillhavebeguntoevaporateatanalarmingrate,andtheatmospherewillhavebecomeaperpetualsauna.Noicecapsorglacierswillremain,aseventhepoleswillbecometropicalzones.Foraspanofmanymillionsofyears,lifemaythriveinsuchahothouseenvironment.ButastheSuncontinuestowarmandmorewatervaporenterstheatmosphere,hydrogenwillbelosttospaceatever-increasingrates,slowlydryingouttheplanet.Bythetimealltheoceansaredry,perhapstwobillionyearshence,Earth’ssurfacewillbebarrenandbaked;lifewillbeontheprecipice.

NovopangaeaorAmasia:250MillionYearsfromNow

Earth’sdemiseisinevitable,butit’savery,very,verylongwayaway.Projectionsintothelessremotefuturepaintamorebenignpictureofadynamicyetrelativelysafeplanet.Lookingforwardafewhundredmillionyears,thepastisindeedthekeytounderstandingthefuture.PlatetectonicswillcontinuetoplayacentralroleinchangingEarth.Today

thecontinentsarescattered.WideoceansnowseparatetheAmericas,EurasiaandAfrica,Australia,andAntarcticafromoneanother.Buttheselandmassesareconstantlyinmotion,atratesofroughlyaninchortwoperyear—athousandmilesevery60millionyears.Wecanestablishratherprecisevectorsforeverylandmassbystudyingtheagesofocean-floorbasalts.Basaltnearthemidoceanridgesisquiteyoung,justafewmillionyearsatmost.Bycontrast,basaltatcontinentalmarginsandsubductionzonesmaybemorethan200millionyearsold.It’safairlysimplemattertotakealltheseocean-floorages,playtheplatetectonicstapebackwardintime,andobtainaglimpseofEarth’sshiftingcontinentalgeographyduringthepast200millionyears.Fromthatinformation,itmayalsobepossibletoprojectplausibleplatemotionsmorethan100millionyearsintothefuture.Giventheirpresenttrajectoriesacrosstheglobe,itappearsthatallthe

continentsareheadedforanothercollision.Aquarter-billionyearsfromnow(moreorless),mostofEarth’slandwillagainformonegiantsupercontinent—alandalreadynamedNovopangaeabysomeprescientgeologists.However,theexactarrangementofthatfutureisstillamatterofdebate.

Page 226: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

AssemblingNovopangaeaisatrickygame.It’seasytotaketoday’scontinentalmovementsandpredicttenortwentymillionyearsdowntheroad.TheAtlanticwillhavewidenedbyseveralhundredmiles,whilethePacificwillhaveshrunkbyanequalamount.AustraliawillhavemovednorthtowardSouthAsia,andAntarcticawillhaveshiftedslightlyawayfromtheSouthPole,alsointhedirectionofSouthAsia.Africaisalsoonthemove,inchingnorthwardtocloseofftheMediterraneanSea.Inafewtensofmillionsofyears,AfricawillhavecollidedwithsouthernEurope,intheprocessclosinguptheMediterraneanandpushingupaHimalayan-sizemountainrangethatwilldwarftheAlps.Sothemapoftheworldtwentymillionyearshencewillappearfamiliarbutskewed.Lookingasfarasonehundredmillionyearsintothefutureinthiswayisfairlysafe,andmostmodelersarriveatsimilargeographiesofaworldwheretheAtlanticOceanhasovertakenthePacificasthegrandestbodyofwateronEarth.Fromthatpointon,modelsdiverge.Oneschoolofthought,called

extroversion,assumesthattheAtlanticwillcontinueopeningandtheAmericaswilleventuallycrunchintoAsia,Australia,andAntarctica.Inthelatterstagesofthissupercontinentassembly,NorthAmericasweepsinfromtheeasttoclosethePacificandimpactJapan,whileSouthAmericawrapsaroundclockwisefromthesoutheasttosnuggleagainstequatorialAntarctica.It’samazinghowwellallthepiecesseemtofittogether.NovopangaeaisprojectedtobeoneimmenselandmassstretchingeasttowestalongtheEquator.Thecentralassumptionofthisextroversionvisionisthatthegreatmantle

convectioncellsthatunderlieplatemotionswillcontinuemoreorlessastheydotoday.Thealternativeview,calledintroversion,takestheoppositetackbyinvokingpastcyclesoftheopeningandclosingoftheAtlanticOcean.ReconstructionsofthepastbillionyearssuggestthattheAtlantic(oranequivalentoceanpositionedbetweentheAmericasonthewestandEuropeplusAfricaontheeast)hasopenedandclosedthreetimesonacycleofafewhundredmillionyears—aresultthatsuggestsvariableandepisodicmantleconvection.TherockrecordrevealsthatthemovementsofLaurentiaandothercontinentsabout600millionyearsagoformedtheAtlantic’spredecessor,calledtheIapetusOcean(namedfortheGreekTitanIapetus,fatherofAtlas).TheIapetusOceanclosedattheassemblyofPangaea.Whenthatsupercontinentbegantosplitapart175millionyearsago,theAtlanticOceanwasformed.Accordingtotheintroversionadvocates(probablybestnottocallthem

introverts),thestill-wideningAtlanticwillfollowthesamepattern.Itwillslow,stop,andreverseinabout100millionyears.Thensome200millionyearslater,

Page 227: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

theAmericaswillonceagaincollidewithEuropeandAfrica.Atthesametime,AustraliaandAntarcticawillhavebeensuturedtoSoutheastAsiatocompletethefuturesupercontinentof“Amasia.”Thisgreatlandmass,shapedsomethinglikeasidewaysL,usesthesamepuzzlepiecesasNovopangaeabutthistimewiththeAmericasformingthewesternside.Forthetimebeing,bothsupercontinentmodels,extroversionandintroversion,

appeartohavemeritandarestillinplay.Andwhatevertheoutcomeofthisfriendlydebate,everyoneagreesthatEarth’sgeography250millionyearsfromnow,whilestrikinglydifferentfromtoday,willechopasttimes.ThetransientcollectionofcontinentsattheEquatorwillreducetheimpactsoficeagesandmoderatechangesinsealevels.Mountainswillrisewherecontinentscollide,whilepatternsofweatherandvegetationshiftandatmosphericlevelsofcarbondioxideandoxygenfluctuate.SuchchangeswillcontinuetobecentraltothestoryofEarth.

Impact:TheNextFiftyMillionYears

Arecentsurveyofhowpeoplearemostlikelytodieratedasteroidimpactsprettylow—somethinglike1in100,000.That’sstatisticallyaboutthesameprobabilityasdeathbylightningoratsunami.Butthere’sanobviousflawinthispredictivecomparison.Lightningkillsonepersonatatimeaboutsixtytimesperyear.Asteroidimpacts,bycontrast,probablyhaven’tkilledanyoneinthousandsofyears.Butonereallybadday,onelittlethwackcouldkillalmosteveryoneallatonce.Chancesareexcellentthatyoudon’thavetoworry,normostlikelywillanyof

thenexthundredgenerations.Butwecanbeabsolutelysurethatanotherbigimpactofthedinosaur-killingvarietyiscomingsomeday,somewhere.Inthenextfiftymillionyears,Earthwillsufferatleastonebighit,maybemore.It’sallamatteroftimeandprobability.Themostlikelyculpritsareso-calledEarth-crossingasteroids—objectswithhighlyellipticalorbitsthatcrosstheplaneofEarth’smorecircularpatharoundtheSun.Atleastthreehundredofthesepotentialkillersareknown,andinthenextfewdecadessomeofthemwillpassuncomfortablyclose.OnFebruary22,1995,ajust-discoveredasteroidwiththebenignname1995CRwhizzedbywithinafewEarth-Moondistances.OnSeptember29,2004,asteroidToutatis,anelongated1.5-by-3-mileobject,passedevencloser.Andin2029asteroidApophis,a900-footdiameterrock,ispredictedtocrossmuchcloserstill,wellinsidetheMoon’sorbit.ThatunsettlingencounterwillirrevocablyaltertheApophisorbitandpossiblybringiteven

Page 228: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

closerinthefuture.ForeveryknownEarth-crossingasteroid,thereareprobablyadozenormore

yettobespotted.Andwhenoneoftheseprojectilesisfinallyobserved,itwilllikelybemuchtoocloseforustodomuchaboutit.Ifwe’rethebull’s-eye,wemayonlyhaveafewdays’warningtosettleouraffairs.Drystatisticstellthetaleofprobabilities.Earthisstruckbyatwenty-five-footrockalmosteveryyear.Thankstothebrakingeffectsofouratmosphere,mostsuchmissilesexplodeandfragmentintolittlepiecesbeforehittingthesurface.Butobjectsahundredfeetormoreacross,whicharriveaboutonceeverythousandyears,causesignificantlocaldamage:inJune1908,suchanimpactorleveledaswathofforestneartheTunguskaRiverinRussia.Exceedinglydangeroushalf-milestonesimpactonaverageaboutonceeveryhalf-millionyears,whileasteroidsaslargeasthreemilesindiametermayarriveaboutonceeverytenmillionyears.Theconsequencesofanimpactwillvaryaccordingtothesizeandlocationof

theimpact.Aten-mileboulderwoulddevastatetheglobejustaboutanywhereithits.(Bycontrast,thedinosaur-killingasteroidof65millionyearsagoisestimatedtohavebeenaboutsixmilesacross.)Ifaten-mileobjecthitstheoceans—a70percentchance,giventhedistributionoflandandsea—thenallbutEarth’shighestmountainpeakswillbesweptcleanbyimmenseglobe-destroyingwaves.Nothingwillsurviveuptoafewthousandfeetabovesealevel.Everycoastalcitywillutterlydisappear.Ifsuchaten-mileasteroidhitsland,theimmediatedevastationmaybemore

localized.Everythingwithinathousandmileswouldbeobliterated,andmassivefireswouldsweepacrosswhatevercontinentistheunluckytarget.Forashorttime,moredistantlandsmightbesparedtheviolence,butsuchanimpactwouldvaporizeimmensequantitiesofrockandsoil,sendingSun-obscuringcloudsintothehighatmosphereforayearormore.Photosynthesiswouldallbutshutdown.Plantlifewouldbedevastatedandthefoodchainwouldcollapse.Afewhumansmightsurvivethehorror,butcivilizationasweknowitwouldbedestroyed.Smallerimpactorswouldcauselessdeathanddestruction,butanyasteroid

overafewhundredfeet,whetheritsmacksthelandorthesea,wouldcauseanaturaldisastergreaterthananythingwehaveknown.Whattodo?Shouldweignorethethreatastooremote,tooinsignificantinaworldthathassomanymoreimmediatelypressingproblems?Whatcouldwedotodivertabigrock?ThelateCarlSagan,perhapsthemostcharismaticandinfluential

spokespersonforscienceinthelasthalfcentury,thoughtalotaboutasteroids.Inpublicandprivate,mostfamouslyinhisepicTVseriesCosmos,headvocatedconcertedinternationalaction.Hesetthestagebytellingthevividtaleofthe

Page 229: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

monksofCanterburyCathedral,whointhesummerof1178sawaviolentexplosionontheMoon—anasteroidimpactsoveryclosetouslessthanathousandyearsago.IfsuchanimpactoccurredonEarth,countlessmillionswoulddie.“TheEarthisaverysmallstageinavastcosmicarena,”hesaid.“Thereisnohintthathelpwillcomefromelsewhere.”Thesimplest,firststepinavoidingsuchaneventistolookashardaswecan

forthoseelusiveEarth-crossingdestroyers—toknowtheenemy.Weneeddedicatedtelescopes,automatedwithdigitalprocessors,tolocatetheEarth-crossingprojectiles,toplottheirorbitsandpredicttheirfuturepathways.Suchanendeavorisrelativelycheapandalreadyunderway.Morecouldbedone,butatleasttheeffortisbeingmade.Andwhatifwefoundalargerockthatisprojectedtosmashintousafew

yearsfromnow?ForSagan,alongwithothersinboththescientificandthemilitarycommunities,asteroiddeflectionisanobviousstrategy.Ifinitiatedearlyenough,evenasmallnudgebyarocketengineorafewwell-placednuclearexplosionscouldshiftanasteroid’sorbitsufficientlytochangeacollisioncoursetoanear-miss.Suchaneventualnecessityisreasonenoughforarobustprogramofspaceexploration,heargued.Inaprescient1993essay,Saganwrote,“SincehazardsfromasteroidsandcometsmustapplytoinhabitedplanetsallovertheGalaxy,iftherearesuch,intelligentbeingseverywherewillhavetounifytheirhomeworldspolitically,leavetheirplanets,andmovetosmallnearbyworldsaround.Theireventualchoice,asours,isspaceflightorextinction.”Spaceflightorextinction.Tosurviveinthelongrun,wemustjourneyoutward

tocolonizeneighboringworlds.FirstwillcomebasesontheMoon,thoughourluminoussatellitewilllongremainahostileplacetoliveandwork.NextisMars,wheremoreabundantresources—especiallylotsoffrozensubsurfacewater,butalsosunlight,minerals,andatenuousatmosphere—areathand.Itwon’tbeeasyorcheap;norisMarsdestinedtobecomeathrivingcolonyanytimesoon.Butsettling,andperhapsterra-forming,ourpromisingneighbormaywellbethenextessentialstepinourspecies’sevolution.Twoobviousobstacleswillprobablydelay,ifnotprevent,theestablishmentof

aMarsbase.Thefirstismoney.ThemanytensofbillionsofdollarsitwilltaketodesignandimplementaMarslandingisoutsidethemostoptimisticNASAbudget,eveninthebestoffinancialtimes.Acooperativeglobaleffortmaybetheonlyoption,butsuchamassiveinternationalprogramhasneverbeenattempted.Astronautsurvivalisanequallydauntingchallenge,forit’snexttoimpossible

toensureasaferound-triptoMars.Spaceisharsh,withmyriadsand-size

Page 230: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

meteoritebulletstopiercethethinshellofeventhemostarmoredcapsuleandunpredictablesolarburstsoflethalpenetratingradiation.TheApolloastronauts,withtheirweeklongvoyagestotheMoon,weredamnedluckythatnothingbadhappened.ButavoyagetoMarswouldtakemanymonths;inthegambleinherentinanyspacemission,moretimemeansmorerisk.What’smore,norockettechnologyonthebookswouldallowaspaceshipto

carryenoughfueltogettoMarsandmakeitback.SomeinventorstalkofprocessingMartianwatertosynthesizeenoughfueltorefillthetanks,butthattechnologyisonlyadreamandprobablyalongwayoff.Perhapsthemorelogicaloption—onethatfliesinthefaceofNASAmoresbutisincreasinglypromotedinpassionateeditorials—isaone-waytrip.Werewetosendanexpeditionwithyearsofsuppliesinsteadoffuel,withsturdyshelterandagreenhouse,withseeds,withalotofoxygenandwater,andwithtoolstoextractmorelife-givingresourcesfromtheredplanet,thenanexpeditionmightjustmakeit.Itwouldbeunbelievablydangerous,butsoweremanyofthepioneeringhumanvoyagesofdiscovery—thecircumnavigationofMagellanin1519–21,thewestwardexplorationsofLewisandClarkin1804–6,andthepolarexpeditionsofPearyandAmundsenearlyinthetwentiethcentury.Humanshavenotlosttheirlusttoengageinsuchriskyventures.IfNASApostedasign-upsheetforthechanceataone-waytriptoMars,thousandsofscientistswouldvolunteerinaheartbeat.Fiftymillionyearsfromnow,Earthwillstillbeavibrantlivingworld,itsblue

oceansandgreencontinentsshiftedbutrecognizable.Thefateofourhumanspeciesismuchlesscertain.Perhapswewillbeextinct.Ifso,fiftymillionyearsismorethansufficienttoerasealmosteverytraceofourbriefdominion—everycity,everyhighway,everymonumentwouldhaveweatheredawaymillionsofyearsearlier.Alienpaleontologistswouldhavetosearchlongandhardtofindtheslightestnear-surfacetraceofourvanishedspecies.Butitisalsopossiblethathumanswillsurviveandevolve,movingoutwardto

colonizefirstourneighboringplanets,thenourneighboringstars.Ifso,ifourdescendantsmakeitintospace,thenEarthwillsurelybetreasuredasneverbefore—asapreserve,asamuseum,asashrineandplaceofpilgrimage.Perhapsonlybyleavingourworldwillhumanseverfullyappreciatetheplaceofourspecies’sbirth.

Earth’sChangingMap:TheNextMillionYears

Inmanyrespects,Earthamillionyearsfromnowwillnothavechangedvery

Page 231: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

much.Thecontinentswillhaveshifted,tobesure,butprobablynomorethanthirtyorfortymilesfromtheirpresentrelativelocations.TheSunwillstillshine,risingeverytwenty-fourhours,andtheMoonwillstillorbitonceeverymonthorso.Butsomethingswillhavechangedalot.Inmanyplacesaroundtheglobe,

inexorablegeologicalprocesseswillhavetransformedthelandscape.Themostobviouschangeswillaffectvulnerablecoastlines.Oneofmyfavoriteplaces,CalvertCounty,Maryland,withitsmilesoffast-erodingMioceneEpochcliffsandtheirseeminglylimitlessstoreoffossils,willhavedisappearedcompletely.Afterall,thecountyisonlyfivemileswide,andit’sgettingskinnierbyalmostafootayear.Atthatrate,CalvertCountywon’tlastfiftythousandyears,muchlessamillion.Inotherstates,geologicalprocesseswilladdvaluablenewrealestate.Anew

ocean-floorvolcanooffthesoutheasterncoastofHawaii’sbigislandisalreadyalmosttwomileshigh(thoughstillsubmerged)andgrowinglargereveryyear.Amillionyearsfromnowanewisland,alreadynamedLoihi,willhaverisenfrombeneaththewaves.Ofcourse,olderextinctvolcanicislandstothenorthwest,includingMaui,Oahu,andKauai,willbecomecorrespondinglysmalleraswindandwaveserodethemaway.Speakingofwaves,scientistswhoexaminetherockrecordforhintsofwhatis

tocomeconcludethatEarth’sgeographywillbealteredmostdramaticallybytheadvancingandrecedingoceans.Changesintherateofriftvolcanismhavealong-termeffect,asgreaterorlesservolumesoflavasolidifyontheoceanfloor.Sealevelcandropsignificantlyduringlullsinoceanvolcanism,whenseafloorrockscoolandsettle,asmanysuspectoccurredduringthedramaticfallofsealeveljustbeforethelateMesozoicextinction.ThepresenceorabsenceoflargeinlandseasliketheMediterraneanandtheassemblyandbreakupofcontinentscausemajorchangesintheextentofshallowcoastalwaters,whichplayyetanotherimportantroleintheshapethegeosphereandbiospherewilltakeinthenextmillionyears.Amillionyearscorrespondstotensofthousandsofhumangenerations—

hundredsoftimesallofrecordedhumanhistory.Ifwesurvive,thenEarthmaybephysicallytransformedbyourevolvingtechnologicalprowessinwayswecannoteasilyimagine.Butifwedieout,Earthwilllikelysoldieronmuchasitistoday.Lifeonlandandintheseawillflourish;thecoevolutionofthegeosphereandbiospherewillquicklyreturntoitspreindustrialequilibrium.

Page 232: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Megavolcano:TheNextHundredThousandYears

Thesuddencatastropheofanasteroidimpactmaypalebesidethetime-releaseddeathofamegavolcanoorfloodbasalt.AccompanyingallofEarth’sfivegreatestmassextinctionintervals—includingtheonecontemporaneouswithabigrockfallingfromthesky—wasglobe-alteringvolcanism.Thisisnottobeconfusedwithrun-of-the-millvolcanicdeathanddestruction

initsvariousforms.TheseincludedramaticlavaflowslikethosesofamiliartoHawaiianislanderslivingontheslopesofKilauea—utterlydestructivetoanydwellingsintheirpaths,butalsolocalized,predictable,andeasilyavoided.Somewhatmoredeadlyinthisleagueofordinaryvolcanismaretheexplosionsandashfallsofpyroclasticvolcanoes,whichcanreleaseimmensequantitiesofincandescent,steam-drivenashthatracedownamountainsideatmorethanahundredmilesperhour,incineratingandburyingeverythingintheirpath.Cuethe1980explosionofMountSt.HelensinWashingtonStateandtheJune1991eruptionofMountPinatubointhePhilippines,bothofwhichwouldhavekilledthousandsofpeopleifpriorwarningshadn’tpromptedmassevacuations.Stillmoreominousisathirdtypeofvolcanismasusual:theejectionoflargequantitiesoffine-grainedashandtoxicgasesintothehighatmosphere.TheIcelandicasheruptionsofEyjafjallajökullinApril2010andGrímsvötnin

May2011wererelativelypuny,releasingmuchlessthanacubicmileofdebris.Nevertheless,theydisruptedEuropeanairtravelforseveraldaysandcausedhealthconcernsformanypeopleinnearbyregions.TheeruptionofLakiinJune1783—amongthelargesthistoriceruptions—releasedanestimatedfivecubicmilesofbasaltandassociatedashandgas,sufficienttoinducealong-lastingpoisonoushazeoverEurope.AquarterofIceland’spopulationdied,somerapidlyfromexposuretoacidicvolcanicgasesandmanymorefromstarvationduringthesubsequentwinter.Thedisasteralsoaffectedlandsmorethanathousandmilestothesoutheast,astensofthousandsEuropeans,mostintheBritishIsles,alsodiedfromLaki’sprolongedeffects.EvenmorepeoplediedfollowingtheAugust1883explosionofKrakatoaandtheresultanttsunamithatsweptnearbycoastlinesofJavaandSumatra.AndthecolossalApril1815eruptionofTambora,whichproducedanamazingtwelvecubicmilesoflava,wasthedeadliestofall.Morethanseventythousandliveswerelost,mostasaconsequenceofagriculturalfailureandsubsequentmassstarvation.Tambora’sinjectionofimmensequantitiesofsun-blockingsulfurcompoundsintotheupperatmosphereturned1816intotheNorthernHemisphere’s“yearwithoutasummer.”Suchhistoriceruptionstroublethemodernimagination,andforgoodreason.

Page 233: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Sure,theirdeathtollspalebycomparisonwiththehundredsofthousandsofindividualskilledbyrecentearthquakesintheIndianOceanandHaiti.Butthere’sanimportant,terrifyingdifferencebetweenearthquakesandvolcanoes.Thesizeofthelargestpossibleearthquakeislimitedbythestrengthofrock.Hardrockcantakeonlysomuchstressbeforeitsnaps;thatextremelimitcanproduceanextremelydestructive,butlocalized,earthquake—magnitudenineontheRichterscale.Volcanoes,bycontrast,havenoapparentupperlimitinsize.Infact,the

geologicalrecordholdsunambiguousevidenceoferuptionsahundredtimesgreaterthanthelargestvolcaniceventsinrecordedhumanhistory.Suchmegavolcanoeswouldhavedarkenedtheworld’sskiesforyearsandalteredthelandscapeovermillionsofsquaremiles,notthousands.Themostrecentmegavolcanoexplosion,TaupoontheNorthIslandofNewZealand26,500yearsago,mayhaveproducedmorethan200cubicmilesoflavaandash.TobainSumatra,whicherupted74,000yearsago,releasedanestimated672cubicmilesofejecta.Theconsequencesofanothersuchcatastropheonmodernsocietyarehardtofathom.Andyet,eventhesemegavolcanoes,thoughmuchgreaterthananycataclysm

inrecordedhistory,weredwarfedbythegreatfloodbasaltsthatcontributedtomassextinctions.Unlikeone-offexplosionsofmegavolcanoes,floodbasaltsrepresentasustainedintervalwiththousandsofyearsofintensevolcanicactivity.Thegreatestoftheseepisodes,allofwhichcoincidewithglobalmassextinctions,producedhundredsofthousandstomillionsofcubicmilesoflava.Thebiggestknownevent,nowrevealedbymorethanahalf-millionsquaremilesofbasaltflows,occurredinSiberiaduringEarth’sgreatestmassextinction,thegreatdying251millionyearsago.Thedemiseofthedinosaurs65millionyearsago,sooftenascribedtoanasteroidimpact,isalsocoincidentwithimmensefloodbasaltsinIndia—theDeccanTraps,almost200,000squaremilesinextent,representingmorethan120,000cubicmilesofnewrock.Thesevastsurfacefeaturescouldnothavecomefromsimplereprocessingof

thecrustanduppermantle.CurrentmodelsoffloodbasaltformationenvisionathrowbacktoEarth’searliestageofverticaltectonics,withgiantbubblesofmagmaslowlyrisingallthewayfromthesuperheatedcore-mantleboundary,crackingthecrust,spewingoutoverthecoldsurface.Sucheventsarenowrare.Onescenariopositsaroughlythirty-million-yearintervalbetweenfloodbasalts,inwhichcasewe’resomewhatoverdueforthenextbigone.Ourtechnologicalsocietywillcertainlyreceivefairwarningofsuchanevent.

Seismologistswillbeabletotrackthehot,moltenplumeasitrises.Wemay

Page 234: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

havehundredsofyearstoprepareforthecalamity.Butshouldhumanityeverenteranothereraofmegavolcanism,therewouldbenothingwecoulddotostopEarth’smostviolentparoxysms.

IceFactor:TheNextFiftyThousandYears

Fortheforeseeablefuture,thebiggestdeterminingfactorinEarth’scontinentalcontoursisice.Onshorttimescalesofafewhundredorthousandyears,thedepthoftheoceansismostcloselytiedtothetotalvolumeofEarth’sfrozenwater,includingtheicecaps,glaciers,andcontinentalicesheets.It’sasimpleequation:thegreaterthevolumeofwatertiedupiniceonland,thelowerthelevelofthesea.Thepastiskeytopredictingthefuture,buthowcanwepossiblyknowthe

depthofhistoricoceans?Satelliteobservationsofoceanlevels,thoughincrediblyaccurate,arerestrictedtoaboutthepasttwodecades.Tidegaugemeasurements,thoughlessaccurateandsubjecttolocalidiosyncrasies,gobackperhapsacenturyandahalf.Coastalgeologistscanresorttomappingancientshorelinemarkers—raisedbeachterraces,forexample,whichcanbefoundinnear-shoreaccumulationsofsedimentsdatingbacktensofthousandsofyears,thoughsuchelevatedfeaturescanreliablyrevealonlyperiodsofhigherwaterlevels.Thepositionsoffossilcorals,whichmusthavegrownintheocean’sshallowsunshinezone,canpushtherecordevenfurtherback,butsuchrockformationscommonlyexperienceepisodesofuplift,subsidence,ortiltingthatconfusetherecord.Manyscientistsnowfocusonalessobviousindicatorofsealevel—the

variableratiooftheisotopesofoxygenintinyseashells.Suchratiostellusmuch,muchmorethanacosmicbody’sdistancefromtheSun,asdiscussedinchapter2.Becauseoftheirtemperature-sensitivenature,oxygenisotopesarealsothekeytodecipheringthehistoricvolumeofEarth’siceandthusancientsealevelchanges.Evenso,theconnectionbetweenicevolumeandoxygenisotopesistricky.By

farthemostabundantoxygenisotope,accountingforabout99.8percentofwhatwebreathe,isthelighteroxygen-16(witheightprotonsandeightneutrons).Aboutoneinfivehundredoxygenatomsistheheavieroxygen-18(witheightprotonsandtenneutrons).Thatmeansaboutoneineveryfivehundredwatermoleculesintheoceanisheavierthantheaverage.AstheSunheatsequatorialoceanwater,waterwiththelighteroxygen-16isotopeevaporatesabitfasterthanthatwithoxygen-18,ensuringthatwaterinlow-latitudecloudsisabitlighteron

Page 235: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

averagethantheoceansfromwhichitcame.Asthecloudsrisetocoolerzones,waterwiththeheavieroxygen-18isotopecondensesintoraindropsabitfasterthanthatwithoxygen-16,ensuringthatthecloud’soxygenbecomesevenlighterthanitwasbefore.Bythetimethecloudsmovetowardthepoles,ascloudsinevitablydo,theoxygenintheirwatermoleculeshasbecomemuchlighterthaninthoseofoceanwater.Whenthesepolarcloudsreleasetheirprecipitationontoicecapsandglaciers,moreofthelighterisotopeislockedintheice,leavingtheoceansheavier.Duringtimesofmaximumglobalcooling,whenmorethan5percentof

Earth’swatercanbefrozensolid,theoceansbecomesignificantlyenrichedinoxygen-18.Duringtimesofglobalwarmingandglacialretreat,oxygen-18levelsintheoceansdecline.Soitisthatcarefullayer-by-layermeasurementsofoxygenisotoperatiosincoastalsedimentscanrevealhowEarth’ssurfaceice(orlackthereof)hasvariedthroughtime.SuchexactingworkisthedomainofgeologistKenMillerandhiscolleagues

atRutgersUniversity,whohavespentdecadesscrutinizingthethickaccumulationsofmarinesedimentsthatblanketcoastalNewJersey.Thesesediments,witharecordextendingbackonehundredmillionyears,containawealthofmicroscopicfossilshellscalledforaminifera,orforamsforshort.Eachtinyforampreservestheoxygenisotopecontentoftheoceanatthetimewhenitgrew.Layer-by-layermeasurementsofoxygenisotopesinNewJerseysedimentsthusprovideasimpleandaccurateestimateoftheicevolumethroughtime.Intherecentgeologicalpast,theicecoverappearstohaveebbedandflowed

constantly,withcorrespondinglylargechangesinsealevelonatimescaleofafewthousandyears.Attheheightofrecenticeages,morethan5percentofEarth’swaterhasbeentrappedinice,loweringsealevelsbyperhapsthreehundredfeetfromtheirpresentmark.Abouttwentythousandyearsago,suchaperiodoflowoceanlevelisthoughttohavecreatedalandbridgebetweenAsiaandNorthAmericaacrosswhatisnowtheBeringStrait—theoriginalpassagewayforhumansandothermammalstotheNewWorld.Duringthesameicyinterval,therewasnoEnglishChannel,asadryvalleyconnectedtheBritishIslestoFrance.Bycontrast,attimesofmaximumwarming,whenglacierslargelydisappearandicecapsrecede,sealevelshaverepeatedlyrisenbyasmuchasthreehundredfeethigherthantoday,submerginghundredsofthousandsofsquaremilesofcoastalareasaroundtheglobe.Millerandhiscolleaguesidentifiedmorethanahundredcyclesofglacial

advanceandretreatinthepastninemillionyears,withatleastadozensucheventsinjustthepastmillionyearsalone—changesthatpointtowildswingsof

Page 236: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

asmuchassixhundredfeetinoceanlevel.Whiledetailsmayvaryfromcycletocycle,theseeventsareclearlyperiodicandarerelatedtoso-calledMilankovitchcycles,namedfortheSerbianastrophysicistMilutinMilankovitch,whodiscoveredthemaboutacenturyago.Herealizedthatwell-knownvariationsinEarth’sorbitaroundtheSun,includingourplanet’stilt,itsellipticalorbit,andaslightwobbleinitsrotationaxis,imposeperiodsofclimatechangewithintervalsofroughlytwenty,forty-one,andonehundredthousandyears.ThesevariationsallaffecttheamountofsunlighthittingEarthandthusexertaprofoundeffectonglobalclimate.Sowhatofthenextfiftythousandyears?Wecanbeconfidentthatsealevels

willcontinuetovarydramatically,withmanymorerisesandfalls.Attimes,verypossiblyoverthenexttwentythousandyears,icecapswillgrow,glacierswilladvance,andsealevelwilldecreasebytwohundredfeetormore—alevelthathasoccurredatleasteighttimesoverthepastmillionyears.Suchachangewillhavepowerfuleffectsontheworld’scoastlines.TheEastCoastoftheUnitedStateswillshiftmanymilestotheeast,astheshallowcontinentalslopeisexposed.AllofthegreatEastCoastharbors,fromBostontoMiami,willbecomehighanddryinlandcities.AnewiceandlandbridgewillconnectAlaskatoRussia,andtheBritishIslesmayonceagainbecomeapartofmainlandEurope.Meanwhiletheworld’smostproductivefishinggroundsalongthecontinentalshelveswillbecomedryland.Inthecaseofsealevel,whatgoesdownmustalsogoup.It’sverypossible,

somewouldsayverylikely,thatoverthenextthousandyearssealevelwillincreasebyahundredfeetormore.Suchariseintheoceans,arathermodestonebygeologicalstandards,wouldrenderthemapoftheUnitedStatesallbutunrecognizable.Ahundred-footriseinsealevelwouldinundatemuchofthecoastalplainoftheEastCoast,shiftingshorelinesuptoahundredmileswestward.Allthemajorcoastalcities—Boston,NewYork,Philadelphia,Wilmington,Baltimore,Washington,Charleston,Savannah,Jacksonville,Miami,andmore—willbesubmerged.LosAngeles,SanFrancisco,SanDiego,andSeattlewillalsodisappearbeneaththewaves.AlmostallofFloridawillbegone,itsdistinctivepeninsuladrownedinashallowsea.MostofDelawareandLouisianawillbeunderwater,too.Inotherpartsoftheworld,consequencesofahundred-footriseinsealevelwillbeevenmoredevastating.Entirecountries—theNetherlands,Bangladesh,theMaldives—willbenomore.Thegeologicalrecordisunambiguous:thesechangeswillhappenagain.And

ifEarthiswarmingrapidly,asmostexpertssuspect,thenwaterswillrisesoon,perhapsasrapidlyasafootperdecade.Merethermalexpansionofoceanwater

Page 237: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

duringextendedperiodsofglobalwarmingcanincreaseaveragesealevelsbyuptotenfeet.Suchchangeswillchallengehumansociety,forsure,butwillhavelittleeffectonEarth.Afterall,itwouldn’tbetheendoftheworld.Justourworld.

Warming:TheNextHundredYears

Mostofusdon’tcaresomuchaboutafewbillionyearsinthefuture,orafewmillionyears,orevenathousandyears.Mostofusfocusonshort-termconcerns:HowwillIpayformykid’scollegeintenyears?WillIgetthatpromotionnextyear?Willthestockmarketgoupnextweek?What’sfordinner?Inthatcontext,wehavelittletoworryabout.Barringanunforeseen

cataclysm,Earthnextyear,nextdecade,willseemprettymuchasitdoestoday.Anydifferencesfromoneyeartothenextwillprobablybetoosmalltonotice,evenifweexperienceanuncharacteristicallyhotsummer,endureacrop-witheringdrought,orsufferanunusuallyviolentstorm.WhatisabsolutelycertainisthatEarthwillcontinuetochange.Present

indicatorspointtoacomingepisodeofglobalwarmingandmeltingglaciers,mostprobablyinfluencedandacceleratedbyhumanactivities.Overthenexthundredyears,theconsequencesofthiswarmingwillaffectmanypeopleinmanydifferentways.Inthesummerof2007,IparticipatedinaKavliFuturesSymposiuminremote

Ilulissat,afishingvillageonthewestcoastofGreenland,ashortdistancesouthoftheArcticCircle.Itwasafortunatechoicefordiscussingthefuture,aschangeswereoccurringimmediatelyoutsideourconferencecenteratthecozyArcticHotel.Forathousandyears,theharbor,locatednearthecalvingfrontofthemightyIlulissatGlacier,hadservedasarichfishingground.Forathousandyears,thefishermenresortedtoicefishinginthewinterastheharborfrozesolideveryyear.Untilthenewmillennium,thatis.In2000,forthefirsttime(atleastinathousandyearsoforalhistory),theharborwasopenandunfrozen.Themightyglacier,aUnitedNationsheritagesite,hasbeenrecedingatanastonishingrate—almostsixmilesinthreeyearsaftermanydecadesofstability.Anotherchange:forathousandyearsIlulissatandnearbynativevillageshadbeenfreeofinsectpests,butin2007andallsubsequentyears,aninfestationofmosquitoesandblackfliesarrivedinAugust.Theseareanecdotes,tobesure,butsotooaretheyunambiguousharbingersofsignificant,inexorablechange.Acrosstheglobe,similarchangesareoccurring.WatermenontheChesapeake

Page 238: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Bayreportconsistentlyhigherhightidesthanafewdecadesago.YearbyyearthenorthernSaharaDesertispushingeverfarthernorth,turningoncefertileMoroccanfarmlandintodust.Antarcticiceshelvesaremeltingandbreakingoffatincreasedrates.Averageglobalairandwatertemperaturesareontherise.It’sallpartofaconsistentpatternofwarming—apatternthatEarthhasexperiencedcountlesstimesinthepastandwillexperiencecountlesstimesinthefuture.Warmingcanhaveother,sometimesparadoxicaleffects.TheGulfStream,the

greatoceancurrentthatcarrieswarmwaterfromtheEquatortotheNorthAtlantic,ispoweredbythestrongtemperaturedifferencesbetweentheEquatorandhigherlatitudes.Ifglobalwarmingreducesthattemperaturecontrast,assomeclimatemodelssuggest,thentheGulfStreammayweakenorevenstop.Ironically,animmediateconsequencewouldbetomaketheBritishIslesandnorthernEurope,whereclimateismoderatedbytheGulfStream,muchcolderthanitistoday.Otheroceancurrents—forexample,thosefromtheIndianOceantotheSouthAtlanticpasttheHornofAfrica—wouldbesimilarlyaffectedandmightcauseasimilarshiftinthemildSouthAfricanclimateorachangeinthemonsoonrainsthatkeeppartsofAsiawetandfertile.Asicemelts,theseasrise.Somesoberprojectionssuggestincreasesofas

muchastwoorthreefeetinthenextcentury,thoughmuchfasterincreasesofseveralinchesperdecademayhaveoccurredfromtimetotimeaccordingtotherecentrockrecord.SuchaseachangewillaffectmanycoastalresidentsaroundtheworldandmaycauseheadachesforcivilengineersandbeachfrontpropertyownersfromMainetoFlorida,butafewfeetisprobablymanageableinmostpopulatedcoastalareas.Forawhile,foragenerationortwo,mostresidentsreallywon’thavemuchtoworryaboutwhenitcomestoencroachingseawater.Someanimalandplantspeciesmaynotfaresowell.Thelossofnorthern

polaricewillreducethefamiliarhabitatofpolarbears,addingchallengestoapopulationthatappearstobeshrinking.Arapidshiftofclimatezonestowardthepolesmayalsostressmanyotherthreatenedspecies,notablybirds,whichareparticularlysusceptibletoalterationsintheirmigratorynestingandfeedingareas.Onerecentreportestimatedthatanaverageglobaltemperatureriseofjustacoupleofdegrees,wellwithinpredictionsofsomeclimatemodelsforthenextcentury,couldtriggerextinctionratesamongbirdsapproaching40percentinEuropeandexceeding70percentinthelushrainforestsofnortheasternAustralia.Anothersoberinginternationalreportfoundthatnearlyoneinthreeoftheapproximatelysixthousandknownspeciesoffrogs,toads,andsalamandersissimilarlyendangered,mainlybytherapidwarmth-drivenexpansionofadeadlyamphibianfungaldisease.Whateverelsetranspiresoverthecoming

Page 239: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

century,itdoesappearthatweareenteringatimeofacceleratedextinction.Certaintransformativeeventsofthenextcentury—someguaranteed,others

highlypossible—willbeinstantaneous:thedisruptionofagreatearthquake,theeruptionofamegavolcano,ortheimpactofamile-wideasteroid.Humansocietiestendtobeillpreparedfortheonce-in-a-centurystormorearthquake,muchlessforthetrulycatastrophiconce-in-a-thousand-yearsdisaster.AswereadEarth’sstory,weseethattheseshockingeventsarethenorm,inevitable,apartofthecontinuumofourplanet’shistory.Nevertheless,webuildourcitiesontheflanksofactivevolcanoesandonsomeofEarth’smostactivefaultzones,hopingthatinourtimewewilldodgethetectonicbullet(ifnotthecosmicmissile).Inbetweentheveryslowandveryfastarefluctuatinggeologicalprocesses

thatnormallytakehundredsorthousandsofyears—shiftsinclimates,sealevel,andecosystemsthatareusuallynoticeableonlyoverthespanofseveralgenerations.Theratesofsuchchanges,notthechangesthemselves,shouldbeourbiggestconcern.Forclimate,sealevel,andecosystemscanreachtippingpoints.Pushedtoofar,positivefeedbackloopscankickin.Whatnormallytakesathousandyearscouldtranspireinadecadeortwo.Complacencyiseasy,especiallywhenbolsteredbyflawedreadingsofthe

rocks.Forawhile,until2010,concernsaboutmoderntimesweresomewhatassuagedbyongoingstudiesofaparallelscenario56millionyearsago—oneofthemassextinctionsthatdramaticallyaffectedtheearlyevolutionandspreadofmammals.Thisharshevent,calledthePaleocene-EoceneThermalMaximum,orPETMforshort,sawtherelativelysuddendisappearanceofthousandsofspecies.ThePETMisimportantforourtimebecauseitisthemostrapidwell-documentedtemperatureshiftinEarthhistory.Arelativelyfastvolcano-inducedincreaseinconcentrationsofatmosphericcarbondioxideandmethane,thetwinheat-trappinggasesofthegreenhouseeffect,causedmorethanathousandyearsofpositivefeedbacksandacorrespondingepisodeofmodestglobalwarming.SomeresearcherssawthePETMasacloseparalleltotoday’sevents,bad,tobesure—withanalmost10-degreeriseinglobaltemperatures,arapidriseinsealevel,acidificationoftheoceans,andsignificantpolewardshiftsinecosystems—butnotsocatastrophicastothreatenthesurvivalofmostanimalsandplants.ShockingrecentdiscoveriesbyPennStategeologistLeeKumpandhis

colleaguesmayhavedestroyedanylingeringcauseforoptimism.In2008Kump’steamwasgivenaccesstoadrillcorefromNorwaythatpreservedtheentireintervalofthePETM—sedimentaryrocksthat,layerbylayer,documentedinexquisitedetailtheratesofchangeofatmosphericcarbondioxideandclimate.

Page 240: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

ThebadnewsisthatthePETM—whathasformorethanadecadebeenthoughttobethemostrapidclimatedisruptioninEarth’shistory—wastriggeredbyatmosphericchangeslessthanatenththeintensityofwhatishappeningtoday.GlobalchangesinatmosphericcompositionandaveragetemperaturethattookmorethanathousandyearsduringthePETMextinctionscenariohavebeensurpassedinjustthelasthundredyears,ashumanshaveburnedimmensequantitiesofcarbon-richfuels.Thereisnoknownprecedentforsuchrapidchange,andnooneknowshow

Earthwillrespond.AtanAugust2011meetingofthreethousandgeochemistsinPrague,themoodamongclimatespecialistsfamiliarwiththenewPETMdatawassober.Thoughpublicpredictionsbythesecautiousexpertshaveremainedmeasured,thecommentsIheardoverabeerwerepessimistic,frightening.Ifgreenhousegasconcentrationsrisetoorapidly,noknownmechanismscanabsorbtheexcess.Willwarmingtriggeramassivemethanerelease,withallthepositivefeedbacksthatthatscenariomightentail?Willsealevelquicklyrisehundredsoffeet,asithassomanytimesinthepast?Weareventuringintoterraincognita—conductinganill-conceivedglobal-scaleexperimentonEarthperhapsunlikeanythathascomebefore.Whatthetestimonyoftherocksdoesrevealisthat,asresilientaslifeitselfis

andalwayswillbe,thebiosphereexperiencesgreatstressattippingpoints,duringtimesofsuddenclimateshifts.Biologicalproductivity,includingagriculturalproductivity,willmostcertainlyfallprecipitouslyforatime.Undersuchdynamicconditions,largeanimalslikeourselveswillpaythedearestprice.Thecoevolutionofrocksandlifewillcontinueunabated,tobesure,buthumanity’sroleinthatmultibillion-yearsagaremainsunknowable.Havewealreadyreachedsuchatippingpoint?Probablynotinthisdecade,

maybenotinourlifetimes.Butthat’sthethingabouttippingpoints—youcanneverbesureyou’reatoneuntilit’shappened.Thehousingbubblebursts.ThepopulaceofEgyptrevolts.Thestockmarketcrashes.Werealizewhat’shappeningonlyinretrospect,whenit’stoolatetorestorethestatusquo.NotthattherehaseverbeenanysuchthinginthestoryofEarth.

Page 241: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Epilogue

Climateschange,sealevelschange,therainsandwindschange,thedistributionsoflifeacrossthesurfaceandwithintheseaschange.Rocksandlifecontinuetocoevolve,astheyhaveforbillionsofyears.HumanscannomorestopglobalchangethanwecanalterEarth’strajectorythroughthecosmos.NorcanwedestroylifeonEarth,norevenstopitsinexorableevolution.Life

hasensconceditselfineverynicheoftheglobe.LifeaboundsinfrozenArcticice,inboilingacidpools,inrock-encasedporesmilesunderground,andonwind-bornedustspecksmilesabovetheground.Whateverstupiditywemightinflictuponourselves—whetherwecauseglobaltemperaturestoriseadozendegrees,orpoisonourairandwater,ordecimatefishstocksinthesea,orevenunleashourcollectivenucleararsenalsinaglobalholocaust—lifewillgoon.Humansmaydisappearforever,butmicroscopiclifewillscarcelymissabeat.Forbillionsofyearstocome,EarthwillcontinuetowhirldailyonitsaxisinitsannualodysseyabouttheSun.Forbillionsofyears,ourswillstillbealivingplanetofblueoceans,greenlands,andswirlingwhiteclouds.Fromspace,Earthwillbenolessbeautifulthanitistoday,humansorno.Makenomistake.Therecannotbetheslightestdoubtthathumanactivitiesof

thepastcenturyhaveinitiateddramaticchangesinatmosphericcomposition,andchangesinclimatemustfollowassurelyasthelawsofphysics.Theconcentrationsofcarbondioxideandmethane,bothefficientgreenhousegases,haveclimbedatratesunmatchedinhundredsofmillionsofyears.Suchchangesareamplifiedbyourrapiddenudingoftropicalrainforests,ourefficientconsumptionofsealife,andourincessantdestructionofhabitatsacrosstheglobe.Thankstoouractions,Earthwillgethotter,icewillmelt,oceanswillrise.Butthat’snothingnewforEarth.Why,then,shouldwecareifhumanactionsspeeduptheprocessofchange?Forone,imaginethesufferingunleashedonaworldwheresealifeundergoes

massdeathoragriculturaloutputissuddenlyhalved.Whatofthemillionsquaremilesofthemostproductivefarmlandthatwillbeflooded,theseaportsdrowned,thelivelihoodslost?Imaginethesufferingofabilliondisplacedandhomelesshumans.Ifwecaretoact,itissurelynotinorderto“savetheplanet.”Earth,after

Page 242: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

survivingmorethan4.5billionyearsofconstant,extravagantchange,doesn’tneedsaving.Perhapssomeethicistswillfocustheireffortsinsteadonsavingthewhalesorpolarbears,fortheirlosswouldbepermanentandundeniablysad.Buteventheextinctionofthesegreatbeasts,orofelephantsorpandasorrhinosoramillionotherspeciesbothcharismaticandmundane,isbutatemporarylosstoEarth.Newgreatandwondrousbeastswillinevitablyevolve,inageologicalmoment,tofillthosevacantniches—perhapsinnomorethanamillionyears.Largemammalslikeourselvesmaysuffermassextinction,butothervertebrates,maybethebirds,willtakeourplace.Maybepenguins,whichhaverecentlybeenshowntoevolveparticularlyrapidly,willmorphandradiatetofilltheniches:whalelikepenguins,tigerlikepenguins,andhorselikepenguins.Maybethepenguinswilldevelopbigbrainsandgraspingfingers.Whateverwedo,Earthwillcontinuetobeavariegatedlivingworld.No,ifwechoosetoworry,itshouldbefirstandforemostforourhuman

family,foritiswewhoaremostatrisk.Earthisagreatwinnowerofwasteanderror.Lifeinitsgrandeurwillgoon,buthumansociety,atleastinitspresentprofligatemode,maynotmakethecut.Wehumanshavethesoberingpotential,througheitherourthoughtlessactionsorourequallythoughtlessinaction,toheapuntoldsufferinganddestructionuponourownspecies.Aswecontinuetoalterourhomeworld—our“palebluedot,”toquoteCarlSagan—atafasterandfasterrate,thetimeremainingforeffectiveactionslipsaway.Earthisnotsilentonthispoint;itsstoryistheretoreadintherichrecordof

therocks.Forthousandsofyears,wehavebeenwiseenoughtoseekoutthestoryofEarthinanefforttoknowourhome.Letushopewelearnitslessonsintime.

Page 243: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Acknowledgments

Dozensoffriendsandcolleagueshavecontributedtotheconceptanddevelopmentofthisvolume.Iamespeciallyindebtedtofourscientistswhoembracedtheconceptofmineralevolutionin2008,initsearlystages.MineralogistRobertDowns,alongtimefriendandcollaborator,providedhisconsiderableexpertiseonthenatureanddistributionofminerals.PetrologistJohnFerryofJohnsHopkinsUniversity,whomI’veknownsinceourdaysingraduateschool,contributedasophisticatedtheoreticalframeworkforthenewapproachtomineralogy.GeobiologistDominicPapineau,aformerGeophysicalLaboratorypostdoctoralfellowandnowonthefacultyofBostonCollege,wasoneoftheearliestcontributorstoandmostperceptiveandconstructivecriticsofthemineralevolutionidea,inspiteoftheobjectionsofhisotherCarnegiementors.GeochemistDimitriSverjenskyofJohnsHopkinsUniversity,myclosestprofessionalcolleagueforthepastseveralyears,broughtawealthofideasandinsightstotheconceptualdevelopmentofmineralevolution.Thesefourfriendsweretheearliestchampionsofthemineralevolutionidea,andallhavebeenarticulateandeffectivecollaborators.Thisbookwouldnothavebeenpossiblewithouttheirhelp.WegainedinvaluableinsightsfromPrecambriangeologistWouterBleakerof

theGeologicalSurveyofCanada,meteoriteexpertTimothyMcCoyoftheSmithsonianInstitution,andbiomineralogyauthorityHexiongYangoftheUniversityofArizona.Theyjoinedintheinitialpublicationoftheseideas.SubsequentcollaborationswithDavidAzzolini,AndreyBekker,DavidBish,RodneyEwing,JamesFarquhar,JoshuaGolden,AndrewKnoll,MelissaMcMillan,JolyonRalph,andJohnValleyhaveamplifiedtheconceptandledusintoexcitingnewdirections.IamespeciallyindebtedtoEdwardGrew,whosestudiesoftheevolutionofthemineralsoftherareelementsberylliumandboronhavetakenthefieldtoanewquantitativelevel.Thisbookcouldnothavebeenundertakenwereitnotformymanycolleagues

intheorigins-of-lifefield.SpecialthanksgotoHendersonJamesCleaves,GeorgeCody,DavidDeamer,CharleneEstrada,CarolineJonsson,ChristopherJonsson,NamheyLee,KatarynaKlochko,ShoheiOno,andAdrianVillegas-Jimenez.IhavealsobenefitedimmeasurablyfromcollaborationswithHarvard

Page 244: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

paleontologistAndrewKnollandseveralofhisassociates,notablyCharlesKevinBoyceandNoraNoffke,aswellasNeilGupta.IhavereceivedunflaggingsupportfrommycolleaguesConnieBertka,

AndreaMagnum,andLaurenCryanattheDeepCarbonObservatory,aswellasJesseAusubeloftheAlfredP.SloanFoundation,whichhasprovidedgeneroussupporttolaunchthisglobaleffort.Theyhavebornemuchofthebruntofmydistractionswhileworkingonthisbook.MycolleaguesatGeorgeMasonUniversity,especiallyRichardDiecchio,HaroldMorowitz,andJamesTrefil,haveengagedinnumerousstimulatingdiscussionsthroughoutthedevelopmentofthemineralevolutionconcept.IamalsogratefultoRussellHemley,directoroftheGeophysicalLaboratory,whohasofferedunqualifiedsupportandencouragementforthisproject.Manyscientistsofferedinvaluableadviceandinformationduringtheresearch

forthisbook.IthankRobertBlankenship,AlanBoss,JochenBrocks,DonaldCanfield,LindaElkins-Tanton,ErikHauri,LindaKah,LynnMargulis,KenMiller,LarryNittler,PeterOlson,JohnRogers,HendrickSchatz,ScottShepard,SteveShirey,RogerSummons,andMartinvanKranendonk.IamgratefultotheVikingeditorialandproductionteamfortheirenthusiasm

andprofessionalisminthedevelopmentofthisbook.AlessandraLusardifirstchampionedthebookandprovidedcriticaladviceinitsdevelopmentalphase.LizVanHooseprovidedinvaluableeditorialguidanceandusheredthemanuscripttoitsfinalstatewithcreativity,efficiency,andgoodhumor.I’dalsoliketothankBruceGiffordsandJanetBiehl.TheoriginalideaforthisbookwasdevelopedincollaborationwithEric

LupferofWilliamMorrisEndeavor,whohasprovidedthoughtfulanalysis,timelyadvice,andconstantsupportateverystageofthisproject.Iammuchinhisdebt.MargaretHazenhashelpedmethroughoutthedevelopmentofthemineral

evolutionidea,fromlongbeforeitsfirstarticulationonDecember6,2006,toitspresentationinthisvolume.Herkeeneyeandinfectiousenthusiasminthefield,herinformedadviceandincisivecritiquesonallmymanuscripts,andherspontaneousjoyandgentlesympathyinresponsetothesuccessesandfailuresofanintenseresearchcareerhavesustainedthiseffort.

Page 245: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Indexabiogenicpetroleum,vs.biological,217–18

abyssalplains,113accretion:ofgraniteislands,124ofplanetesimals,19,124ofplanets,54

aceticacid,143achondrites,19,20,24acidrain,251acids,83Adam(biblical),29adaptation,233

Africa,186,191,195,235asoriginofhumanbeings,255AfricanPlate,121–22agriculture,90,109alanine,141albedo,211–12Aldrin,Buzz,34algae:green,152,155,198,206,213,232,236,242seealsomicrobialmatsAlps,114,174

aluminum,11,12,57–60,61,66,69,72,103,127inplagioclasefeldspar,711

Amasia,seeNovopangaeaAmazonia,210amber,248AmericanMineralogist,4–5,201American-Russianrivalry,217–18aminoacids,132,135,136,141,152aslefthanded,140

ammonia,12,84,141,199ammonites,240,254fossilized,252–53

amphibians,247–48,278

Page 246: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

amphibole,59,104Anbar,Ariel,178–79Andes,114angularmomentum,47,50–51animals,227–31andedibleplants,247endangered,257,278first,227–30,235–37hardshelled,236–37,238land,236large,237,249,252–54softbodied,236,238,240

anorthite,66–67,71–72Antarctica,191,195,235,261glacialdrillcoresfrom,2,28icein,16,91,277matchingcoastlineof,109meteoritesin,15–16,19,20

AntarcticPlate,121antennasystems,161Anti-AtlasMountains,238Apexchert,Australia,166–67,168,172Apollomissions,32,33–40,66,87,266Apollo12LunarSamplePreliminaryInvestigationTeam,35Apophis,263AppalachianMountains,2–3,28,234aquifers,90Arabiandesert,17ArcheanEon:biospherein,149,151,152

ArcheanEon(cont.)fossilsfrom,165iceagein,224

ArcticHotel,276argon,29Armstrong,Neil,34arsenic,11asbestos,57ash,72–73Asia,235

Page 247: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

AsteroidBelt,19,23asteroids,9,14,23,36,54,61,84,135,149,271incollisionwithEarth,253,254,257,263–65,278incontinentformationtheory,106–7deflectionstrategiesfor,265asmoons,32seealsodinosaurs,extinctionofastronauts,survivalof,266–67

AtlanticOcean,113–18correlatingcoastlinesof,108–10,111expansionof,115–16,118,119,120,184,232,261–62formationof,235,253riftvalleyof,114–17

atmosphere,5,80,155,206,210,224,230,236,253,262early,94–95,103,190,197future,260ofMars,25ofTitan,24ofTriton,24ofVenus,25seealsoglobalwarming;GreatOxidationEvent;greenhouseeffectatomic

number,38atoms,6,8,11,56inheatproduction,62

Australia,17,189,195,235,261cratonsin,169–70,186fossilsearchesin,169,172,173,174,176matchingcoastlineof,109

AustralianNationalUniversity,169autocatalyticnetwork,144,146Avzyanformation,198azurite,177

Baltica,190–91,195,210bandedironformations(BIFs),156,197,199,206,223,225Barghoorn,Elso,172basalt,65,99,104,271inEarth’scrust,1–3,71–76,179magneticsignalof,116meltingof,103

Page 248: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

inmeteorites,20inoceanfloor,115–16,118,260inoriginofcontinents,124inrockyplanets,14,71,127subductionof,124–25involcaniceruptions,72–73weatheringof,99

bases,83–84beaches,79,103,106,126microbialmatson,172–76

Bean,Alan,34bedrock,212Belt-Purcellsupergroup,194,196BeringStrait,274beryl,202–3beryllium,78,103,183,202–3graphof,203

BigBang,5,6,7–8,10,12,54timingof,29

BigCottonwoodCanyon,Utah,48“bigsix”elements,56–60,65,79,102BigThwack,31,42–52,53,56,66,95,98binary(double-star)systems,22biogenesis,131–32biologicalpetroleum,vs.abiogenic,217–18biomass,burialof,210–11,227biomineralization,237–38biomolecules,experimentswith,132–36,140biosphere,seecoevolution,ofgeosphereandbiospherebirds,54,278assurvivingdinosaurs,254

birthdefects,139blackcherts,172seealsoApexchert;GunflintchertblackEarth,53–76

blackflies,276blackholes,252blackshale,170,172,173,178–79,187,241blacksmokers,inoriginsoflife,133–34,136Blankenship,Robert,161–62blood,ironin,58,59

Page 249: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

blueEarth,77–101“bomb”(experimentalpetrologydevice),65,92“bombs,”volcanic,72“boring”billion,181–205,206,222DarkAgesanalogyfor,182feedbackloopsin,208mineralogyof,200–204asperiodofslowchange,184,195,205

boron,78,183,202Boyce,Kevin,243–45brachiopods,238,241,249Brasier,Martin,vs.Schopf,166–67Brazil,191,195BritishMuseum,166Brocks,Jochen,170–71bryozoa,238,249Buick,Roger,181,199BurgessShale,2240butane,150butterflies,229

Cabeuscrater,88calcite,216calcium,11,12,56,57–60,66,69,72,83,99,103,126,127,236California,Universityof:atBerkeley,160atLosAngeles,165,220atRiverside,226atSanDiego,157

CaliforniaCurrent,90Callisto,84,127Cambrianboundary,26Cambrian“explosion,”27,237,254CambrianPeriod,238Cameron,Alastair,44Canada,fossilsearchesin,169CanadianRockies,115,237canali,85Canfield,Donald,198,199

Page 250: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

CanfieldOcean,198CanterburyCathedral,265capturetheory,33,39–40carbon,11,12,28,38,79–80,127,149,151,255inbiomass,210–11,227inclimateandenvironment,219deep,219–21lightvs.heavy,220asmostimportantelement,219organicvs.inorganic,176inplantfossils,245–46recyclingof,80instars,9–10asvitaltolife,9,130–32,142

carbonate,83,126,151carbondioxide,12,25,78,82,99,100,126,190,224,262,279,282inphotosynthesis,153,159

carbon-14,160carbonicacid,99,190CarboniferousPeriod,247,248,251carbonmonoxide,12CarnegieInstitution,37,64–65,88,110,135,138cells,228–29self-assemblyof,137–39

cephalopods,fossilized,252–53cerium,155Challenger,HMS,112Chamberlin,RollinT.,111Charon,iceon,84chemicalbonding,56,59chemicalreactions,first,11–13ChesapeakeBay,277fossilsof,26–27

China,191,195,198,230chirality,139–41chlorine,78,83chlorofluorocarbons(CFCs),158chlorophyll,161chloroplasts,228

Page 251: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

chondrites,15–21,24,25,28asrecordofvolatiles,79–80

chondrules,15–16,183Choubertella,239chromium,37–38,58cinnabar,204citricacidcycle,143–44,146clams,238,249clay,21,38,91,93,106,190,227,246onMars,86–87

Clementinemission,87climate,210–12,222currentchangesin,231future,257moderatefluctuationsin,232unstable,212–15

Clinton,Bill,166clouds,90,100–101co-accretiontheory,33,39coal,241,248coastlines,alterationsin,268,274–75,277seealsocontinentalcorrelations;continentalshelvesCody,George,245

coevolution,ofgeosphereandbiosphere,3–6,131,148,151,180,226–27,233,246,251,256,269,280,281–83

author’sviewson,5,138–39,177–78,201–2Collins,Mike,34Columbia(Nena;Nuna;Hudsonland),191–92,194,196,203,204comets,14,84,149commonalityofspin,14compositecratons,187conduction,61–62,63,122Congocraton,209Conrad,Charles,Jr.,33–34continentalcorrelations:coastline,108–10,113,114,196hypothesestoexplain,111seealsoplatetectonics“continentaldrift,”109

continentalshelves,251,253,260continents,75,98–99,232

Page 252: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

asteroidimpacttheoryof,106–7coastlinecorrelationsof,108–10,113,114,196cratonsasfoundationsof,186–87driftingof,seeplatetectonicsgraniteasfoundationfor,102,103riseof,105,124–26

convection,62–63,107,118,122,123,255convectioncells,123,125convergentplateboundaries,191copper,11,156,177coralreefs,asevidenceofshortdays,48corals,238,249fossilized,3,48,241,272

core:ofEarth,35,38,44,45,58,68,70,94,102ofMoonvs.Earth,38,45ofplanetesimals,19,20ofplanets,60

core-mantleboundary,68–70,271corundum,12cosmicclumping,8–9cosmicnovelty,10–11cosmicrays,70,86,162cosmochemistry,55–56Cosmos,265cratons,186–88worldwidedistributionof,186,190–91,209–10

Creationism,29crinoids,241,249crust:ofEarth,53–76,102–26,150,194;seealsobasalt;graniteoceanic,113,119–

21,123crystallization,5ofEarth’scrust,64–67

crystals,57formationof,12,64asrecordofoceanformation,95–98

Cubanmissilecrisis,120cyanobacteria,166,170cyclotrons,160

Page 253: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

D″(Ddoubleprime)layer,69–70Daguinaspis,239Darwin,Charles,33,133Darwin,GeorgeHoward,33,40,108Deamer,David,137,142DeepCarbonObservatory(DCO),219–21deep-Earthexperiments,216“deephotbiosphere,”218–19deeptime,25–30deepwatercycle,91–99Deimos,32deserts,3meteoritesin,17–19

deuterium,229Devonianperiod,48diabase,73diamondanvilcell,92–93,216diamonds,5,12diatoms,161dinosaurs,243,252–54extinctionof,26,27,52,54,254–55,264,271

dip,185disk,inSolarSystemformation,13–14,15divalentiron,58–59DNA,138,144,152,170,225,228Dopplershift(redshift),28–29Doushantuoformation,230,237drillcores,2,169,279dunite,66,67dust,cosmic,13DuToit,James,110

Earth:ageof,6,25–30,31,53,77,102,127,154,181,206,232,257asalteredbylife,151,154,276–80,281–83collisionswith,31–32,42–43,54,61;seealsoTheia-Earthcollisioncooling

of,seeglobalcoolingcoreof,35,38,44,45,58,68,70,102crustof,53–76,102–26;seealsobasalt;granitedeterminingtimescaleof,27–

28

Page 254: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

diversificationof,75,78–79,103dominantelementsof,56–60dynamicnatureof,2–6,128,183–84,193,205,206,233,257–80formationof,7–30,31–32,55futureof,257–80,281–83in“Goldilocks”zone,25habitabilityof,25,259housemetaphorfor,207–8asindifferenttohumanlife,256,268–69,275,280interconnectedsystemsof,207interiorof,62–63,64,67–70,125internalpressureof,68,70internaltemperaturesof,70,75layeredstructureof,58,68living,150–52magneticfieldof,seemagneticfieldmantleof,66–67,68,72,102Moon’sdistancefrom,46,48Moonvs.,38,41orbitof,47–48,274projectedendoflifeon,22,260rotationof,47–48,49,50–51,75sevencoretruthsof,6sizeof,42solidificationof,51;seealsocrystallizationsurfaceof,74–76,98–99,178–79Theia’scollisionwith,seeTheia-Earthcollisionasthree-dimensional,6tiltof,45transformativepowersof,256uniquenessof,127–28universebefore,7–13warmingof,seeglobalwarmingwateron,25,38,87,89–90seealsoEarthhistoryEarth-crossingasteroids,263–64

Earthhistory:blackphaseof,53–76bluephaseof,77–101“boring”billionphaseof,181–205grayphaseof,102–26greenphaseof,232–56predictionoffuturebasedon,3,260,272redphaseof,254–80

Page 255: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

asrevealedincratons,186–87asrevealedinmeteorites,15–18asrevealedinrocks,2–3,4,6,77,283shorterdaysin,47–48,75stasisin,6,181–82,184,192–95,200–201,204,205,208transformationaleventsin,6,31,52,53–54,153,183–84,212,249–52,253,

278;seealsospecificeventswhitephaseof,206–31seealsocoevolutionofgeosphereandbiosphereEarth-Moonsystem,47

earthquakedetection,120–21earthquakes,256,270,278California,122depthof,120–21future,270,278undersea,115,120–21

Earthrisephoto,1,6Earthsystems,asinterconnected,6EastAfrica,109EastPacific,ridgesunder,115eclipses,49EdiacaranPeriod,237,238asanimaldominated,229–30

eggs,fossilizedembryosof,230electricity,conductorsof,60electronmicroprobe,38,244electrons,8,11,54,56,150elements:“bigsix,”56–60,65,71,79,102dominantEarth,56–60oflife,10–11,130periodictableof,217asproducedinstars,9–11rare,11,78,103,202

elements(cont.)ofrocks,11spaceasseededby,10–12seealsocosmochemistryelephants,254,282

endosymbiosis,228–29vs.Darwinianevolution,228

energy,8,129

Page 256: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

forlife,130,151,152,162,163,199Eofallotaspis,238Eratosthenes,1–2,3,6erosion,79,189inmountainforms,3,28,234

ethanol,64Euclid,1,122eukaryotes,170,206EurasianPlate,121Europa,23waterandiceon,84,127

Europe,191EuropeanSpaceAgency,24evaporation,90evaporiteminerals,87Everest,Mount,108,237evolution,142accelerationof,233Darwinian,130,132,146,228ofhumanbeings,255oflivingthings,125,151,233,247–48mineral,177

Ewing,Maurice,115exobiology,135ExobiologyProgram,NASA,129expanding-Earthmodel,111,120experimentalpetrology,64–65extinctions,249–52extraterrestriallife,searchfor,23,24,25,84,85,129,134–35,161,218eyes,237,241Eyjafjallajökull,269

facies,241faintSunparadox,99–101,224Farquhar,James,157feedbackloops,207–8asacceleratingchange,279inclimatemoderation,209–12,259inglobalwarming,208,215–17,231,280

Page 257: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

methanein,221inmicrobesandclay,227insnowballearth,213–14

feldspar,57,66,96,126ingranite,103

ferns,fossilized,241firstlight,8–10fish,247fissiontheory,32–33,40,108Flagstaff,Ariz.,observatoryin,85floodbasalts,271Fogel,Marilyn,175–76,245foraminifera(forams),273forests,emergenceof,246,248fossils:ofanimals,230incarbonatecliffs,237chemical,168incontinentalcorrelations,110,125controversyoveroldest,166–67indeterminingageofEarth,26–27asevidenceforphotosynthesis,164–67fish,247frog,240ofhard-shelledanimals,236–39magnetismof,185Martian,165–66microbial,149,166–71multicellular,228atMuslimshrine,239Myocene,268oldest,165–67,168,170–73plant,242–45asrecordofEarth’shistory,241,249asrecordoftransitiontoterrestriallife,242,247–48smallest,168–71,198ofsoft-bodiedanimals,240sparseevidenceoflossin,250,254spore,242

Page 258: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

trilobites,238–39,241,243,249–50,252,254frogs,278fossilized,240

fungus,245,246futureEarth,257–80asdesertworld,259–60endgameof,258

gabbro,73galaxies:formationof,13retreatingfromEarth,28–29

Ganymede,23Gaoyuzhuangformation,198garnet,57,58,59,91gasgiantplanets,22–24,102compositionof,14vs.rockyplanets,14–15

gasgiants,47,84Gaskiersglaciation,222,236genetics,asfoundationforlife,128–31,144geochemistry,vs.organicchemistry,138GeographicalSocietyofAmericaBulletin,118geologicalcalendars,27geologicalprocesses,gradual,2–3geology,3,26,109GeophysicalLaboratory,CarnegieInstitution,37,64–65,175,216,219,225,

243,245geosphere,seecoevolution,ofgeosphereandbiospheregeysers,75,95glaciation,26,223–25,254,255seealsoiceages;snowballEarth;specificglaciations

glaciers,2,89,181,195,276Earth’shistoryrecordedin,222sedimentsin,212

globalcooling,54,60–63,71,78,95,151,211,273globalwarming,273–75,277anomaliesin,41–42feedbackloopin,208,215–17warningsabout,231,275–80,281–83

Page 259: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

glucose,160gold,11,78,81,109Gold,Thomas(Tommy),218–19“Goldilocks”zone,Earthin,25Gondwana,234–35Gosse,Philip,29Gould,StephenJay,240granite,127asbuoyant,104–6,124compositionof,103–4inEarth’scrust,102–26,179formationof,103,125iceberganalogyof,105

graphite,asfirstmineral,12gravitationalclumping,44–45gravity,24,45innebulaformation,5inplanetesimalformation,21,25inSolarSystemformation,13,30instarformation,8–10seealsotidalbulge;tidesgrayEarth,102–26

greatapes,255GreatBarrierReef,Australia,3GreatDepression,112GreatDying,249,250–52,271causeof,250–51

GreatOxidationEvent,154–80,197,203,259rocksasevidenceof,155–58second,225–27skepticismabout,156third,248–49timeof,158,181

greenEarth,232–56fivechangesin,232–33

greenhouseeffect,279–80infaintSunparadox,100onVenus,84

greenhousegases,61,101,215,222,282asendoficeages,224

Page 260: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

feedbackloopsin,208,211Greenland,191fossilsearchesin,169,176glaciersof,2,3,28,109

GreenRiverShalepreserve,Wyo.,2,27Grew,Ed,202–3Grotzinger,John,192–93groundwater:onEarth,89onMars,86

GulfStream,42,277Gunflintchert,172,198

HadeanEon,54–55,77Earth’ssurfacein,74–76,98–99life’sbeginningsin,132,149,151

hafnium,19Hales,Stephen,159half-life,28,96“handedness,”139–41hard-shelledanimals,26,27Hauri,Erik,88,93HawaiianIslands,3,42formationof,2volcanicactivityon,28,70,72,268

Hazen,Margee,240–41heat:inEarth’sinterior,60–63,70,74–76,100,122,255inmeteorites,19

heattransfer,61–63Heezen,Bruce,114–15,120helium,5,8,10,11,13,14,24,54,102onEarth,25,56inSun,22,258

heliumnucleus,9hematite,59,151high-pressureminerology,91–92Himalayas,108,114,234,235Hoffman,Paul,212–14,222–23Holmes,Arthur,105,106

Page 261: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

hominids,255Homohabilis,255Homosapiens,254Hood,Mount,194hopanes,152,169–71,218hotspots,70,106hotsprings,75HudsonRiver,73humanbeings:asadaptableandresilient,255–56appearanceinNorthAmericaof,26,255,274commonprimateancestorof,155first,254–56nomadic,256possibleextinctionof,257,267,275,280technological,256

humpbackwhales,257Huygenslander,24hydrocarbons,218–21hydrogen,5,11,13,14,24,54,102,142,163onEarth,25,38,56,260lightvs.heavy,220instarformation,8–10inSun,22,258inwater,80–81,83,93

hydrogenbomb,9hydrogenmolecules,11–12hydroniumions,83,90,99hydrons,83hydroxylgroups,83,90

IapetusOcean,262ice,4,13,72,82Antarctic,16Arctic,4inEarth’sfuture,271onJupiter’smoons,23nearEquator,213atpoles,214

Page 262: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

propertiesof,81–82seealsoglaciation;glaciersiceages,212–14,251,253,255future,257,273–74

icebergdetection,112icebergs,ingraniteanalogy,105icebridges,255icecaps,89Iceland,72,269–70ice-skating,82igneousrocks,36,96,188IlulissatGlacier,Greenland,276“InceptionoftheClayMineralFactory,The”(Kennedy),227“incompatibleelements,”69IndexFossilsofNorthAmerica(Shrock),239India,189,235matchingcoastlineof,109

IndianOcean,ridgesunder,115,119infantsurvival,coldtemperaturetheoryof,255infraredradiation,63,122,161infraredspectroscopy,93insects,245,247,249,276interglacialperiods,255intermediateocean,181,196–99,204Intrepid,34introversion,262invertebrates,247Io,23ionicbonds,59–60ionmicroprobe,88,93ions,59,83,90,99iron,9–11,13,14,72,99,103–4,127,153,177,199,225bivalentandtrivalent,58–59incoreofEarth,35,38,44,58,70onEarth,56,58–60aselectrondonor,58–59,150greenorbluecolorof,58–59ofMoonvs.Earth,39,40,41,45inoceans,197redcolorof,59

Page 263: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

threechemicalrolesof,58–59seealsobandedironformations(BIFs);rustisostasy,105–6

isostaticreadjustment,105isotopefractionation,157–58isotopologs,220–21

JackHills,Australia,95,97,104Japan,261Jefferson,Thomas,15Jeffreys,Harold,110–11jellyfish,228,230,236Joggins,NovaScotia,240Joyce,Gerald,129–30JuandeFucaRidge,magneticmapof,118–19,122Jupiter,20,102asgasgiant,14,22–23moonsof,23,32,84,127,135

Kaapvaalcraton,186Kah,Linda,192–93Kalaharicraton,209Kamen,Martin,160Kauffman,Stuart,144KavliFuturesSymposium,276Kennedy,Martin,226–27Kenorland(Superia),189–90,204Kepler,Johannes,50Knoll,Andy,175,192–93,243Kump,Lee,279

Laki,269–70LamontGeologicalObservatory,ColumbiaUniversity,114landbridges,110,273–75landplants,242landslides,4“Laser-RamanImageryofEarth’sOldestFossils”(Schopf),167lasers,93Laurentia,190,191,194,195,210,234–35,262lava,72–73

Page 264: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

lawofmotion,Newton’s,110lead,29,182atomicstabilityof,28,96

leaves,245–48lemonjuice,83LewisandClarkexpeditions,267life,75,147–49anaerobic,162animal,228–30buildingblocksof,131–36,152chemicalfoundationof,128chiralityand,139–41definitionsof,128–30distinguishingtraitsof,128diversityof,248–49,254Earthasappropriateenvironmentfor,25extremophile,134human,254–56ingredientsfor,149magnetosphereinsurvivalof,70multicellular,228–29originsof,12,127–53rawmaterialsfor,130–31reproductionashallmarkof,141–47selectionand,137–39asself-sustainingandevolving,128–29watercyclein,91seealsocoevolution,ofgeosphereandbiosphere;extraterrestriallife,search

forlightcarbon,210–11,246lightning:energyand,164inoriginoflife,132–33,136

lime,58limestone,4,151,153,173,187,237fossilsin,241

LimitedTestBanTreaty,seismologyand,120limonene,139lipids,134,136,137,152,218as“boring,”182

Page 265: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

lithium,5,8,78,103“LittleGreenMen”(LGM),218Loihi,268Lowell,Percival,85lowermantle,68LUNA20,37lunareclipses,49LunarHighlands,66lunarmodules,34LunarProspector,87–88LunarReceivingLaboratory,Houston,34–35LunarSampleBuilding,JohnsonSpaceCenter,Houston,37

McRae,Mount,Australia,170,178–79Madagascar,189Magellan,267magma,32,33,35,44,64,72onMoon,49–50,66tidesof,seetidalbulgewaterin,91

magmachambers,20,73magmaoceans,51,61,69,71,78coolingof,66

magnesium,9,11,12,14,56,57–60,72,99,126,127magnesiumsilicates,68magneticfield,116–19,188flipsin,117–19andfossilmagnetism,185keyfindingsabout,117–18

magnetite,116magnetometer,116–17magnetosphere,70malachite,177mammals,54,255extinctionof,279–80,282first,253,254

mammoths,255manganese,150,156,177,225mantle,ofEarth,66–67,68,72,91,102electronsin,150

Page 266: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

replicationexperimentsfor,92–94temperatureandpressurein,92

mantleconvection,123–24mantles,ofplanetesimals,20maps:colortopographic,114ofJuandeFucaRidge,118–19,122ofNewWorld,108ofpastandfutureEarth,184–86,189

Margulis,Lynn,228–29MarianaIslandsoceantrench,108Marinermissions,85Marinoanglaciation,222,230Mars,19,53,56,102,104,201basalton,71“canals”on,85Earth’sprojectedcolonizationof,266–67meteoritesfrom,18missionsto,85moonsof,32,33asmostEarth-likeplanet,25photosof,87redcolorof,163,178asrockyplanet,14searchforlifeon,85,135sizeof,43tectonicson,127wateron,85–87,127,163,178,259

Mars(Lowell),85MarsandItsCanals(Lowell),85MarsastheAbodeofLife(Lowell),85MarsOdysseyspacecraft,86MarsReconnaissanceOrbiter,NASA,86Mason,Ronald,118–19,122massextinctions,255,269,271,279–80,282complacencyin,279asdifficulttodocument,250,254opportunityafter,252seealsospecificevents

Page 267: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

mass-independentfractionation,158massspectrometers,156,221mastodons,255Mauritania,103mega-tsunami,253megavolcanoes,94,257,269–71,278melting,ofrocks,72Mendeleev,Dimitri,217MendocinoFractureZone,119Mercury,22,102,104basalton,71deathof,258elementsof,56ashotanddryplanet,84asrockyplanet,14asuninhabitable,24

mercury(element),11,64,177threestatesof,203

MesoproterozoicEra,181–205MesozoicEra,54,252metabolism:chemistryof,135–36asfoundationforlife,128–31,144

metallicbonding,60meteorbombardment,32,74meteorites,14commercialvalueanddealingof,17–18iron,15,17,20Martian,18,165–66microbesdiscoveredin,165–66mineralformationin,19,21inMoonbombardment,37recordofEarth’shistoryin,15–18,55typesof,20seealsoachondrites;chondritesmethane,12,82,101,150,164,208,220,

224,231,282deep-Earth,215–16labproductionof,216sourcesof,215–19,220

Page 268: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

methaneclathrate,216–17mica,21,38,57,58,59,93,103microanalysis,ofplantfossils,243–45microbes:andclay,227“deephotbiosphere”of,218iniceage,214andmethane,215photosynthesisin,162,210

microbialmats,171–72,174–76,192author’sresearchon,175–76wrinkledsurfaceof,174–75

Mid-AtlanticRidge,20,113–18,121MiddleEast,fossilsearchesin,172Milankovitch,Milutin,274Milankovitchcycles,274MilkyWay,13Miller,Ken,273–74Miller,Stanley,132–33,135,138,142Millerites,133Miller-Ureysparkscenario,132–35,140author’sscenariovs.,136

“MineralEvolution,”4,201mineralevolution,4,71,104,177,201,226,285–87cartoonof,201testsofhypothesisof,201–3seealsocoevolution,ofgeosphereandbiospheremineralogy:paradigmshiftin,4asreframedbyauthor,201

mineralogy,traditional,200–201seealsomineralevolutionmineralrevolution,181–205

minerals:author’scatalogof,177–78colorful,180incontinentalcorrelations,110,125Earth’smostcommon,71evaporite,87asevidenceoflife,177asevidenceofoceans,97

Page 269: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

formationoffirst,12asformedinmeteoritesandplanetesimals,19,21formedthroughrock-waterinteractions,86–87ashostsforwater,91,94increaseddiversityof,203–4andlife,seecoevolution,ofgeosphereandbiosphereoriginof,4,177–78ur-minerals,12,21

mining,109,110MioceneEpoch,268Mirovia,196–98,209MIT,35,71,192,2329author’stenureat,105,108

mitochondria,228MobileQuarantineFacility,NASA,34moissanite,12molecular“letters,”145–46molecules,11–12inoriginoflife,132–49self-replicating,141–47

molybdenum,178–79,199,225monkeys,255MontagneNoire,FrenchAlps,174Moon:ageof,45anomaliesof,42basalton,71concurrentformationofEarthand,39,97coreof,38cyclesof,49distancefromEarthto,46,48asdry,38,87elementsof,56explosionon,265formationof,31–52,53,55,61,78,96,106,183askeytowateronEarth,87–89landingson,1,32,33–40,55maresof,71mineralcompositionof,38,104orbitof,41,47,49,50,267

Page 270: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

peculiaritiesof,32–33primordialvs.current,46–48

Moon(cont.)asrecedingfromEarth,50–51,75,78rotationof,47sizeof,32,45surfaceof,1,66,87theoriesabout,32–33,38–40tidesand,48–52wateron,87–89

Moondust,35–36author’sinspectionof,37–38

Moonrocks,32,33–40,88author’scontactwith,34–36,37,88asrecordofMoon’sorigin,35–46,66vs.Earthminerals,38

moons,84ofgasgiants,23,32orbitsof,14varyingsizesof,32seealsoMoonMorocco,17–18,277

mosquitoes,276motion,Newton’slawsof,157mountainbuilding,66,73,105,106,187,189,191,195,196,203,234,261mountains,undersea,112–15“multipleworkinghypotheses,”32Murchisonmeteorite,137,142mutation,128,130,147mycorrhiza,246

Namibia,172NASA,88inastrobiology,165–66budgetof,34,266lifedefinedby,129,130insearchforlifeonotherworlds,23,130,134–35,165

NationalAcademyofSciences,229,245Nature,170,198,201nautilus,chambered,252nebulas,15

Page 271: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

formationof,5,13inSolarSystemformation,13–14,15

neon,9NeoproterozoicEra,181“NeoproterozoicSnowballEarth,A”(Hoffman),212,222Neptune,23,102asgasgiant,14moonsof,24,32,41

neutrons,8,38neutronspectroscopy,86,87–88neutronstars,218“NewModelforProterozoicOceanChemistry,A”(Canfield),198NewScientist,The,201Newton,Isaac,110,157nickel,150,156,1771955CR(asteroid),263nitrate,151nitrogen,11,12,38,51,80,126,127,142,199,225inphotosynthesis,152asvolatilecomponentofEarth,78,79–80

nitrogenase,199nitrogenoxides(NOX),164NobelPrizes,201Noffke,Nora,171–76,192“nominallyanhydrous”minerals,91NorthAfrica,desertsof,3,17NorthAmerica,190,191arrivalofhumansin,26,255,274cratonsin,186

NorthAmericanPlate,121,122NorthEquatorialCurrent,909NorthPacificCurrent,90novelty,molecular,145–46Novopangaea(Amasia),260–62nuclearfusionreactions,9–10,23,54,258nuclearweapons,120nuclei,ofatoms,11nucleotides,145

Page 272: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

ocean-floortopography,112–15,118,119oceanridgesystems,crustgeneratedat,115,116,119oceans,127,197bluecolorof,98changesinlevelof,5,233,241–42,251,253,255,268,271–75,277crustof,113,119,121–22currentchangesin,5first,94–99formationof,77–101,103,104future,259,271–77onJupiter’smoons,23measuringdepthof,272–73mineralsdissolvedin,126pHof,99salinityof,83,98–99sedimentsin,273inshapingofEarth,79stratified,226superocean,192,196,234–35aswaterrepositories,89seealsospecificoceans

Ockham’srazor,42oil,asrenewableresource,218olivine,12,20,37,57,58,91,92,96basalt,73informationofEarth’scrustandmantle,66–67,68,72,94

Olympia,Mount,194Omphalos(Gosse),29opal,87Opportunityrover,86orbits:anomaliesof,41ofMoon,41,47inSolarSystem,14

ore,110,125,182–83,197ofstars,10

organelles,228–29origins-of-liferesearch,132–35author’s,135,137–39

Page 273: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

selectionin,137–39OriginsoftheContinentsandOceans,The(Wegener),110oxaloaceticacid,143oxidation,150oxygen,11,12,14,127,142,255inanimalmetabolism,248–49atmospheric,80,155,206,210,224,230,236,253,262onEarth,56aselectronreceptor,56–60,150,180andfirstanimals,228,231inhumanbeings,180isotopesof,38–39,40,272–73inlife,153,228,231inmeasurementofoceandepth,272–73inoceans,198originof,158–62inphotosynthesis,152,154,179productionof,9,162–64,170–71risein,seeGreatOxidationEventscarcityof,74,126,150,154,156,162,

177,190,199,209,251,253inwater,80–81,83,93

ozonelayer,158,209,236collapseof,251

PacificOcean,33,89–90,108,119,261floorof,118–19riftvalleyof,117

PacificPlate,121,122Paleocene-EoceneThermalMaximum(PETM),279–80paleomagnetism,116–17paleontology,164molecular,168–71

PaleoproterozoicEra,181PaleozoicEra,massextinctionin,250Palisadescliffs,73pandas,257,282Pangaea,109–10,234–35,249,251breakupof,253

Panthalassa,235

Page 274: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Papineau,Dominic,225–26penguins,282peridot,58peridotite,67,68,71–74,103periodictable,56permafrost,86,216,231perovskite,68petrochemistry,55petroleum,debateoversourcesof,217–19,220PhanerozoicEon,232–33Phobos,32Phoenixlander,86phosphate,151,153,226,246phosphorus,11,142,151asessentialforlife,225–26

photosynthesis,91,152–53,154–80,225,243,244,253,264carbonin,210–11fossilevidencefor,164–67iniceage,214inmicrobialmats,172originsof,161–62,164oxygenic,163oxygenin,158–59,179

PhotosystemsIandII,162Pickering,WilliamHenry,108Pilbaracraton,169–70,186Pinatubo,Mount,269plagioclasefeldspar,71–72planetarysystems,evolutionof,31planetesimals,23,31,33collisionsof,19–20,25formationof,19–21,183inplanetformation,42

planets:distributioninSolarSystemof,14–15formationof,12orbitsof,14rotationof,14vs.stars,23

Page 275: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

plantfossils,242–45author’sresearchon,243–45

plants:edible,247endangered,278flowering,253leafless,244leaved,245–48

platetectonics,3,28,75,107–15,183,184–85in“boring”billion,184–90,191,194continentalcorrelationsin,108–10asdisparagedbygeologists,110–11earlyevidenceof,108–11forcebehind,115–19,122–23fossilrecordof,185future,257,260–62,267–69iniceage,214–15onotherplanets,127platesin,121–22inpreservationofEarth,232threestagesof,233–35asunifyingprinciple,125

Pluto,iceon,84plutonium,11,19polarbears,257,278,282poles,explorationof,267potassium,29,61,103radioactiveisotopeof,28

“powercrystals,”57Prague,geochemists’meetingin,280prebioticchemistry,132–33prebioticsynthesis,142prechronism,29Press,Frank,240pressure:inmantle,92–93innuclearfusion,9

primates,255primordialsoup,133–34,144,147PrinciplesofPhysicalGeology(Holmes),105

Page 276: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Proceedings,229,245propane,150proteins,144ProterozoicEon,206proto-continents,124proto-Earth,31,43–44,183volatilesof,94

protons,8,9,38,54,56Prototaxites,245–46pulsars(LGM),218pyrite,60,155pyroxene,37,58,67,71–72,91,92,94,96,103pyruvicacid,143

quantummechanics,157quarks,8quartz,57,87,106,126ingranite,103,104

“QuestioningtheEvidenceforEarth’sOldestFossils”(Brasier),167

radar,86radioactiveelements,61radioactiveisotopes,decayratesof,28radiometricdating,28,96,117Raff,Arthur,118–19,122rain,5,82,90,99,190monsoon,277

Rainier,Mount,121,194recycling:ofatoms,6ofstarmatter,13

reddwarfs,21redEarth,154–80redox(reductionandoxidation)reactions,135,151,153,160,198redshift(Dopplershift),28–29regolith,35–36replication,141–47autocatalyticnetworkmodelfor,144,146citricacidmodelfor,143–44,146

Page 277: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

RNAworldmodelfor,144–47reptiles,240seealsodinosaursrhenium,178–79

Rhyniechert,Aberdeenshire,Scotland,243–44Richterscale,270riftvalley,Mid-Atlantic,114–17“ringoffire,”120,121rings:ofSaturn,23–24ofUranusandNeptune,24

rivers,89RNA,138,152,225RNAworld,144–47vs.lipidworld,138

Rochelimit,45rocks,248incratons,187–88Earth’shistoryasrevealedby,2–3,4,6,77,233,283asevidenceforGreatOxidationEvent,155–58faciesof,241freezingandmeltingof,71–72lifeassourceof,4,177ofoceanfloor,115–16oldest,63–67,164,169oxygenin,56–57silicon-oxygenbondsin,57assourceoflife,4,177seealsocoevolutionofgeosphereandbiosphere;minerals;Moonrocks;

petrochemistryRockyMountains,3,90,105,108rocky(terrestrial)planets,24–25,71,102compositionof,14,19,56,127vs.gasgiants,14–15granitein,127asrelativelydry,84wateron,84–85

Rodinia:assemblyof,195–96,204breakupof,208–12,232,234

Rogers,John,191rootsystems,246

Page 278: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Ruben,Samuel,160rubidium,radioactiveisotopeof,28rubisco,160ruby,12,58Rumsfeld,Donald,77nRussian-Americanrivalry,217–18rust,59,87,135,150,160inEarth’ssurface,178–79

RutgersUniversity,273

Sagan,Carl,265,283SaharaDesert,17,18,277St.Helens,Mount,121,269salt,98–99SanAndreasFault,122sandstone,187fossilsin,173–74,241

SantaFeInstitute,144sapphire,12,58Saturn,23,102asgasgiant,14iceon,84moonsof,23–24,32,84,101,135ringsof,23–24,45

Scandinavia,glacialdepositsin,2Schauble,Edwin,220Schiaparelli,Giovanni,85Schopf,J.William“Bill,”165–66,168,171,172vs.Brasier,167

Science,88,132,166,170,175,178,201,212,227sciencefiction,Marsin,85Scott,Henry,216ScrippsInstitutionofOceanography,118ScrippsResearchInstitute,129secularvariation,116–17sedimentarybasins,210sedimentaryrocks,73,96,165,185,196fossilsin,238,242asrecordofEarth’shistory,2,27,149,188,242,279

Page 279: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

seismology,68–69,119,120selection:inevolution,142molecular,137–39

selenium,78sharks,27,247shells,fossil,272–73shrinkingEarthmodel,111Shrock,Robert,239–41Siberia,191,195silicates,20,57,91,236silicon,9,11,12,14,56,72,103,127aselectrondonor,57–60

silicon-oxygenbonds,57–60,68sills,73silver,11,78,182Singer,Maxine,77nsingle-crystalX-raydiffraction,37single-starsystem,22singularity,7SkeletonCoast,Namibia,213Slavecraton,186“slushball”Earth,223SmithsonianInstitution:meteoritesstoredin,16moonsamplesin,34trilobitesin,238

snails,241,249snowballEarth,212–14,230,254,255debateover,222–23mysteryof,223–25

snowball-hothousecycles,206–31,232sodium,83,103soil,246solarabsorption,100–101solareclipses,49SolarSystem:ageof,7,25,28anomaliesin,41,45–46assemblyof,21–24

Page 280: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

chancein,54colonizationof,266commonoriginof,14,41cosmiccluestooriginof,13–21distributionofplanetsin,14–15Earth’sprojectedcolonizationof,266formationof,13–14,15,22,28,30assingle-starsystem,22timebefore,28–29

solarwind,14,25,36,70,88,259sonar,112–113SoussRiver,238SouthAfrica,189,224fossilsearchesin,169,172,173,174,176

SouthAmerica,191,195,235SouthAmericanPlate,121SovietUnion,37spacetravel,future,266spiders,245,247,250Spiegel,Der,201spinel,37Spiritrover,86sponges,238,2327starfish,241stars:elementsasproducedin,9–10formationof,5,8–10,54vs.planets,23sizeandlongevityof,21seealsosupernovasstasis,6,225inanimalevolution,236during“boring”billion,181–82,184,192–95,200–201,204,205,208,222

steroids,152stratosphere,4StrelleyPool,Australia,167stromatolites,149,172,173,225,236Sturtianglaciation,222subduction,260oldcrustswallowedby,121–24,186

Page 281: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

submarinetechnology,112,116sugars,136,139,141,152,161asrighthanded,140

sulfate,151,153sulfur,9,11,38,60,127,142,151,251inGreatOxidationEvent,156–58inintermediateocean,198–99inoceans,198recyclingof,80smellof,199,205,206asvolatilecomponentofEarth,78,79–80

Summons,Roger,169–71,173SummonsLab,MIT,169Sun:birthof,13–14brightnessof,99–101,258,259dominationofSolarSystemby,21,30,47inEarth’sendgame,258–59ignitionof,14,15–16,24projectedlifespanof,21–22,258rotationof,14

sunlight,152–53,256,267,274leavedplantsin,246inphotosynthesis,160

supercontinentcycle,109,118,183,184–90,204modelsfor,191newmineralsand,204

supercontinents,modelsforfuture,261–62supercratons,187Superiorcraton,186supernovas,5,10–13,21,54surfacewatercycle,89–91humaninfluenceon,90

sutures,252suturezones,189Sverjensky,Dimitri,177,179swamps,248Sweden,27symbiosis,ofcells,228–29

Page 282: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

syntheticbiology,129Szostak,Jack,146–47

tagatose,139tantalum,103Taupo,270Taurus-LittrowValley,37teeth,237telescopes,84,87,265insearchforMartianlife,85starsviewedthrough,22

temperature:iniceage,214inmantle,92–93inmethaneformation,220innuclearfusion,9andPETM,279insnowball-hothousecycles,221–23,230ofVenus,25

template-directedsynthesis,137–38,139terrestrialbiosphere,232–56terrestriallife,242–45,247thalidomide,139–40Tharp,Marie,114Theia-Earthcollision,43–44,45,53–54,61,64,75,78,89,106,183thermocouple,92,93thermodynamics,secondlawof,61,122thorium,61tidalbulge,49–51,61,75tidalrhythmites,48tides,48–52,277tigers,257tillites,212,213,222,224time,immensespansof,25–30Tiout,Morocco,fossilsat,238–39Titan,23–24,101,135Titanicdisaster,112titanium,37–38,58Toutatis,263

Page 283: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

transitionzone,68trilobites,243,249author’scollectionof,238–39,241,252extinctionof,250,254

Triton,24,41trivalentiron,59tsunamis,270tundra,5tungsten,61TunguskaRiver,264turquoise,177Tyler,Stanley,172

Ukrainiancraton,190–91“ultra-lowvelocityzones,”69–70ultraviolet(UV)radiation,101,136,157–58,162,236,251UnitedPlatesofAmerica,190UnitedStatesGeologicalSurvey,120universe,7–13ageof,28expansionof,8originof,6,7–8

uppermantle,68Ur,189–90,194,195,210UralMountains,198uraninite,155uranium,11,29,61,78,96,103,156,177,183radioactiveisotopeof,28

Uranus,23,102anomalousrotationof,41,46asgasgiant,14moonsof,24,32

Urey,Harold,132–34ur-minerals,12,21

Vaalbara,189VanHelmont,JanBaptista,159–60varvedeposits,27vascularplants,242

Page 284: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

Venus,1–2,53,71anomalousrotationof,41,45–46,51atmosphereof,84deathof,258–59elementsof,56greenhouseeffecton,208lossofwateron,24–25,46,51,84orbitof,24projecteddemiseof,22asrockyplanet,14tectonicson,127

vertebrates,247rodentlike,254

verticaltectonics,105–7,125,271vs.platetectonics,108

Vikingmissions,85volatiles:ascomponentsofEarth,79,94inHadeanEon,74aslost,79–80,94ofMoonvs.Earth,40,41asproducedanddispersedbystars,79involcanicactivity,78

volcanicactivity,volcanism,2,28,98,107,127,150,194basaltin,72–73incarbondioxideproduction,211future,268inHadeanEon,74Hawaiian,28,70,72heatproducedby,61hotspotsof,70Icelandic,72lunar,37,47,49,89Mesozoic,253Paleozoic,251volatilesin,78waterin,91inYellowstone,70

volcanoes,4,75,256earthquakesunder,121

Page 285: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

historiceruptionsof,269–70onIo,23undersea,116,119,123–24,268ventsof,4seealsomegavolcanoes;specificvolcanoes

wadsleyite,68,94WaroftheWorlds,The(Wells),85Warrier,SantoshMadhava,191water,79,82,101,255abundanceof,84–89chemistryof,80–84densityof,82distinctivepropertiesof,81–83onEarth,25,38,89–91inEarth’score,94asessentialtolife,81,84,101aslackingonMoon,38,87lackofpurityof,82–83onMars,25,85–87,89,163moleculesof,12onotherplanets,23–25,84pHof,83–84inphotosynthesis,152,159polarityof,81–82recyclingof,80subsurface,178surfacetensionof,81–82Venus’slossof,24–25,46,51

watercycles,seedeepwatercycle;surfacewatercyclewatervapor,84asvolatilecomponentofEarth,78,79,80,95

weathering,180,227,259ofbasalt,99,246continental,213,225,230

Wegener,Alfred,109–11,115,118Wells,H.G.,85WestAfricancraton,2029whales,27,254,282“WhiffofOxygenBeforetheGreatOxidationEvent?,A”(Anbar),178

Page 286: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet

whiteEarth,206–31WhyAren’tBlackHolesBlack?(HazenandSinger),77nWilliamson,Donald,229WonderfulLife(Gould),240Wones,David,35–36,71WorldHeritageSite,SharkBay,Australia,173WorldWarI,109,112WorldWarII,112,239WorldWideStandardizedSeismographicNetwork(WWSSN),1120–21worms,228,230,236,247

Yellowstone,70Yilgarncraton,186Yoder,HattenS.“Hat,”Jr.,65,92Young,Ed,220–21YucatánPeninsula,asteroidcollisionat,253

Zhao,Guochun,191Zimbabwecraton,186zinc,11,182zircon,21,96–98,103asevidenceofgraniteformation,104asoldestcrystals,97

zirconium,78,96,104