Top Banner
The SPICA Coronagraph Project ABE 1 /ENYA 2 /TANAKA 2 /NAKAGAWA 2 /MURAKAMI 1 NISHIKAWA 1 /TAMURA 1 /FUJITA 3 /ITOH 3 /KATAZA 2 /GUYON 4 AND THE SPICA WORKING GROUP 1 National Astronomical Observatory, Mitaka, Japan 2 Institute of Space and Astronautical Sciences, Sagamihara, Japan 3 Kobe University, Japan 4 Subaru telescope/NAOJ, Hilo, Hawaii TPF Workshop, Pasadena, Sept. 28 th -29 th 2006 Email to : [email protected]
16

The SPICA Coronagraph Project A BE 1 /E NYA 2 /T ANAKA 2 /N AKAGAWA 2 /M URAKAMI 1 N ISHIKAWA 1 /T AMURA 1 /F UJITA 3 /I TOH 3 /K ATAZA 2 /G UYON 4 AND.

Jan 03, 2016

Download

Documents

Noah Terry
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The SPICA Coronagraph Project A BE 1 /E NYA 2 /T ANAKA 2 /N AKAGAWA 2 /M URAKAMI 1 N ISHIKAWA 1 /T AMURA 1 /F UJITA 3 /I TOH 3 /K ATAZA 2 /G UYON 4 AND.

The SPICA Coronagraph Project

ABE1/ENYA2/TANAKA2/NAKAGAWA2/MURAKAMI1

NISHIKAWA1/TAMURA1/FUJITA3/ITOH3/KATAZA2/GUY

ON4

AND THE SPICA WORKING GROUP1National Astronomical Observatory, Mitaka, Japan

2Institute of Space and Astronautical Sciences, Sagamihara, Japan

3Kobe University, Japan4Subaru telescope/NAOJ, Hilo, Hawaii

TPF Workshop, Pasadena, Sept. 28th-29th 2006

Email to: [email protected]

Page 2: The SPICA Coronagraph Project A BE 1 /E NYA 2 /T ANAKA 2 /N AKAGAWA 2 /M URAKAMI 1 N ISHIKAWA 1 /T AMURA 1 /F UJITA 3 /I TOH 3 /K ATAZA 2 /G UYON 4 AND.

ABE Lyu, NAOJ, TPF-WS, September 28th 2006

2

The SPICA Mission in Brief

SPICA Coronagraph

Requirements

Laboratory Demonstration

Page 3: The SPICA Coronagraph Project A BE 1 /E NYA 2 /T ANAKA 2 /N AKAGAWA 2 /M URAKAMI 1 N ISHIKAWA 1 /T AMURA 1 /F UJITA 3 /I TOH 3 /K ATAZA 2 /G UYON 4 AND.

3SPICA MISSION

mIR to submm astrophysics Complementary to JWST @ >15mic

Coronagraphic mode(proposed by Tamura et al.)

Direct observation of outer self-luminous planets(20~100+ UA orbits)

Goal contrast >10-6 within the exploration area

Benefit from monolithic pupil

SPace Infrared telescope for Cosmology and Astrophysics

Succes of Akari (Astro-F) launch on Feb. 22nd 2006

Page 4: The SPICA Coronagraph Project A BE 1 /E NYA 2 /T ANAKA 2 /N AKAGAWA 2 /M URAKAMI 1 N ISHIKAWA 1 /T AMURA 1 /F UJITA 3 /I TOH 3 /K ATAZA 2 /G UYON 4 AND.

4THE SPICA TELESCOPE

Telescope diameter

Launch date

Orbit

Wavelength coverage

Cryogenic active cooling

(warm launch)

Pointing accuracy

Tip-tilt jitter control

Wavefront control

3.5 m (SiC)

~2015(HIIA rocket)

Lagrange L2

5-200 µm

4.5K

0.3”

30mas

TBD (corona. related)

SPICA telescope concept

Page 5: The SPICA Coronagraph Project A BE 1 /E NYA 2 /T ANAKA 2 /N AKAGAWA 2 /M URAKAMI 1 N ISHIKAWA 1 /T AMURA 1 /F UJITA 3 /I TOH 3 /K ATAZA 2 /G UYON 4 AND.

5SPICA CORONAGRAPH REQUIREMENTS

The mIR wavelengths constrains very high angular regions need for smallest possible IWA coronagraphs

SPICA tip-tilt jitter is important (/12@5µm) vibrations of cryo-coolers coronagraph poorly sensitive to TT

SPICA telescope pupil geometry(15~25% central obscuration)

Candidate coronagraphs Binary pupil masks (Kasdin/Vanderbei) – baseline Checkerboard

PIAA (Guyon)

(Multi-stage) apodized pupil Lyot coronagraph (Aime & Soummer)

Page 6: The SPICA Coronagraph Project A BE 1 /E NYA 2 /T ANAKA 2 /N AKAGAWA 2 /M URAKAMI 1 N ISHIKAWA 1 /T AMURA 1 /F UJITA 3 /I TOH 3 /K ATAZA 2 /G UYON 4 AND.

6

Checkerboard Masks Pros/Cons

High IWA (>5 /D, because of CO)

Low throughput

Discovery space

Low temperature (need 4.5K)

Optical environment complexity

Sensitivity to Tip-tilt

Chromaticity

Aberrations (can be made standalone)

CHECKERBOARD MASKS: A TRADEOFF

Tradeoff between complexity/performanceGood baseline/backup solution for SPICA

Page 7: The SPICA Coronagraph Project A BE 1 /E NYA 2 /T ANAKA 2 /N AKAGAWA 2 /M URAKAMI 1 N ISHIKAWA 1 /T AMURA 1 /F UJITA 3 /I TOH 3 /K ATAZA 2 /G UYON 4 AND.

Asymmetrical checkerboard mask (Tanaka et al.)

7CHECKERBOARD MASKS: A TRADEOFF Study of asymmetrical configurations (Tanaka et al. PASJ, 58, 627, 2006) lower IWA, extended search area close to axes

Study of OWA vs spatial frequency AO correction range Tanaka et al. 2006, submitted

Page 8: The SPICA Coronagraph Project A BE 1 /E NYA 2 /T ANAKA 2 /N AKAGAWA 2 /M URAKAMI 1 N ISHIKAWA 1 /T AMURA 1 /F UJITA 3 /I TOH 3 /K ATAZA 2 /G UYON 4 AND.

8LABORATORY EXPERIMENT (Enya et al., to appear in A&A) Conducted in ISAS Environment

Dark room Air flow (on/off) No temperature regulation

Setup Off-the-shelf optics ~ PtV, AR coating No AO system Beam diameter: 2mm (masks side 1.41mm) / F# ~ 600 BITRAN cooled CCD camera (2048×2048)

(10 m diameter)

Enya et al. astro-ph/0609646

Page 9: The SPICA Coronagraph Project A BE 1 /E NYA 2 /T ANAKA 2 /N AKAGAWA 2 /M URAKAMI 1 N ISHIKAWA 1 /T AMURA 1 /F UJITA 3 /I TOH 3 /K ATAZA 2 /G UYON 4 AND.

9MANUFACTURING Manufactured at the Advanced Institute of Science and Technology (AIST, Japan)

Electron beam patterning and lift-off process (100nm aluminium)

BK7 substrates

1.41 mm side square (2mm diameter pupil)

Page 10: The SPICA Coronagraph Project A BE 1 /E NYA 2 /T ANAKA 2 /N AKAGAWA 2 /M URAKAMI 1 N ISHIKAWA 1 /T AMURA 1 /F UJITA 3 /I TOH 3 /K ATAZA 2 /G UYON 4 AND.

10

40µm

MANUFACTURING

Designed mask

Mask1: IWA=7 / OWA=16 / Design Cont.=10-7

Checkerboard Mask Prototype

Fabrication process

Performance Modeling

Manufactured by AIST company (Japan – Release date sept. 27th 2005)

Page 11: The SPICA Coronagraph Project A BE 1 /E NYA 2 /T ANAKA 2 /N AKAGAWA 2 /M URAKAMI 1 N ISHIKAWA 1 /T AMURA 1 /F UJITA 3 /I TOH 3 /K ATAZA 2 /G UYON 4 AND.

11MANUFACTURINGMask2

Mask defects No central obstruction design

IWA=3 / OWA=30 / Design Cont.=10-7

Page 12: The SPICA Coronagraph Project A BE 1 /E NYA 2 /T ANAKA 2 /N AKAGAWA 2 /M URAKAMI 1 N ISHIKAWA 1 /T AMURA 1 /F UJITA 3 /I TOH 3 /K ATAZA 2 /G UYON 4 AND.

12PERFORMANCE (I) Mask1: IWA=7 / OWA=16 / Design Cont.=10-7/ Throughput=16%

10 /D

with “photon blocker”

Page 13: The SPICA Coronagraph Project A BE 1 /E NYA 2 /T ANAKA 2 /N AKAGAWA 2 /M URAKAMI 1 N ISHIKAWA 1 /T AMURA 1 /F UJITA 3 /I TOH 3 /K ATAZA 2 /G UYON 4 AND.

13PERFORMANCE (II) Mask2: IWA=3 / OWA=30 / Design Cont.=10-7/ Throughput=24%

10 /D

Page 14: The SPICA Coronagraph Project A BE 1 /E NYA 2 /T ANAKA 2 /N AKAGAWA 2 /M URAKAMI 1 N ISHIKAWA 1 /T AMURA 1 /F UJITA 3 /I TOH 3 /K ATAZA 2 /G UYON 4 AND.

14PERFORMANCE (III)(Profiles along the diagonal direction)

Average contrast 2.7 10-7

3 level (speckles) 6.6 10-7

Average contrast 1.1 10-7

3 level (speckles) 3.3 10-7

Page 15: The SPICA Coronagraph Project A BE 1 /E NYA 2 /T ANAKA 2 /N AKAGAWA 2 /M URAKAMI 1 N ISHIKAWA 1 /T AMURA 1 /F UJITA 3 /I TOH 3 /K ATAZA 2 /G UYON 4 AND.

15ANALYSIS

Theoretical pattern

From optical aberrations(from beam line, not from mask)

10 /D

Enya et al. astro-ph/0609646

Page 16: The SPICA Coronagraph Project A BE 1 /E NYA 2 /T ANAKA 2 /N AKAGAWA 2 /M URAKAMI 1 N ISHIKAWA 1 /T AMURA 1 /F UJITA 3 /I TOH 3 /K ATAZA 2 /G UYON 4 AND.

16

Checkerboard Masks Submitted paper on WF correction requirements(Tanaka et al.)

Next planned mask 1010 design

Limit of optics

Cryogenic AO tests 6×6 channels prototype BMC mirror (modified substrate)

Other investigations Two-Mirror Apodization (collaboration with O. Guyon)

PIAAC

APLC designs

ONGOING & FUTURE PLANS