Top Banner
The role of Direct Air Capture and Carbon Dioxide Removal in Well below 2°C scenarios in ETSAP-TIAM James Glynn 1 , Niall Mac Dowell 2 , Giulia Realmonte 3 , Brian Ó Gallachóir 1 1.MaREI-UCC, 2. CEP-ICL, 3. Grantham-ICL Corresponding Author: *[email protected] | @james_glynn ETSAP Workshop | 18 th June 2018 | Gothenburg, SWEDEN.
27

The role of Direct Air Capture and Carbon Dioxide Removal ...The role of Direct Air Capture and Carbon Dioxide Removal in Well below 2°C scenarios in ETSAP-TIAM James Glynn1, Niall

Mar 13, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The role of Direct Air Capture and Carbon Dioxide Removal ...The role of Direct Air Capture and Carbon Dioxide Removal in Well below 2°C scenarios in ETSAP-TIAM James Glynn1, Niall

The role of Direct Air Capture and Carbon Dioxide Removal in Well below 2°C scenarios in ETSAP-TIAM

James Glynn1, Niall Mac Dowell2, Giulia Realmonte3, Brian Ó Gallachóir1

1.MaREI-UCC, 2. CEP-ICL, 3. Grantham-ICL

Corresponding Author: *[email protected] | @james_glynn

ETSAP Workshop | 18th June 2018 | Gothenburg, SWEDEN.

Page 2: The role of Direct Air Capture and Carbon Dioxide Removal ...The role of Direct Air Capture and Carbon Dioxide Removal in Well below 2°C scenarios in ETSAP-TIAM James Glynn1, Niall

Research Question & Motivation

• Does Direct Air Capture have a role to play in achieving the 1.5°C temperature target? • We explore overshoot and return to a 1.5C temperature increase by 2100,

• or an upper 1.5C temperature increase threshold limit for all century.

• We explore the uncertainties and hard constraints between carbon budget limits and Carbon Dioxide Removal (CDR) potential from BECCS and DAC. (heat potentials & bioenergy potentials)

• What is the change in Primary Energy Demand and Mix from 2°C to 1.5°C with and without DAC?

• Can DAC & CDR reduce energy system cost increases when moving from Baseline 2°C to 1.5°C?

Page 3: The role of Direct Air Capture and Carbon Dioxide Removal ...The role of Direct Air Capture and Carbon Dioxide Removal in Well below 2°C scenarios in ETSAP-TIAM James Glynn1, Niall

First, what is CDR? & What is DAC?

• CDR stands for Carbon Dioxide Removal – by technological or biological means• Carbon Capture, and Storage (CCS) – EOR at Statoil Sleipner field since 1996, Petra Nova Coal-CCS (EOR)

• Negative Emissions Technologies (NETS)• BIOENERGY with CCS (BECCS) – ADM BECCS (bioethanol) plant Illinois, USA

• Direct Air Capture (DAC) and Sequestration (DACCS) (CLIMEWORKS – Iceland geothermal Pilot plant)

• Direct Air Capture (DAC) and synthetic liquid fuels. (Carbon Engineering – USA pilot plant (Keith et al. (2018))

Page 4: The role of Direct Air Capture and Carbon Dioxide Removal ...The role of Direct Air Capture and Carbon Dioxide Removal in Well below 2°C scenarios in ETSAP-TIAM James Glynn1, Niall

CDR context in SSPx-RCP2.6 IAM scenariosCum

ula

tive M

tCO

2

em

issio

ns fro

m 2

010

Glo

bal m

ean W

arm

ing

above p

re-i

ndustr

ial °C

Sustainable BIO?

Paris Agreement

Paris Agreement

Page 5: The role of Direct Air Capture and Carbon Dioxide Removal ...The role of Direct Air Capture and Carbon Dioxide Removal in Well below 2°C scenarios in ETSAP-TIAM James Glynn1, Niall

Method: ETSAP-TIAM model outline

• 15 Region linear programming bottom-up energy system model of IEA-ETSAP

• Integrated model of the entire energy system

• Prospective analysis on medium to long term horizon (2100)• Demand driven by exogenous energy service demands

• SSP2 from OECD Env-LINKS CGE model

• Regional Structural detail of the economy

• Partial and dynamic equilibrium• Price-elastic demands

• General Equilibrium with MACRO

• Minimizes the total system cost • Or Maximises Consumption/Utility

• Hybrid General Equilibrium MSA

• Optimal technology selection

• Environmental constraints• GHG, Local Air Pollution & Damages

• Integrated Simple Climate Model

• Myopic and Stochastic run options

Page 6: The role of Direct Air Capture and Carbon Dioxide Removal ...The role of Direct Air Capture and Carbon Dioxide Removal in Well below 2°C scenarios in ETSAP-TIAM James Glynn1, Niall

Direct Air Capture (DAC) Specification

• American Physical Society (2011) – Direct Air Capture of CO2 with Chemicals.

• Keith, D. W., Holmes, G., St. Angelo, D. & Heidel, K. A Process for Capturing CO2 from the Atmosphere. Joule (2018). doi:10.1016/j.joule.2018.05.006

• Capture Capacity• 1 MtCO2/yr

• Electricity Requirement• 0GJ/tCO2 - 1.78 GJ/tCO2

• Heat requirement • Low Temp ~100C• 8.1 GJ/tCO2 - 5.25 GJ/tCO2

• CAPEX• $1,140/tCO2/yr ~ $160/tCO2

• OPEX• $200/tCO2 - $23t/CO2

• Lifespan• 40-20 years

Page 7: The role of Direct Air Capture and Carbon Dioxide Removal ...The role of Direct Air Capture and Carbon Dioxide Removal in Well below 2°C scenarios in ETSAP-TIAM James Glynn1, Niall

Scenarios [1]

• Base – Drivers are calibrated to SSP2 drivers from the OECD ENV-LINKS.• Population, GDP, sectoral GVA, Households (still need to fix AEEI & DrvESD coeff)

• All Climate Policy runs are fixed to the Base run to 2020.

• Combinations of the following

• 2°C, and 1.5°C temperature limits with Climate Model controlling for Non-CO2 GHGs and Exoforcing

• Carbon Budgets applied from 2020-2100• 1000GtCO2 – 2°C

• 600GtCO2, 400GtCO2, 200GtCO2 – 1.5°C

• Constraints on CO2 sequestration sinks limits• Full potential (11PtCO2), 1660GtCO2 total horizon, 30GtCO2/yr, linear growth to

30GtCO2/yr by 2100, 10GtCO2/yr, Growth to 10GtCO2/yr

• Direct Air Capture • Investment Costs – $1,140/tCO2 - $160/tCO2

• Fixed operation and Maintenance Costs - $42/tCO2 - $23/tCO2

• ELC & HET or Gas only, or Gas & Elec

Page 8: The role of Direct Air Capture and Carbon Dioxide Removal ...The role of Direct Air Capture and Carbon Dioxide Removal in Well below 2°C scenarios in ETSAP-TIAM James Glynn1, Niall

Scenarios [2]

Scenario Code Name Description Carbon Budget (2020-2100)

DAC Costs

BASE_SSP2_11p Reference base case n/a Not available

2C_SSP2_CB1000_CDR1660 2C temperature change limit, with 1660GtCO2 limit on sequestration

1000GtCO2

2C_SSP2_CB1000_CDR1660_DAC Same as above with DAC 1000GtCO2 InvCost $2900/tCO2

VAROM $200/tCO2

2C_SSP2_CB1000_CDR1660_DACloCst Same as above with Low Cost DAC 1000GtCO2 InvCost $100/tCO2

VAROM $50/tCO2

15C_CM21_SSP2_CB600_CDR1660_DAC Overshoot and return to 1.5C by 2100, with 1660GtCO2 limit on sequestration, with DAC an option

600GtCO2 InvCost $2900/tCO2

VAROM $200/tCO2

15C_CM21_SSP2_CB400_CDR1660_DACloCst

Same as above with Low Cost DAC an option

400GtCO2 InvCost $100/tCO2

VAROM $50/tCO2

15C_CMUP_SSP2_CB600_CDR1660_DAC Stay below 1.5C temperature ceiling, with 1660GtCO2 limit on sequestration, with DAC an option

600GtCO2 InvCost $2900/tCO2

VAROM $200/tCO2

15C_CMUP_SSP2_CB400_CDR1660DACloCst

Stay below 1.5C temperature ceiling, with 1660GtCO2 limit on sequestration, with Low Cost DAC

400GtCO2 InvCost $100/tCO2

VAROM $50/tCO2

Page 9: The role of Direct Air Capture and Carbon Dioxide Removal ...The role of Direct Air Capture and Carbon Dioxide Removal in Well below 2°C scenarios in ETSAP-TIAM James Glynn1, Niall

BASE Scenario

• Base –calibrated to SSP2 drivers from the OECD ENV-LINKS.• Population, GDP, sectoral GVA, Households

• No Climate control policies

• Fossil fuel dominates Primary energy, with a growing share of renewables in Elec Generation

0

200

400

600

800

1000

1200

1400

1600

1800

2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Pri

mar

y En

ergy

(Ex

aJo

ule

s)

Primary Energy (EJ)

Renewables

Hydro

Nuclear

Biomass

Gas

Oil

Coal

0

50

100

150

200

250

2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100El

ectr

icit

y G

ener

atio

n (

Exaj

ou

les)

Electricity Generation (EJ)

Geo, Tidal and Wave

Solar Thermal

Solar PV

Wind

Hydro

Nuclear

CH4 Options

Biomass

Gas and Oil

Coal

Page 10: The role of Direct Air Capture and Carbon Dioxide Removal ...The role of Direct Air Capture and Carbon Dioxide Removal in Well below 2°C scenarios in ETSAP-TIAM James Glynn1, Niall

DAC Penetration from 2C to 1.5C scenarios

• DAC is deployed when Low Cost DAC is available at <$250/tCO2

• Medium-term (2040-50) CO2 capture of 200-300 MtCO2/yr for 1.5C threshold

• Long Term Capture up to 1.6GtCO2/yr with up to 12 EJ in energy input

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2040 2050 2080 2090 2100

GtC

O2

CO2 Captured with Direct Air Capture (GtCO2)

0

2

4

6

8

10

12

Elec Heat Elec Heat Elec Heat Elec Heat

2040 2050 2090 2100

Exaj

ou

les

DAC Energy Input Requirements (EJ)

15C_SSP2_CM21_CB400_CDR16600_DAChilocst

15C_SSP2_CM21_CB400_CDR16600_DAClocst

15C_SSP2_CM21_CB600_CDR16600_DAChilocst

15C_SSP2_CM21_CB600_CDR16600_DAClocst

15C_SSP2_CMUP_CB400_CDR16600_DAChilocst

15C_SSP2_CMUP_CB400_CDR16600_DAClocst

15C_SSP2_CMUP_CB600_CDR16600_DAChilocst

15C_SSP2_CMUP_CB600_CDR16600_DAClocst

2C_SSP2_CM_CB1000_CDR16600_DAChilocst

2C_SSP2_CM_CB1000_CDR16600_DAClocst

No 1.5C temperature Overshoot allowed

Page 11: The role of Direct Air Capture and Carbon Dioxide Removal ...The role of Direct Air Capture and Carbon Dioxide Removal in Well below 2°C scenarios in ETSAP-TIAM James Glynn1, Niall

2C and 1.5C emissions with & without DAC

• Rapid near term CO2 emissions reductions required to remain below a 1.5C threshold.• Near term deployment of CDR in the form of DAC and BECC forces abatement costs above

$200/tCO2 by 2030

• Overshoot and return to 1.5C follows an accelerated mitigation pathway when compared to 2C.

-20

0

20

40

60

80

100

2000 2020 2040 2060 2080 2100 2120

Foss

il Fu

el a

nd

Ind

ust

ry C

O2

em

issi

on

s -

(GtC

O2

)

Fossil Fuel and Industry CO2 Emissions (GtCO2)

0

500

1000

1500

2000

2500

3000

3500

2030 2050 2070 2090

Mar

gin

al A

bat

emen

t C

ost

of

CO

2 (

$/t

CO

2)

Marginal Abatement Cost of CO2 ($/tCO2)

15C_SSP2_CM21_CB400_CDR16600

15C_SSP2_CM21_CB400_CDR16600_DAClocst

15C_SSP2_CM21_CB600_CDR16600

15C_SSP2_CM21_CB600_CDR16600_DAClocst

15C_SSP2_CMUP_CB400_CDR16600

15C_SSP2_CMUP_CB400_CDR16600_DAClocst

15C_SSP2_CMUP_CB600_CDR16600

15C_SSP2_CMUP_CB600_CDR16600_DAClocst

2C_SSP2_CM_CB1000_CDR16600

2C_SSP2_CM_CB1000_CDR16600_DAClocst

BASE_SSP2_11p

Page 12: The role of Direct Air Capture and Carbon Dioxide Removal ...The role of Direct Air Capture and Carbon Dioxide Removal in Well below 2°C scenarios in ETSAP-TIAM James Glynn1, Niall

Difference in cumulative CDR

• Low Cost DAC cumulative Capture of CO2 ranges from 11 GtCO2 in the 2C case,

• 17GtCO2 for the 1.5C threshold case

• 25GtCO2 in the overshoot and return to 1.5C case.

• The 1.5C threshold scenario with Low Cost DAC captures and additional 49GtCO2 compared to the without DAC scenario

• The 1.5C threshold scenario with DAC has 168GtCO2 less CDR than the 2C case.

• Coal consumption in electricity is replaced is phased out more rapidly in this case.

1 -

-49

1

-13

168

-11

-25 -17

-11

-25 -17

-100

-50

-

50

100

150

200

2C 1.5C 2100 1.5C UP 2C 1.5C 2100 1.5C UP

Difference with and without LowCost DAC

. Difference from a Low Cost DAC to2C without DAC

Ch

ange

in C

um

ula

tive

CO

2 E

mis

sio

ns

fro

m 2

C

(GtC

O2

20

20

-21

00

)

Difference in Total CDR Difference in Direct Air Capture

Page 13: The role of Direct Air Capture and Carbon Dioxide Removal ...The role of Direct Air Capture and Carbon Dioxide Removal in Well below 2°C scenarios in ETSAP-TIAM James Glynn1, Niall

Key Messages

• Staying below a 1.5°C ceiling seems unlikely with current demand outlook understanding and technology specifications, even with optimistic CDR costs in the form of Direct Air Capture.• Negative Emissions technologies and CDR seem to be required to stay well below

2C.

• While DAC may have a near term CDR role to play, BECCS which also provides energy service requirements (biofuel & electricity), captures and removes more CO2 in our scenario analysis.• However, it is likely that there are heat & electricity constraints on DAC deployment in TIAM.

• Future Work with MaREI-UCC, Centre for environmental Policy and Grantham at Imperial College London

• The costs of achieving ambitious decarbonisation scenarios are highly sensitive to the volume of CO2 removal & Storage• Carbon Capture and Storage, and other negative emissions technologies require

accelerated development as well as likely demand side measures.

• Some regions may have significantly reduced abatement costs due to their ability to sequester CO2 in conjunction with considerable renewables potentials and large geological storage for BECCs & CDR.

Page 14: The role of Direct Air Capture and Carbon Dioxide Removal ...The role of Direct Air Capture and Carbon Dioxide Removal in Well below 2°C scenarios in ETSAP-TIAM James Glynn1, Niall

ETSAP-TIAM waste HET sources for DAC?

• Detailed Bottom Up energy System Model

• From Energy Reserves, extraction, transformation, trade, renewable energy potentials, electricity generation, conversion to end use fuels, multiple energy service demands per sector.

• Integrated Climate Module

• Integrated Macroeconomic model for price demand general equilibrium.

Climate

Module

Atm. Conc.

ΔForcing

ΔTemp

Used for

reporting &

setting

targets

Biomass

Potential

Renewable

Potential

Nuclear

Fossil Fuel

Reserves

(oil, coal, gas)

ExtractionUpstream

Fuels

Trade

Secondary

Transformation

OPEC/

NON-OPEC

regrouping

Electricity

Fuels

Electricity

Cogeneration

Heat

Hydrogen production

and distribution

End Use

Fuels

Industrial

Service

CompositionAuto Production

Cogeneration

Carbon

captureCH4 options

Carbon

sequestration

Terrestrial

sequestration

Landfills ManureBio burning, rice,

enteric fermWastewater

CH4 options

N2O options

CH4 options

OI****

GA****

CO****

Trade

ELC***

WIN SOL

GEO TDL

BIO***

NUC

HYD

BIO***

HETHET

ELCELC

SYNH2

BIO***

CO2

ELC

GAS***

COA***

Industrial

Tech.

Commercial

Tech.

Transport

Tech.

Residential

Tech.

Agriculture

Tech.I***

I** (6)T** (16)R** (11)C** (8)A** (1)

INDELC

INDELC

IS**

Demands

IND*** COM***AGR*** TRA***RES***

Non-energy

sectors (CH4)

OIL***

Low Temp Waste Heat?

Page 15: The role of Direct Air Capture and Carbon Dioxide Removal ...The role of Direct Air Capture and Carbon Dioxide Removal in Well below 2°C scenarios in ETSAP-TIAM James Glynn1, Niall

References

Energy Input

Electricity

[GJ/ton]

Heat

[GJ/ton]

DAC 1

Strong Base

Sorbents

APS; Mazzotti, 2012 [1]

Keith, 2013 and 2018 [2]

Carbon Engineering

1.8

(centralized elec)

8.1

(Natural Gas)

DAC2

Solid Adsorbents

Amine-based

Goeppert, 2012

Climeworks [3]

Global Thermostat [4]

1.1

(centralized elec)

7.2

(Waste Heat)

DAC21

Solid Adsorbents

Amine-based

Goeppert, 2012

Climeworks [3]

Global Thermostat [4]

1.1

(centralized elec)7.2

(low-T heat)

Technology AnalyzedNext Steps - DAC Diagnostics @Grantham

Page 16: The role of Direct Air Capture and Carbon Dioxide Removal ...The role of Direct Air Capture and Carbon Dioxide Removal in Well below 2°C scenarios in ETSAP-TIAM James Glynn1, Niall

Energy Input Cost Estimates

[$/ton]

Transport

Cost

Electricity

[GJ/ton]

Heat

[GJ/ton]

Investment O&M

(no energy)

[$/ton]

DAC 1

Strong Base

Sorbents

HIGH

LOW

1.8

1.6

8.1

6

220 [1]

160 [2]

76 [1]

60 [2]

1-10

DAC2

Solid Adsorbents

Amine-based

HIGH

LOW

1.1

0.7

7.2

5.4

90

50 [3]

260

150 [3]10

DAC21

Solid Adsorbents

Amine-based

HIGH

LOW

1.1

0.7

7.2

5.4

90

50 [3]

260

150 [3]

1-10

Energy and Cost AssumptionsNext Steps - DAC Diagnostics @Grantham

Page 17: The role of Direct Air Capture and Carbon Dioxide Removal ...The role of Direct Air Capture and Carbon Dioxide Removal in Well below 2°C scenarios in ETSAP-TIAM James Glynn1, Niall

Energy Input Cost Estimates Transport Cost

HIGH LOW HIGH LOW

BASE X

constantX 10

Low Cost X

constantX 10

Low Energy X

constantX 10

Exogenous Cost

Reduction

6% annual

cost reductionX 10

Low Transport X

constantX 1

Scenarios Next Steps - DAC Diagnostics @Grantham

Page 18: The role of Direct Air Capture and Carbon Dioxide Removal ...The role of Direct Air Capture and Carbon Dioxide Removal in Well below 2°C scenarios in ETSAP-TIAM James Glynn1, Niall

Next Steps - DAC diagnostics @Grantham

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

1. E

xoge

no

us

Co

st R

ed

2. L

ow

Co

st (

con

stan

t)

3. L

ow

En

erg

y

4. L

ow

Tra

nsp

ort

Co

st

5. B

ASE

1. E

xoge

no

us

Co

st R

ed

2. L

ow

Co

st (

con

stan

t)

3. L

ow

En

erg

y

4. L

ow

Tra

nsp

ort

Co

st

5. B

ASE

1. E

xoge

no

us

Co

st R

ed

2. L

ow

Co

st (

con

stan

t)

3. L

ow

En

erg

y

4. L

ow

Tra

nsp

ort

Co

st

5. B

ASE

1. E

xoge

no

us

Co

st R

ed

2. L

ow

Co

st (

con

stan

t)

3. L

ow

En

erg

y

4. L

ow

Tra

nsp

ort

Co

st

5. B

ASE

1. E

xoge

no

us

Co

st R

ed

2. L

ow

Co

st (

con

stan

t)

3. L

ow

En

erg

y

4. L

ow

Tra

nsp

ort

Co

st

5. B

ASE

1. E

xoge

no

us

Co

st R

ed

2. L

ow

Co

st (

con

stan

t)

3. L

ow

En

erg

y

4. L

ow

Tra

nsp

ort

Co

st

5. B

ASE

1. E

xoge

no

us

Co

st R

ed

2. L

ow

Co

st (

con

stan

t)

3. L

ow

En

erg

y

4. L

ow

Tra

nsp

ort

Co

st

5. B

ASE

1. E

xoge

no

us

Co

st R

ed

2. L

ow

Co

st (

con

stan

t)

3. L

ow

En

erg

y

4. L

ow

Tra

nsp

ort

Co

st

5. B

ASE

1. E

xoge

no

us

Co

st R

ed

2. L

ow

Co

st (

con

stan

t)

DAC1 DAC2 DAC21 DAC1 DAC2 DAC21 DAC1 DAC2 DAC21

2080 2090 2100

CO

2 C

aptu

red

[G

t/yr

]

Ene

rgy

Ne

ed

[EJ

/yr]

Energy Requirements for DAC [EJ/yr]

Electricity Heat CO2 captured [Gt/yr]

Page 19: The role of Direct Air Capture and Carbon Dioxide Removal ...The role of Direct Air Capture and Carbon Dioxide Removal in Well below 2°C scenarios in ETSAP-TIAM James Glynn1, Niall

Next Steps - DAC diagnostics @Grantham

0

20

40

60

80

100

120

140

2050 2060 2070 2080 2090 2100

CO2 Captured [Gt/yr]

DAC1 1. Exogenous Cost Red

DAC1 2. Low Cost (constant)

DAC1 3. Low Energy

DAC1 4. Low Transport Cost

DAC1 5. BASE (High Cost - constant)

DAC2 1. Exogenous Cost Red

DAC2 2. Low Cost (constant)

DAC2 3. Low Energy

DAC2 4. Low Transport Cost

DAC2 5. BASE (High Cost - constant)

DAC21 1. Exogenous Cost Red

DAC21 2. Low Cost (constant)

DAC21 3. Low Energy

DAC21 4. Low Transport Cost

DAC21 5. BASE (High Cost - constant)

Page 20: The role of Direct Air Capture and Carbon Dioxide Removal ...The role of Direct Air Capture and Carbon Dioxide Removal in Well below 2°C scenarios in ETSAP-TIAM James Glynn1, Niall

Thank YouQUESTIONS?

Page 21: The role of Direct Air Capture and Carbon Dioxide Removal ...The role of Direct Air Capture and Carbon Dioxide Removal in Well below 2°C scenarios in ETSAP-TIAM James Glynn1, Niall

“Unlocking the potential of our marine and renewable energy

resources through the power of research and innovation”

Page 22: The role of Direct Air Capture and Carbon Dioxide Removal ...The role of Direct Air Capture and Carbon Dioxide Removal in Well below 2°C scenarios in ETSAP-TIAM James Glynn1, Niall

Environmental Research Institute

Instiúd Taighde Comshaoil

Energy Policy and Modelling Group

www.ucc.ie/energypolicy

Page 23: The role of Direct Air Capture and Carbon Dioxide Removal ...The role of Direct Air Capture and Carbon Dioxide Removal in Well below 2°C scenarios in ETSAP-TIAM James Glynn1, Niall

Q&A Backup Slides

Page 24: The role of Direct Air Capture and Carbon Dioxide Removal ...The role of Direct Air Capture and Carbon Dioxide Removal in Well below 2°C scenarios in ETSAP-TIAM James Glynn1, Niall

Scenario Temperature profiles

Page 25: The role of Direct Air Capture and Carbon Dioxide Removal ...The role of Direct Air Capture and Carbon Dioxide Removal in Well below 2°C scenarios in ETSAP-TIAM James Glynn1, Niall

Shared Socioeconomic Pathways drivers

Page 26: The role of Direct Air Capture and Carbon Dioxide Removal ...The role of Direct Air Capture and Carbon Dioxide Removal in Well below 2°C scenarios in ETSAP-TIAM James Glynn1, Niall

2C & 1.5C Electricity Generation w/wo DAC

0

20

40

60

80

100

120

140

160

180

20

05

20

10

20

20

20

30

20

40

20

50

20

60

20

70

20

80

20

90

21

00

20

05

20

10

20

20

20

30

20

40

20

50

20

60

20

70

20

80

20

90

21

00

20

05

20

10

20

20

20

30

20

40

20

50

20

60

20

70

20

80

20

90

21

00

2C_SSP2_CM_CB1000_CDR16600 15C_SSP2_CM21_CB600_CDR16600 15C_SSP2_CMUP_CB400_CDR16600

Exaj

ou

les

Electricity Generation (EJ) Geo, Tidal and Wave

Solar Thermal

Solar PV

Wind

Hydro

Nuclear

Biomass CCS

Biomass

CH4 Options

Gas CCS

Gas and Oil

Coal

0

20

40

60

80

100

120

140

160

180

200

20

05

20

10

20

20

20

30

20

40

20

50

20

60

20

70

20

80

20

90

21

00

20

05

20

10

20

20

20

30

20

40

20

50

20

60

20

70

20

80

20

90

21

00

20

05

20

10

20

20

20

30

20

40

20

50

20

60

20

70

20

80

20

90

21

00

2C_SSP2_CM_CB1000_CDR16600_DAClocst 15C_SSP2_CM21_CB600_CDR16600_DAClocst 15C_SSP2_CMUP_CB400_CDR16600_DAClocst

Exaj

ou

les

Electricity Generation (EJ) Geo, Tidal and Wave

Solar Thermal

Solar PV

Wind

Hydro

Nuclear

Biomass CCS

Biomass

CH4 Options

Gas CCS

Gas and Oil

Coal

Wit

hou

t D

AC

Wit

h L

ow

Cost

DA

C

Page 27: The role of Direct Air Capture and Carbon Dioxide Removal ...The role of Direct Air Capture and Carbon Dioxide Removal in Well below 2°C scenarios in ETSAP-TIAM James Glynn1, Niall

2C & 1.5C Primary Energy Supply w/wo DAC

0

200

400

600

800

1000

1200

1400

1600

1800

20

05

20

10

20

20

20

30

20

40

20

50

20

60

20

70

20

80

20

90

21

00

20

05

20

10

20

20

20

30

20

40

20

50

20

60

20

70

20

80

20

90

21

00

20

05

20

10

20

20

20

30

20

40

20

50

20

60

20

70

20

80

20

90

21

00

2C_SSP2_CM_CB1000_CDR16600 15C_SSP2_CM21_CB600_CDR16600 15C_SSP2_CMUP_CB400_CDR16600

Pri

mar

y En

ergy

(Ex

ajo

ule

s)

Primary Energy Requirement (EJ) - Climate Scenarios 2C-1.5C

Renewables

Hydro

Nuclear

Biomass

Gas

Oil

Coal

0

200

400

600

800

1000

1200

1400

1600

1800

20

05

20

10

20

20

20

30

20

40

20

50

20

60

20

70

20

80

20

90

21

00

20

05

20

10

20

20

20

30

20

40

20

50

20

60

20

70

20

80

20

90

21

00

20

05

20

10

20

20

20

30

20

40

20

50

20

60

20

70

20

80

20

90

21

00

2C_SSP2_CM_CB1000_CDR16600_DAClocst 15C_SSP2_CM21_CB600_CDR16600_DAClocst 15C_SSP2_CMUP_CB400_CDR16600_DAClocst

Pri

mar

y En

ergy

(Ex

ajo

ule

s)

Primary Energy Requirement (EJ) - Climate Scenarios 2C-1.5C-DAC low Cost

Renewables

Hydro

Nuclear

Biomass

Gas

Oil

Coal

Wit

hou

t D

AC

Wit

h L

ow

Cost

DA

C