Top Banner
The split operator numerical solution of Maxwell’s equations Q. Su Intense Laser Physics Theory Unit Illinois State University LPHY 2000 Bordeaux France July 2000 Acknowledgements: E. Gratton, M. Wolf, V. Toronov NSF, Research Co, NCSA S. Mandel R. Grobe H. Wanare G. Rutherford
22

The split operator numerical solution of Maxwell’s equations Q. Su Intense Laser Physics Theory Unit Illinois State University LPHY 2000Bordeaux FranceJuly.

Dec 16, 2015

Download

Documents

Jason Pardon
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The split operator numerical solution of Maxwell’s equations Q. Su Intense Laser Physics Theory Unit Illinois State University LPHY 2000Bordeaux FranceJuly.

The split operator numerical solution of Maxwell’s equations

Q. Su

Intense Laser Physics Theory UnitIllinois State University

LPHY 2000 Bordeaux France July 2000

Acknowledgements: E. Gratton, M. Wolf, V. ToronovNSF, Research Co, NCSA

S. Mandel R. Grobe H. Wanare G. Rutherford

Page 2: The split operator numerical solution of Maxwell’s equations Q. Su Intense Laser Physics Theory Unit Illinois State University LPHY 2000Bordeaux FranceJuly.

Electromagnetic wave

Maxwell’s eqns

Lightscattering in

random media

Photon density wave

Boltzmann eqn

Photon diffusion

Diffusion eqn

Page 3: The split operator numerical solution of Maxwell’s equations Q. Su Intense Laser Physics Theory Unit Illinois State University LPHY 2000Bordeaux FranceJuly.

Outline• Split operator solution of Maxwell’s eqns

• Applications• simple optics

• Fresnel coefficients• transmission for FTIR

• random medium scattering

• Photon density wave• solution of Boltzmann eqn

• diffusion and P1 approximations

• Outlook

Page 4: The split operator numerical solution of Maxwell’s equations Q. Su Intense Laser Physics Theory Unit Illinois State University LPHY 2000Bordeaux FranceJuly.

Numerical algorithms for Maxwell’s eqns

Frequency domain methods

Time domain methods U(t->t+t)Finite difference

A. Taflove, Computational Electrodynamics (Artech House, Boston, 1995)

Split operatorJ. Braun, Q. Su, R. Grobe, Phys. Rev. A 59, 604 (1999)

U. W. Rathe, P. Sanders, P.L. Knight, Parallel Computing 25, 525 (1999)

Page 5: The split operator numerical solution of Maxwell’s equations Q. Su Intense Laser Physics Theory Unit Illinois State University LPHY 2000Bordeaux FranceJuly.

Exact numerical simulation of Maxwell’s Equations

Initial pulse satisfies :

Time evolution given by :

r E 0

B 0

E

t

c2

r

B

B

t

E

Page 6: The split operator numerical solution of Maxwell’s equations Q. Su Intense Laser Physics Theory Unit Illinois State University LPHY 2000Bordeaux FranceJuly.

H v

0

0

Split-Operator Technique

H m

,r 1

r 1

0

0 0

E r , t t

cB r , t t

U

E r , t

cB r , t

Effect of vacuum

Effect of medium

ct

E

cB

01

r

0

E

cB

H v H m

E

cB

Page 7: The split operator numerical solution of Maxwell’s equations Q. Su Intense Laser Physics Theory Unit Illinois State University LPHY 2000Bordeaux FranceJuly.

U eH v

H m

,r t

U 12

m U1v U1

2

m O t3

F

E r , t t

cB r , t t

˜ U 1

2

m ˜ U 1v ˜ U 1

2

m F

E r , t

cB r , t

˜ U 1

2

m e1

2tF H m

,r F -1

˜ U 1

v etF H v

F - 1

and

Numerical implementation of evolution in Fourier space

where

Reference: “Numerical solution of the time-dependent Maxwell’s equations for random dielectric media” - W. Harshawardhan, Q.Su and R.Grobe, submitted to Physical Review E

Page 8: The split operator numerical solution of Maxwell’s equations Q. Su Intense Laser Physics Theory Unit Illinois State University LPHY 2000Bordeaux FranceJuly.

n1

n2

-10 100 5-5 0

10

-10

0

-5

5

z/

y/

First tests : Snell’s law and Fresnel coefficientsRefraction at air-glass interface

Page 9: The split operator numerical solution of Maxwell’s equations Q. Su Intense Laser Physics Theory Unit Illinois State University LPHY 2000Bordeaux FranceJuly.

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80

fig2(n1=1,n2=2).d

1

Et / E

i

Fresnel Coefficient

Page 10: The split operator numerical solution of Maxwell’s equations Q. Su Intense Laser Physics Theory Unit Illinois State University LPHY 2000Bordeaux FranceJuly.

d

n1

s

n2

n1

Second testTunneling due to frustrated total internal reflection

Page 11: The split operator numerical solution of Maxwell’s equations Q. Su Intense Laser Physics Theory Unit Illinois State University LPHY 2000Bordeaux FranceJuly.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2d/

Et/E

i

Amplitude Transmission Coefficient vs Barrier Thickness

Page 12: The split operator numerical solution of Maxwell’s equations Q. Su Intense Laser Physics Theory Unit Illinois State University LPHY 2000Bordeaux FranceJuly.

Light interaction with random dielectric spheroids

• Microscopic realization• Time resolved treatment• Obtain field distribution at every point in space

• 400 ellipsoidal dielectric scatterers• Random radii range [0.3 , 0.7 ]• Random refractive indices [1.1,1.5]• Input - Gaussian pulse

One specific realization

Page 13: The split operator numerical solution of Maxwell’s equations Q. Su Intense Laser Physics Theory Unit Illinois State University LPHY 2000Bordeaux FranceJuly.

20

0

10

-10

0

10

-10

y/

-20 z/

T = 8 T = 16

T = 24 T = 40

Page 14: The split operator numerical solution of Maxwell’s equations Q. Su Intense Laser Physics Theory Unit Illinois State University LPHY 2000Bordeaux FranceJuly.

Summary - 1

• Developed a new algorithm to produce exact spatio-temporal solutions of the Maxwell’s equations

• Technique can be applied to obtain real-time evolution of the fields in any complicated inhomogeneous medium

» All near field effects arising due to phase are included

• Tool to test the validity of the Boltzmann equation and the traditional diffusion approximation

Page 15: The split operator numerical solution of Maxwell’s equations Q. Su Intense Laser Physics Theory Unit Illinois State University LPHY 2000Bordeaux FranceJuly.

Photon density wave

Infrared carrier

penetration but incoherent due to diffusion

Modulated wave 100 MHz ~ GHz

maintain coherencetumor

Input light

Output light

D.A. Boas, M.A. O’Leary, B. Chance, A.G. Yodh, Phys. Rev. E 47, R2999, (1993)

Page 16: The split operator numerical solution of Maxwell’s equations Q. Su Intense Laser Physics Theory Unit Illinois State University LPHY 2000Bordeaux FranceJuly.

1

c

t

I r,, t s d' p ,' I r,' , t s a I r,, t

Boltzmann Equation for photon density wave

J.B. Fishkin, S. Fantini, M.J. VandeVen, and E. Gratton, Phys. Rev. E 53, 2307 (1996)

Q: How do diffusion and Boltzmann theories compare?

Studied diffusion approximation and P1 approximation

Page 17: The split operator numerical solution of Maxwell’s equations Q. Su Intense Laser Physics Theory Unit Illinois State University LPHY 2000Bordeaux FranceJuly.

Bi-directional scattering phase function

Mie cross-section: L. Reynolds, C. Johnson, A. Ishimaru, Appl. Opt. 15, 2059 (1976)Henyey Greenstein: L.G. Henyey, J.L. Greenstein, Astrophys. J. 93, 70 (1941)Eddington: J.H. Joseph, W.J. Wiscombe, J.A. Weinman, J. Atomos. Sci. 33, 2452 (1976)

Other phase functions

p ,' 1

21 g cos 1 1

21 g cos 1

1

c

tx

R x, t r a R x, t r L x, t

1

c

tx

L x, t r R x,t r a L x, t

t

(R L) 0

r 1

2 s cos 1

Diffusion approximation

Page 18: The split operator numerical solution of Maxwell’s equations Q. Su Intense Laser Physics Theory Unit Illinois State University LPHY 2000Bordeaux FranceJuly.

Incident: —Transmitted: —

Diffusion: —

Solution of Boltzmann equation

0

0.5

1

1.5

2

-30 -20 -10 0 10 20 30

Inci

dent

inte

nsit

y

Position (cm)

0.00

0.05

0.10

0.15

0.20

-30 -20 -10 0 10 20 30

Tra

nsm

itte

d in

tens

ity

Position (cm)

Page 19: The split operator numerical solution of Maxwell’s equations Q. Su Intense Laser Physics Theory Unit Illinois State University LPHY 2000Bordeaux FranceJuly.

J.B. Fishkin, S. Fantini, M.J. VandeVen, and E. Gratton, Phys. Rev. E 53, 2307 (1996)

Confirmed behavior obtained in P1 approx

Exact Boltzmann: —Diffusion approximation: —

Frequency responses

-2.4

-2

-1.6

-1.2

-0.8

1 10 100

Log

Tra

nsm

issi

on

(GHz)

reflected transmitted-2.5

-2

-1.5

-1

-0.5

0

1 10 100

Log

Ref

lect

ion

(GHz)

Page 20: The split operator numerical solution of Maxwell’s equations Q. Su Intense Laser Physics Theory Unit Illinois State University LPHY 2000Bordeaux FranceJuly.

Photon density wave

Right going Left going

0

0.5

1

1.5

2

0 0.5 1 1.5 2

R (

x)

x (cm)

Exact Boltzmann: —Diffusion approximation: —

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.5 1 1.5 2

L (

x)

x (cm)

Page 21: The split operator numerical solution of Maxwell’s equations Q. Su Intense Laser Physics Theory Unit Illinois State University LPHY 2000Bordeaux FranceJuly.

-0.1

-0.098

-0.096

-0.094

-0.092

-0.09

1 10 100 1000 10 4

Log

Tra

nsm

issi

on

(GHz)

-0.1

-0.0995

-0.099

-0.0985

-0.098

0 0.5 1 1.5 2 2.5 3

Log

Tra

nsm

issi

on (mm)

Resonancesat w = n /2 (n = integer)

Exact Boltzmann: —Diffusion approximation: —

Page 22: The split operator numerical solution of Maxwell’s equations Q. Su Intense Laser Physics Theory Unit Illinois State University LPHY 2000Bordeaux FranceJuly.

Summary

Numerical Maxwell, Boltzmann equations obtainedNear field solution for random medium scatteringDirect comparison: Boltzmann and diffusion theories

Outlook

Maxwell to Boltzmann / Diffusion?Inverse problem?

www.phy.ilstu.edu/ILP