Top Banner
Dominic Woolf, June 2012 The role of biochar in a negative emissions portfolio Dominic Woolf Cornell University
23

The role of biochar in a negative emissions portfolio · DominicWoolf,June2012 The role of biochar in a negative emissions portfolio Dominic Woolf Cornell University

Feb 17, 2019

Download

Documents

duongdat
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The role of biochar in a negative emissions portfolio · DominicWoolf,June2012 The role of biochar in a negative emissions portfolio Dominic Woolf Cornell University

Dominic  Woolf,  June  2012  

The role of biochar in a negative emissions portfolio

Dominic Woolf Cornell University

Page 2: The role of biochar in a negative emissions portfolio · DominicWoolf,June2012 The role of biochar in a negative emissions portfolio Dominic Woolf Cornell University

Dominic  Woolf,  June  2012  

Biochar: An intervention in the terrestrial carbon cycle

Anthropogenic  emissions:    8  Pg  C  yr-­‐1  

Terrestrial  NPP:    60  Pg  C  yr-­‐1  

Heterotrophic    respiraDon:  

(60  –  X)  Pg  C  yr-­‐1  

Biochar:  X  Pg  C  yr-­‐1  

Page 3: The role of biochar in a negative emissions portfolio · DominicWoolf,June2012 The role of biochar in a negative emissions portfolio Dominic Woolf Cornell University

Dominic  Woolf,  June  2012  

Sensitivity of Avoided Emissions to Biochar Stability !   Biochar  consists  of  both  labile  (short-­‐lived)  

and  recalcitrant  (long-­‐lived)  components  !   Biochar  stability  depends  primarily  on  (1)  

the  labile  fracDon  &  (2)  T½  of  recalcitrant  fracDon  

!   Centennial  avoided  emissions  insensiDve  to  T½  >  200  yrs  

!   Centennial  avoided  emissions  are  sharply  reduced  for  T½  <  100  yrs  

!   Increasing  soil  BC  stocks  give  rise  to  increasing  soil  CO2  emissions  from  BC  decomposiDon  

!   Eventually,  “peak  biochar”  occurs  when  losses  ≈  addiDons  

!   Long-­‐term  biochar  sequestraDon  requires  high  biochar  stability  (T½  ≳  500  yrs  over  500  yr  Dmescale)  

(Leh

man

n et

al.,

201

0)  

SequestraDon  

Page 4: The role of biochar in a negative emissions portfolio · DominicWoolf,June2012 The role of biochar in a negative emissions portfolio Dominic Woolf Cornell University

Dominic  Woolf,  June  2012  

Influence of Temperature on Biochar Structure

!   Biomass  conversion  to  biochar  fundamentally  changes  the  chemistry  of  organic  ma]er  !   Both  decomposiDon  and  condensaDon  reacDons  occur  !   Increasing  temperature:    

!   reduces  H  &  O  content    !   increases  aromaDcity  !   increases  condensaDon  of  biochar  (increased  size  of  conjugated  aromaDc  sheets)  !   increases  3D  order  !   increases  porosity  &  surface  area  !   increases  pH  &  CEC  

Page 5: The role of biochar in a negative emissions portfolio · DominicWoolf,June2012 The role of biochar in a negative emissions portfolio Dominic Woolf Cornell University

Dominic  Woolf,  June  2012  

Biochar stability increases with pyrolysis temperature

!   EsDmates  of  biochar  ½  life  span  6  orders  of  magnitude  (101  –  107  yrs)  

!   T½  corellates  with  O:C  raDo  !   Lower  O:C    =>    higher  T½  !   O:C  reduced  by    

!   higher  pyrolysis  temperature  !   longer  reacDon  Dme  

!   Feedstock  also  contributes  to  stability  !   Manure  biochar  least  stable  !   Grasses  less  stable  !   Wood  most  stable  

!   T  ½  >  1000  yrs  can  be  achieved  by  use  of  slow  pyrolysis  at  >500°C  

(Spokas,  2011)  

Poultry-­‐manure  biochars  

Page 6: The role of biochar in a negative emissions portfolio · DominicWoolf,June2012 The role of biochar in a negative emissions portfolio Dominic Woolf Cornell University

Dominic  Woolf,  June  2012  

Global Distribution of soil BC

!   BC  is  ubiquitous  in  global  soils  

!   BC%  of  SOC  peaks  at  20-­‐30°  laDtude  (arid  zone  &  regions  with  pronounced  dry  season)  

!   High  BC%  generally  associated  with  most  ferDle  soils  (anthrosols,  mollisols,  chernozems)  

(Krull  et  al.,  2008)  

Page 7: The role of biochar in a negative emissions portfolio · DominicWoolf,June2012 The role of biochar in a negative emissions portfolio Dominic Woolf Cornell University

Dominic  Woolf,  June  2012  

!   Anthropogenic  Dark  Earths  in  Amazonia,  West  Africa  &  Borneo  highly  ferDle  relaDve  to  adjacent  soils  !   ADEs  built  gradually  over  many  decades/centuries.  !   Also  contain  raised  non-­‐pyrogenic  SOC  !   Higher  pH,  Ca,  n,  P  ,  K,  Ca  and  water  holding  capacity  !   High  P  content  possibly  due  to  addiDon  of  bones  or  reduced  

leaching  !   May  not  be  possible  to  replicate  in  short  Dme  scale  

!   Short-­‐term  field  &  pot  trials  have  typically  shown  a  5-­‐40%  increase  in  yield  

!   Mechanisms  include:  !   reducing  pH  constraints  !   lowering  Al  toxicity  !   Increased  CEC  !   SorpDon  of  anionic  nutrients  (nitrate,  phospate)  !   Increased  water  retenDon  !   Synergies  with  mycorrhizae    

!   Yields  can  also  be  supressed  by    !   raising  pH  on  neutral/alkaline  soils  !   N  immobilisaDon  from  high  labile-­‐content  biochar  !   lowering  water  retenDon  in  clayey  soils  

!   Different  biochars  need  to  be  tailored  to  local  soil  constraints  

!   Long-­‐term  field  trials  sDll  required.    

++  CEC  ++  SOC  ++  water  retenDon  -­‐  -­‐  nutrient  leaching  

Verheijen  et  al.  (2009)  

Effect on crop yields

Page 8: The role of biochar in a negative emissions portfolio · DominicWoolf,June2012 The role of biochar in a negative emissions portfolio Dominic Woolf Cornell University

Dominic  Woolf,  June  2012  

Fertility effect on yield response

!   Yield  improvements  most  pronounced  on  degraded  or  inferDle  (low  CEC,  low  OM,  sandy  or  nutrient  constrained)  soils  

!   Highly  ferDle  soils  typically  do  not  show  any  improvement  in  yields  

!   Site-­‐specificity  is  a  common  feature  of  all  types  of  organic  amendment  

!   Yield  generally  shows  a  strong  synergisDc  posiDve  interacDon  with  mineral  &  organic  ferDlisers  

Page 9: The role of biochar in a negative emissions portfolio · DominicWoolf,June2012 The role of biochar in a negative emissions portfolio Dominic Woolf Cornell University

Dominic  Woolf,  June  2012  

Char   Gas  

Water  Tar  &  VolaDles  

Products of Pyrolysis

!   Biochar  yield  falls  with  temperature,  but...  !   C  yield  falls  less  strongly    !   Fixed-­‐C  yield  has  li]le  temperature  response  for  T  >  400°C  !   C-­‐sequestraDon  fairly  independent  of  pyrolysis  temp.  !   Pyrolysis  condiDons  should  be  opDmised  for  energy  producDon,  

economics,  and  emissions.  

Page 10: The role of biochar in a negative emissions portfolio · DominicWoolf,June2012 The role of biochar in a negative emissions portfolio Dominic Woolf Cornell University

Dominic  Woolf,  June  2012  

Coproduction of Energy with Biochar

!   Per  unit  feedstock,  increased  biochar  producDon  implies  reduced  energy  producDon  

!   IniDal  biomass  (dry,  ash-­‐free)  has  ~  19  GJ  Mg-­‐1  

!   approx  7  –  8  GJ  remains  in  biochar  (slow  pyrolysis)  

!   Once  losses  accounted  for,  up  to  ~7  GJ  energy  available  

!   Several  pathways  to  produce  liquid  &  gaseous  fuels  or  electricity  

Page 11: The role of biochar in a negative emissions portfolio · DominicWoolf,June2012 The role of biochar in a negative emissions portfolio Dominic Woolf Cornell University

Dominic  Woolf,  June  2012  

Sustainable Global Potential

Cropland  soil    (top  15cm)  

begins  to  saturate  

Cropland  soil    (top  15cm)  saturated  

Sustainable  Biomass  availability  scenarios  (Pg  C  yr-­‐1)  

Moderate  1.0  Pg  C  

Extreme  2.3  Pg  C  

AmbiDous  1.6  Pg  C  

!   Biochar  can  be  produced  sustainably  or  unsustainably  !   Feedstock  source  of  prime  importance  (as  with  all  

biomass  technologies)  !   Pyrolysis  emissions  and  energy  producDon  also  

important  !   Sustainability  criteria:  

!   Agricultural  &  forestry  residues  procured  at  a  rate  that  does  not  cause  soil  erosion  or  degradaDon  or  reduce  food  security  

!   Li]le  C  debt  from  land-­‐use  change  or  long-­‐lived  feedstocks  

!   No  loss  of  habitat  or  biodiversity  from  direct  or  indirect  land  conversion  

!   No  contaminated  wastes  used  !   Low-­‐emissions  conversion  technology  !   Energy  co-­‐producDon  

Page 12: The role of biochar in a negative emissions portfolio · DominicWoolf,June2012 The role of biochar in a negative emissions portfolio Dominic Woolf Cornell University

Dominic  Woolf,  June  2012  

Avoided emissions attributions

!   Main  contribuDon  due  to  sequestered  C  &  fossil-­‐fuel  offsets  

!   Significant  avoided  CH4  from  paddy  rice  producDon  

!   Avoided  N2O  accounts  for  9%  of  miDgaDon  impact  

!   Main  negaDve  impacts  are  BC  decomposiDon  and  SOC  loss  

!   Tillage  &  transport  losses  negligible  !   Avoided  emissions  from  bioenergy  

slightly  larger  than  C-­‐sequestraDon  effect  alone  of  biochar:  greater  benefit  of  biochar  requires  coproducDon  of  energy  

Page 13: The role of biochar in a negative emissions portfolio · DominicWoolf,June2012 The role of biochar in a negative emissions portfolio Dominic Woolf Cornell University

Dominic  Woolf,  June  2012  

Biochar vs Bioenergy

!   RelaDve  miDgaDon  potenDal  of  biochar  and  bioenergy  (combusDon)  depends  strongly  on  fossil  fuel  that  is  offset  and  local  soil  ferDlity  

!   ⨂  indicates  baseline  C-­‐intensity  and  global-­‐mean  cropland  soil-­‐ferDlity  

!   Least  ferDle  soils  yield  greater  benefit  from  biochar  than  bioenergy  

!   RelaDve  benefit  of  biochar  increases  as  C  intensity  decreases    

!   Contours  steepest  for  biomass  crops  !   Highest  relaDve  benefit  (>80%)  for  

poorest  soils  growing  biomass  crops  offseung  low  C-­‐intensity  fuels  

!   Lowest  relaDve  benefit  (-­‐19%)  for  most  ferDle  soil  growing  biomass  crops  and  offseung  coal  

!   RelaDve  benefits  of  biochar  and  bioenergy  depend  highly  on  local  condiDons!  

!   So  far,  comparison  has  only  been  on  a  per  unit  biomass  basis.    But…  

⨂  

⨂  

⨂  

⨂  

Page 14: The role of biochar in a negative emissions portfolio · DominicWoolf,June2012 The role of biochar in a negative emissions portfolio Dominic Woolf Cornell University

Dominic  Woolf,  June  2012  

SOC Priming

!   Biochar  affects  (primes)  turnover  rates  of  non-­‐pyrogenic  SOC  !   Both  increased  iniDal  

respiraDon  rates  (+ve  priming)  and  increased  stabilisaDon  (-­‐ve  priming)  have  been  observed  

!   In  the  long  term,  stabilisaDon  effects  dominate  !   biochar  may  significantly  

increase  npSOC  

!   SOC  depleDon  is  the  limiDng  factor  in  sustainable  biomass  residue  harvesDng    

Page 15: The role of biochar in a negative emissions portfolio · DominicWoolf,June2012 The role of biochar in a negative emissions portfolio Dominic Woolf Cornell University

Dominic  Woolf,  June  2012  

1  ha  of  corn   Total  crop    residues  per  ha  

Maximum  sustainably    harvestable  crop  residues  

144  GJ  (8  Mg)  

30%  conver

sion  

efficiency  

108  GJ  (6  Mg)  

Biochar  45  GJ    (1.4  Mg)  

Ethanol  32  GJ  

80%  conversion  efficiency  

Biochar  returned  to  soil  maintains  /  improves  soil  funcDon  and  builds  soil  carbon  

Liquid  biofuel  29  GJ  

36  GJ  (2  Mg)  

Biochar  /  bioenergy    conversion  

Page 16: The role of biochar in a negative emissions portfolio · DominicWoolf,June2012 The role of biochar in a negative emissions portfolio Dominic Woolf Cornell University

Dominic  Woolf,  June  2012  

Economic effects of C Credits & fertility

!   Payback  period  of  25  years  or  more  !   Net  profitability  of  biochar  depends  heavily  

on  crop  value  enhancements  !   Most  cost  effecDve  on  moderate  ferDlity  

soils  where  total  yield  responses  are  highest      

!   Least  ferDle  soils  that  benefit  most  from  biochar  are  constrained  by  lower  economic  return  and  by  lower  feedstock  availability  

!   No  payback  on  highly  ferDle  soil  

!   C  credits  have  essenDally  no  impact  on  relaDve  profitability  of  biochar  and  bioenergy  

JE  Amone]e    22Jan2012  

Without  C  credits   Solid  lines  show  effect  of  $200/Mg  C  credits  

Figures  courtesy  of  J.  Amone]e,    Pacific  Northwest  NaDonal  Laboratory  

Page 17: The role of biochar in a negative emissions portfolio · DominicWoolf,June2012 The role of biochar in a negative emissions portfolio Dominic Woolf Cornell University

Dominic  Woolf,  June  2012  

!   Cost  of  biochar  producDon  varies  considerably  with  feedstock  (-­‐£200  to  +£390  Mg-­‐1  for  large-­‐scale  biochar  systems  in  the  UK)  !   Biochar  from  waste  products  for  which  ‘Dpping  fees’  paid  may  have  

negaDve  producDon  cost  

!   Feedstock  cost  is  largest  component  of  producDon  cost  

!   In  UK,    

6x106  Mg  CO2    yr-­‐1  abatement  potenDal    

for  <  £20  Mg-­‐1  

(Shackley  et  al.  2010)  

Page 18: The role of biochar in a negative emissions portfolio · DominicWoolf,June2012 The role of biochar in a negative emissions portfolio Dominic Woolf Cornell University

Dominic  Woolf,  June  2012  

Global cost curve for GHG abatement

Source:    Enkvist  e

t  al.  

(200

7)  

€21-30 per tCO2e (from  McCarl 2009)

3.7-­‐6.6  GtCO2e/yr  abatement  (Woolf  et  al  2010)

Biochar

Page 19: The role of biochar in a negative emissions portfolio · DominicWoolf,June2012 The role of biochar in a negative emissions portfolio Dominic Woolf Cornell University

Dominic  Woolf,  June  2012  

Summary & Conclusions

!   Biochar  can  be  engineered  to  be  sufficiently  stable  to  sequester  C  for  several  centuries  

!   Short  term  field  &  pot  trials  typically  show  improved  yields  in  poor  soils  

!   FerDle  soils  typically  show  no  improvement  in  yield  (although  water  and  ferDliser  inputs  and  runoff  may  be  reduced)  

!   No  long-­‐term  field-­‐trial  data  are  available,  although  BC-­‐rich  soils  o~en  have  high  ferDlity  

!   Climate  miDgaDon  potenDal  of  biochar  is  greater  than  bioenergy  except  where  ferDle  soils  coexist  with  high  C-­‐intensity  energy  supply  

!   Short-­‐term  economics  favour  bioenergy  over  biochar;  long-­‐term  favours  biochar  

!   Payback  Dmes  before  biochar  is  more  economic  than  bioenergy  range  from  25-­‐70  yrs  (shortest  on  soils  with  moderate  ferDlity  constraints)  

!   If  applied  equally,  C  credits  have  li]le  impact  on  relaDve  economics  of  biochar  and  bioenergy  

!   A  more  comprehensive  comparaDve-­‐analysis  of  the  uses  of  biomass  for  GHG-­‐miDgaDon  is  required,  looking  at  a  wide  range  of  opDons  (co-­‐firing,  AD,  burial,  biochar,  biofuels,  electricity,  BECCS...)  for  an  array  of  potenDal  feedstocks  and  geographic  locaDons  

!   Comparisons  between  uses  of  biomass  must  consider  not  just  economics,  energy  and  GHGs,  but  also  wider  issues  including  soil  conservaDon,  biodiversity,  hydrology  &  nutrient  cycling.  

Page 20: The role of biochar in a negative emissions portfolio · DominicWoolf,June2012 The role of biochar in a negative emissions portfolio Dominic Woolf Cornell University

Dominic  Woolf,  June  2012  

References

!   Antal  M,  Grønli  M  (2003)  The  Art,  Science,  and  Technology  of  Charcoal  ProducDon†.  Ind  Eng  Chem  Res  42:1619–1640.  !   Enkvist  P-­‐A,  Naucler  T,  Rosander  J  (2007)  A  Global  Cost  Curve  for  Greenhouse  Gas  ReducDon.  The  McKinsey  Quarterly  1  

!   Krull  et  al.  (2008)  Grasslands:  Ecology,  Management  &  RestoraDon,  Nova  Science  Publ.    !   Lehman  et  al.  (2011)  Role  of  biochar  in  miDgaDon  of  climate  change,  Imperial  College  Press  !   McCarl  B,  Peacocke  C,  Chrisman  R,  et  al.  (2009)  Chapter  19:  Economics  of  biochar  producDon,  uDlisaDon  and  emissions.  

Biochar  for  environmental  management:  science  and  technology,  Lehmann,  J.  &  Joseph,  S.  (eds)    !   Neves  D,  Thunman  H,  Matos  A,  et  al.  (2011)  CharacterizaDon  and  predicDon  of  biomass  pyrolysis  products.  Progress  in  

Energy  and  CombusDon  Science  

!   Shackley  S,  Hammond  J,  Gaunt  J,  Ibarrola  R  (2011)  The  feasibility  and  costs  of  biochar  deployment  in  the  UK.  Carbon  2:335–356.  

!   Spokas  K  (2010)  Review  of  the  stability  of  biochar  in  soils:  predictability  of  O:C  molar  raDos.  Carbon  Manage  1:289–303.    

!   Verheijen  F,  Jeffery  S,  Bastos  AC,  et  al.  (2009)  Biochar  ApplicaDon  to  Soils:  A  CriDcal  ScienDfic  Review  of  Effects  on  Soil  ProperDes,  Processes  and  FuncDons.  Joint  Research  Centre.  InsDtute  for  Environment  and  Sustainability,  Ispra,  Italy    

!   Woolf  D,  Amone]e  JE,  Street-­‐Perro]  FA,  et  al.  (2010)  Sustainable  biochar  to  miDgate  global  climate  change.  Nature  CommunicaDons  1:1–9.  

Page 21: The role of biochar in a negative emissions portfolio · DominicWoolf,June2012 The role of biochar in a negative emissions portfolio Dominic Woolf Cornell University

Dominic  Woolf,  June  2012  

Page 22: The role of biochar in a negative emissions portfolio · DominicWoolf,June2012 The role of biochar in a negative emissions portfolio Dominic Woolf Cornell University

Dominic  Woolf,  June  2012  

Economic Model Assumptions

!   Crop  Value—Maize:  $300/Mg  

!   Yield  increase  builds  with  addiDonal  biochar  amendments  !   Biomass  Amount:  1  Mg  C/yr;  biochar  from  this  applied  to  1  ha  

annually.  

!   Fossil  Fuel  Carbon  Intensity:  17.5  KgC/GJ  !   Energy  Value:  $3.00/GJ  !   Cost  of  ProducDon/TransportaDon:  

!   $70/  MgC  slow  pyrolysis  

!   $50/  MgC  combusDon  

!   C  Credits:  $0-­‐$200/Mg  C  

!   Soil  FerDlity  Response  Factor:  0-­‐1  !   Time:  0-­‐100  years  

Page 23: The role of biochar in a negative emissions portfolio · DominicWoolf,June2012 The role of biochar in a negative emissions portfolio Dominic Woolf Cornell University

Dominic  Woolf,  June  2012  

C intensity of fuel offsets

!   On  average,  biochar  has  higher  miDgaDon  potenDal  than  bioenergy  except  when  in  most  C-­‐intense  economies  (e.g.  where  coal  is  only  fuel)  

!   SensiDvity  to  C  intensity  is  lower  than  bioenergy  

!   In  low  carbon-­‐intensity  locaDon  or  future,  biochar  maintains  significant  GHG  reducDons  

Amb.  

Ext.  

Mod.